51
|
Huang B, Zhang H, Geng L, Luo Z. An Open-Shell Superatom Cluster Ta 10- with Enhanced Stability by United d-d π Bonds and d-Orbital Superatomic States. J Phys Chem Lett 2022; 13:9711-9717. [PMID: 36220259 DOI: 10.1021/acs.jpclett.2c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We carried out a comprehensive study on the gas-phase reactions of Tan- (n = 5-27) with nitrogen using a customized reflection time-of-flight mass spectrometer coupled with a velocity map imaging apparatus (Re-TOFMS-VMI). Among the studied tantalum clusters, Ta10- exhibits prominent mass abundance indicative of its unique inertness. DFT calculation results revealed a D4d bipyramidal prolate structure of the most stable Ta10-, which was verified by photoelectron spectroscopy experiments. The calculations also unveiled that Ta10- has the largest HOMO-LUMO gap and second-order difference of binding energy among the studied clusters. This is associated with its well-organized superatomic orbitals, which consist of both 6s and 5d orbitals of tantalum atoms, allowing for splitting of superatomic 1D and 2P orbitals and an enlarged gap between the singly occupied molecular orbital (SOMO) and unoccupied β counterpart, which brings forth stabilization energy pertaining to Jahn-Teller distortion. Also, the SOMO exhibits a united d-d π orbital pattern that embraces the central Ta8- moiety.
Collapse
Affiliation(s)
- Benben Huang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory of Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory of Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijun Geng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory of Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
52
|
Liu Q, He S, Yu B, Cheng X, Shi W, Wang X. Visible Light Induced Ag-Polyoxometalate Coassembly into Single-Cluster Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206178. [PMID: 35999714 DOI: 10.1002/adma.202206178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Indexed: 06/15/2023]
Abstract
1D superlattices with long-ranged periodicity present extraordinary application properties due to their unique electronic structures. Here, the visible light driven synthesis of 1D single-cluster chains constructed by polyoxometalate (POM) and Ag clusters is reported, where two types of clusters align alternatively along the nanowire. Low symmetrical POM clusters of [P2 W17 O61 ]10- , [P2 W15 O56 ]12- , and [EuW10 O36 ]9- can be used as building blocks. The directly bonding cluster units result in interactive electronic structures of Ag and POM clusters, as well as the greatly promoted electron transfer during the redox reaction. The Ag-P2 W17 nanowires perform significantly enhanced activities in both electrochemical sensing and catalytic gasoline desulfurization compared with individual building blocks, demonstrating the extraordinary application properties and promising potentials of cluster-based heteroconstructions.
Collapse
Affiliation(s)
- Qingda Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shiqing He
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Biao Yu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xijun Cheng
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300387, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
53
|
Wang K, Miao L, Jia Z, Wang R, Yin G, Zhu X, Moro R, Ma L. Structural evolution and electronic properties of pure and semiconductor atom doped in clusters: In n - , In n Si - , and In n Ge - (n = 3-16). J Comput Chem 2022; 43:1978-1984. [PMID: 36125399 DOI: 10.1002/jcc.26998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022]
Abstract
The bonding and electronic properties of Inn - , Inn Si- , and Inn Ge- (n = 3-16) clusters have been computationally investigated. An intensive global search for the ground-state structures of these clusters were conducted using the genetic algorithm coupled with density functional theory (DFT). The ground-state structures of these clusters have been identified through the comparison between simulated photoelectron spectra (PES) of the found lowest-energy isomers and the experimentally measured ones. Doping semiconductor atom (Si or Ge) can significantly change the structures of the In clusters in most sizes, and the dopant prefers to be surrounded by In atoms. There are three structural motifs for Inn X- (X = Si, Ge, n = 3-16), and the transition occurs at sizes n = 5 and 13. All Inn Si- and Inn Ge- share the same configurations and similar electronic properties except for n = 8. Among all above studied clusters, In13 - stands out with the largest vertical detachment energy (VDE), HOMO-LUMO gap, (Eb ) and second order energy difference Δ2 E due to its closed electronic shell of (1S)2 (1P)6 (1D)10 (2S)2 (1F)14 (2P)6 . Similarly, the neutral In12 X (X = Si, Ge) clusters are also identified as superatoms but with electronic configuration of (1S)2 (1P)6 (2S)2 (1D)10 (1F)14 (2P)6 .
Collapse
Affiliation(s)
- Kai Wang
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin, China
| | - Lin Miao
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin, China
| | - Zezhao Jia
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin, China
| | - Runyu Wang
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin, China
| | - Guangjia Yin
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin, China
| | - Xiaodong Zhu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin, China
| | - Ramiro Moro
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin, China
| | - Lei Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin, China
| |
Collapse
|
54
|
Huang W, Zhang Q, Wang R, Liu Z, Zhu Y, Yu F, Teo BK, Wang Z. Super-Excimer: Anomalous Bonding in a Metastable Excited-State Dimer of Superatomic Dimers. J Phys Chem Lett 2022; 13:8455-8461. [PMID: 36053267 DOI: 10.1021/acs.jpclett.2c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new type of excimer formation was reported, which stems from an unexpected discovery of a short-lived excited-state dimer of superatomic dimers. In theoretical investigation of the dimer formation, it was found that the physical adsorption states maintain the closed-shell properties of the dimeric units via van der Waals interaction, while the chemical adsorption excited state is a broken-symmetry (BS) state, having a higher energy of about 0.5 eV. Potential energy surface calculations indicate that the short-lived metastable chemical bonding state can transform into energetically lower physical adsorption states by crossing a shallow energy barrier and eventually disintegrate into two ground-state dimers. Since the basic unit is a superatomic cluster, the chemical adsorption state discovered may be called "super-excimer", which opens up a new avenue for the discovery of tailorable excimer materials.
Collapse
Affiliation(s)
- Wanrong Huang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Qingyue Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Rui Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zhonghua Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Famin Yu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Boon K Teo
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
55
|
Yu F, Li J, Liu Z, Wang R, Zhu Y, Huang W, Liu Z, Wang Z. From Atomic Physics to Superatomic Physics. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
56
|
Sun WM, Cheng X, Wang WL, Li XH. Designing Magnetic Superalkalis with Extremely Large Nonlinear Optical Responses. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei-Ming Sun
- The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People’s Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Xin Cheng
- The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People’s Republic of China
| | - Wen-Lu Wang
- The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People’s Republic of China
| | - Xiang-Hui Li
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, People’s Republic of China
| |
Collapse
|
57
|
Wang Z, Alkan F, Aikens CM, Kurmoo M, Zhang Z, Song K, Tung C, Sun D. An Ultrastable 155‐Nuclei Silver Nanocluster Protected by Thiacalix[4]arene and Cyclohexanethiol for Photothermal Conversion. Angew Chem Int Ed Engl 2022; 61:e202206742. [DOI: 10.1002/anie.202206742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| | - Fahri Alkan
- Department of Nanotechnology Engineering Abdullah Gül University Kayseri Turkey
| | | | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg Université de Strasbourg, CNRS-UMR 7177 4 rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Zhen‐Yi Zhang
- Bruker (Beijing) Scientific Technology Co., Ltd. P. R. China
| | - Ke‐Peng Song
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| | - Chen‐Ho Tung
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| |
Collapse
|
58
|
Kambe T, Yamamoto K. Development of Precisely Controlled Structures Containing Typical Metal Elements for Preparing Superatoms. CHEM LETT 2022. [DOI: 10.1246/cl.220291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tetsuya Kambe
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503
- JST-ERATO,Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503
- JST-ERATO,Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503
| |
Collapse
|
59
|
Ligand accommodation causes altered reactivity of silver clusters with iodomethane: superatomic stability of Ag9I2+ in mimicking XeF2. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
60
|
Wang Z, Alkan F, Aikens CM, Kurmoo M, Zhang Z, Song K, Tung C, Sun D. An Ultrastable 155‐Nuclei Silver Nanocluster Protected by Thiacalix[4]arene and Cyclohexanethiol for Photothermal Conversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| | - Fahri Alkan
- Department of Nanotechnology Engineering Abdullah Gül University Kayseri Turkey
| | | | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg Université de Strasbourg, CNRS-UMR 7177 4 rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Zhen‐Yi Zhang
- Bruker (Beijing) Scientific Technology Co., Ltd. P. R. China
| | - Ke‐Peng Song
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| | - Chen‐Ho Tung
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| |
Collapse
|
61
|
Neve F. Chemistry of superheavy transition metals. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Francesco Neve
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende (CS), Italy
| |
Collapse
|
62
|
Mitsui M, Wada Y, Kishii R, Arima D, Niihori Y. Evidence for triplet-state-dominated luminescence in biicosahedral superatomic molecular Au 25 clusters. NANOSCALE 2022; 14:7974-7979. [PMID: 35470826 DOI: 10.1039/d2nr00813k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In photoluminescence (PL) quenching and triplet fusion upconversion experiments with fluorescent organic-molecule quenchers, it was revealed that a rod-shaped, phosphine- and thiolate-protected biicosahedral Au25 cluster (a representative di-superatomic molecule) exhibits only phosphorescence, not fluorescence, at room temperature with an intersystem crossing quantum yield of almost 100%. By virtue of these photophysical properties, this cluster can be used as a triplet sensitizer that undergoes direct singlet-triplet transitions in the near-infrared (NIR) region (730-900 nm), inducing photon upconversion from NIR to visible light.
Collapse
Affiliation(s)
- Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | - Yuki Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | - Ryoto Kishii
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | - Daichi Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | - Yoshiki Niihori
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| |
Collapse
|
63
|
Aikens CM, Jin R, Roy X, Tsukuda T. From atom-precise nanoclusters to superatom materials. J Chem Phys 2022; 156:170401. [PMID: 35525653 DOI: 10.1063/5.0095770] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
64
|
Dong XX, Zhao Y, Li J, Wang H, Bu Y, Cheng SB. Dual External Field-Engineered Hyperhalogen. J Phys Chem Lett 2022; 13:3942-3948. [PMID: 35476542 DOI: 10.1021/acs.jpclett.2c00916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hyperhalogens, a superatom featuring the highest known electron affinity (EA), have promising applications in the synthesis of superoxidizers. Contributions regarding the identified numbers and corresponding design strategies of hyperhalogens, however, are scarce. Herein, a novel and noninvasive dual external field (DEF) strategy, including the ligand field and oriented external electric field (OEEF), is proposed to construct hyperhalogens. The DEF strategy was shown to possess the power to increase Au8's EA, forming the hyperhalogen. Strikingly, the ligation process can increase the cluster's stability, while OEEF can realize the precise and continuous regulation of the cluster's EA. Moreover, besides the model Au8 system, an experimentally synthesized Ag17 nanocluster was also investigated, further demonstrating the reliability of the proposed strategy. Considering the crucial role of ligands in the liquid synthesis of clusters and the convenient source of OEEF, such a DEF strategy may greatly increase the synthesis and applications of hyperhalogens in the condensed phase.
Collapse
Affiliation(s)
- Xiao-Xiao Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yang Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Hao Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
65
|
Periodicity of Superatomic Hybrid Orbitals in Substituted Superatoms and Superatomic-like X@Ga12 (X = Li~Kr) Clusters. CRYSTALS 2022. [DOI: 10.3390/cryst12040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A superatom is a cluster composed of a specific number of atoms. We recently found that the superatom-like X@Ga12 (X = Li~Kr) clusters has the periodic energy levels of the specific orbitals 2S and 2P by means of the DV-Xα molecular orbital calculation method. This periodicity in energy levels has not been seen in 1D or 1F orbitals. We supposed that the periodicity of the energy levels of the 2S and 2P superatomic-like orbitals come from the same symmetry between atomic orbitals as the central atom X and the surrounding specific orbitals, according to the Jellium model. Both the s and p atomic orbitals of the central atom X in the superatom-like X@Ga12 have a large shielding effect, suggesting that the s and p atomic orbitals interact strongly with both 2S and 2P superatomic-like orbitals. The energy level periodicity has the potential to periodically change the number of electrons located in the 1D and 1F orbitals, which is related to magnetic properties and is expected to be useful for novel magnetic devices by periodically controlling the magnetism of superatoms.
Collapse
|
66
|
Wu X, Yu F, Xie W, Liu Z, Wang Z, Zhang S. High-Stability Light-Element Magnetic Superatoms Determined by Hund's Rule. J Phys Chem Lett 2022; 13:2632-2637. [PMID: 35297251 DOI: 10.1021/acs.jpclett.2c00499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Achieving stable high-magnetism light-element structures at nanoscale is vital to the field of magnetism, which has traditionally been ruled by transition-metal elements with localized d or f electrons. By first-principles calculations, we show that superatoms made of pure earth-abundant light elements (i.e., boron and nitrogen) exhibit desired magnetic properties that rival those of rare-earth elements, and the magnetism is dictated entirely by Hund's maximum spin rule. Importantly, the chemical and structural stabilities of the superatoms are not jeopardized by its high spins and are in fact better than those of transition-metal-element-embedded clusters. Our work thus establishes the basic principles for designing novel light-element, high-stability, and high-moment magnetic superatoms.
Collapse
Affiliation(s)
- Xiaochen Wu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Famin Yu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Weiyu Xie
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zheng Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Shengbai Zhang
- Department of Physics, Applied Physics, & Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
67
|
Shibuta M, Inoue T, Kamoshida T, Eguchi T, Nakajima A. Al13− and B@Al12− superatoms on a molecularly decorated substrate. Nat Commun 2022; 13:1336. [PMID: 35288553 PMCID: PMC8921336 DOI: 10.1038/s41467-022-29034-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Aluminum nanoclusters (Aln NCs), particularly Al13− (n = 13), exhibit superatomic behavior with interplay between electron shell closure and geometrical packing in an anionic state. To fabricate superatom (SA) assemblies, substrates decorated with organic molecules can facilitate the optimization of cluster–surface interactions, because the molecularly local interactions for SAs govern the electronic properties via molecular complexation. In this study, Aln NCs are soft-landed on organic substrates pre-deposited with n-type fullerene (C60) and p-type hexa-tert-butyl-hexa-peri-hexabenzocoronene (HB-HBC, C66H66), and the electronic states of Aln are characterized by X-ray photoelectron spectroscopy and chemical oxidative measurements. On the C60 substrate, Aln is fixed to be cationic but highly oxidative; however, on the HB-HBC substrate, they are stably fixed as anionic Aln− without any oxidations. The results reveal that the careful selection of organic molecules controls the design of assembled materials containing both Al13− and boron-doped B@Al12− SAs through optimizing the cluster–surface interactions. Anionic aluminium clusters are promising candidates for the fabrication of superatom-assembled nanomaterials. Here, the authors report enhanced stability for Al13− and boron-doped B@Al12− on a molecularly decorated p-type organic substrate.
Collapse
|
68
|
Ye YL, Pan KY, Ni BL, Sun WM. Designing Special Nonmetallic Superalkalis Based on a Cage-like Adamanzane Complexant. Front Chem 2022; 10:853160. [PMID: 35360533 PMCID: PMC8963935 DOI: 10.3389/fchem.2022.853160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, to examine the possibility of using cage-like complexants to design nonmetallic superalkalis, a series of X@36adz (X = H, B, C, N, O, F, and Si) complexes have been constructed and investigated by embedding nonmetallic atoms into the 36adamanzane (36adz) complexant. Although X atoms possess very high ionization energies, these resulting X@36adz complexes possess low adiabatic ionization energies (AIEs) of 0.78–5.28 eV. In particular, the adiabatic ionization energies (AIEs) of X@36adz (X = H, B, C, N, and Si) are even lower than the ionization energy (3.89 eV) of Cs atoms, and thus, can be classified as novel nonmetallic superalkalis. Moreover, due to the existence of diffuse excess electrons in B@36adz, this complex not only possesses pretty low AIE of 2.16 eV but also exhibits a remarkably large first hyperpolarizability (β0) of 1.35 × 106 au, indicating that it can also be considered as a new kind of nonlinear optical molecule. As a result, this study provides an effective approach to achieve new metal-free species with an excellent reducing capability by utilizing the cage-like organic complexants as building blocks.
Collapse
Affiliation(s)
- Ya-Ling Ye
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kai-Yun Pan
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bi-Lian Ni
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
- *Correspondence: Wei-Ming Sun,
| |
Collapse
|
69
|
Wei J, Marchal R, Astruc D, Kahlal S, Halet JF, Saillard JY. Looking at platinum carbonyl nanoclusters as superatoms. NANOSCALE 2022; 14:3946-3957. [PMID: 35229849 DOI: 10.1039/d1nr08216g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although the chemistry of carbonyl-protected platinum nanoclusters is well established, their bonding mode remains poorly understood. In most of them, the average Pt oxidation state is zero or slightly negative, leading to the apparent average configuration 5d10 6sε (ε = 0 or very small) and the apparent conclusion that metal-metal bonding cannot arise from the completely filled 5d shell nor from the empty (or almost empty) 6s orbitals. However, DFT calculations show in fact that in these species the actual average configuration is 5d10-x 6sx, which provides to the whole cluster a significant total number of 6s electrons that ensures metal-metal bonding. This ("excited") average configuration is to be related to that of coinage metals in ligated group 11 nanoclusters (nd10 (n + 1)sx). Calculations show that metal-metal bonding in most of these platinum nanoclusters can be rationalized within the concepts of superatoms and supermolecules, in a similar way as for group 11 nanoclusters. The "excited" 5d10-x 6sx configuration results from a level crossing between 5d combinations and 6s combinations, the former transferring their electrons to the latter. This level crossing, which does not exist in the bare Ptn clusters, is induced by the ligand shell, the role of which being thus not innocent with respect to metal-metal bonding.
Collapse
Affiliation(s)
- Jianyu Wei
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F 35000 Rennes, France.
- ISM, UMR CNRS 5255, University of Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France
| | - Rémi Marchal
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F 35000 Rennes, France.
| | - Didier Astruc
- ISM, UMR CNRS 5255, University of Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France
| | - Samia Kahlal
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F 35000 Rennes, France.
| | - Jean-François Halet
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F 35000 Rennes, France.
- CNRS - Saint-Gobain - NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F 35000 Rennes, France.
| |
Collapse
|
70
|
Xu C, Zhou Y, Yi J, Li D, Shi L, Cheng L. Tri- and Tetra-superatomic Molecules in Ligand-Protected Face-Fused Icosahedral (M@Au 12) n (M = Au, Pt, Ir, and Os, and n = 3 and 4) Clusters. J Phys Chem Lett 2022; 13:1931-1939. [PMID: 35187932 DOI: 10.1021/acs.jpclett.2c00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cluster assembling has been one of the hottest topics in nanochemistry. In certain ligand-protected gold clusters, bi-icosahedral cores assembled from Au13 superatoms were found to be analogues of diatomic molecules F2, N2, and singlet O2, respectively, in electronic shells, depending upon the super valence bond (SVB) model. However, challenges still remain for extending the scale in cluster assembling via the SVB model. In this work, ligand-protected tri- and tetra-superatomic clusters composed of icosahedral M@Au12 (M = Au, Pt, Ir, and Os) units are theoretically predicted. These clusters are stable with reasonable highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps and proven to be analogues of simple triatomic (Cl3-, OCl2, O3, and CO2) and tetra-atomic (N≡C-C≡N, and Cl-C≡C-Cl) molecules in both geometric and electronic structures. Moreover, a stable cluster-assembling gold nanowire is predicted following the same rules. This work provides effective electronic rules for cluster assembling on a larger scale and gives references for their experimental synthesis.
Collapse
Affiliation(s)
- Chang Xu
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Yichun Zhou
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Jiuqi Yi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Dan Li
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
71
|
Tsukamoto T, Tomozawa K, Moriai T, Yoshida N, Kambe T, Yamamoto K. Highly Accurate Synthesis of Quasi‐sub‐nanoparticles by Dendron‐assembled Supramolecular Templates. Angew Chem Int Ed Engl 2022; 61:e202114353. [DOI: 10.1002/anie.202114353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Takamasa Tsukamoto
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- PRESTO, JST Kawaguchi Saitama 332-0012 Japan
- ERATO, JST Kawaguchi Saitama 332-0012 Japan
| | - Kosuke Tomozawa
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Present address: Department of Chemistry School of Sciences The University of Tokyo Tokyo 153-8902 Japan
| | - Tatsuya Moriai
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Nozomi Yoshida
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Tetsuya Kambe
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- ERATO, JST Kawaguchi Saitama 332-0012 Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- ERATO, JST Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
72
|
Liu Q, Zhang Q, Shi W, Hu H, Zhuang J, Wang X. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat Chem 2022; 14:433-440. [PMID: 35145248 DOI: 10.1038/s41557-022-00889-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022]
Abstract
Two-dimensional (2D) structures have been shown to possess interesting and potentially useful properties. Because of their isotropic structure, however, clusters tend to assemble into 3D architectures. Here we report the assembly of polyoxometalate clusters into layered structures that feature uniform hexagonal pores and in-plane electron delocalization properties. Because these structures are 2D and visually reminiscent of graphene, they are referred to as 'clusterphenes'. A series of multilayer and monolayer clusterphenes have been constructed with 13 types of polyoxometalate cluster. The resulting clusterphenes were shown to exhibit substantially improved stability and catalytic efficiency towards olefin epoxidation reactions, with a turnover frequency of 4.16 h-1, which is 76.5 times that of the unassembled clusters. The catalytic activity of the clusterphenes derives from the electron delocalization between identical clusters within the 2D layer, which efficiently reduces the activation energy of the catalytic reaction.
Collapse
Affiliation(s)
- Qingda Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Wenxiong Shi
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Hanshi Hu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jing Zhuang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
73
|
Li J, Cui M, Yang H, Chen J, Cheng S. Ligand-field regulated superalkali behavior of the aluminum-based clusters with distinct shell occupancy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
74
|
Gamage EH, Clark JK, Yazback M, Cheng H, Shatruk M, Kovnir K. Solvothermal Synthesis of [Cr 7 S 8 (en) 8 Cl 2 ]Cl 3 ⋅ 2H 2 O with Magnetically Frustrated [Cr 7 S 8 ] 5+ Double-Cubes. Chemistry 2022; 28:e202103761. [PMID: 34757673 PMCID: PMC9300142 DOI: 10.1002/chem.202103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/08/2022]
Abstract
A novel transition metal chalcohalide [Cr7 S8 (en)8 Cl2 ]Cl3 ⋅ 2H2 O, with [Cr7 S8 ]5+ dicubane cationic clusters, has been synthesized by a low temperature solvothermal method, using dimethyl sulfoxide (DMSO) and ethylenediamine (en) solvents. Ethylenediamine ligand exhibits bi- and monodentate coordination modes; in the latter case ethylenediamine coordinates to Cr atoms of adjacent clusters, giving rise to a 2D polymeric structure. Although magnetic susceptibility shows no magnetic ordering down to 1.8 K, a highly negative Weiss constant, θ=-224(2) K, obtained from Curie-Weiss fit of inverse susceptibility, suggests strong antiferromagnetic (AFM) interactions between S=3/2 Cr(III) centers. Due to the complexity of the system with (2S+1)7 =16384 microstates from seven Cr3+ centers, a simplified model with only two exchange constants was used for simulations. Density-functional theory (DFT) calculations yielded the two exchange constants to be J1 =-21.4 cm-1 and J2 =-30.2 cm-1 , confirming competing AFM coupling between the shared Cr3+ center and the peripheral Cr3+ ions of the dicubane cluster. The best simulation of the experimental data was obtained with J1 =-20.0 cm-1 and J2 =-21.0 cm-1 , in agreement with the slightly stronger AFM exchange within the triangles of the peripheral Cr3+ ions as compared to the AFM exchange between the central and peripheral Cr3+ ions. This compound is proposed as a synthon towards magnetically frustrated systems assembled by linking dicubane transition metal-chalcogenide clusters into polymeric networks.
Collapse
Affiliation(s)
- Eranga H. Gamage
- Department of ChemistryIowa State UniversityAmesIowa50011USA
- Ames LaboratoryU.S. Department of EnergyAmesIowa50011USA
| | - Judith K. Clark
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida32306USA
| | - Maher Yazback
- Department of PhysicsCenter for Molecular Magnetic Quantum Materialsand Quantum Theory ProjectUniversity of FloridaGainesvilleFlorida32611USA
| | - Hai‐Ping Cheng
- Department of PhysicsCenter for Molecular Magnetic Quantum Materialsand Quantum Theory ProjectUniversity of FloridaGainesvilleFlorida32611USA
| | - Michael Shatruk
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida32306USA
- National High Magnetic Field LaboratoryTallahasseeFlorida32310USA
| | - Kirill Kovnir
- Department of ChemistryIowa State UniversityAmesIowa50011USA
- Ames LaboratoryU.S. Department of EnergyAmesIowa50011USA
| |
Collapse
|
75
|
Yamamoto K, Tsukamoto T, Tomozawa K, Moriai T, Yoshida N, Kambe T. Highly Accurate Synthesis of Quasi‐sub‐nanoparticles by Dendron‐assembled Supramolecular Templates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kimihisa Yamamoto
- Tokyo Institute of Technology Chemical Resourses Laboratory 4259 Nagatsuta 226-8503 Yokohama JAPAN
| | | | - Kosuke Tomozawa
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku IIR-CLS JAPAN
| | | | - Nozomi Yoshida
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku IIR-CLS JAPAN
| | - Tetsuya Kambe
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku IIR-CLS JAPAN
| |
Collapse
|
76
|
xue D, Chen Z, Liu JY, Wu D, Li ZR, Li Y. High electron affinity triggered by lithium coordination: quasi-chalcogen properties of Li2Sn8Be. Phys Chem Chem Phys 2022; 24:10611-10621. [DOI: 10.1039/d2cp00967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work puts forward an unusual but rational strategy to design superatoms mimicking the properties of group VIA elements. A stable dianion with closo-configuration, namely Li2Sn8Be2−, has been obtained by...
Collapse
|
77
|
McGrady JE, Weigend F, Dehnen S. Electronic structure and bonding in endohedral Zintl clusters. Chem Soc Rev 2021; 51:628-649. [PMID: 34931207 DOI: 10.1039/d1cs00775k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endohedral Zintl clusters-multi-metallic anionic molecules in which a d-block or f-block metal atom is enclosed by p-block (semi)metal atoms-are very topical in contemporary inorganic chemistry. Not only do they provide insight into the embryonic states of intermetallic compounds and show promise in catalytic applications, they also shed light on the nature of chemical bonding between metal atoms. Over the past two decades, a plethora of endohedral Zintl clusters have been synthesized, revealing a fascinating diversity of molecular architectures. Many different perspectives on the bonding in them have emerged in the literature, sometimes complementary and sometimes conflicting, and there has been no concerted effort to classify the entire family based on a small number of unifying principles. A closer look, however, reveals distinct patterns in structure and bonding that reflect the extent to which valence electrons are shared between the endohedral atom and the cluster shell. We show that there is a much more uniform relationship between the total valence electron count and the structure and bonding patterns of these clusters than previously anticipated. All of the p-block (semi)metal shells can be placed on a ladder of total valence electron count that ranges between 4n+2 (closo deltahedra), 5n (closed, three-bonded polyhedra) and 6n (crown-like structures). Although some structural isomerism can occur for a given electron count, the presence of a central metal cation imposes a preference for rather regular and approximately spherical structures which maximise electrostatic interactions between the metal and the shell. In cases where the endohedral metal has relatively accessible valence electrons (from the d or f shells), it can also contribute its valence electrons to the total electron count of the cluster shell, raising the effective electron count and often altering the structural preferences. The electronic situation in any given cluster is considered from different perspectives, some more physical and some more chemical, in a way that highlights the important point that, in the end, they explain the same situation. This article provides a unifying perspective of bonding that captures the structural diversity across this diverse family of multimetallic clusters.
Collapse
Affiliation(s)
- John E McGrady
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ, UK.
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| |
Collapse
|
78
|
Abstract
Superatomic molecular orbitals (SAMOs) have symmetries (angular quantum numbers) similar to those of atoms, and thus, it is possible to realize Rydberg state excitations (RSEs) in superatomic molecules. In this Letter, the feasibility of superatomic Rydberg state excitation (SRSE) is explored using gold superatoms based on first-principles calculations. The results show that the SRSE exists in the high and low excited states of the gold superatoms and their SAMOs make a major contribution to electronic transitions. The radial distribution function of electronic density shows that the main distribution of electrons in the lowest unoccupied molecular orbitals and other unoccupied superatomic molecular orbitals is extremely far from the geometric center, and thus, they can be unambiguously identified as Rydberg orbitals. We found that due to the two-dimensional ductility of the planar SAMOs, superatoms are superior in the RSE regulation. Our findings may provide a new source of superatom-based RSE and will contribute to the regulation and efficient preparation of Rydberg states.
Collapse
Affiliation(s)
- Zheng Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xiaochen Wu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Rui Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Famin Yu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
79
|
|
80
|
Ahsin A, Ayub K. Extremely large static and dynamic nonlinear optical response of small superalkali clusters NM 3M' (M, M'=Li, Na, K). J Mol Graph Model 2021; 109:108031. [PMID: 34536836 DOI: 10.1016/j.jmgm.2021.108031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/14/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Exploring novel nonlinear optical (NLO) materials with excess electron properties is essential for advancing the use of excess electron compounds in optics. The studied superalkali clusters NM3M' (M, M' = Li, Na, K) are thermodynamically stable and their binding energies range from -27.10 to -53.84 kcal mol-1. The observed significant values for VIPs suggest their electronic stabilities. Being excess electron candidate these clusters show significant βo value (3.9 × 107 au), which nicely correlates the hyperpolarizability reported by a two-level model (βtl). Furthermore, these clusters exhibit a remarkable static second hyperpolarizability (γo) value of 1.1 × 1010 au for the NK4 superalkali cluster. The hyper Rayleigh scattering (βHRS) is also computed where the highest value of 2.9 × 107 is recorded for NNa3K superalkali. The obtained values of βvec values (projection of hyperpolarizability on dipole moment vector) also signify the excellent nonlinearity of clusters. Besides, the calculated electro-optica pockel's effect β(-ω; ω,0) and second harmonic generation β(-2ω; ω, ω) values are much pronounced at larger dispersion frequency ω = 1064 nm. Moreover, the frequency-dependent second hyperpolarizability γ(ω) with dc-Kerr effect γ(-ω; ω,0,0) and electric field induced second harmonic generation γ(-2ω; ω,ω,0) show larger values at ω = 1064 nm. Thus the highest value of the dc-Kerr constant increases up to 1.0 × 1011 au which also signifies the larger nonlinear refractive index of the studied cluster. We hope this work could open up new possibilities using superalkali clusters as NLO materials for optoelectronics, laser, second harmonic generation and as frequency doubler.
Collapse
Affiliation(s)
- Atazaz Ahsin
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan.
| |
Collapse
|
81
|
Abstract
In this work, we investigate the relationship between the charge distribution and electron occupation by exploring neutral gold superatoms Aun and their anion structures [Aun]- (n = 13, 55, and 147). It is shown that there exists "skin behavior" of charge distribution for gold superatoms. For the neutral Aun, there are negative charges of -0.1 e, -0.54 e, and -1.16 e distributed in the surface area of 1D5 SAMOs of Au13, 1F12 1G15 SAMOs of Au55, and 2D6 1H22 2F14 1I6 3S2 1J6 1I8 1J4 3P1 SAMOs of Au147, respectively. For the anion [Aun]-, more negative charges of -1.08 e, -1.55 e, and -2.14 e are distributed in the surface area of 1D SAMO of [Au13]-, 1G SAMO of [Au55]-, and 3P SAMO of [Au147]-. In addition, adding an electron will cause the SAMOs rearrangement and enhance the geometric symmetry of superatoms, especially in [Au13]- and [Au55]-. Our findings provide a new perspective on microelectronic structure in understanding the skin effects.
Collapse
Affiliation(s)
- Aihua Cheng
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Rui Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zheng Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Rui Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Wanrong Huang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
82
|
Zhang XL, Ye YL, Zhang L, Li XH, Yu D, Chen JH, Sun WM. Designing an alkali-metal-like superatom Ca 3B for ambient nitrogen reduction to ammonia. Phys Chem Chem Phys 2021; 23:18908-18915. [PMID: 34612429 DOI: 10.1039/d1cp01533h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Converting earth-abundant nitrogen (N2) gas into ammonia (NH3) under mild conditions is one of the most important issues and a long-standing challenge in chemistry. Herein, a new superatom Ca3B was theoretically designed and characterized to reveal its catalytic performance in converting N2 into NH3 by means of density functional theory (DFT) computations. The alkali-metal-like identity of this cluster is verified by its lower vertical ionization energy (VIE, 4.29 eV) than that of potassium (4.34 eV), while its high stability was guaranteed by the large HOMO-LUMO gap and binding energy per atom (Eb). More importantly, this well-designed superatom possesses unique geometric and electronic features, which can fully activate N2via a "double-electron transfer" mechanism, and then convert the activated N2 into NH3 through a distal reaction pathway with a small energy barrier of 0.71 eV. It is optimistically hoped that this work could intrigue more endeavors to design specific superatoms as excellent catalysts for the chemical adsorption and reduction of N2 to NH3.
Collapse
Affiliation(s)
- Xiao-Ling Zhang
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
83
|
Zhang J, Chen S, Yu J, Deng Z, Qin Z, Qiu X, Jiang Y, Jiao C, Tang Z. Deciphering the Superatomic Behavior of Group V Metal Monoxides. J Phys Chem Lett 2021; 12:7636-7640. [PMID: 34351149 DOI: 10.1021/acs.jpclett.1c01971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The valence orbitals of Group V metal monoxides exhibit atomic-like properties which mimic that of coinage metal element atoms. The electronic structures of MO-1/0 (M = V, Nb, and Ta) have been determined by negative ion photoelectron velocity map imaging. Electron affinities and vibrational frequencies for the ground state and excited states of MO (M = V, Nb, and Ta) molecules have been identified as well as photoelectron angular distributions. On the basis of the equivalent-electron principle, MO- (M = V, Nb, and Ta) molecules bear valence electron configurations similar to those of coinage metal elemental atoms, despite having more complicated electronic states for molecules, and concomitant mimicry of magnetic superatom. Generally, other than low-spin states of coinage metal atoms, Group V metal monoxides demonstrate a high-spin state except for TaO, possessing the potential applications to inexpensive superatoms in industrial catalysis.
Collapse
Affiliation(s)
- Jiangle Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shanjun Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingxiong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zefeng Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengbo Qin
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Xingtai Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yihuang Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengxiang Jiao
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Zichao Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
84
|
Omoda T, Takano S, Tsukuda T. Toward Controlling the Electronic Structures of Chemically Modified Superatoms of Gold and Silver. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2001439. [PMID: 32696588 DOI: 10.1002/smll.202001439] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Atomically precise gold/silver clusters protected by organic ligands L, [(Au/Ag)x Ly ]z , have gained increasing interest as building units of functional materials because of their novel photophysical and physicochemical properties. The properties of [(Au/Ag)x Ly ]z are intimately associated with the quantized electronic structures of the metallic cores, which can be viewed as superatoms from the analogy of naked Au/Ag clusters. Thus, establishment of the correlation between the geometric and electronic structures of the superatomic cores is crucial for rational design and improvement of the properties of [(Au/Ag)x Ly ]z . This review article aims to provide a qualitative understanding on how the electronic structures of [(Au/Ag)x Ly ]z are affected by geometric structures of the superatomic cores with a focus on three factors: size, shape, and composition, on the basis of single-crystal X-ray diffraction data. The knowledge accumulated here will constitute a basis for the development of ligand-protected Au/Ag clusters as new artificial elements on a nanometer scale.
Collapse
Affiliation(s)
- Tsubasa Omoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
85
|
Jia Y, Yu X, Zhang H, Cheng L, Luo Z. Tetrahedral Pt 10- Cluster with Unique Beta Aromaticity and Superatomic Feature in Mimicking Methane. J Phys Chem Lett 2021; 12:5115-5122. [PMID: 34029091 DOI: 10.1021/acs.jpclett.1c01178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Utilizing a customized metal cluster source in tandem with a flow tube reactor and a reflectron time-of-flight mass spectrometer, we have obtained well-resolved pure metal clusters Ptn- and observed their gas-phase reactions with a few small gas molecules. Interestingly, the remarkable inertness of Pt10- was repeatedly observed in different reactions. Meanwhile, we have determined the structure of Pt10- within a regular tetrahedron. Considering that Pt possesses 5d96s1 electron configuration, the tetrahedral Pt10- exhibits unexpected stability at neither a magic number of valence electrons nor a shell closure of geometric structure. Comprehensive theoretical calculations unveil the stability of Pt10- is significantly associated with the all-metal aromaticity. In addition to the classical total aromaticity, which is mainly due to 6s electrons, there is unique beta-aromaticity ascribed to spin-polarized beta 5d electrons pertaining to singly occupied multicenter bonds. Further, we demonstrate the superatomic feature of such a transition metal cluster Pt10-, as Pt6@Pt4-, in mimicking methane.
Collapse
Affiliation(s)
- Yuhan Jia
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinlei Yu
- Department of Chemistry, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China
| | - Hanyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
86
|
Liu Q, Hu Y, Cheng L. Catalytic properties of nano-brass clusters: A density functional theory study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Liu Q, Fan P, Hu Y, Wang F, Cheng L. Superatomic and adsorption properties of Ni atom doped Au clusters. Phys Chem Chem Phys 2021; 23:10946-10952. [PMID: 33913457 DOI: 10.1039/d1cp00589h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to their strong relativistic effects, Au clusters exhibit many unusual geometric structures. Among them, Au7-, Au8 and Au9+ have 18 valence electrons satisfying the magic numbers in the jellium model, respectively, but these three non-spherical clusters are not superatoms. In general, a single dopant atom can drastically change the structural and electronic properties of Au clusters. Here, we searched structures of NiAu7-, NiAu8 and NiAu9+ clusters using the genetic algorithm program (GA) combined with density functional theory (DFT). It was found that the alloy clusters are all 3D spherical structures. The molecular orbitals and density of states analysis indicate that they have completely filled superatomic shells (1S21P6), in which the electronic structure of the Ni atom is d10. Then, the electrostatic potential surfaces of the alloy clusters are analyzed, and the calculated results show that the NiAu8 superatom has remarkable σ-holes with positive potential regions. Moreover, these electron-deficient regions can be considered as interaction sites with some electron donors. After a Lewis base CO gas molecule is adsorbed on the Au-based superatom, we found that the C-O bond distance becomes slightly elongated and its stretching frequency presents a significant red-shift. This is due to the fact that 5d electrons of the Au atom of the NiAu8 transfer towards the anti-bond π orbitals of the CO molecule. Hence, this is an effective strategy for finding new types of superatoms and potential catalysts for covalent bond activation.
Collapse
Affiliation(s)
- Qiman Liu
- School of Chemical and Materials Engineering, Huainan Normal University, Huainan 232038, P. R. China. and Anhui Province Key Laboratory of Low Temperature Co-fired Materials, Huainan, 232038, P. R. China
| | - Pei Fan
- School of Chemical and Materials Engineering, Huainan Normal University, Huainan 232038, P. R. China.
| | - Yunhu Hu
- School of Chemical and Materials Engineering, Huainan Normal University, Huainan 232038, P. R. China.
| | - Fengwu Wang
- School of Chemical and Materials Engineering, Huainan Normal University, Huainan 232038, P. R. China.
| | - Longjiu Cheng
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China.
| |
Collapse
|
88
|
Schütz M, Gemel C, Muhr M, Jandl C, Kahlal S, Saillard JY, Fischer RA. Exploring Cu/Al cluster growth and reactivity: from embryonic building blocks to intermetalloid, open-shell superatoms. Chem Sci 2021; 12:6588-6599. [PMID: 34040734 PMCID: PMC8132940 DOI: 10.1039/d1sc00268f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Cluster growth reactions in the system [Cu5](Mes)5 + [Al4](Cp*)4 (Mes = mesitylene, Cp* = pentamethylcyclopentadiene) were explored and monitored by in situ LIFDI-MS and 1H-NMR. Feedback into experimental design allowed for an informed choice and precise adjustment of reaction conditions and led to isolation of the intermetallic cluster [Cu4Al4](Cp*)5(Mes) (1). Cluster 1 reacts with excess 3-hexyne to yield the triangular cluster [Cu2Al](Cp*)3 (2). The two embryonic [Cu4Al4](Cp*)5(Mes) and [Cu2Al](Cp*)3 clusters 1 and 2, respectively, were shown to be intermediates in the formation of an inseparable composite of the closely related clusters [Cu7Al6](Cp*)6 (3), [HCu7Al6](Cp*)6 (3H) and [Cu8Al6](Cp*)6 (4), which just differ by one Cu core atom. The radical nature of the open-shell superatomic [Cu7Al6](Cp*)6 cluster 3 is reflected in its reactivity towards addition of one Cu core atom leading to the closed shell superatom [Cu8Al6](Cp*)6 (4), and as well by its ability to undergo σ(C-H) and σ(Si-H) activation reactions of C6H5CH3 (toluene) and (TMS)3SiH (TMS = tris(trimethylsilyl)).
Collapse
Affiliation(s)
- Max Schütz
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Christian Gemel
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Maximilian Muhr
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Christian Jandl
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226 F-35000 Rennes France
| | | | - Roland A Fischer
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| |
Collapse
|
89
|
Tsukamoto T, Kambe T, Imaoka T, Yamamoto K. Modern cluster design based on experiment and theory. Nat Rev Chem 2021; 5:338-347. [PMID: 37117837 DOI: 10.1038/s41570-021-00267-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 01/21/2023]
Abstract
For decades, chemists have explored cluster compounds according to theoretical models that have proved too simplistic to accurately predict cluster properties, stabilities and functions. By incorporating molecular symmetry into existing cluster models, we can better study real polyatomic molecules and have new guidelines for their design. This symmetry-adapted cluster model allows us to discover substances that shatter the conventional notion of clusters. Theoretical predictors will point to the viability of new clusters, whose syntheses can be realized with parallel advances in experimental methods. This Perspective describes these modern experimental and theoretical strategies for cluster design and how they may give rise to new fields in cluster chemistry.
Collapse
|
90
|
Geng L, Cui C, Jia Y, Yin B, Zhang H, Sun ZD, Luo Z. Reactivity of Cobalt Clusters Co n±/0 with Dinitrogen: Superatom Co 6+ and Superatomic Complex Co 5N 6. J Phys Chem A 2021; 125:2130-2138. [PMID: 33689326 DOI: 10.1021/acs.jpca.1c00483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a joint experimental and theoretical study on the reactions of cobalt clusters (Con±/0) with nitrogen using the customized reflection time-of-flight mass spectrometer combined with a 177.3 nm deep-ultraviolet laser. Comparing to the behaviors of neutral Con (n = 2-30) and anionic Con- clusters (n = 7-53) which are relatively inert in reacting with nitrogen in the fast-flow tube, Con+ clusters readily react with nitrogen resulting in adducts of one or multiple N2 except Co6+ which stands firm in the reaction with nitrogen. Detailed quantum chemistry calculations, including the energetics, electron occupancy, and orbital analysis, well-explained the reasonable reactivity of Con+ clusters with nitrogen and unveiled the open-shell superatomic stability of Co6+ within a highly symmetric (D3d) structure. The D3d Co6+ bears an electron configuration of a half-filled superatomic 1P orbital (i.e., 1S21P3||1D0), a large α-highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, symmetric multicenter bonds, and reasonable electron delocalization pertaining to metallic aromaticity. Topology analysis by atom-in-molecule illustrates the interactions between Con+ and N2 corresponding to covalent bonds, but the Co-N interactions in cationic Co2+N2 and Co6+N2 clusters are apparently weaker than those in the other systems. In addition, we identify a superatomic complex Co5N6+ which exhibits similar frontier orbitals as the naked Co5+ cluster, but the alpha HOMO-LUMO gap is nearly double-magnified, which is consistent with the high-abundance peak of Co5N6+ in the experimental observation. The enhanced stability of such a ligand-coordinated superatomic complex Co5N6+, along with the superatom Co6+ with aromaticity, sheds light on special and general superatoms.
Collapse
Affiliation(s)
- Lijun Geng
- School of Physics, Shandong University, Jinan 250100, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuhan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Baoqi Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhen-Dong Sun
- School of Physics, Shandong University, Jinan 250100, P. R. China.,School of Physics and Electrical Engineering, Kashi University, Kashgar 844006, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
91
|
Wu H, Fang YG, Anumula R, Andrew GN, Cui G, Fang W, Luo Z, Yao J. A mono-copper doped undeca-gold cluster with up-converted and anti-stokes emissions of fluorescence and phosphorescence. NANOSCALE 2021; 13:5300-5306. [PMID: 33660721 DOI: 10.1039/d0nr07624d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We have synthesized single crystals of a highly stable Cu-doped undeca-gold cluster protected by both triphenylphosphine (PPh3) and 2-pyridinethiol (-SPy) ligands, formulated as [Au11Cu1(PPh3)7(SPy)3]+. This cluster (Au11Cu1 NCs for short) has a metallic core of C3v Au@Au10 with the Cu atom capped on one of the nine triangular facets and it is triply-coordinated to three N atoms of the SPy ligands of which the sulfur atom simultaneously binds to three adjacent Au atoms via singly-coordinated S-Au bonds, respectively. The other seven gold atoms form a crown structure by a link of three orthogons with common sides and are protected by seven PPh3 ligands. Besides the well-organized coordination, this Au11Cu1 nanocluster is demonstrated to exhibit superatom stability of the metallic core within 8 valence electrons (assuming that the 3 electrophilic-SPy ligands capture 3 electrons from the metal center). More interestingly, this Au11Cu1 nanocluster shows interesting emissions in both ultraviolet visible (UV-Vis) and near infrared (NIR) regions, and the emissions display novel anti-Stokes up-conversion lasing characteristics. TD-DFT calculated UV-vis and emission spectra well reproduce the experimental results, shedding light on the nature of excitation states and underlying mechanism of electronic transitions between diverse energy levels of such a monolayer-protected bimetallic cluster.
Collapse
Affiliation(s)
- Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| | - Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Rajini Anumula
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| |
Collapse
|
92
|
Zhang H, Zhang M, Jia Y, Geng L, Yin B, Li S, Luo Z, Pan F. Vanadium Cluster Neutrals Reacting with Water: Superatomic Features and Hydrogen Evolution in a Fishing Mode. J Phys Chem Lett 2021; 12:1593-1600. [PMID: 33545005 DOI: 10.1021/acs.jpclett.0c03809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen evolution reaction (HER) is known as the heart of various energy storage and conversation systems of renewable energy sources. Here we observe the cluster reactions of a light transition metal, vanadium, with water in a gas-phase flow tube reactor. While HER products of V1 and V2 were not observed, the effective HER of water on neutral Vn (n ≥ 3) clusters reveals reasonable and size-dependent reactivity of the vanadium clusters. Superatomic features and reaction dynamics of V10, V13, and V16 are highlighted. Among the three typical superatoms, V10 and V16 exhibit an abnormal superatomic orbital energy level order, 1S|2S|1P|1D..., where the energy-reduced 2S orbital helps to accommodate the geometric structure and hence reinforce the cluster stability. In comparison, V13 bears a less symmetrical structure and reacts readily with water, allowing for recombination of a hydroxyl atom with an adsorbed hydrogen atom, akin to a fishing-mode HER process. The joint experimental and theoretical study on neutral Vn clusters clarifies the availability of superatom chemistry for transition metals and appeals further development of cluster theory based on electronic cloud/orbital analysis instead of simply counting the valence electrons. Also, we provide insights into the HER mechanism of metal clusters and propose a strategy to design new materials for portable fuel cells of hydrogen energy.
Collapse
Affiliation(s)
- Hanyu Zhang
- Beijing National Laboratory of Molecular sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingzheng Zhang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yuhan Jia
- Beijing National Laboratory of Molecular sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lijun Geng
- Beijing National Laboratory of Molecular sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baoqi Yin
- Beijing National Laboratory of Molecular sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shunning Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory of Molecular sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| |
Collapse
|
93
|
Xue D, Wu D, Chen Z, Li Y, Sun W, Liu J, Li Z. On Close Parallels between the Zintl-Based Superatom Ge9Be and Chalcogen Elements. Inorg Chem 2021; 60:3196-3206. [DOI: 10.1021/acs.inorgchem.0c03531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Duomei Xue
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Di Wu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Zeren Chen
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, P. R. China
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - WeiMing Sun
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, P. R. China
| | - Jingyao Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Zhiru Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
94
|
Kenzler S, Schnepf A. Metalloid gold clusters - past, current and future aspects. Chem Sci 2021; 12:3116-3129. [PMID: 34164079 PMCID: PMC8179421 DOI: 10.1039/d0sc05797e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Gold chemistry and the synthesis of colloidal gold have always caught the attention of scientists. While Faraday was investigating the physical properties of colloidal gold in 1857 without probably knowing anything about the exact structure of the molecules, 150 years later the working group of Kornberg synthesized the first structurally characterized multi-shell metalloid gold cluster with more than 100 Au atoms, Au102(SR)44. After this ground-breaking result, many smaller and bigger metalloid gold clusters have been discovered to gain a better understanding of the formation process and the physical properties. In this review, first of all, a general overview of past investigations is given, leading to metalloid gold clusters with staple motifs in the ligand shell, highlighting structural differences in the cores of these clusters. Afterwards, the influence of the synthetic procedure on the outcome of the reactions is discussed, focusing on recent results from our group. Thereby, newly found structural motifs are taken into account and compared to the existing ones. Finally, a short outlook on possible subsequent reactions of these metalloid gold clusters is given.
Collapse
Affiliation(s)
- Sebastian Kenzler
- Institute of Inorganic Chemistry, Universität Tübingen Auf der Morgenstelle 18 D-72076 Tübingen Germany +49-7071-28-2436 +49-7071-29-76635
| | - Andreas Schnepf
- Institute of Inorganic Chemistry, Universität Tübingen Auf der Morgenstelle 18 D-72076 Tübingen Germany +49-7071-28-2436 +49-7071-29-76635
| |
Collapse
|
95
|
|
96
|
|
97
|
Takano S, Tsukuda T. Chemically Modified Gold/Silver Superatoms as Artificial Elements at Nanoscale: Design Principles and Synthesis Challenges. J Am Chem Soc 2021; 143:1683-1698. [DOI: 10.1021/jacs.0c11465] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
98
|
Jacobo-Fernández JM, Tlahuice-Flores A. Effect of the charge state on the structure of the Au 60 cluster. Phys Chem Chem Phys 2021; 23:442-448. [PMID: 33319892 DOI: 10.1039/d0cp04393a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript outlines a DFT-D study of a neutral and charged Au60 cluster. The neutral structure features an I-symmetry, while 1-, 1+, and 2+ charge states result in a structure with Cs symmetry. The main difference among neutral and charged clusters is their compactness and we used a polyhedral approach to analyze their structure in terms of tetrahedral and octahedral building blocks. Moreover, we calculated their IR/Raman spectra to distinguish among them.
Collapse
Affiliation(s)
- Jimena M Jacobo-Fernández
- Universidad Autónoma de Nuevo León, CICFIM-Facultad de Ciencias Físico-Matemáticas, San Nicolás de los Garza, NL 66455, Mexico.
| | | |
Collapse
|
99
|
Zhang H, Cui C, Yan M, Geng L, Wu H, Jia Y, Luo Z, Li SD. An oxygen-passivated vanadium cluster [V@V10O15]− with metal–metal coordination produced by reacting Vn− with O2. Phys Chem Chem Phys 2021; 23:921-927. [DOI: 10.1039/d0cp05385f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An oxygen-passivated vanadium cluster [V@V10O15]− is reported by reacting Vn− with O2, giving rise to superatom features of metal–metal coordination and 3D aromaticity.
Collapse
Affiliation(s)
- Hanyu Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Chaonan Cui
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Miao Yan
- Institute of Molecular Science
- Taiyuan 030006
- China
| | - Lijun Geng
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Haiming Wu
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yuhan Jia
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhixun Luo
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Si-Dian Li
- Institute of Molecular Science
- Taiyuan 030006
- China
| |
Collapse
|
100
|
Cunningham EM, Green AE, Meizyte G, Gentleman AS, Beardsmore PW, Schaller S, Pollow KM, Saroukh K, Förstel M, Dopfer O, Schöllkopf W, Fielicke A, Mackenzie SR. Infrared action spectroscopy of nitrous oxide on cationic gold and cobalt clusters. Phys Chem Chem Phys 2021; 23:329-338. [PMID: 33346764 DOI: 10.1039/d0cp05195k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the catalytic decomposition of nitrous oxide on finely divided transition metals is an important environmental issue. In this study, we present the results of a combined infrared action spectroscopy and quantum chemical investigation of molecular N2O binding to isolated Aun+ (n ≤ 7) and Con+ (n ≤ 5) clusters. Infrared multiple-photon dissociation spectra have been recorded in the regions of both the N[double bond, length as m-dash]O (1000-1400 cm-1) and N[double bond, length as m-dash]N (2100-2450 cm-1) stretching modes of nitrous oxide. In the case of Aun+ clusters only the ground electronic state plays a role, while the involvement of energetically low-lying excited states in binding to the Con+ clusters cannot be ruled out. There is a clear preference for N-binding to clusters of both metals but some O-bound isomers are observed in the case of smaller Con(N2O)+ clusters.
Collapse
Affiliation(s)
- Ethan M Cunningham
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|