51
|
Su Z, Du T, Liang X, Wang X, Zhao L, Sun J, Wang J, Zhang W. Nanozymes for foodborne microbial contaminants detection: Mechanisms, recent advances, and challenges. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
52
|
Sun R, Lv R, Li Y, Du T, Chen L, Zhang Y, Zhang X, Zhang L, Ma H, Sun H, Qi Y. Simple and sensitive electrochemical detection of sunset yellow and Sudan I in food based on AuNPs/Zr-MOF-Graphene. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
53
|
Xia Y, Liu Y, Hu X, Zhao F, Zeng B. Dual-Mode Electrochemical Competitive Immunosensor Based on Cd 2+/Au/Polydopamine/Ti 3C 2 Composite and Copper-Based Metal-Organic Framework for 17β-Estradiol Detection. ACS Sens 2022; 7:3077-3084. [PMID: 36198618 DOI: 10.1021/acssensors.2c01420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein, a dual-mode electrochemical competitive immunosensor was constructed for the detection of 17β-estradiol (E2) based on differential pulse voltammetry (DPV) and chronoamperometry (i-t). During the immune recognition process, the E2 antibody (E2-Ab) was immobilized on the Cd2+/Au/polydopamine/Ti3C2 (Cd2+/Au/pDA/Ti3C2) composite-modified electrode; then, the E2-conjugated bovine serum albumin (E2-BSA) was labeled with a copper-based metal-organic framework (Cu-MOF) and competed with E2 in combining the E2-Ab. The Cu-MOF was not only an electroactive species but also possessed good electrocatalytic activity toward H2O2. Thus, E2 could be quantified according to the peak current change of the Cu-MOF in DPV curve or the variation of H2O2 reduction current. For DPV quantification, Cd2+ was introduced as an internal reference in this case, and a highly reproducible ratio readout was obtained. The as-prepared dual-mode E2 electrochemical immunosensor showed good linear relationship in the ranges of 1 pg mL-1-10 ng mL-1 (DPV) and 10 pg mL-1-10 ng mL-1 (i-t), and the detection limits were 0.47 and 5.4 pg mL-1 (S/N = 3), respectively. Furthermore, the dual-mode electrochemical immunosensor exhibited good practicability in real sample analysis.
Collapse
Affiliation(s)
- Yide Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yiwei Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Xiaopeng Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| |
Collapse
|
54
|
Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, Md Yasin IS, Wasoh H. Advances in Aptamer-Based Biosensors and Cell-Internalizing SELEX Technology for Diagnostic and Therapeutic Application. BIOSENSORS 2022; 12:bios12110922. [PMID: 36354431 PMCID: PMC9687594 DOI: 10.3390/bios12110922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
Collapse
Affiliation(s)
- Zixuen Gan
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | | | - Mohd Yunus Abd Shukor
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Murni Halim
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Nur Adeela Yasid
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Jaafar Abdullah
- Faculty of Science, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Ina Salwany Md Yasin
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Helmi Wasoh
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| |
Collapse
|
55
|
Yang B, Chen F, Wang Y, Deng T, Feng X, Li J. Colorimetric nano-beacon and magnetic separation-based rapid and visual assay for gram-negative bacteria. Anal Biochem 2022; 655:114824. [PMID: 35944695 DOI: 10.1016/j.ab.2022.114824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 12/29/2022]
Abstract
Food-borne diseases caused by pathogenic bacteria are one of the serious factors affecting human health. However, the most commonly used detection methods for pathogenic bacteria not only require expensive instruments, but also take a long time due to the complicated and cumbersome detection process. Therefore, the development of a fast, simple, and low-cost detection method for pathogenic bacteria is crucial for food safety and human health. In this work, based on the high binding ability of antimicrobial peptide (AMP) and polymyxin B (PMB) to bacteria, combined with magnetic separation technology, a new enzyme-free colorimetric strategy was constructed to achieve visual detection of Gram-negative bacteria in complex samples. The sensor system was divided into the following two parts: a colorimetric signal amplification nanoprobe, which was modified with AMP to enable effective binding of the colorimetric probe to the surface of bacteria, and a PMB-modified magnetic nanobead (MNB), which was used as the capture and enrichment unit of Gram-negative bacteria, as a result of which PMB could effectively distinguish Gram-negative bacteria from Gram-positive bacteria. Under optimized conditions, the detection limit of the method for Gram-negative bacteria (e.g. E. coli (G-)) was as low as 10 CFU/mL, and it was successfully applied to complex real samples. In addition, the developed colorimetric sensor offered advantages, such as fast response, less time consumption, high sensitivity, and low cost. It can be expected to become a new diagnostic tool for on-site detection of pathogenic bacteria in remote areas.
Collapse
Affiliation(s)
- Beibei Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fei Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yi Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
56
|
Li JJ, Yin L, Wang ZF, Jing YC, Jiang ZL, Ding Y, Wang HS. Enzyme-immobilized metal-organic frameworks: From preparation to application. Chem Asian J 2022; 17:e202200751. [PMID: 36029234 DOI: 10.1002/asia.202200751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/27/2022] [Indexed: 11/09/2022]
Abstract
As a class of widely used biocatalysts, enzymes possess advantages including high catalytic efficiency, strong specificity and mild reaction condition. However, most free enzymes have high requirements on the reaction environment and are easy to deactivate. Immobilization of enzymes on nanomaterial-based substrates is a good way to solve this problem. Metal-organic framework (MOFs), with ultra-high specific surface area and adjustable porosity, can provide a large space to carry enzymes. And the tightly surrounded protective layer of MOFs can stabilize the enzyme structure to a great extent. In addition, the unique porous network structure enables selective mass transfer of substrates and facilitates catalytic processes. Therefore, these enzyme-immobilized MOFs have been widely used in various research fields, such as molecule/biomolecule sensing and imaging, disease treatment, energy and environment protection. In this review, the preparation strategies and applications of enzymes-immobilized MOFs are illustrated and the prospects and current challenges are discussed.
Collapse
Affiliation(s)
- Jia-Jing Li
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Li Yin
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zi-Fan Wang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Yi-Chen Jing
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zhuo-Lin Jiang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Ya Ding
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Huai-Song Wang
- China Parmaceutical University, Pharmaceutical analysis, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing Jiangsu, CHINA
| |
Collapse
|
57
|
Cun JE, Pan Y, Zhang Z, Lu Y, Li J, Pan Q, Gao W, Luo K, He B, Pu Y. Photo-enhanced upcycling H 2O 2 into hydroxyl radicals by IR780-embedded Fe 3O 4@MIL-100 for intense nanocatalytic tumor therapy. Biomaterials 2022; 287:121687. [PMID: 35872555 DOI: 10.1016/j.biomaterials.2022.121687] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS)-based nanocatalytic tumor therapy is alluring owing to the capability to generate highly cytotoxic ∙OH radicals from tumoral H2O2. However, the antitumor efficacy is highly dependent on the radical generation efficiency and challenged by the high levels of antioxidative glutathione (GSH) in cancer cells. Herein, we report an IR-780 decorated, GSH-depleting Fe3O4@MIL-100 (IFM) nanocomposite for photo-enhanced tumor catalytic therapy by extensive production of ∙OH, which is realized by an integration of excellent peroxidase-like activity of IFM, selective upregulation of tumoral H2O2 by β-lapachone, and localized hyperthermia by near infrared light irradiation. IFM shows potentiated antiproliferative effect in 4T1 cancer cells by ∙OH overproduction and glutathione scavenging, inducing intracellular redox dyshomeostasis and cell death by concurrent apoptosis and ferroptosis. In vivo antitumor investigation further demonstrates photoacoustic and fluorescence imaging-guided combinational therapy with a tumor inhibition rate of 96.4%. This study provides a strategy of photo-enhanced nanocatalytic tumor therapy by tumor-specific H2O2 amplification and hyperthermia.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Junhua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
58
|
Sivakumar R, Lee NY. Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Anal Chim Acta 2022; 1234:340297. [PMID: 36328717 PMCID: PMC9395976 DOI: 10.1016/j.aca.2022.340297] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
The world is currently facing an adverse condition due to the pandemic of airborne pathogen SARS-CoV-2. Prevention is better than cure; thus, the rapid detection of airborne pathogens is necessary because it can reduce outbreaks and save many lives. Considering the immense role of diverse detection techniques for airborne pathogens, proper summarization of these techniques would be beneficial for humans. Hence, this review explores and summarizes emerging techniques, such as optical and electrochemical biosensors used for detecting airborne bacteria (Bacillus anthracis, Mycobacterium tuberculosis, Staphylococcus aureus, and Streptococcus pneumoniae) and viruses (Influenza A, Avian influenza, Norovirus, and SARS-CoV-2). Significantly, the first section briefly focuses on various diagnostic modalities applied toward airborne pathogen detection. Next, the fabricated optical biosensors using various transducer materials involved in colorimetric and fluorescence strategies for infectious pathogen detection are extensively discussed. The third section is well documented based on electrochemical biosensors for airborne pathogen detection by differential pulse voltammetry, cyclic voltammetry, square-wave voltammetry, amperometry, and impedance spectroscopy. The unique pros and cons of these modalities and their future perspectives are addressed in the fourth and fifth sections. Overall, this review inspected 171 research articles published in the last decade and persuaded the importance of optical and electrochemical biosensors for airborne pathogen detection.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
59
|
Wang L, Xu A, Yuan J, Jiang F, Li M, Qi W, Li Y, Lin J. Hourglass-mimicking biosensor based on disposable centrifugal tube for bacterial detection in large-volume sample. Biosens Bioelectron 2022; 216:114653. [DOI: 10.1016/j.bios.2022.114653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 12/13/2022]
|
60
|
Ce-MOF Nanosphere as Colorimetric Sensor with High Oxidase Mimicking Activity for Sensitive Detection of H2O2. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02422-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
Han D, Liu X, Wu S. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem Soc Rev 2022; 51:7138-7169. [PMID: 35866702 DOI: 10.1039/d2cs00460g] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacteria, as the most abundant living organisms, have always been a threat to human life until the development of antibiotics. However, with the wide use of antibiotics over a long time, bacteria have gradually gained tolerance to antibiotics, further aggravating threat to human beings and environmental safety significantly. In recent decades, new bacteria-killing methods based on metal ions, hyperthermia, free radicals, physical pricks, and the coordination of several multi-mechanisms have attracted increasing attention. Consequently, multiple types of new antibacterial agents have been developed. Among them, metal organic frameworks (MOFs) appear to play an increasingly important role. The unique characteristics of MOFs make them suitable multiple-functional platforms. By selecting the appropriate metastable coordination bonds, MOFs can act as reservoirs and release antibacterial metal ions or organic linkers; by constructing a porous structure, MOFs can act as carriers for multiple types of agents and achieve slow and sustained release; and by designing their composition and the pore structure precisely, MOFs can be endowed with properties to produce heat and free radicals under stimulation. Importantly, in combination with other materials, MOFs can act as a platform to kill bacteria effectively through the synergistic effect of multiple types of mechanisms. In this review, we focus on the recent development of MOF-based antibacterial agents, which are classified according to their antibacterial mechanisms.
Collapse
Affiliation(s)
- Donglin Han
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
62
|
Tummala S, Bandi R, Ho YP. Synthesis of Cu-doped carbon dot/chitosan film composite as a catalyst for the colorimetric detection of hydrogen peroxide and glucose. Mikrochim Acta 2022; 189:284. [PMID: 35851663 PMCID: PMC9293876 DOI: 10.1007/s00604-022-05386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/19/2022] [Indexed: 11/05/2022]
Abstract
The use of colloidal nanoparticles suffers from the drawbacks of potential color interference and substrate-induced aggregation. To overcome the limitations, a catalyst was developed by crosslinking Cu-doped carbon dots (Cu-CDs) with chitosan. Cu-CDs with high peroxidase activity were prepared by using a rapid microwave-assisted method. The Cu-CDs containing 6.88% of Cu had an average particle size of 2.25 nm and exhibited 9% of fluorescence quantum yield. The nanozyme/film composite was prepared by crosslinking between the amino groups of Cu-CDs and those of chitosan via a glutaraldehyde linker. A H2O2-mediated tetramethylbenzidine (TMB) oxidation reaction was use to evaluate the peroxidase activity of the film. Based on the TMB color changes, colorimetric assays were developed for the detection of H2O2 and glucose at an absorption wavelength 652 nm. Under the optimal conditions, the linear ranges for H2O2 and glucose were 0.625–40 µM and 1.9–125 µM, respectively, and the detection limits were 0.12 µM and 0.69 µM, respectively. The colorimetric assay was also applied to analyze diluted human serum samples spiked with glucose. Furthermore, this biodegradable, non-toxic, and easy-to-handle nanozyme composite could be stored for over 4 weeks without a significant decrease in activity.
Collapse
Affiliation(s)
- Srikrishna Tummala
- Department of Chemistry, National Dong Hwa University, Hualien, 974301, Taiwan
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon, 23431, Republic of Korea
| | - Yen-Peng Ho
- Department of Chemistry, National Dong Hwa University, Hualien, 974301, Taiwan.
| |
Collapse
|
63
|
Ngashangva L, Hemdan BA, El-Liethy MA, Bachu V, Minteer SD, Goswami P. Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples. MICROMACHINES 2022; 13:1083. [PMID: 35888900 PMCID: PMC9321031 DOI: 10.3390/mi13071083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The development of robust bioanalytical devices and biosensors for infectious pathogens is progressing well with the advent of new materials, concepts, and technology. The progress is also stepping towards developing high throughput screening technologies that can quickly identify, differentiate, and determine the concentration of harmful pathogens, facilitating the decision-making process for their elimination and therapeutic interventions in large-scale operations. Recently, much effort has been focused on upgrading these analytical devices to an intelligent technological platform by integrating them with modern communication systems, such as the internet of things (IoT) and machine learning (ML), to expand their application horizon. This review outlines the recent development and applications of bioanalytical devices and biosensors to detect pathogenic microbes in environmental samples. First, the nature of the recent outbreaks of pathogenic microbes such as foodborne, waterborne, and airborne pathogens and microbial toxins are discussed to understand the severity of the problems. Next, the discussion focuses on the detection systems chronologically, starting with the conventional methods, advanced techniques, and emerging technologies, such as biosensors and other portable devices and detection platforms for pathogens. Finally, the progress on multiplex assays, wearable devices, and integration of smartphone technologies to facilitate pathogen detection systems for wider applications are highlighted.
Collapse
Affiliation(s)
- Lightson Ngashangva
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvanthapuram, Kerala 695014, India;
| | - Bahaa A. Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Mohamed Azab El-Liethy
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, UT 84112, USA
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| |
Collapse
|
64
|
Cun JE, Fan X, Pan Q, Gao W, Luo K, He B, Pu Y. Copper-based metal-organic frameworks for biomedical applications. Adv Colloid Interface Sci 2022; 305:102686. [PMID: 35523098 DOI: 10.1016/j.cis.2022.102686] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of important porous, crystalline materials composed of metal ions (clusters) and organic ligands. Owing to the unique redox chemistry, photochemical and electrical property, and catalytic activity of Cu2+/+, copper-based MOFs (Cu-MOFs) have been recently and extensively explored in various biomedical fields. In this review, we first make a brief introduction to the synthesis of Cu-MOFs and their composites, and highlight the recent synthetic strategies of two most studied representatives, three-dimensional HKUST-1 and two-dimensional Cu-TCPP. The recent advances of Cu-MOFs in the applications of cancer treatment, bacterial inhibition, biosensing, biocatalysis, and wound healing are summarized and discussed. Furthermore, we propose a prospect of the future development of Cu-MOFs in biomedical fields and beyond.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
65
|
Ying Y, Wu W, He G, Deng W, Tan Y, Xie Q. Controllable sensitization of Zr-MOFs by using CdS and its application for photoelectrochemical detection of alkaline phosphatase. Chem Commun (Camb) 2022; 58:7960-7963. [PMID: 35758059 DOI: 10.1039/d2cc02302d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CdS quantum dots (QDs) are attached onto zirconium-based metal-organic frameworks (Zr-MOFs) with DNA as a bridge to boost the photoelectrochemical (PEC) activity of Zr-MOFs, and the sensitization of Zr-MOFs by using CdS QDs is regulated by the alkaline phosphatase (ALP)-catalyzed hydrolysis of tripolyphosphate, enabling sensitive "signal-on" PEC detection of ALP activity.
Collapse
Affiliation(s)
- Ying Ying
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Wenying Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Guihua He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
66
|
Lv R, Sun R, Du T, Li Y, Chen L, Zhang Y, Qi Y. Cu 2+ modified Zr-based metal organic framework-CTAB-graphene for sensitive electrochemical detection of sunset yellow. Food Chem Toxicol 2022; 166:113250. [PMID: 35750088 DOI: 10.1016/j.fct.2022.113250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 06/17/2022] [Indexed: 10/18/2022]
Abstract
A sensitive electrochemical sensor for sunset yellow (SY) was constructed based on cetyltrimethylammonium bromide (CTAB) functionalized graphene (Gr) and Cu/Zr-MOF electrode modified materials. The CTAB-Gr-Cu/Zr-MOF composites were synthesized by using a mild method and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and EDX spectrum. The combination of Cu/Zr-MOF and graphene exhibited synergetic effect of the strong accumulation efficiency, fast electron transfer rate and more sensing sites towards the oxidation of SY. The new modified materials remarkably increased the electrochemical response of SY to 6.53-fold when comparing with bare electrode. Under the optimized conditions, the oxidation peak currents of SY had a linear relationship with its concentration in a wide range from 0.10 to 8.00 μM and 40.00-1000.00 μM, and the limit of detection was 6.68 nM (S/N = 3). The electrochemical method shows high sensitivity, stability, reproducibility and is successfully applied in the determination of SY in soft drinks.
Collapse
Affiliation(s)
- Ruijuan Lv
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Ruimeng Sun
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Ting Du
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yuhan Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Lixia Chen
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yang Zhang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
67
|
RuO 2/rGO heterostructures as mimic peroxidases for colorimetric detection of glucose. Mikrochim Acta 2022; 189:261. [PMID: 35727400 DOI: 10.1007/s00604-022-05319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
The successful synthesis of ruthenium oxide/reduced graphene oxide (RuO2/rGO) heterostructures by one-pot hydrothermal method using graphene oxides and RuCl3 as precursors is reported. The heterostructures had high peroxidase-like (POD-like) activities, which catalyzes the oxidation of classical peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to create a blue colored reaction product. The catalytic activity was significantly enhanced by the synergistic effect between RuO2 nanoparticles and rGO. RuO2/rGO had a low Km of 0.068 mM and a high vmax of 1.228 × 10-7 M·s-1 towards TMB in the TMB-H2O2 catalytic oxidation system. In addition, the POD-like activity originating from the electron transfer mechanism was confirmed by cytochrome C (Cyt C) oxidation experiment. A colorimetric method based on RuO2/rGO heterostructures was developed with good sensitivity and selectivity for glucose detection with a limit of detection of 3.34 μM and a linear range of 0-1500 μM. The RuO2/rGO heterostructures have potential applications in the biomedical areas, such as biosensor and diagnostics.
Collapse
|
68
|
Xu D, Qi S, Li Y, Wei X, Gong S, Wang F, Zhu Y, Liu Y, Qiu J. Peroxidase Mimic Cu-MOF Nanosheet for Highly Sensitive Colorimetric Detection of Cysteine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
69
|
Chen W, Lai Q, Zhang Y, Liu Z. Recent Advances in Aptasensors For Rapid and Sensitive Detection of Staphylococcus Aureus. Front Bioeng Biotechnol 2022; 10:889431. [PMID: 35677308 PMCID: PMC9169243 DOI: 10.3389/fbioe.2022.889431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
The infection of Staphylococcus aureus (S.aureus) and the spread of drug-resistant bacteria pose a serious threat to global public health. Therefore, timely, rapid and accurate detection of S. aureus is of great significance for food safety, environmental monitoring, clinical diagnosis and treatment, and prevention of drug-resistant bacteria dissemination. Traditional S. aureus detection methods such as culture identification, ELISA, PCR, MALDI-TOF-MS and sequencing, etc., have good sensitivity and specificity, but they are complex to operate, requiring professionals and expensive and complex machines. Therefore, it is still challenging to develop a fast, simple, low-cost, specific and sensitive S. aureus detection method. Recent studies have demonstrated that fast, specific, low-cost, low sample volume, automated, and portable aptasensors have been widely used for S. aureus detection and have been proposed as the most attractive alternatives to their traditional detection methods. In this review, recent advances of aptasensors based on different transducer (optical and electrochemical) for S. aureus detection have been discussed in details. Furthermore, the applications of aptasensors in point-of-care testing (POCT) have also been discussed. More and more aptasensors are combined with nanomaterials as efficient transducers and amplifiers, which appears to be the development trend in aptasensors. Finally, some significant challenges for the development and application of aptasensors are outlined.
Collapse
Affiliation(s)
- Wei Chen
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| | - Qingteng Lai
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Yanke Zhang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Zhengchun Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| |
Collapse
|
70
|
Khosravi F, Gholinejad M, Sansano JM, Luque R. Bimetallic Fe‐Cu Metal Organic Frameworks for room temperature catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Faezeh Khosravi
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Mohammad Gholinejad
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
- Research Center for Basic Sciences & Modern Technologies (RBST) Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Jose M. Sansano
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO‐CINQA) Universidad de Alicante Alicante Spain
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C‐3) Córdoba Spain
- People’s Friendship University of Russia (RUDN University) Moscow Russian Federation
| |
Collapse
|
71
|
Jing Y, Li J, Zhang X, Sun M, Lei Q, Li B, Yang J, Li H, Li C, Yang X, Xie L. Catalase-integrated metal-organic framework with synergetic catalytic activity for colorimetric sensing. ENVIRONMENTAL RESEARCH 2022; 207:112147. [PMID: 34606841 DOI: 10.1016/j.envres.2021.112147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
As a platform for enzyme immobilization, metal-organic frameworks (MOFs) can protect enzyme activity from the interference of external adverse environment. Although these strategies have been proven to produce good results, little consideration has been given to the functional similarity of MOFs to the encapsulated enzyme. Here, catalase (CAT) was encapsulated in Fe-BTC with peroxidase-like activity to obtain a stable composite (CAT@Fe-BTC) with synergistic catalytic activity. Depending on the superior selectivity and high catalytic activity of CAT@Fe-BTC, colorimetric sensing for the detection of hydrogen peroxide and phenol was developed. This work demonstrates that the integration of functional MOFs with natural enzyme can be well applied to the construction of efficient catalysts.
Collapse
Affiliation(s)
- Yanqiu Jing
- College of Tobacco Science,Henan Agricultural University, Zhengzhou, Henan province, China.
| | - Jingxin Li
- College of Tobacco Science,Henan Agricultural University, Zhengzhou, Henan province, China
| | - Xuewei Zhang
- China Tobacco Guangdong Industrial Co.Ltd., Guangzhou, Guangdong province, China
| | - Mi Sun
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China
| | - Qiang Lei
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Bin Li
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Jian Yang
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Huaiqi Li
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China
| | - Chunguang Li
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China.
| | - Xingyou Yang
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China.
| | - Liangwen Xie
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China.
| |
Collapse
|
72
|
Abedanzadeh S, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA. Nanozymes: Supramolecular perspective. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
73
|
Amine-Functionalized Metal-Organic Frameworks: from Synthetic Design to Scrutiny in Application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
74
|
Xu Y, He P, Ahmad W, Hassan MM, Ali S, Li H, Chen Q. Catalytic hairpin activated gold-magnetic/gold-core-silver-shell rapid self-assembly for ultrasensitive Staphylococcus aureus sensing via PDMS-based SERS platform. Biosens Bioelectron 2022; 209:114240. [PMID: 35447597 DOI: 10.1016/j.bios.2022.114240] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 11/02/2022]
Abstract
Staphylococcus aureus (S. aureus) has been identified as a marker of food contamination, closely associated with human health. This work designs a sensitive and rapid bio-detection strategy for S. aureus based on hybridization chain reaction-assisted surface enhanced Raman scattering (HCR-assisted-SERS) signal amplification. In this approach, the interaction between the aptamer (Apt) and its partial complementary DNA strands (cDNA) fabricated on the surface of gold-assisted magnetic nanoparticles (Au-MNPs) and the subsequent detachment of the cDNA results in the activation of the HCR process. In the HCR, a pair of hairpin structured DNA probes (H1 and H2) with sticky ends self-assembles to form a long DNA polymer. Subsequently, the output and amplification of the SERS signal were performed by conjugating 4-ATP modified Au@Ag NPs with the obtained DNA polymer via a specific Ag-S bond, and further collected through a self-administered polydimethylsiloxane (PDMS) cone-shaped support array. The precise quantification of S. aureus was performed in the concentration range of 28 to 2.8 × 106 cfu/mL, achieving a detection limit of 0.25 cfu/mL. This strategy was further applied to S. aureus detection in spiked milk samples with good recoveries (91-102%) and the relative standard deviation (4.35-8.41%). The sensing platform also showed satisfactory validation results (p > 0.05) using the traditional plate counting method. The proposed HCR-assisted SERS probe can be extended to other foodborne pathogenic bacteria types via engineering appropriate Apt and DNA initiators, thus, inspiring widespread applications in food safety and biomedical research.
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Peihuan He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; College of Food and Biological Engineering, Jimei University, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
75
|
Biocompatible BSA-AuNP@ZnCo2O4 nanosheets with oxidase-like activity: Colorimetric biosensing and antitumor activity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
76
|
Khosravi F, Gholinejad M, Sansano JM, Luque R. Low-amount palladium supported on Fe-Cu MOF: Synergetic effect between Pd, Cu and Fe in Sonogashira-Hagihara coupling reaction and reduction of organic dyes. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
77
|
Marimuthu M, Arumugam SS, Jiao T, Sabarinathan D, Li H, Chen Q. Metal organic framework based sensors for the detection of food contaminants. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
78
|
Naderi F, Orojloo M, Kamali S, Jannesar R, Amani S. Synthesis, Structural Characterization, in Vitro Biological Activity, and Computational Quantum Chemical Studies of New Cobalt (II), Nickel (II), and Copper (II) Complexes Based on an Azo-Azomethine Ligand. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2049325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatemeh Naderi
- Chemistry Department, Faculty of Sciences, Arak University, Arak, Iran
| | - Masoumeh Orojloo
- Chemistry Department, Faculty of Sciences, Arak University, Arak, Iran
| | - Shirin Kamali
- Chemistry Department, Faculty of Sciences, Arak University, Arak, Iran
| | - Ramin Jannesar
- Department of Pathology, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Biotechnology and Microbial Nanotechnology, Dena Pathobiology Laboratory, Yasuj, Iran
| | - Saeid Amani
- Chemistry Department, Faculty of Sciences, Arak University, Arak, Iran
| |
Collapse
|
79
|
Yang Z, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
80
|
Wang L, Zhou H, Hu H, Wang Q, Chen X. Regulation Mechanism of ssDNA Aptamer in Nanozymes and Application of Nanozyme-Based Aptasensors in Food Safety. Foods 2022; 11:544. [PMID: 35206017 PMCID: PMC8871106 DOI: 10.3390/foods11040544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Food safety issues are a worldwide concern. Pathogens, toxins, pesticides, veterinary drugs, heavy metals, and illegal additives are frequently reported to contaminate food and pose a serious threat to human health. Conventional detection methods have difficulties fulfilling the requirements for food development in a modern society. Therefore, novel rapid detection methods are urgently needed for on-site and rapid screening of massive food samples. Due to the extraordinary properties of nanozymes and aptamers, biosensors composed of both of them provide considerable advantages in analytical performances, including sensitivity, specificity, repeatability, and accuracy. They are considered a promising complementary detection method on top of conventional ones for the rapid and accurate detection of food contaminants. In recent years, we have witnessed a flourishing of analytical strategies based on aptamers and nanozymes for the detection of food contaminants, especially novel detection models based on the regulation by single-stranded DNA (ssDNA) of nanozyme activity. However, the applications of nanozyme-based aptasensors in food safety are seldom reviewed. Thus, this paper aims to provide a comprehensive review on nanozyme-based aptasensors in food safety, which are arranged according to the different interaction modes of ssDNA and nanozymes: aptasensors based on nanozyme activity either inhibited or enhanced by ssDNA, nanozymes as signal tags, and other methods. Before introducing the nanozyme-based aptasensors, the regulation by ssDNA of nanozyme activity via diverse factors is discussed systematically for precisely tailoring nanozyme activity in biosensors. Furthermore, current challenges are emphasized, and future perspectives are discussed.
Collapse
Affiliation(s)
- Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (L.W.); (H.Z.); (H.H.)
| | - Hong Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (L.W.); (H.Z.); (H.H.)
| | - Haixia Hu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (L.W.); (H.Z.); (H.H.)
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (L.W.); (H.Z.); (H.H.)
| |
Collapse
|
81
|
Zeng Y, Wang M, Sun Z, Sha L, Yang J, Li G. Colorimetric immunosensor constructed using 2D metal-organic framework nanosheets as enzyme mimics for the detection of protein biomarkers. J Mater Chem B 2022; 10:450-455. [PMID: 34981801 DOI: 10.1039/d1tb02192c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simple and sensitive detection of protein is of great significance in biological research and medical diagnosis. However, the commonly-used methods, such as enzyme-linked immunosorbent assay (ELISA), usually rely on signal tags labeled on the antibody, which limits the sensitivity and stability. Herein, we have designed and constructed a colorimetric immunosensor in this work for the analysis of protein by taking advantage of 2D metal-organic framework (2D-MOF) nanomaterials as enzyme mimics. The nanomaterial shows a strong peroxidase mimetic activity, and good selectivity after it is modified with a specific aptamer. Therefore, taking carcinoembryonic antigen (CEA) as an example, this immunosensor achieves a good detection performance with a linear range from 1 pg mL-1 to 1000 ng mL-1 and a limit of detection (LOD) of 0.742 pg mL-1. Moreover, the sensor can successfully distinguish the human serum of colorectal cancer patients from healthy people, which suggests that this sensor has great potential in clinical applications. More importantly, the mass production, low cost, stability and ease of transport of the MOFs nanomaterials, as well as the ability for visual detection will make this sensor suitable for point-of-care (POC) testing in remote or resource-poor areas.
Collapse
Affiliation(s)
- Yujing Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Minghui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhaowei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Lingjun Sha
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China. .,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
82
|
Huang W, Huang S, Chen G, Ouyang G. Biocatalytic Metal-Organic Framework: Promising Materials for Biosensing. Chembiochem 2022; 23:e202100567. [PMID: 35025113 DOI: 10.1002/cbic.202100567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Indexed: 11/10/2022]
Abstract
The high-efficient and specific catalysis of enzyme allow it to recognize a myriad of substrate that impels the biosensing. Nevertheless, the fragility of natural enzymes severely restricts their practical applications. Metal-organic frameworks (MOFs) with porous network and attractive functions have been intelligently employed as supports to encase enzymes for protecting them against hash environments. More importantly, the customizable construction and composition affords the intrinsic enzyme-like activity of some MOFs (known as nanozymes), which provides an alternative guideline to construct robust enzymes mimics. Herein, this review will introduce the concept of these biocatalytic MOFs, with the special emphasis on how the biocatalytic processes operated in these MOFs materials can reverse the plight of native enzymes-based biosensing. In addition, the present challenges and future outlooks in this research field are briefly put forward.
Collapse
Affiliation(s)
- Wei Huang
- Sun Yat-Sen University, School of Chemical Engineering and Technology, CHINA
| | - Siming Huang
- Guangzhou Medical University, School of pharmaceutical sciences, CHINA
| | - Guosheng Chen
- Sun Yat-Sen University, School of Chemistry, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China, 510275, Guangzhou, CHINA
| | | |
Collapse
|
83
|
Xue Y, Wang Y, Feng S, Yan M, Huang J, Yang X. A dual-amplification mode and Cu-based metal-organic frameworks mediated electrochemical biosensor for sensitive detection of microRNA. Biosens Bioelectron 2022; 202:113992. [PMID: 35033827 DOI: 10.1016/j.bios.2022.113992] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/17/2022]
Abstract
In this work, we developed a novel label-free and highly sensitive electrochemical (EC) biosensor for detection of microRNA (miRNA), which was based on the target-triggered and the Cu-based metal-organic frameworks (Cu-MOFs) mediated CHA-HCR dual-amplification process. Initially, the target miRNA triggered the catalytic hairpin assembly (CHA) process of hairpin DNA 1 (H1) and hairpin DNA 2 (H2) to produce massive double-stranded DNA (H1/H2) which could hybridize with the single-stranded DNA 1 (P1) to form capture probe (P1/H1/H2) on electrode surface, realizing the first amplification of input signals. Subsequently, hybridization chain reaction (HCR) between signal probe (H3-AuNPs/Cu-MOFs) and hairpin DNA 4 (H4) was activated by above capture probe (P1/H1/H2), leading to the second amplification of input signals. After the HCR process, numerous Cu-MOFs were immobilized on the electrode surface, which brought out the enhancement of electrochemical signals generating by Cu-MOFs. Herein, Cu-MOFs not only offered the lager surface area to decorate with gold nanoparticles (AuNPs) and hairpin DNA 3 (H3), but also served as the signal probe (H3-AuNPs/Cu-MOFs) to produce electrochemical signals by hybridizing with the capture probe on electrode surface. Therefore, the ingenious design of CHA-HCR-Cu-MOFs scheme enables the sensitive analysis of microRNA-21 (miR-21) with a broad linear range from 0.1 fM to 100 pM and a lower LOD of 0.02 fM. In addition, the outstanding specificity of this sensing strategy allows it successfully to be applied for determining miR-21 in real biological samples.
Collapse
Affiliation(s)
- Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Sinuo Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China.
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
84
|
Yadav S, Dixit R, Sharma S, Dutta S, Arora B, Rana P, Kaushik B, Solanki K, Sharma RK. Unravelling the catalytic potential of a magnetic CoFe 2O 4/Cu–ABDC MOF composite in the sustainable synthesis of 2 H-indazole motifs. NEW J CHEM 2022. [DOI: 10.1039/d2nj01490d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A magnetic CoFe2O4/Cu–ABDC hybrid composite was fabricated for the synthesis of biologically active and pharmacologically significant 2H-indazole scaffolds.
Collapse
Affiliation(s)
- Sneha Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Ranjana Dixit
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Shivani Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Sriparna Dutta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Bhavya Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Kanika Solanki
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Rakesh K. Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| |
Collapse
|
85
|
Wang J, Zhou Y, Zeng M, Zhao Y, Zuo X, Meng F, Lv F, Lu Y. Zr(IV)-based metal-organic framework nanocomposites with enhanced peroxidase-like activity as a colorimetric sensing platform for sensitive detection of hydrogen peroxide and phenol. ENVIRONMENTAL RESEARCH 2022; 203:111818. [PMID: 34363805 DOI: 10.1016/j.envres.2021.111818] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Recently, metal-organic frameworks (MOFs) have great potential as an emerging peroxide-mimicking enzyme, and the improvement of its enzyme-like activity is desired. There are few studies on improving the peroxidase-like activity of MOFs by using the strategy of size reduction. Moreover, it is challenging to enhance the activity of Zr-based MOFs with peroxidase-mimicking activity by size reduction strategy. In this work, the synthesis of Zr-based MOFs capped with polyvinylpyrrolidone (Zr-MOF-PVP) was firstly reported to reduce crystal size of peroxidase-mimicking enzyme for enhanced catalytic activity. Using the 3,3',5,5'-Tetramethylbenzidine (TMB) as substrate, the synthesized Zr-MOF-PVP nanocomposites with nanosize (about 45 nm) possessed obviously enhanced peroxidase-like activity compared with the pristine Zr-MOF. Based on the above, the Zr-MOF-PVP was also successfully applied in constructing colorimetric detection. By using hydrogen peroxide (H2O2) and phenol as the model analytes, the satisfactory detection performance was obtained, indicating that the proposed method had an attractive application prospect in the field of peroxidase-related detection. Besides, this work also provided a new perspective for improving the catalytic activity of nanozymes.
Collapse
Affiliation(s)
- Junning Wang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yujie Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Minqian Zeng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanhong Zhao
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoxin Zuo
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fanrong Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Fang Lv
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
86
|
Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H. Advances in metal–organic framework-based nanozymes and their applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214216] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
87
|
Haseena, Khan A, Ghaffar I, Baty RS, Abdel-Daim MM, Habib SM, Kanwal T, Shah MR. Synthesis of Ribose-Coated Copper-Based Metal-Organic Framework for Enhanced Antibacterial Potential of Chloramphenicol against Multi-Drug Resistant Bacteria. Antibiotics (Basel) 2021; 10:1469. [PMID: 34943681 PMCID: PMC8698127 DOI: 10.3390/antibiotics10121469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/11/2021] [Indexed: 01/21/2023] Open
Abstract
The rise in bacterial resistance to currently used antibiotics is the main focus of medical researchers. Bacterial multidrug resistance (MDR) is a major threat to humans, as it is linked to greater rates of chronic disease and mortality. Hence, there is an urgent need for developing effective strategies to overcome the bacterial MDR. Metal-organic frameworks (MOFs) are a new class of porous crystalline materials made up of metal ions and organic ligands that can vary their pore size and structure to better encapsulate drug candidates. This study reports the synthesis of ribose-coated Cu-MOFs for enhanced bactericidal activity of chloramphenicol (CHL) against Escherichia coli (resistant and sensitive) and MDR Pseudomonas aeruginosa. The synthesized Cu-MOFs were characterized with DLS, FT-IR, powder X-ray diffraction, scanning electron microscope, and atomic force microscope. They were further investigated for their efficacy against selected bacterial strains. The synthesized ribose-coated Cu-MOFs were observed as spherical shape structure with the particle size of 562.84 ± 13.42 nm. CHL caused the increased inhibition of E. coli and MDR P. aeruginosa with significantly reduced MIC and MBIC values after being encapsulated in ribose-coated Cu-MOFs. The morphological analysis of the bacterial strains treated with ribose-coated CHL-Cu-MOFs showed the complete morphological distortion of both E. coli and MDR P. aeruginosa. Based on the results of the study, it can be suggested that ribose-coated Cu-MOFs may be an effective alternate candidate to overcome the MDR and provide new perspective for the treatment of MDR bacterial infections.
Collapse
Affiliation(s)
- Haseena
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (H.); (A.K.)
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (H.); (A.K.)
| | - Iqra Ghaffar
- International Centre for Chemical and Biological Sciences, Research Institute of Chemistry, University of Karachi, Karachi 74200, Pakistan; (I.G.); (S.M.H.); (T.K.)
| | - Roua S. Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Shahida M. Habib
- International Centre for Chemical and Biological Sciences, Research Institute of Chemistry, University of Karachi, Karachi 74200, Pakistan; (I.G.); (S.M.H.); (T.K.)
| | - Tasmina Kanwal
- International Centre for Chemical and Biological Sciences, Research Institute of Chemistry, University of Karachi, Karachi 74200, Pakistan; (I.G.); (S.M.H.); (T.K.)
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, Research Institute of Chemistry, University of Karachi, Karachi 74200, Pakistan; (I.G.); (S.M.H.); (T.K.)
| |
Collapse
|
88
|
Wang Q, Liu S, Tang Z. Recent progress in the design of analytical methods based on nanozymes. J Mater Chem B 2021; 9:8174-8184. [PMID: 34498637 DOI: 10.1039/d1tb01521d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomaterials with intrinsic enzyme-like properties (nanozymes) have attracted growing interest owing to their striking merits over the traditional enzymes, such as low cost, easy surface modification, high stability and robustness, and tunable activity. These features enable them to be considered as a potent substitute for natural enzymes to construct novel analytical platforms to detect various analytes from small molecules to proteins and cells. In this review, we focus on recent advances in the design strategies using nanozyme catalytic mediated signal amplification for sensing applications. The progress of nanozyme-based analytical systems in the detection of different types of analytes, including ions, small biomolecules, biomacromolecules and others, is summarized. Furthermore, the future challenges and opportunities of nanozyme-based analytical methods are discussed.
Collapse
Affiliation(s)
- Qingqing Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150001, China.
| | - Shaoqin Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150001, China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
89
|
2‐Methylimidazole‐assisted Morphology Modulation of a Copper‐based Metal‐organic Framework Transducer for Enhanced Electrochemical Peroxidase‐like Activity. ELECTROANAL 2021. [DOI: 10.1002/elan.202100423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
90
|
Liu DM, Xu B, Dong C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
91
|
Yu H, Wu H, Tian X, Zhou Y, Ren C, Wang Z. A nano-sized Cu-MOF with high peroxidase-like activity and its potential application in colorimetric detection of H 2O 2 and glucose. RSC Adv 2021; 11:26963-26973. [PMID: 35480013 PMCID: PMC9037637 DOI: 10.1039/d1ra04877e] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Abstract
Peroxidase widely exists in nature and can be applied for the diagnosis and detection of H2O2, glucose, ascorbic acid and other aspects. However, the natural peroxidase has low stability and its catalytic efficiency is easily affected by external conditions. In this work, a copper-based metal-organic framework (Cu-MOF) was prepared by hydrothermal method, and characterized by means of XRD, SEM, FT-IR and EDS. The synthesized Cu-MOF material showed high peroxidase-like activity and could be utilized to catalyze the oxidation of o-phenylenediamine (OPDA) and 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. The steady-state kinetics experiments of the oxidation of OPDA and TMB catalyzed by Cu-MOF were performed, and the kinetic parameters were obtained by linear least-squares fitting to Lineweaver-Burk plot. The results indicated that the affinity of Cu-MOF towards TMB and OPDA was close to that of the natural horseradish peroxidase (HRP). The as-prepared Cu-MOF can be applied for colorimetric detection of H2O2 and glucose with wide linear ranges of 5 to 300 μM and 50 to 500 μM for H2O2 and glucose, respectively. Furthermore, the specificity of detection of glucose was compared with other sugar species interference such as sucrose, lactose and maltose. In addition, the detection of ascorbic acid and sodium thiosulfate was also performed upon the inhibition of TMB oxidation. Based on the high catalytic activity, affinity and wide linear range, the as-prepared Cu-MOF may be used for artificial enzyme mimics in the fields of catalysis, biosensors, medicines and food industry.
Collapse
Affiliation(s)
- Hao Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan P. R. China +86 817-2445233 +86 817-2568081
| | - Hanliu Wu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan P. R. China +86 817-2445233 +86 817-2568081
| | - Xuemei Tian
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan P. R. China +86 817-2445233 +86 817-2568081
| | - Yafen Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan P. R. China +86 817-2445233 +86 817-2568081
| | - Chunguang Ren
- Yantai Institute of Materia Medica Yantai 264000 Shandong P. R. China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan P. R. China +86 817-2445233 +86 817-2568081
| |
Collapse
|
92
|
Xu D, Qi S, Chen Y, Yin M, Zhang L, Ge K, Wei X, Tian X, Wang P, Li M, Wei J, Wang Z, Qiu J. Hierarchical mesoporous hollow Ce-MOF nanosphere as oxidase mimic for highly sensitive colorimetric detection of ascorbic acid. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
93
|
Metal-organic frameworks conjugated with biomolecules as efficient platforms for development of biosensors. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116285] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
94
|
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. NANO-MICRO LETTERS 2021; 13:154. [PMID: 34241715 PMCID: PMC8271064 DOI: 10.1007/s40820-021-00674-8] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/31/2021] [Indexed: 05/19/2023]
Abstract
Since the ferromagnetic (Fe3O4) nanoparticles were firstly reported to exert enzyme-like activity in 2007, extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies. As promising alternatives for natural enzymes, nanozymes have broadened the way toward clinical medicine, food safety, environmental monitoring, and chemical production. The past decade has witnessed the rapid development of metal- and metal oxide-based nanozymes owing to their remarkable physicochemical properties in parallel with low cost, high stability, and easy storage. It is widely known that the deep study of catalytic activities and mechanism sheds significant influence on the applications of nanozymes. This review digs into the characteristics and intrinsic properties of metal- and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.
Collapse
Affiliation(s)
- Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| | - Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
95
|
Pt Nanoparticles Anchored on NH2-MIL-101 with Efficient Peroxidase-Like Activity for Colorimetric Detection of Dopamine. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dopamine (DA) is an important catecholamine neurotransmitter that plays a highly relevant role in regulating the central nervous system, and abnormal DA content can cause many immune-related diseases. Hence, it is of significance to sensitively and specifically identify DA for clinical medicine. In this work, Pt/NH2-MIL-101 hybrid nanozymes with bimetallic catalytic centers were fabricated by forming coordinate bonds between Pt nanoparticles (Pt NPs) and –NH2 on metal–organic frameworks (MOF). The catalytic activity of Pt/NH2-MIL-101 was increased by 1.5 times via enlarging the exposure of more active sites and improving the activity of the active sites through the strategy of forming bimetallic catalytic centers. In the presence of DA, competing with 3, 3′, 5, 5′-tetramethylbenzidine (TMB) for the generated hydroxyl radicals (•OH), the blue oxidation state TMB (Ox-TMB) is reduced to colorless TMB, showing dramatic color changes. The Pt/NH2-MIL-101-based colorimetric assay enables the sensitive and robust detection of DA molecules with a detection limit of only 0.42 μM and has an observable potential in clinical applications.
Collapse
|
96
|
Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021; 275:120951. [PMID: 34119883 DOI: 10.1016/j.biomaterials.2021.120951] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
Nanozymes are next-generation artificial enzymes having distinguished features such as cost-effective, enhanced surface area, and high stability. However, limited selectivity and moderate activity of nanozymes in the biochemical environment hindered their usage and encouraged researchers to seek alternative catalytic materials. Recently, metal-organic frameworks (MOFs) characterized by distinct crystalline porous structures with large surface area, tunable pores, and uniformly dispersed active sites emerged, that filled the gap between natural enzymes and nanozymes. Moreover, by selecting suitable metal ions and organic linkers, MOFs can be designed for effective bacterial theranostics. In this review, we briefly presented the design and fabrication of MOFs. Then, we demonstrated the applications of MOFs in bacterial theranostics and their safety considerations. Finally, we proposed the major obstacles and opportunities for further development in research on the interface of nanozymes and MOFs. We expect that MOFs based nanozymes with unique physicochemical and intrinsic enzyme-mimicking properties will gain broad interest in both fundamental research and biomedical applications.
Collapse
|
97
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
98
|
Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS APPLIED BIO MATERIALS 2021; 4:3962-3984. [PMID: 35006817 DOI: 10.1021/acsabm.0c01358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present review is intended to describe bloodstream infections (BSIs), the major pathogens responsible for BSIs, conventional tests and their limitations, commercially available methods used, and the aptamer and nanomaterials-based approaches developed so far for the detection of BSIs. The advantages associated with aptamers and the aptamer-based sensors, the comparison between the aptamers and the antibodies, and the various types of aptasensors developed so far for the detection of bloodstream infections have been described in detail in the present review. Also, the future outlook and roadmap toward aptamer-based sensors and the challenges associated with the aptamer development have also been concluded in this review.
Collapse
Affiliation(s)
- Chaitali Singhal
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - John G Bruno
- Nanohmics, Inc., Austin, Texas 78741, United States
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram, Haryana 122413, India
| | - Tarun K Sharma
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|
99
|
Abdelhamid HN, Sharmoukh W. Intrinsic catalase-mimicking MOFzyme for sensitive detection of hydrogen peroxide and ferric ions. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105873] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
100
|
Yiwei X, Yahui L, Weilong T, Jiyong S, Xiaobo Z, Wen Z, Xinai Z, Yanxiao L, Changqiang Z, Lele A, Hong L, Tingting S. Electrochemical determination of hantavirus using gold nanoparticle-modified graphene as an electrode material and Cu-based metal-organic framework assisted signal generation. Mikrochim Acta 2021; 188:112. [PMID: 33675442 DOI: 10.1007/s00604-021-04769-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/20/2021] [Indexed: 11/29/2022]
Abstract
An electrochemical biosensor was prepared for nucleic acid-based hantavirus detection using a Cu-based metal-organic framework (CuMOF) as a signal tag. The CuMOF was synthesized by the solvothermal method and then covalently bonded with signal DNA (sDNA) probes. The Au nanoparticles and reduced graphene oxide composite were deposited on the electrode surface by electroreduction as support substrate and was then functionalized with capture DNA (cDNA) probes by self-assembly. Through the complementary base pairing, the target DNA (tDNA) fragment of hantavirus hybridized with the cDNA and the sDNA in a sandwich-type format. The tDNA was detected according to the current signal of the CuMOF catalyzed reaction using o-phenylenediamine as redox substrate. The peak current of the biosensor at - 0.55 V increased linearly in proportion to the logarithmic value of the tDNA concentration from 10-15 to 10-9 mol/L, with a detection limit of 0.74 × 10-15 mol/L. Moreover, the proposed biosensor was successfully applied to detect hantavirus and was able to distinguish hantavirus from other arboviruses.
Collapse
Affiliation(s)
- Xu Yiwei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Li Yahui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tan Weilong
- Department of Vector Control, Huadong Research Institute for Medicine and Biotechnics, Nanjing, 210002, China.
| | - Shi Jiyong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhang Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhang Xinai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Li Yanxiao
- Centre for instrumental analysis, Jiangsu University, Zhenjiang, 212013, China
| | - Zhu Changqiang
- Department of Vector Control, Huadong Research Institute for Medicine and Biotechnics, Nanjing, 210002, China
| | - Ai Lele
- Department of Vector Control, Huadong Research Institute for Medicine and Biotechnics, Nanjing, 210002, China
| | - Li Hong
- Department of Vector Control, Huadong Research Institute for Medicine and Biotechnics, Nanjing, 210002, China
| | - Shen Tingting
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|