51
|
Improving Anticancer Therapy with Naringenin-Loaded Silk Fibroin Nanoparticles. NANOMATERIALS 2020; 10:nano10040718. [PMID: 32290154 PMCID: PMC7221656 DOI: 10.3390/nano10040718] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Naringenin (NAR), a flavonoid present in a variety of fruits, vegetables and herbs, exhibits a wide range of pharmacological effects, including anticancer activity. Nevertheless, its application in cancer therapy is limited due to its low bioavailability at the tumour site because of its poor solubility in water and slow dissolution rate. To improve the therapeutic efficacy of NAR, emergent research is looking into using nanocarriers. Silk fibroin (SF), from the Bombyx mori silkworm, is a biocompatible and biodegradable polymer with excellent mechanical properties and an amphiphilic chemistry that make it a promising candidate as a controlled release drug system. The aim of this work is to synthesize naringenin-loaded silk fibroin nanoparticles (NAR-SFNs) by dissolving the SF in the ionic liquid 1-ethyl-3-methylimidazolium acetate, using high-power ultrasounds and rapid desolvation in methanol followed by the adsorption of NAR. The NAR-SFNs were characterized by dynamic light scattering, Fourier transform infrared spectroscopy and thermogravimetric analysis. The drug loading content and encapsulation efficiency were calculated. The drug release profile best fitted a first order equation. The cytotoxicity effects of free NAR, bare silk fibroin nanoparticles (SFNs) and NAR-SFNs were assessed on HeLa and EA.hy926 cells via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results demonstrated the higher in vitro anticancer potential of synthesized NAR-SFNs than that of free NAR in HeLa cancer cells.
Collapse
|
52
|
Ali I, Alsehli M, Scotti L, Tullius Scotti M, Tsai ST, Yu RS, Hsieh MF, Chen JC. Progress in Polymeric Nano-Medicines for Theranostic Cancer Treatment. Polymers (Basel) 2020; 12:E598. [PMID: 32155695 PMCID: PMC7182942 DOI: 10.3390/polym12030598] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a life-threatening disease killing millions of people globally. Among various medical treatments, nano-medicines are gaining importance continuously. Many nanocarriers have been developed for treatment, but polymerically-based ones are acquiring importance due to their targeting capabilities, biodegradability, biocompatibility, capacity for drug loading and long blood circulation time. The present article describes progress in polymeric nano-medicines for theranostic cancer treatment, which includes cancer diagnosis and treatment in a single dosage form. The article covers the applications of natural and synthetic polymers in cancer diagnosis and treatment. Efforts were also made to discuss the merits and demerits of such polymers; the status of approved nano-medicines; and future perspectives.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia;
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Mosa Alsehli
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia;
| | - Luciana Scotti
- Cheminformatics Laboratory—Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, João Pessoa 58051-970, PB, Brazil; (L.S.); (M.T.S.)
| | - Marcus Tullius Scotti
- Cheminformatics Laboratory—Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, João Pessoa 58051-970, PB, Brazil; (L.S.); (M.T.S.)
| | - Shang-Ting Tsai
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Center for Minimally-Invasive Medical Devices and Technologies, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan
| | - Ruei-Siang Yu
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Department of Pharmacy, Kaohsiung Armed Forces General Hospital, No.2, Zhongzheng 1st Rd., Lingya Dist., Kaohsiung 80284, Taiwan
| | - Ming Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Center for Minimally-Invasive Medical Devices and Technologies, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Rd., Hsinchu 300, Taiwan;
| |
Collapse
|
53
|
Elahi M, Ali S, Tahir HM, Mushtaq R, Bhatti MF. Sericin and fibroin nanoparticles—natural product for cancer therapy: a comprehensive review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mehreen Elahi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Rabia Mushtaq
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Farooq Bhatti
- Department of Zoology, Government College University, Lahore, Pakistan
- Sericulture Wing, Forest Department, Lahore, Pakistan
| |
Collapse
|
54
|
Enhancement mitochondrial apoptosis in breast cancer cells by paclitaxel-triphenylphosphonium conjugate in DNA aptamer modified nanoparticles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
55
|
Rezaei G, Daghighi SM, Raoufi M, Esfandyari-Manesh M, Rahimifard M, Mobarakeh VI, Kamalzare S, Ghahremani MH, Atyabi F, Abdollahi M, Rezaee F, Dinarvand R. Synthetic and biological identities of polymeric nanoparticles influencing the cellular delivery: An immunological link. J Colloid Interface Sci 2019; 556:476-491. [PMID: 31473538 DOI: 10.1016/j.jcis.2019.08.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022]
Abstract
Enhanced understanding of bio-nano interaction requires recognition of hidden factors such as protein corona, a layer of adsorbed protein around nano-systems. This study compares the biological identity and fingerprint profile of adsorbed proteins on PLGA-based nanoparticles through nano-liquid chromatography-tandem mass spectrometry. The total proteins identified in the corona of nanoparticles (NPs) with different in size, charge and compositions were classified based on molecular mass, isoelectric point and protein function. A higher abundance of complement proteins was observed in modified NPs with an increased size, while NPs with a positive surface charge exhibited the minimum adsorption for immunoglobulin proteins. A correlation of dysopsonin/opsonin ratio was found with cellular uptake of NPs exposed to two positive and negative Fc receptor cell lines. Although the higher abundance of dysopsonins such as apolipoproteins may cover the active sites of opsonins causing a lower uptake, the correlation of adsorbed dysopsonin/opsonin proteins on the NPs surface has an opposite trend with the intensity of cell uptake. Despite the reduced uptake of corona-coated NPs in comparison with pristine NPs, the dysopsonin/opsonin ratio controlled by the physicochemistry properties of NPs could potentially be used to tune up the cellular delivery of polymeric NPs.
Collapse
Affiliation(s)
- Ghassem Rezaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mehdi Esfandyari-Manesh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahban Rahimifard
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sara Kamalzare
- Department of Hepatitis and HIV, Pasteur Institute of Iran, Tehran, IR, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaee
- Department of Gastroenterology-Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| |
Collapse
|
56
|
Zarrintaj P, Jouyandeh M, Ganjali MR, Hadavand BS, Mozafari M, Sheiko SS, Vatankhah-Varnoosfaderani M, Gutiérrez TJ, Saeb MR. Thermo-sensitive polymers in medicine: A review. Eur Polym J 2019; 117:402-423. [DOI: 10.1016/j.eurpolymj.2019.05.024] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
57
|
Farokhi M, Mottaghitalab F, Fatahi Y, Saeb MR, Zarrintaj P, Kundu SC, Khademhosseini A. Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
58
|
Mehrotra S, Chouhan D, Konwarh R, Kumar M, Jadi PK, Mandal BB. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS Biomater Sci Eng 2019; 5:2054-2078. [PMID: 33405710 DOI: 10.1021/acsbiomaterials.8b01560] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Materials at the nanoscale offer numerous avenues to be explored and exploited in diverse realms. Among others, proteinaceous biomaterials such as silk hold immense prospects in the domain of nanoengineering. Silk offers a unique combination of desirable facets like biocompatibility; extraordinary mechanical properties, such as elongation, elasticity, toughness, and modulus; and tunable biodegradability which are far better than most naturally occurring and engineered materials. Much of these properties are due to the molecular structure of the silk protein and it is self-assembly into hierarchical structures. Taking advantage of the hierarchical assembly, a large number of fabrication strategies have now emerged that allow the tailoring of silk structure of at the nanoscale. Harnessing the favorable properties of silk, such methods offer a promising direction toward producing structurally and functionally optimized silk nanomaterials. This review discusses the critical structure-property relationship in silk that occurs at the nanoscale and also aims to bring out the recent status in the approaches for fabrication, characterization, and the gamut of applications of various silk-based nanomaterials (nanoparticles, nanofibers, and nanocomposites) in the niche of translational research. Harnessing the favorable nanostructure of silk, the review also takes into account the impetus of silk in avant-garde applications such as chemo-biosensing, energy harvesting, microfluidics, and environmental applications.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Rocktotpal Konwarh
- Biotechnology Department, Addis Ababa Science and Technology University, Addis Ababa-16417, Ethiopia
| | - Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Praveen Kumar Jadi
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
59
|
Zarrintaj P, Mostafapoor F, Milan PB, Saeb MR. Theranostic Platforms Proposed for Cancerous Stem Cells: A Review. Curr Stem Cell Res Ther 2019; 14:137-145. [DOI: 10.2174/1574888x13666181002152247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023]
Abstract
It is next-to-impossible not to accept that cancer takes a position as the main cause of the global burden of disease, for it is hard to ignore the outnumbered people dying from cancer. Looking at the statistics proves that progress in cancer therapy is always beyond cancer in a race of pessimism about the future; for various kinds of cancers yearly cause death in the world, whereas the conventional and even modern therapies often exhibit lack of reliability in the treatment of cancer. In principle, various reasons are identified for cancer resistance and recurrence. Recognizing the cells/tissue from which cancer takes origin enables its early detection, and optimistically saying, protection of patients against death. It has been recognized that cancer stem cells are responsible for cancer cell proliferation and metastasis. Conventional therapies cannot eradicate the cancer stem cell; therefore, cancer recurrence is unavoidable. In this regards, designing smart platforms with specific properties is an essential step in cancer treatment. Theranostic platforms have facilitated the cancer diagnosis and treatment, simultaneously. In this respect, several types of smart materials have been designed to detect and cure cancer. Cancer stem cell as a root of the cancerous tumor should be eradicated to achieve the complete treatment; hence, cancer stem cell mechanism must be known precisely to design an appropriate platform making possible to encounter with cancer stem cell. In this review paper, various therapeutic and diagnostic techniques of cancerous stem cell are discussed to pave a way for designing proper platforms for cancer eradication.
Collapse
Affiliation(s)
- Payam Zarrintaj
- Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Farnaz Mostafapoor
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14965-115, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Saeb
- Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
60
|
Mottaghitalab F, Farokhi M, Fatahi Y, Atyabi F, Dinarvand R. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. J Control Release 2019; 295:250-267. [DOI: 10.1016/j.jconrel.2019.01.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/22/2022]
|
61
|
Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018; 4:3939-3961. [DOI: 10.1021/acsbiomaterials.8b01098] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annish Jain
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Sumit K. Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Shailendra K. Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs − Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Sonia Kapoor
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201 313, Uttar Pradesh, India
| |
Collapse
|
62
|
Gao X, Guo L, Li J, Thu HE, Hussain Z. Nanomedicines guided nanoimaging probes and nanotherapeutics for early detection of lung cancer and abolishing pulmonary metastasis: Critical appraisal of newer developments and challenges to clinical transition. J Control Release 2018; 292:29-57. [PMID: 30359665 DOI: 10.1016/j.jconrel.2018.10.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/13/2023]
Abstract
Lung cancer (LC) is the second most prevalent type of cancer and primary cause of mortality among both men and women, worldwide. The most commonly employed diagnostic modalities for LC include chest X-ray (CXR), magnetic-resonance-imaging (MRI), computed tomography (CT-scan), and fused-positron-emitting-tomography-CT (PET-CT). Owing to several limitations associated with the use of conventional diagnostic tools such as radiation burden to the patient, misleading diagnosis ("missed lung cancer"), false staging and low sensitivity and resolution, contemporary diagnostic regimen needed to be employed for screening of LC. In recent decades, nanotechnology-guided interventions have been transpired as emerging nanoimaging probes for detection of LC at advanced stages, while producing signal amplification, better resolution for surface and deep tissue imaging, and enhanced translocation and biodistribution of imaging probes within the cancerous tissues. Besides enormous potential of nanoimaging probes, nanotechnology-based advancements have also been evidenced for superior efficacy for treatment of LC and abolishing pulmonary metastasis (PM). The success of nanotherapeutics is due to their ability to maximise translocation and biodistribution of anti-neoplastic agents into the tumor tissues, improve pharmacokinetic profiles of anti-metastatic agents, optimise target-specific drug delivery, and control release kinetics of encapsulated moieties in target tissues. This review aims to overview and critically discuss the superiority of nanoimaging probes and nanotherapeutics over conventional regimen for early detection of LC and abolishing PM. Current challenges to clinical transition of nanoimaging probes and therapeutic viability of nanotherapeutics for treatment for LC and PM have also been pondered.
Collapse
Affiliation(s)
- Xiaoling Gao
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lihua Guo
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jianqiang Li
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hnin Ei Thu
- Department of Pharmacology and Dental Therapeutics, Faculty of Dentistry, Lincoln University College, Jalan Stadium, SS 7/15, Kelana Jaya, 47301 Petaling Jaya, Selangor, Malaysia
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
63
|
Chen BQ, Kankala RK, He GY, Yang DY, Li GP, Wang P, Wang SB, Zhang YS, Chen AZ. Supercritical Fluid-Assisted Fabrication of Indocyanine Green-Encapsulated Silk Fibroin Nanoparticles for Dual-Triggered Cancer Therapy. ACS Biomater Sci Eng 2018; 4:3487-3497. [DOI: 10.1021/acsbiomaterials.8b00705] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Geng-Yi He
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Da-Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, P. R. China
| | - Guo-Ping Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Pei Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| |
Collapse
|
64
|
Osman N, Kaneko K, Carini V, Saleem I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv 2018; 15:821-834. [PMID: 30021074 PMCID: PMC6110405 DOI: 10.1080/17425247.2018.1502267] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Macromolecules with unique effects and potency are increasingly being considered for application in lung pathologies. Numerous delivery strategies for these macromolecules through the lung have been investigated to improve the targeting and overall efficacy. AREAS COVERED Targeting approaches from delivery devices, formulation strategies and specific targets are discussed. EXPERT OPINION Although macromolecules are a heterogeneous group of molecules, a number of strategies have been investigated at the macro, micro, and nanoscopic scale for the delivery of macromolecules to specific sites and cells of lung tissues. Targeted approaches are already in use at the macroscopic scale through inhalation devices and formulations, but targeting strategies at the micro and nanoscopic scale are still in the laboratory stage. The combination of controlling lung deposition and targeting after deposition, through a combination of targeting strategies could be the future direction for the treatment of lung pathologies through the pulmonary route.
Collapse
Affiliation(s)
- Nashwa Osman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kan Kaneko
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Valeria Carini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Imran Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
65
|
Patwa R, Kumar A, Katiyar V. Effect of silk nano-disc dispersion on mechanical, thermal, and barrier properties of poly(lactic acid) based bionanocomposites. J Appl Polym Sci 2018. [DOI: 10.1002/app.46671] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rahul Patwa
- Department of Chemical Engineering; Indian Institute of technology Guwahati; Guwahati Assam 781039 India
| | - Amit Kumar
- Department of Chemical Engineering; Indian Institute of technology Guwahati; Guwahati Assam 781039 India
| | - Vimal Katiyar
- Department of Chemical Engineering; Indian Institute of technology Guwahati; Guwahati Assam 781039 India
| |
Collapse
|
66
|
Hassani Besheli N, Damoogh S, Zafar B, Mottaghitalab F, Motasadizadeh H, Rezaei F, Shokrgozar MA, Farokhi M. Preparation of a Codelivery System Based on Vancomycin/Silk Scaffold Containing Silk Nanoparticle Loaded VEGF. ACS Biomater Sci Eng 2018; 4:2836-2846. [DOI: 10.1021/acsbiomaterials.8b00149] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Negar Hassani Besheli
- School of Chemical Engineering, Collage of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 1417466191, Iran
| | - Sheyda Damoogh
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran 1316943551, Iran
| | - Bahareh Zafar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417613151, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fatemeh Rezaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 15875/4413, Iran
| | - Mohammad Ali Shokrgozar
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran 1316943551, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran 1316943551, Iran
| |
Collapse
|
67
|
Choi M, Choi D, Hong J. Multilayered Controlled Drug Release Silk Fibroin Nanofilm by Manipulating Secondary Structure. Biomacromolecules 2018; 19:3096-3103. [DOI: 10.1021/acs.biomac.8b00687] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Moonhyun Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Daheui Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
68
|
Wu M, Yang W, Chen S, Yao J, Shao Z, Chen X. Size-controllable dual drug-loaded silk fibroin nanospheres through a facile formation process. J Mater Chem B 2018; 6:1179-1186. [DOI: 10.1039/c7tb03113k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Paclitaxel/doxorubicin-loaded silk fibroin nanospheres were prepared through a facile and green method and showed a synergistic effect on the anti-proliferative activity.
Collapse
Affiliation(s)
- Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Wenhua Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Sheng Chen
- Department of General Surgery
- Ruijin Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| |
Collapse
|
69
|
Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 2018; 36:68-91. [DOI: 10.1016/j.biotechadv.2017.10.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022]
|