51
|
Zimmerman S, Domsic JF, Tu C, Robbins AH, McKenna R, Silverman DN, Ferry JG. Role of Trp19 and Tyr200 in catalysis by the γ-class carbonic anhydrase from Methanosarcina thermophila. Arch Biochem Biophys 2012; 529:11-7. [PMID: 23111186 DOI: 10.1016/j.abb.2012.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
Although widely distributed in Nature, only two γ class carbonic anhydrases are reported besides the founding member (Cam). Although roles for active-site residues important for catalysis have been identified in Cam, second shell residues have not been investigated. Two residues (Trp19 and Tyr200), positioned distant from the catalytic metal, were investigated by structural and kinetic analyses of replacement variants. Steady-state k(cat)/K(m) and k(cat) values decreased 3- to 10-fold for the Trp19 variants whereas the Y200 variants showed up to a 5-fold increase in k(cat). Rate constants for proton transfer decreased up to 10-fold for the Trp19 variants, and an increase of ~2-fold for Y200F. The pK(a) values for the proton donor decreased 1-2 pH units for Trp19 and Y200 variants. The variant structures revealed a loop composed of residues 62-64 that occupies a different conformation than previously reported. The results show that, although Trp19 and Y200 are non-essential, they contribute to an extended active-site structure distant from the catalytic metal that fine tunes catalysis. Trp19 is important for both CO(2)/bicarbonate interconversion, and the proton transfer step of catalysis.
Collapse
Affiliation(s)
- Sabrina Zimmerman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Syrjänen L, Tolvanen MEE, Hilvo M, Vullo D, Carta F, Supuran CT, Parkkila S. Characterization, bioinformatic analysis and dithiocarbamate inhibition studies of two new α-carbonic anhydrases, CAH1 and CAH2, from the fruit fly Drosophila melanogaster. Bioorg Med Chem 2012; 21:1516-21. [PMID: 22989910 DOI: 10.1016/j.bmc.2012.08.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 01/20/2023]
Abstract
Carbonic anhydrases (CAs) are essential and ubiquitous enzymes. Thus far, there are no articles on characterization of Drosophila melanogaster α-CAs. Data from invertebrate CA studies may provide opportunities for anti-parasitic drug development because α-CAs are found in many parasite or parasite vector invertebrates. We have expressed and purified D. melanogaster CAH1 and CAH2 as proteins of molecular weights 30kDa and 28kDa. CAH1 is cytoplasmic whereas CAH2 is a membrane-attached protein. Both are highly active enzymes for the CO2 hydration reaction, being efficiently inhibited by acetazolamide. CAH2 in the eye of D. melanogaster may provide a new animal model for CA-related eye diseases. A series of dithiocarbamates were also screened as inhibitors of these enzymes, with some representatives showing inhibition in the low nanomolar range.
Collapse
Affiliation(s)
- Leo Syrjänen
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
53
|
Lim CK, Hassan KA, Penesyan A, Loper JE, Paulsen IT. The effect of zinc limitation on the transcriptome ofPseudomonas protegens Pf-5. Environ Microbiol 2012; 15:702-15. [DOI: 10.1111/j.1462-2920.2012.02849.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/09/2012] [Accepted: 07/21/2012] [Indexed: 02/03/2023]
Affiliation(s)
- Chee Kent Lim
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Joyce E. Loper
- USDA-ARS Horticultural Crops Research Laboratory and Department of Botany and Plant Pathology; Oregon State University; Corvallis; OR; USA
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| |
Collapse
|
54
|
Park HM, Park JH, Choi JW, Lee J, Kim BY, Jung CH, Kim JS. Structures of the γ-class carbonic anhydrase homologue YrdA suggest a possible allosteric switch. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:920-6. [PMID: 22868757 DOI: 10.1107/s0907444912017210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 04/18/2012] [Indexed: 11/11/2022]
Abstract
The YrdA protein shows high sequence similarity to γ-class carbonic anhydrase (γ-CA) proteins and is classified as part of the γ-CA protein family. However, its function has not been fully elucidated as it lacks several of the conserved residues that are considered to be necessary for γ-CA catalysis. Interestingly, a homologue of γ-CA from Methanosarcina thermophila and a β-carboxysomal γ-CA from a β-cyanobacterium have shown that these catalytic residues are not always conserved in γ-CAs. The crystal structure of YrdA from Escherichia coli (ecYrdA) is reported here in two crystallographic forms. The overall structure of ecYrdA is also similar to those of the γ-CAs. One loop around the putative catalytic site shows a number of alternative conformations. A His residue (His70) on this loop coordinates with, or is reoriented from, the catalytic Zn(2+) ion; this is similar to the conformations mediated by an Asp residue on the catalytic loops of β-CA proteins. One Trp residue (Trp171) also adopts two alternative conformations that may be related to the spatial positions of the catalytic loop. Even though significant CA activity could not be detected using purified ecYrdA, these structural features have potential functional implications for γ-CA-related proteins.
Collapse
Affiliation(s)
- Hye-Mi Park
- Department of Chemistry and Institute of Basic Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
55
|
Glass JB, Orphan VJ. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 2012; 3:61. [PMID: 22363333 PMCID: PMC3282944 DOI: 10.3389/fmicb.2012.00061] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/05/2012] [Indexed: 01/15/2023] Open
Abstract
Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO(2) cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH(4)), and nitrous oxide (N(2)O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH(4) and N(2)O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH(4) oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N(2)O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N(2)O reductase, the only known enzyme capable of microbial N(2)O conversion to N(2), have only been found in classical denitrifiers. Accumulation of N(2)O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N(2)O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide-metal scavenging.
Collapse
Affiliation(s)
- Jennifer B. Glass
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, CA, USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, CA, USA
| |
Collapse
|
56
|
Erratum to “A Novel Inducible Protein Production System and Neomycin Resistance as Selection Marker for Methanosarcina mazei”. ARCHAEA 2012. [PMCID: PMC3485478 DOI: 10.1155/2012/910205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
57
|
Evolution of a new enzyme for carbon disulphide conversion by an acidothermophilic archaeon. Nature 2011; 478:412-6. [PMID: 22012399 DOI: 10.1038/nature10464] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/19/2011] [Indexed: 11/09/2022]
Abstract
Extremophilic organisms require specialized enzymes for their exotic metabolisms. Acid-loving thermophilic Archaea that live in the mudpots of volcanic solfataras obtain their energy from reduced sulphur compounds such as hydrogen sulphide (H(2)S) and carbon disulphide (CS(2)). The oxidation of these compounds into sulphuric acid creates the extremely acidic environment that characterizes solfataras. The hyperthermophilic Acidianus strain A1-3, which was isolated from the fumarolic, ancient sauna building at the Solfatara volcano (Naples, Italy), was shown to rapidly convert CS(2) into H(2)S and carbon dioxide (CO(2)), but nothing has been known about the modes of action and the evolution of the enzyme(s) involved. Here we describe the structure, the proposed mechanism and evolution of a CS(2) hydrolase from Acidianus A1-3. The enzyme monomer displays a typical β-carbonic anhydrase fold and active site, yet CO(2) is not one of its substrates. Owing to large carboxy- and amino-terminal arms, an unusual hexadecameric catenane oligomer has evolved. This structure results in the blocking of the entrance to the active site that is found in canonical β-carbonic anhydrases and the formation of a single 15-Å-long, highly hydrophobic tunnel that functions as a specificity filter. The tunnel determines the enzyme's substrate specificity for CS(2), which is hydrophobic. The transposon sequences that surround the gene encoding this CS(2) hydrolase point to horizontal gene transfer as a mechanism for its acquisition during evolution. Our results show how the ancient β-carbonic anhydrase, which is central to global carbon metabolism, was transformed by divergent evolution into a crucial enzyme in CS(2) metabolism.
Collapse
|
58
|
Supuran CT. Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Med Chem 2011; 3:1165-1180. [DOI: 10.4155/fmc.11.69] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Carbonic anhydrases (CAs, Enzyme Commission number 4.2.1.1) catalyze a simple but fundamental reaction, CO2 hydration to yield bicarbonate and protons. CAs belonging to the α-, β-, γ-, δ- and ζ-families are found in many organisms all over the phylogenetic tree and their inhibition/activation have been studied in detail, leading to various therapeutic applications. Inhibition of mammalian α-CAs is exploited by some diuretics, whereas antiglaucoma, anticonvulsant, anti-obesity, altitude sickness and anti-tumor drugs/diagnostic agents target various of the 15 isoforms described so far in these organisms. Activation of some CAs may also have applications in therapy. Bacterial and fungal β-CA inhibitors or nematode α-CA inhibitors have been described that may lead to novel classes of anti-infectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Room 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
59
|
Ferry JG. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr Opin Biotechnol 2011; 22:351-7. [PMID: 21555213 DOI: 10.1016/j.copbio.2011.04.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/18/2011] [Indexed: 12/17/2022]
Abstract
The conversion of biomass to CH4 (biomethanation) involves an anaerobic microbial food chain composed of at least three metabolic groups of which the first two decompose the complex biomass primarily to acetate, formate, and H2. The thermodynamics of these conversions are unfavorable requiring a symbiosis with the CH4-producing group (methanogens) that metabolize the decomposition products to favorable concentrations. The methanogens produce CH4 by two major pathways, conversion of the methyl group of acetate and reduction of CO2 coupled to the oxidation of formate or H2. This review covers recent advances in the fundamental understanding of both methanogenic pathways with the view of stimulating research towards improving the rate and reliability of the overall biomethanation process.
Collapse
Affiliation(s)
- James G Ferry
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16801, United States.
| |
Collapse
|
60
|
Abstract
Metal ions play an indispensable role in biology, enabling enzymes to perform their functions and lending support to the structures of numerous macromolecules. Despite their prevalence and importance, the metalloproteome is still relatively unexplored. Cvetkovic et al. (2010) now describe an approach to identify metalloproteins on a genome-wide scale.
Collapse
Affiliation(s)
- Javier Seravalli
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588, USA
| | | |
Collapse
|
61
|
Abstract
Methane produced in the biosphere is derived from two major pathways. Conversion of the methyl group of acetate to CH(4) in the aceticlastic pathway accounts for at least two-thirds, and reduction of CO(2) with electrons derived from H(2), formate, or CO accounts for approximately one-third. Although both pathways have terminal steps in common, they diverge considerably in the initial steps and energy conservation mechanisms. Steps and enzymes unique to the CO(2) reduction pathway are confined to methanogens and the domain Archaea. On the other hand, steps and enzymes unique to the aceticlastic pathway are widely distributed in the domain Bacteria, the understanding of which has contributed to a broader understanding of prokaryotic biology.
Collapse
Affiliation(s)
- James G Ferry
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16801, USA.
| |
Collapse
|
62
|
Syrjänen L, Tolvanen M, Hilvo M, Olatubosun A, Innocenti A, Scozzafava A, Leppiniemi J, Niederhauser B, Hytönen VP, Gorr TA, Parkkila S, Supuran CT. Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster) and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates. BMC BIOCHEMISTRY 2010; 11:28. [PMID: 20659325 PMCID: PMC2918522 DOI: 10.1186/1471-2091-11-28] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/26/2010] [Indexed: 11/10/2022]
Abstract
Background The β-carbonic anhydrase (CA, EC 4.2.1.1) enzymes have been reported in a variety of organisms, but their existence in animals has been unclear. The purpose of the present study was to perform extensive sequence analysis to show that the β-CAs are present in invertebrates and to clone and characterize a member of this enzyme family from a representative model organism of the animal kingdom, e.g., Drosophila melanogaster. Results The novel β-CA gene, here named DmBCA, was identified from FlyBase, and its orthologs were searched and reconstructed from sequence databases, confirming the presence of β-CA sequences in 55 metazoan species. The corresponding recombinant enzyme was produced in Sf9 insect cells, purified, kinetically characterized, and its inhibition was investigated with a series of simple, inorganic anions. Holoenzyme molecular mass was defined by dynamic light scattering analysis and gel filtration, and the results suggested that the holoenzyme is a dimer. Double immunostaining confirmed predictions based on sequence analysis and localized DmBCA protein to mitochondria. The enzyme showed high CO2 hydratase activity, with a kcat of 9.5 × 105 s-1 and a kcat/KM of 1.1 × 108 M-1s-1. DmBCA was appreciably inhibited by the clinically-used sulfonamide acetazolamide, with an inhibition constant of 49 nM. It was moderately inhibited by halides, pseudohalides, hydrogen sulfide, bisulfite and sulfate (KI values of 0.67 - 1.36 mM) and more potently by sulfamide (KI of 0.15 mM). Bicarbonate, nitrate, nitrite and phenylarsonic/boronic acids were much weaker inhibitors (KIs of 26.9 - 43.7 mM). Conclusions The Drosophila β-CA represents a highly active mitochondrial enzyme that is a potential model enzyme for anti-parasitic drug development.
Collapse
Affiliation(s)
- Leo Syrjänen
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Yi L, Morgan JT, Ragsdale SW. Identification of a thiol/disulfide redox switch in the human BK channel that controls its affinity for heme and CO. J Biol Chem 2010; 285:20117-27. [PMID: 20427280 DOI: 10.1074/jbc.m110.116483] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Heme is a required prosthetic group in many electron transfer proteins and redox enzymes. The human BK channel, which is a large-conductance Ca(2+) and voltage-activated K(+) channel, is involved in the hypoxic response in the carotid body. The BK channel has been shown to bind and undergo inhibition by heme and activation by CO. Furthermore, evidence suggests that human heme oxygenase-2 (HO2) acts as an oxygen sensor and CO donor that can form a protein complex with the BK channel. Here we describe a thiol/disulfide redox switch in the human BK channel and biochemical experiments of heme, CO, and HO2 binding to a 134-residue region within the cytoplasmic domain of the channel. This region, called the heme binding domain (HBD) forms a linker segment between two Ca(2+)-sensing domains (called RCK1 and RCK2) of the BK channel. The HBD includes a CXXCH motif in which histidine serves as the axial heme ligand and the two cysteine residues can form a reversible thiol/disulfide redox switch that regulates affinity of the HBD for heme. The reduced dithiol state binds heme (K(d) = 210 nm) 14-fold more tightly than the oxidized disulfide state. Furthermore, the HBD is shown to tightly bind CO (K(d) = 50 nm) with the Cys residues in the CXXCH motif regulating affinity of the HBD for CO. This HBD is also shown to interact with heme oxygenase-2. We propose that the thiol/disulfide switch in the HBD is a mechanism by which activity of the BK channel can respond quickly and reversibly to changes in the redox state of the cell, especially as it switches between hypoxic and normoxic conditions.
Collapse
Affiliation(s)
- Li Yi
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | | | |
Collapse
|
64
|
Zimmerman SA, Tomb JF, Ferry JG. Characterization of CamH from Methanosarcina thermophila, founding member of a subclass of the {gamma} class of carbonic anhydrases. J Bacteriol 2010; 192:1353-60. [PMID: 20023030 PMCID: PMC2820857 DOI: 10.1128/jb.01164-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 12/05/2009] [Indexed: 11/20/2022] Open
Abstract
The homotrimeric enzyme Mt-Cam from Methanosarcina thermophila is the archetype of the gamma class of carbonic anhydrases. A search of databases queried with Mt-Cam revealed that a majority of the homologs comprise a putative subclass (CamH) in which there is major conservation of all of the residues essential for the archetype Mt-Cam except Glu62 and an acidic loop containing the essential proton shuttle residue Glu84. The CamH homolog from M. thermophila (Mt-CamH) was overproduced in Escherichia coli and characterized to validate its activity and initiate an investigation of the CamH subclass. The Mt-CamH homotrimer purified from E. coli cultured with supplemental zinc (Zn-Mt-CamH) contained 0.71 zinc and 0.15 iron per monomer and had k(cat) and k(cat)/K(m) values that were substantially lower than those for the zinc form of Mt-Cam (Zn-Mt-Cam). Mt-CamH purified from E. coli cultured with supplemental iron (Fe-Mt-CamH) was also a trimer containing 0.15 iron per monomer and only a trace amount of zinc and had an effective k(cat) (k(cat)(eff)) value normalized for iron that was 6-fold less than that for the iron form of Mt-Cam, whereas the k(cat)/K(m)(eff) was similar to that for Fe-Mt-Cam. Addition of 50 mM imidazole to the assay buffer increased the k(cat)(eff) of Fe-Mt-CamH more than 4-fold. Fe-Mt-CamH lost activity when it was exposed to air or 3% H(2)O(2), which supports the hypothesis that Fe(2+) has a role in the active site. The k(cat) for Fe-Mt-CamH was dependent on the concentration of buffer in a way that indicates that it acts as a second substrate in a "ping-pong" mechanism accepting a proton. The k(cat)/K(m) was not dependent on the buffer, consistent with the mechanism for all carbonic anhydrases in which the interconversion of CO(2) and HCO(3)(-) is separate from intermolecular proton transfer.
Collapse
Affiliation(s)
- Sabrina A. Zimmerman
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, E. I. DuPont de Nemours Company, Central Research and Development, Experimental Station, Wilmington, Delaware 19880
| | - Jean-Francois Tomb
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, E. I. DuPont de Nemours Company, Central Research and Development, Experimental Station, Wilmington, Delaware 19880
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, E. I. DuPont de Nemours Company, Central Research and Development, Experimental Station, Wilmington, Delaware 19880
| |
Collapse
|
65
|
Ferry JG. The gamma class of carbonic anhydrases. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:374-81. [PMID: 19747990 PMCID: PMC2818130 DOI: 10.1016/j.bbapap.2009.08.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 08/23/2009] [Accepted: 08/25/2009] [Indexed: 11/22/2022]
Abstract
Homologs of the gamma class of carbonic anhydrases, one of five independently evolved classes, are found in the genomic sequences of diverse species from all three domains of life. The archetype (Cam) from the Archaea domain is a homotrimer of which the crystal structure reveals monomers with a distinctive left-handed parallel beta-helix fold. Histidines from adjacent monomers ligate the three active site metals surrounded by residues in a hydrogen bond network essential for activity. Cam is most active with iron, the physiologically relevant metal. Although the active site residues bear little resemblance to the other classes, kinetic analyses indicate a two-step mechanism analogous to all carbonic anhydrases investigated. Phylogenetic analyses of Cam homologs derived from the databases show that Cam is representative of a minor subclass with the great majority belonging to a subclass (CamH) with significant differences in active site residues and apparent mechanism from Cam. A physiological function for any of the Cam and CamH homologs is unknown, although roles in transport of carbon dioxide and bicarbonate across membranes has been proposed.
Collapse
Affiliation(s)
- James G Ferry
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA.
| |
Collapse
|
66
|
Maret W. Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Metallomics 2010; 2:117-25. [DOI: 10.1039/b915804a] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
67
|
Haas CE, Rodionov DA, Kropat J, Malasarn D, Merchant SS, de Crécy-Lagard V. A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics 2009; 10:470. [PMID: 19822009 PMCID: PMC2770081 DOI: 10.1186/1471-2164-10-470] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/12/2009] [Indexed: 11/11/2022] Open
Abstract
Background COG0523 proteins are, like the nickel chaperones of the UreG family, part of the G3E family of GTPases linking them to metallocenter biosynthesis. Even though the first COG0523-encoding gene, cobW, was identified almost 20 years ago, little is known concerning the function of other members belonging to this ubiquitous family. Results Based on a combination of comparative genomics, literature and phylogenetic analyses and experimental validations, the COG0523 family can be separated into at least fifteen subgroups. The CobW subgroup involved in cobalamin synthesis represents only one small sub-fraction of the family. Another, larger subgroup, is suggested to play a predominant role in the response to zinc limitation based on the presence of the corresponding COG0523-encoding genes downstream from putative Zur binding sites in many bacterial genomes. Zur binding sites in these genomes are also associated with candidate zinc-independent paralogs of zinc-dependent enzymes. Finally, the potential role of COG0523 in zinc homeostasis is not limited to Bacteria. We have predicted a link between COG0523 and regulation by zinc in Archaea and show that two COG0523 genes are induced upon zinc depletion in a eukaryotic reference organism, Chlamydomonas reinhardtii. Conclusion This work lays the foundation for the pursuit by experimental methods of the specific role of COG0523 members in metal trafficking. Based on phylogeny and comparative genomics, both the metal specificity and the protein target(s) might vary from one COG0523 subgroup to another. Additionally, Zur-dependent expression of COG0523 and putative paralogs of zinc-dependent proteins may represent a mechanism for hierarchal zinc distribution and zinc sparing in the face of inadequate zinc nutrition.
Collapse
Affiliation(s)
- Crysten E Haas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Rowlett RS, Tu C, Lee J, Herman AG, Chapnick DA, Shah SH, Gareiss PC. Allosteric site variants of Haemophilus influenzae beta-carbonic anhydrase. Biochemistry 2009; 48:6146-56. [PMID: 19459702 DOI: 10.1021/bi900663h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Haemophilus influenzae beta-carbonic anhydrase (HICA) is hypothesized to be an allosteric protein that is regulated by the binding of bicarbonate ion to a non-catalytic (inhibitory) site that controls the ligation of Asp44 to the catalytically essential zinc ion. We report here the X-ray crystallographic structures of two variants (W39F and Y181F) involved in the binding of bicarbonate ion in the non-catalytic site and an active-site variant (D44N) that is incapable of forming a strong zinc ligand. The alteration of Trp39 to Phe increases the apparent K(i) for bicarbonate inhibition by 4.8-fold. While the structures of W39F and Y181F are very similar to the wild-type enzyme, the X-ray crystal structure of the D44N variant reveals that it has adopted an active-site conformation nearly identical to that of non-allosteric beta-carbonic anhydrases. We propose that the structure of the D44N variant is likely to be representative of the active conformation of the enzyme. These results lend additional support to the hypothesis that HICA is an allosteric enzyme that can adopt active and inactive conformations, the latter of which is stabilized by bicarbonate ion binding to a non-catalytic site.
Collapse
Affiliation(s)
- Roger S Rowlett
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Domsic JF, McKenna R. Sequestration of carbon dioxide by the hydrophobic pocket of the carbonic anhydrases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:326-31. [PMID: 19679198 DOI: 10.1016/j.bbapap.2009.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/22/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
The interaction between carbon dioxide (CO(2)) and the alpha-class carbonic anhydrase, human CA 2 (HCA2) exists for only a short period due to the rapid catalytic turnover by this enzyme. The fleeting nature of this interaction has led to difficulties in its direct analysis, with previous studies placing the CO(2) in the hydrophobic pocket of HCA2's active site. A more precise location was determined via the crystal structure of CO(2) trapped in both wild-type (holo) and zinc-free (apo) HCA2. This provided a detailed description of the means by which CO(2) is held and orientated for optimal catalysis. This information can be extended to the beta and gamma class enzymes to help elucidate the binding mode of CO(2) in these enzymes.
Collapse
Affiliation(s)
- John F Domsic
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32610-0245, USA
| | | |
Collapse
|
70
|
Rowlett RS. Structure and catalytic mechanism of the beta-carbonic anhydrases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:362-73. [PMID: 19679201 DOI: 10.1016/j.bbapap.2009.08.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 07/30/2009] [Accepted: 08/02/2009] [Indexed: 10/20/2022]
Abstract
The beta-carbonic anhydrases (beta-CAs) are a diverse but structurally related group of zinc-metalloenzymes found in eubacteria, plant chloroplasts, red and green algae, and in the Archaea. The enzyme catalyzes the rapid interconversion of CO(2) and H(2)O to HCO(3)(-) and H(+), and is believed to be associated with metabolic enzymes that consume or produce CO(2) or HCO(3)(-). For many organisms, beta-CA is essential for growth at atmospheric concentrations of CO(2). Of the five evolutionarily distinct classes of carbonic anhydrase, beta-CA is the only one known to exhibit allosterism. Here we review the structure and catalytic mechanism of beta-CA, including the structural basis for allosteric regulation.
Collapse
Affiliation(s)
- Roger S Rowlett
- Colgate University, Department of Chemistry, Hamilton, NY 13346, USA.
| |
Collapse
|