51
|
Kusakabe M, Kakumu E, Kurihara F, Tsuchida K, Maeda T, Tada H, Kusao K, Kato A, Yasuda T, Matsuda T, Nakao M, Yokoi M, Sakai W, Sugasawa K. Histone deacetylation regulates nucleotide excision repair through an interaction with the XPC protein. iScience 2022; 25:104040. [PMID: 35330687 PMCID: PMC8938288 DOI: 10.1016/j.isci.2022.104040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 12/05/2022] Open
Abstract
The XPC protein complex plays a central role in DNA lesion recognition for global genome nucleotide excision repair (GG-NER). Lesion recognition can be accomplished in either a UV-DDB-dependent or -independent manner; however, it is unclear how these sub-pathways are regulated in chromatin. Here, we show that histone deacetylases 1 and 2 facilitate UV-DDB-independent recruitment of XPC to DNA damage by inducing histone deacetylation. XPC localizes to hypoacetylated chromatin domains in a DNA damage-independent manner, mediated by its structurally disordered middle (M) region. The M region interacts directly with the N-terminal tail of histone H3, an interaction compromised by H3 acetylation. Although the M region is dispensable for in vitro NER, it promotes DNA damage removal by GG-NER in vivo, particularly in the absence of UV-DDB. We propose that histone deacetylation around DNA damage facilitates the recruitment of XPC through the M region, contributing to efficient lesion recognition and initiation of GG-NER. Histone deacetylation by HDAC1/2 promotes the DNA lesion recognition by XPC The HDAC1/2 activators, MTA proteins, also promote the recruitment of XPC XPC tends to localize in hypoacetylated chromatin independently of DNA damage Disordered middle region of XPC interacts with histone H3 tail and promotes GG-NER
Collapse
|
52
|
Weilbeer C, Jay D, Donnelly JC, Gentile F, Karimi-Busheri F, Yang X, Mani RS, Yu Y, Elmenoufy AH, Barakat KH, Tuszynski JA, Weinfeld M, West FG. Modulation of ERCC1-XPF Heterodimerization Inhibition via Structural Modification of Small Molecule Inhibitor Side-Chains. Front Oncol 2022; 12:819172. [PMID: 35372043 PMCID: PMC8968952 DOI: 10.3389/fonc.2022.819172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
Inhibition of DNA repair enzymes is an attractive target for increasing the efficacy of DNA damaging chemotherapies. The ERCC1-XPF heterodimer is a key endonuclease in numerous single and double strand break repair processes, and inhibition of the heterodimerization has previously been shown to sensitize cancer cells to DNA damage. In this work, the previously reported ERCC1-XPF inhibitor 4 was used as the starting point for an in silico study of further modifications of the piperazine side-chain. A selection of the best scoring hits from the in silico screen were synthesized using a late stage functionalization strategy which should allow for further iterations of this class of inhibitors to be readily synthesized. Of the synthesized compounds, compound 6 performed the best in the in vitro fluorescence based endonuclease assay. The success of compound 6 in inhibiting ERCC1-XPF endonuclease activity in vitro translated well to cell-based assays investigating the inhibition of nucleotide excision repair and disruption of heterodimerization. Subsequently compound 6 was shown to sensitize HCT-116 cancer cells to treatment with UVC, cyclophosphamide, and ionizing radiation. This work serves as an important step towards the synergistic use of DNA repair inhibitors with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Claudia Weilbeer
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - David Jay
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - James C. Donnelly
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Xiaoyan Yang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Rajam S. Mani
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Yaping Yu
- Centre for Genome Engineering, University of Calgary, Calgary, AB, Canada
| | - Ahmed H. Elmenoufy
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Pharmaceutical Chemistry, College of Pharmacy, Misr University for Science and Technology, 6th of October City, Egypt
| | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Jack A. Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Michael Weinfeld, ; Frederick G. West,
| | - Frederick G. West
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Michael Weinfeld, ; Frederick G. West,
| |
Collapse
|
53
|
Hrdina AI, Kohale IN, Kaushal S, Kelly J, Selin NE, Engelward BP, Kroll JH. The Parallel Transformations of Polycyclic Aromatic Hydrocarbons in the Body and in the Atmosphere. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:25004. [PMID: 35225689 PMCID: PMC8884122 DOI: 10.1289/ehp9984] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) emitted from combustion sources are known to be mutagenic, with more potent species also being carcinogenic. Previous studies show that PAHs can undergo complex transformations both in the body and in the atmosphere, yet these transformation processes are generally investigated separately. OBJECTIVES Drawing from the literature in atmospheric chemistry and toxicology, we highlight the parallel transformations of PAHs that occur in the atmosphere and the body and discuss implications for public health. We also examine key uncertainties related to the toxicity of atmospheric oxidation products of PAHs and explore critical areas for future research. DISCUSSION We focus on a key mode of toxicity for PAHs, in which metabolic processes (driven by cytochrome P450 enzymes), leads to the formation of oxidized PAHs that can damage DNA. Such species can also be formed abiotically in the atmosphere from natural oxidation processes, potentially augmenting PAH toxicity by skipping the necessary metabolic steps that activate their mutagenicity. Despite the large body of literature related to these two general pathways, the extent to which atmospheric oxidation affects a PAH's overall toxicity remains highly uncertain. Combining knowledge and promoting collaboration across both fields can help identify key oxidation pathways and the resulting products that impact public health. CONCLUSIONS Cross-disciplinary research, in which toxicology studies evaluate atmospheric oxidation products and their mixtures, and atmospheric measurements examine the formation of compounds that are known to be most toxic. Close collaboration between research communities can help narrow down which PAHs, and which PAH degradation products, should be targeted when assessing public health risks. https://doi.org/10.1289/EHP9984.
Collapse
Affiliation(s)
- Amy I.H. Hrdina
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Ishwar N. Kohale
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Simran Kaushal
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jamie Kelly
- Department of Geography, University College London, London, UK
| | - Noelle E. Selin
- Institute for Data, Systems, and Society, MIT, Cambridge, Massachusetts, USA
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
| | - Bevin P. Engelward
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Jesse H. Kroll
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| |
Collapse
|
54
|
Jaiswal S, Han X, Lu HP. Probing Protein-DNA Conformational Dynamics in DNA Damage Recognition: Xeroderma Pigmentosum Group A Stabilizes the Damaged DNA-RPA14 Complex by Controlling Conformational Fluctuation Dynamics. J Phys Chem B 2022; 126:997-1003. [PMID: 35084844 DOI: 10.1021/acs.jpcb.1c07660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage inside biological systems may result in diseases like cancer. One of the major repairing mechanisms is the nucleotide excision repair (NER) that recognizes and repairs the damage caused by several internal and external exposures, such as DNA double-strand distortion due to the chemical modifications. Recognition of lesions is the initial stage of the DNA damage repair, which occurs with the help of several proteins like Replication Protein A (RPA) and Xeroderma Pigmentosum group A (XPA). The recognition process involves complex conformational dynamics of the proteins. Studying the dynamics of damage recognition by these proteins helps us to understand the mechanism and to develop therapeutics to increase the efficiency of recognition. Here, we use single-molecule fluorescence fluctuation measurements of a dye, labeled at a damaged position on DNA, to understand the interaction of the damage site with RPA14 and XPA. Our results suggest that interactive conformational dynamics of RPA14 with damaged DNA is inhomogeneous due to its low affinity for DNA, whereas binding of XPA with the already formed DNA-RPA14 complex may increase the specificity of damage recognition by controlling the conformational fluctuation dynamics of the complex.
Collapse
Affiliation(s)
- Sunidhi Jaiswal
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Xiaonan Han
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - H Peter Lu
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
55
|
Chang MS, Azin M, Demehri S. Cutaneous Squamous Cell Carcinoma: The Frontier of Cancer Immunoprevention. ANNUAL REVIEW OF PATHOLOGY 2022; 17:101-119. [PMID: 35073167 DOI: 10.1146/annurev-pathol-042320-120056] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common cancer, with its incidence rising steeply. Immunosuppression is a well-established risk factor for cSCC, and this risk factor highlights the critical role of the immune system in regulating cSCC development and progression. Further highlighting the nature of cSCC as an immunological disorder, substantial evidence demonstrates a tight association between cSCC risk and age-related immunosenescence. Besides the proven efficacy of immune checkpoint blockade therapy for advanced cSCC, novel immunotherapy that targets cSCC precursor lesions has shown efficacy for cSCC prevention. Furthermore, the appreciation of the interplay between keratinocytes, commensal papillomaviruses, and the immune system has revealed the possibility for the development of a preventive cSCC vaccine. cSCC shares fundamental aspects of its origin and pathogenesis with mucosal SCCs. Therefore, advances in the field of cSCC immunoprevention will inform our approach to the management of mucosal SCCs and potentially other epithelial cancers.
Collapse
Affiliation(s)
| | - Marjan Azin
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Shadmehr Demehri
- Harvard Medical School, Boston, Massachusetts 02115, USA; .,Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
56
|
Hu H, Liu S, Chu A, Chen J, Xing C, Jing J. Comprehensive analysis of ceRNA network of ERCC4 in colorectal cancer. PeerJ 2022; 9:e12647. [PMID: 34993023 PMCID: PMC8679902 DOI: 10.7717/peerj.12647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Objective ERCC4 is one of the most significant molecules of Nucleotide Excision Repair (NER), which has been researched due to its high expression in colorectal cancer (CRC). This study aimed to find out the ceRNA (competitive endogenous RNA) network of ERCC4 in CRC. Methods and Materials Pan cancer mRNA expression of ERCC4 was evaluated using TCGA database. The protein expression of ERCC4 was evaluated based on the Human Protein Atlas (HPA). We screened DElncRNAs and DEmiRNAs in two groups of ERCC4high and ERCC4low expression in CRC. Then a lncRNA-miRNA-ERCC4 regulatory network was constructed based on DElncRNAs and DEmiRNAs using Starbase database and visualized by Cytoscape software. Kaplan-Meier analysis was performed to evaluate the prognostic value of the ceRNA network. Further, RT-PCR was performed to validate the expression of the representative molecules in the ceRNA network in CRC and normal tissues. The relationship between drug sensitivity and these molecules were also evaluated using RNAactDrug database. Results ERCC4 was overexpressed in a variety of tumors at mRNA levels, including CRC. High expression of ERCC4 was also observed on protein level in CRC. A total of 1,885 DElncRNAs and 68 DEmiRNAs were identified from CRC samples in ERCC4high and ERCC4low expression groups. Predicted by the Starbase database, we got interacting miRNAs and lncRNAs of ERCC4 from the DEmiRNAs and DElncRNAs, and a lncRNA-miRNA-ERCC4 regulatory network was constructed. Kaplan-Meier survival curves results showed that miR-200c-3p (hazard ratio [HR] = 0.62, P = 0.032), MALAT1 (HR = 1.54, P = 0.016), and AC005520.2 (hazard ratio [HR] = 1.75, P = 0.002) were significantly associated with the prognosis of CRC. After validation by RT-PCR, we found that ERCC4 and MALAT1 were up-regulated in CRC compared with normal tissues, while miR-200c-3p was down-regulated. A strong negative correlation was observed between MALAT1 and miR-200c-3p. Drug sensitivity analysis showed that ERCC4, miR-200c and MALAT1 were all associated with Cisplatin. Conclusion We constructed a ceRNA network of ERCC4 in CRC, of which the MALAT1-miR-200c-3p-ERCC4 axis may be involved in the development, prognosis and chemotherapy sensitivity of CRC. These findings might provide novel clues and insights on the molecular mechanisms of ERCC4 and NER pathway in CRC.
Collapse
Affiliation(s)
- Huixin Hu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Department of Anorectal Surgery in Liaoning Province, the First Hospital of China Medical of China Medical University, Shenyang, China
| | - Songyi Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Department of Anorectal Surgery in Liaoning Province, the First Hospital of China Medical of China Medical University, Shenyang, China
| | - Aining Chu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Jing Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Department of Anorectal Surgery in Liaoning Province, the First Hospital of China Medical of China Medical University, Shenyang, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
57
|
Feltes BC. Revisiting the structural features of the xeroderma pigmentosum proteins: Focus on mutations and knowledge gaps. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108416. [PMID: 35690419 DOI: 10.1016/j.mrrev.2022.108416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
The nucleotide excision repair pathway is a broadly studied DNA repair mechanism because impairments of its key players, the xeroderma pigmentosum proteins (XPA to XPG), are associated with multiple hereditary diseases. Due to the massive number of novel mutations reported for these proteins and new structural data published every year, proper categorization and discussion of relevant observations is needed to organize this extensive inflow of knowledge. This review aims to revisit the structural data of all XP proteins while updating it with the information developed in of the past six years. Discussions and interpretations of mutation outcomes, mechanisms of action, and knowledge gaps regarding their structures are provided, as well as new perspectives based on recent research.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
58
|
Zhao Y, Seluanov A, Gorbunova V. Revelations About Aging and Disease from Unconventional Vertebrate Model Organisms. Annu Rev Genet 2021; 55:135-159. [PMID: 34416119 PMCID: PMC8903061 DOI: 10.1146/annurev-genet-071719-021009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| |
Collapse
|
59
|
He L, Lomberk G. Collateral Victim or Rescue Worker?-The Role of Histone Methyltransferases in DNA Damage Repair and Their Targeting for Therapeutic Opportunities in Cancer. Front Cell Dev Biol 2021; 9:735107. [PMID: 34869318 PMCID: PMC8636273 DOI: 10.3389/fcell.2021.735107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/01/2021] [Indexed: 01/25/2023] Open
Abstract
Disrupted DNA damage signaling greatly threatens cell integrity and plays significant roles in cancer. With recent advances in understanding the human genome and gene regulation in the context of DNA damage, chromatin biology, specifically biology of histone post-translational modifications (PTMs), has emerged as a popular field of study with great promise for cancer therapeutics. Here, we discuss how key histone methylation pathways contribute to DNA damage repair and impact tumorigenesis within this context, as well as the potential for their targeting as part of therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lishu He
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Gwen Lomberk,
| |
Collapse
|
60
|
Omotoso O, Gladyshev VN, Zhou X. Lifespan Extension in Long-Lived Vertebrates Rooted in Ecological Adaptation. Front Cell Dev Biol 2021; 9:704966. [PMID: 34733838 PMCID: PMC8558438 DOI: 10.3389/fcell.2021.704966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
Contemporary studies on aging and longevity have largely overlooked the role that adaptation plays in lifespan variation across species. Emerging evidence indicates that the genetic signals of extended lifespan may be maintained by natural selection, suggesting that longevity could be a product of organismal adaptation. The mechanisms of adaptation in long-lived animals are believed to account for the modification of physiological function. Here, we first review recent progress in comparative biology of long-lived animals, together with the emergence of adaptive genetic factors that control longevity and disease resistance. We then propose that hitchhiking of adaptive genetic changes is the basis for lifespan changes and suggest ways to test this evolutionary model. As individual adaptive or adaptation-linked mutations/substitutions generate specific forms of longevity effects, the cumulative beneficial effect is largely nonrandom and is indirectly favored by natural selection. We consider this concept in light of other proposed theories of aging and integrate these disparate ideas into an adaptive evolutionary model, highlighting strategies in decoding genetic factors of lifespan control.
Collapse
Affiliation(s)
- Olatunde Omotoso
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| |
Collapse
|
61
|
Piccione M, Belloni Fortina A, Ferri G, Andolina G, Beretta L, Cividini A, De Marni E, Caroppo F, Citernesi U, Di Liddo R. Xeroderma Pigmentosum: General Aspects and Management. J Pers Med 2021; 11:1146. [PMID: 34834498 PMCID: PMC8624855 DOI: 10.3390/jpm11111146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Xeroderma Pigmentosum (XP) is a rare genetic syndrome with a defective DNA nucleotide excision repair. It is characterized by (i) an extreme sensitivity to ultraviolet (UV)-induced damages in the skin and eyes; (ii) high risk to develop multiple skin tumours; and (iii) neurologic alterations in the most severe form. To date, the management of XP patients consists of (i) early diagnosis; (ii) a long-life protection from ultraviolet radiation, including avoidance of unnecessary UV exposure, wearing UV blocking clothing, and use of topical sunscreens; and (iii) surgical resections of skin cancers. No curative treatment is available at present. Thus, in the last decade, in order to prevent or delay the progression of the clinical signs of XP, numerous strategies have been proposed and tested, in some cases, with adverse effects. The present review provides an overview of the molecular mechanisms featuring the development of XP and highlights both advantages and disadvantages of the clinical approaches developed throughout the years. The intention of the authors is to sensitize scientists to the crucial aspects of the pathology that could be differently targeted. In this context, the exploration of the process underlining the conception of liposomal nanocarriers is reported to focus the attention on the potentialities of liposomal technology to optimize the administration of chemoprotective agents in XP patients.
Collapse
Affiliation(s)
- Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Anna Belloni Fortina
- Pediatric Dermatology Unit, Department of Medicine DIMED, University of Padova, 35128 Padova, Italy; (A.B.F.); (F.C.)
| | - Giulia Ferri
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Gloria Andolina
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Lorenzo Beretta
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Andrea Cividini
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Emanuele De Marni
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Francesca Caroppo
- Pediatric Dermatology Unit, Department of Medicine DIMED, University of Padova, 35128 Padova, Italy; (A.B.F.); (F.C.)
| | - Ugo Citernesi
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
62
|
Paul D, Mu H, Tavakoli A, Dai Q, Chakraborty S, He C, Ansari A, Broyde S, Min JH. Impact of DNA sequences on DNA 'opening' by the Rad4/XPC nucleotide excision repair complex. DNA Repair (Amst) 2021; 107:103194. [PMID: 34428697 PMCID: PMC8934541 DOI: 10.1016/j.dnarep.2021.103194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023]
Abstract
Rad4/XPC recognizes diverse DNA lesions to initiate nucleotide excision repair (NER). However, NER propensities among lesions vary widely and repair-resistant lesions are persistent and thus highly mutagenic. Rad4 recognizes repair-proficient lesions by unwinding ('opening') the damaged DNA site. Such 'opening' is also observed on a normal DNA sequence containing consecutive C/G's (CCC/GGG) when tethered to Rad4 to prevent protein diffusion. However, it was unknown if such tethering-facilitated DNA 'opening' could occur on any DNA or if certain structures/sequences would resist being 'opened'. Here, we report that DNA containing alternating C/G's (CGC/GCG) failed to be opened even when tethered; instead, Rad4 bound in a 180°-reversed manner, capping the DNA end. Fluorescence lifetime studies of DNA conformations in solution showed that CCC/GGG exhibits local pre-melting that is absent in CGC/GCG. In MD simulations, CGC/GCG failed to engage Rad4 to promote 'opening' contrary to CCC/GGG. Altogether, our study illustrates how local sequences can impact DNA recognition by Rad4/XPC and how certain DNA sites resist being 'opened' even with Rad4 held at that site indefinitely. The contrast between CCC/GGG and CGC/GCG sequences in Rad4-DNA recognition may help decipher a lesion's mutagenicity in various genomic sequence contexts to explain lesion-determined mutational hot and cold spots.
Collapse
Affiliation(s)
- Debamita Paul
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Amirrasoul Tavakoli
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY, 10003, USA.
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
63
|
Ge J, Ngo LP, Kaushal S, Tay IJ, Thadhani E, Kay JE, Mazzucato P, Chow DN, Fessler JL, Weingeist DM, Sobol RW, Samson LD, Floyd SR, Engelward BP. CometChip enables parallel analysis of multiple DNA repair activities. DNA Repair (Amst) 2021; 106:103176. [PMID: 34365116 PMCID: PMC8439179 DOI: 10.1016/j.dnarep.2021.103176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022]
Abstract
DNA damage can be cytotoxic and mutagenic, and it is directly linked to aging, cancer, and other diseases. To counteract the deleterious effects of DNA damage, cells have evolved highly conserved DNA repair pathways. Many commonly used DNA repair assays are relatively low throughput and are limited to analysis of one protein or one pathway. Here, we have explored the capacity of the CometChip platform for parallel analysis of multiple DNA repair activities. Taking advantage of the versatility of the traditional comet assay and leveraging micropatterning techniques, the CometChip platform offers increased throughput and sensitivity compared to the traditional comet assay. By exposing cells to DNA damaging agents that create substrates of Base Excision Repair, Nucleotide Excision Repair, and Non-Homologous End Joining, we show that the CometChip is an effective method for assessing repair deficiencies in all three pathways. With these applications of the CometChip platform, we expand the utility of the comet assay for precise, high-throughput, parallel analysis of multiple DNA repair activities.
Collapse
Affiliation(s)
- Jing Ge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Le P Ngo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Simran Kaushal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Ian J Tay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elina Thadhani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Danielle N Chow
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jessica L Fessler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - David M Weingeist
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert W Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, United States
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27514, United States
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
64
|
Campello L, Singh N, Advani J, Mondal AK, Corso-Díaz X, Swaroop A. Aging of the Retina: Molecular and Metabolic Turbulences and Potential Interventions. Annu Rev Vis Sci 2021; 7:633-664. [PMID: 34061570 PMCID: PMC11375453 DOI: 10.1146/annurev-vision-100419-114940] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multifaceted and divergent manifestations across tissues and cell types have curtailed advances in deciphering the cellular events that accompany advanced age and contribute to morbidities and mortalities. Increase in human lifespan during the past century has heightened awareness of the need to prevent age-associated frailty of neuronal and sensory systems to allow a healthy and productive life. In this review, we discuss molecular and physiological attributes of aging of the retina, with a goal of understanding age-related impairment of visual function. We highlight the epigenome-metabolism nexus and proteostasis as key contributors to retinal aging and discuss lifestyle changes as potential modulators of retinal function. Finally, we deliberate promising intervention strategies for promoting healthy aging of the retina for improved vision.
Collapse
Affiliation(s)
- Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Nivedita Singh
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anupam K Mondal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
65
|
Menzies GE, Prior IA, Brancale A, Reed SH, Lewis PD. Carcinogen-induced DNA structural distortion differences in the RAS gene isoforms; the importance of local sequence. BMC Chem 2021; 15:51. [PMID: 34521464 PMCID: PMC8439098 DOI: 10.1186/s13065-021-00777-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/17/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Local sequence context is known to have an impact on the mutational pattern seen in cancer. The RAS genes and a smoking carcinogen, Benzo[a]pyrene diol epoxide (BPDE), have been utilised to explore these context effects. BPDE is known to form an adduct at the guanines in a number of RAS gene sites, KRAS codons 12, 13 and 14, NRAS codon 12, and HRAS codons 12 and 14. RESULTS Molecular modelling techniques, along with multivariate analysis, have been utilised to determine the sequence influenced differences between BPDE-adducted RAS gene sequences as well as the local distortion caused by the adducts. CONCLUSIONS We conclude that G:C > T:A mutations at KRAS codon 12 in the tumours of lung cancer patients (who smoke), proposed to be predominantly caused by BPDE, are due to the effect of the interaction methyl group at the C5 position of the thymine base in the KRAS sequence with the BPDE carcinogen investigated causing increased distortion. We further suggest methylated cytosine would have a similar effect, showing the importance of methylation in cancer development.
Collapse
Affiliation(s)
- Georgina E Menzies
- School of Biosciences and Dementia Research Institute at Cardiff, Cardiff University, Cardiff, CF10 3NX, UK.
| | - Ian A Prior
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Simon H Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Paul D Lewis
- School of Management, Swansea University Bay Campus, Swansea, SA1 8EN, UK
| |
Collapse
|
66
|
Role of XRCC1, XPC, NBN gene polymorphisms in spermatogenesis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
67
|
Feltes BC. Every protagonist has a sidekick: Structural aspects of human xeroderma pigmentosum-binding proteins in nucleotide excision repair. Protein Sci 2021; 30:2187-2205. [PMID: 34420242 DOI: 10.1002/pro.4173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
The seven xeroderma pigmentosum proteins (XPps), XPA-XPG, coordinate the nucleotide excision repair (NER) pathway, promoting the excision of DNA lesions caused by exposition to ionizing radiation, majorly from ultraviolet light. Significant efforts are made to investigate NER since mutations in any of the seven XPps may cause the xeroderma pigmentosum and trichothiodystrophy diseases. However, these proteins collaborate with other pivotal players in all known NER steps to accurately exert their purposes. Therefore, in the old and ever-evolving field of DNA repair, it is imperative to reexamine and describe their structures to understand NER properly. This work provides an up-to-date review of the protein structural aspects of the closest partners that directly interact and influence XPps: RAD23B, CETN2, DDB1, RPA (RPA70, 32, and 14), p8 (GTF2H5), and ERCC1. Structurally and functionally vital domains, regions, and critical residues are reexamined, providing structural lessons and perspectives about these indispensable proteins in the NER and other DNA repair pathways. By gathering all data related to the major human xeroderma pigmentosum-interacting proteins, this review will aid newcomers on the subject and guide structural and functional future studies.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
68
|
XPF -673C>T variation is associated with the susceptibility to breast cancer. Cancer Epidemiol 2021; 74:102007. [PMID: 34416547 DOI: 10.1016/j.canep.2021.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE XPF variations might decrease the DNA repair capacity and further contribute to cancer development. This study aimed to investigate the association of XPF polymorphisms with risk of developing breast cancer. METHODS TCGA, the Human Protein Atlas and Kaplan-Meier plotter were used to analyze the expression of XPF in breast cancer tissues and its effect on the survival of breast cancer patients. The expression of XPF in breast cancer tissues was detected by qRT-PCR. This case-control study included 467 breast cancer patients and 467 healthy controls. The genotype of genetic variation was detected by polymerase chain reaction restriction fragment length polymorphism. Odds ratios and 95 % confidence intervals were calculated. Correlations between XPF variation and clinicopathological parameters were assessed through Kendall's Tau-b test. The relationship between XPF gene function variation and XPF gene expression was analyzed by GTEx. RESULTS The expression of XPF in breast cancer tissues is higher than that in normal tissues. Breast cancer patients with high XPF expression have a higher relapse free survival rate (HR = 0.88, 95 % CI = 0.80-0.97), but have no effect on the overall survival rate (logrank P = 0.28). XPF -673C > T variant can reduce the risk of breast cancer patients (OR = 0.35, 95 %CI = 0.20-0.63 for codominant mode; OR = 0.66, 95 %CI = 0.51-0.85 for dominant model; OR = 0.40, 95 %CI = 0.23-0.70 for recessive model). The XPF 11985 GG genotype reduced the risk of early breast cancer (OR = 0.49, 95 %CI = 0.24-0.97), but not the risk of advanced breast cancer (OR = 1.20, 95 % CI = 0.58-2.48). XPF 11985A > G variant can also reduce the risk of ERBB2 expression in patients (OR = 0.50, 95 %CI = 0.27-0.94). There is no correlation between XPF -673C > T/XPF11985A > G variants and ER and PR. XPF -673C > T variant can reduce XPF expression (P < 0.05). CONCLUSIONS Genetic variations of XPF gene may affect its expression and the risk of breast cancer in the Chinese population.
Collapse
|
69
|
Spencer PS, Kisby GE. Role of Hydrazine-Related Chemicals in Cancer and Neurodegenerative Disease. Chem Res Toxicol 2021; 34:1953-1969. [PMID: 34379394 DOI: 10.1021/acs.chemrestox.1c00150] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrazine-related chemicals (HRCs) with carcinogenic and neurotoxic potential are found in certain mushrooms and plants used for food and in products employed in various industries, including aerospace. Their propensity to induce DNA damage (mostly O6-, N7- and 8-oxo-guanine lesions) resulting in multiple downstream effects is linked with both cancer and neurological disease. For cycling cells, unrepaired DNA damage leads to mutation and uncontrolled mitosis. By contrast, postmitotic neurons attempt to re-enter the cell cycle but undergo apoptosis or nonapoptotic cell death. Biomarkers of exposure to HRCs can be used to explore whether these substances are risk factors for sporadic amyotrophic laterals sclerosis and other noninherited neurodegenerative diseases, which is the focus of this paper.
Collapse
Affiliation(s)
- Peter S Spencer
- Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Glen E Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| |
Collapse
|
70
|
Lerebours A, Murzina S, Song Y, Tollefsen KE, Benedetti M, Regoli F, Rotchell JM, Nahrgang J. Susceptibility of polar cod (Boreogadus saida) to a model carcinogen. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105434. [PMID: 34333338 DOI: 10.1016/j.marenvres.2021.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Studies that aim to characterise the susceptibility of the ecologically relevant and non-model fish polar cod (Boreogadus saida) to model carcinogens are required. Polar cod were exposed under laboratory conditions for six months to control, 0.03 μg BaP/g fish/week and 0.3 μg BaP/g fish/week dietary benzo(a)pyrene (BaP), a reference carcinogen. The concentrations of the 3-OH-BaP bile metabolite and transcriptional responses of genes involved in DNA adduct recognition (xpc), helicase activity (xpd), DNA repair (xpf, rad51) and tumour suppression (tp53) were assessed after 0, 1, 3 and 6 months of exposure, alongside body condition indexes (gonadosomatic index, hepatosomatic index and condition factor). Micronuclei and nuclear abnormalities in blood and spleen, and liver histopathological endpoints were assessed at the end of the experiment. Fish grew steadily over the whole experiment and no mortality was recorded. The concentrations of 3-OH-BaP increased significantly after 1 month of exposure to the highest BaP concentration and after 6 months of exposure to all BaP concentrations showing the biotransformation of the mother compound. Nevertheless, no significant induction of gene transcripts involved in DNA damage repair or tumour suppression were observed at the selected sampling times. These results together with the absence of chromosomal damage in blood and spleen cells, the subtle increase in nuclear abnormalities observed in spleen cells and the low occurrence of foci of cellular alteration suggested that the exposure was below the threshold of observable effects. Taken together, the results showed that polar cod was not susceptible to carcinogenesis using the BaP exposure regime employed herein.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom; UMR CNRS LIENSs, Littoral Environnement et Sociétés, Université de La Rochelle, La Rochelle, 17 000, France.
| | - Svetlana Murzina
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 185910, Petrozavodsk, Russia
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo, Norway
| | - Maura Benedetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesco Regoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Jasmine Nahrgang
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics UiT the Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
71
|
Manganelli M, Guida S, Ferretta A, Pellacani G, Porcelli L, Azzariti A, Guida G. Behind the Scene: Exploiting MC1R in Skin Cancer Risk and Prevention. Genes (Basel) 2021; 12:1093. [PMID: 34356109 PMCID: PMC8305013 DOI: 10.3390/genes12071093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma and non-melanoma skin cancers (NMSCs) are the most frequent cancers of the skin in white populations. An increased risk in the development of skin cancers has been associated with the combination of several environmental factors (i.e., ultraviolet exposure) and genetic background, including melanocortin-1 receptor (MC1R) status. In the last few years, advances in the diagnosis of skin cancers provided a great impact on clinical practice. Despite these advances, NMSCs are still the most common malignancy in humans and melanoma still shows a rising incidence and a poor prognosis when diagnosed at an advanced stage. Efforts are required to underlie the genetic and clinical heterogeneity of melanoma and NMSCs, leading to an optimization of the management of affected patients. The clinical implications of the impact of germline MC1R variants in melanoma and NMSCs' risk, together with the additional risk conferred by somatic mutations in other peculiar genes, as well as the role of MC1R screening in skin cancers' prevention will be addressed in the current review.
Collapse
Affiliation(s)
- Michele Manganelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
- DMMT-Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Stefania Guida
- Department of Surgical-Medical-Dental and Morphological Science with Interest Transplant-Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Anna Ferretta
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
| | - Giovanni Pellacani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00161 Rome, Italy;
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.P.); (A.A.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.P.); (A.A.)
| | - Gabriella Guida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
| |
Collapse
|
72
|
Wang H, Lautrup S, Caponio D, Zhang J, Fang EF. DNA Damage-Induced Neurodegeneration in Accelerated Ageing and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22136748. [PMID: 34201700 PMCID: PMC8268089 DOI: 10.3390/ijms22136748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
DNA repair ensures genomic stability to achieve healthy ageing, including cognitive maintenance. Mutations on genes encoding key DNA repair proteins can lead to diseases with accelerated ageing phenotypes. Some of these diseases are xeroderma pigmentosum group A (XPA, caused by mutation of XPA), Cockayne syndrome group A and group B (CSA, CSB, and are caused by mutations of CSA and CSB, respectively), ataxia-telangiectasia (A-T, caused by mutation of ATM), and Werner syndrome (WS, with most cases caused by mutations in WRN). Except for WS, a common trait of the aforementioned progerias is neurodegeneration. Evidence from studies using animal models and patient tissues suggests that the associated DNA repair deficiencies lead to depletion of cellular nicotinamide adenine dinucleotide (NAD+), resulting in impaired mitophagy, accumulation of damaged mitochondria, metabolic derailment, energy deprivation, and finally leading to neuronal dysfunction and loss. Intriguingly, these features are also observed in Alzheimer’s disease (AD), the most common type of dementia affecting more than 50 million individuals worldwide. Further studies on the mechanisms of the DNA repair deficient premature ageing diseases will help to unveil the mystery of ageing and may provide novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Heling Wang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Domenica Caponio
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Jianying Zhang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
- Xiangya School of Stomatology, Central South University, Changsha 410083, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
- The Norwegian Centre on Healthy Ageing (NO-Age), 0010 Oslo, Norway
- Correspondence:
| |
Collapse
|
73
|
Demirbağ-Sarikaya S, Çakir H, Gözüaçik D, Akkoç Y. Crosstalk between autophagy and DNA repair systems. ACTA ACUST UNITED AC 2021; 45:235-252. [PMID: 34377049 PMCID: PMC8313936 DOI: 10.3906/biy-2103-51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Autophagy and DNA repair are two essential biological mechanisms that maintain cellular homeostasis. Impairment of these mechanisms was associated with several pathologies such as premature aging, neurodegenerative diseases, and cancer. Intrinsic or extrinsic stress stimuli (e.g., reactive oxygen species or ionizing radiation) cause DNA damage. As a biological stress response, autophagy is activated following insults that threaten DNA integrity. Hence, in collaboration with DNA damage repair and response mechanisms, autophagy contributes to the maintenance of genomic stability and integrity. Yet, connections and interactions between these two systems are not fully understood. In this review article, current status of the associations and crosstalk between autophagy and DNA repair systems is documented and discussed.
Collapse
Affiliation(s)
| | - Hatice Çakir
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey
| | - Devrim Gözüaçik
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey.,Koç University School of Medicine, İstanbul Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| | - Yunus Akkoç
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| |
Collapse
|
74
|
Krasikova Y, Rechkunova N, Lavrik O. Nucleotide Excision Repair: From Molecular Defects to Neurological Abnormalities. Int J Mol Sci 2021; 22:ijms22126220. [PMID: 34207557 PMCID: PMC8228863 DOI: 10.3390/ijms22126220] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway, which can remove diverse bulky DNA lesions destabilizing a DNA duplex. NER defects cause several autosomal recessive genetic disorders. Xeroderma pigmentosum (XP) is one of the NER-associated syndromes characterized by low efficiency of the removal of bulky DNA adducts generated by ultraviolet radiation. XP patients have extremely high ultraviolet-light sensitivity of sun-exposed tissues, often resulting in multiple skin and eye cancers. Some XP patients develop characteristic neurodegeneration that is believed to derive from their inability to repair neuronal DNA damaged by endogenous metabolites. A specific class of oxidatively induced DNA lesions, 8,5′-cyclopurine-2′-deoxynucleosides, is considered endogenous DNA lesions mainly responsible for neurological problems in XP. Growing evidence suggests that XP is accompanied by defective mitophagy, as in primary mitochondrial disorders. Moreover, NER pathway is absent in mitochondria, implying that the mitochondrial dysfunction is secondary to nuclear NER defects. In this review, we discuss the current understanding of the NER molecular mechanism and focuses on the NER linkage with the neurological degeneration in patients with XP. We also present recent research advances regarding NER involvement in oxidative DNA lesion repair. Finally, we highlight how mitochondrial dysfunction may be associated with XP.
Collapse
Affiliation(s)
- Yuliya Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
| | - Nadejda Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
| | - Olga Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
75
|
van Eeuwen T, Shim Y, Kim HJ, Zhao T, Basu S, Garcia BA, Kaplan CD, Min JH, Murakami K. Cryo-EM structure of TFIIH/Rad4-Rad23-Rad33 in damaged DNA opening in nucleotide excision repair. Nat Commun 2021; 12:3338. [PMID: 34099686 PMCID: PMC8184850 DOI: 10.1038/s41467-021-23684-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/05/2021] [Indexed: 11/08/2022] Open
Abstract
The versatile nucleotide excision repair (NER) pathway initiates as the XPC-RAD23B-CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4-Rad23-Rad33 (yeast homologue of XPC-RAD23B-CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9-9.2 Å resolution. A ~30-bp DNA duplex could be mapped as it straddles between Rad4 and the Ssl2 (XPB) subunit of TFIIH on the 3' and 5' side of the lesion, respectively. The simultaneous binding with Rad4 and TFIIH was permitted by an unwinding of DNA at the lesion. Translocation coupled with torque generation by Ssl2 and Rad4 would extend the DNA unwinding at the lesion and deliver the damaged strand to Rad3 (XPD) in an open form suitable for subsequent lesion scanning and verification.
Collapse
Affiliation(s)
- Trevor van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoonjung Shim
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tingting Zhao
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shrabani Basu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
76
|
Friedman J, Bird LM, Haas R, Robbins SL, Nahas SA, Dimmock DP, Yousefzadeh MJ, Witt MA, Niedernhofer LJ, Chowdhury S. Ending a diagnostic odyssey: Moving from exome to genome to identify cockayne syndrome. Mol Genet Genomic Med 2021; 9:e1623. [PMID: 34076366 PMCID: PMC8372079 DOI: 10.1002/mgg3.1623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background Cockayne syndrome (CS) is a rare autosomal recessive disorder characterized by growth failure and multisystemic degeneration. Excision repair cross‐complementation group 6 (ERCC6 OMIM: *609413) is the gene most frequently mutated in CS. Methods A child with pre and postnatal growth failure and progressive neurologic deterioration with multisystem involvement, and with nondiagnostic whole‐exome sequencing, was screened for causal variants with whole‐genome sequencing (WGS). Results WGS identified biallelic ERCC6 variants, including a previously unreported intronic variant. Pathogenicity of these variants was established by demonstrating reduced levels of ERCC6 mRNA and protein expression, normal unscheduled DNA synthesis, and impaired recovery of RNA synthesis in patient fibroblasts following UV‐irradiation. Conclusion The study confirms the pathogenicity of a previously undescribed upstream intronic variant, highlighting the power of genome sequencing to identify noncoding variants. In addition, this report provides evidence for the utility of a combination approach of genome sequencing plus functional studies to provide diagnosis in a child for whom a lengthy diagnostic odyssey, including exome sequencing, was previously unrevealing.
Collapse
Affiliation(s)
- Jennifer Friedman
- Department of NeurosciencesUniversity of California San DiegoSan DiegoCAUSA
- Department of PediatricsUniversity of California San DiegoSan DiegoCAUSA
- Division of Neurology Rady Children’s HospitalSan DiegoCAUSA
- Rady Children’s Institute for Genomic MedicineSan DiegoCAUSA
| | - Lynne M. Bird
- Department of PediatricsUniversity of California San DiegoSan DiegoCAUSA
- Division of Genetics/DysmorphologyRady Children’s Hospital San DiegoSan DiegoCAUSA
| | - Richard Haas
- Department of NeurosciencesUniversity of California San DiegoSan DiegoCAUSA
- Department of PediatricsUniversity of California San DiegoSan DiegoCAUSA
- Division of Neurology Rady Children’s HospitalSan DiegoCAUSA
| | - Shira L. Robbins
- Viterbi Family Department of Ophthalmology at the Shiley Eye InstituteUniversity of California San DiegoLa JollaCAUSA
| | | | | | - Matthew J. Yousefzadeh
- Institute on the Biology of Aging and MetabolismDepartment of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
| | - Mariah A. Witt
- Institute on the Biology of Aging and MetabolismDepartment of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and MetabolismDepartment of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
| | | |
Collapse
|
77
|
Chauhan AK, Sun Y, Zhu Q, Wani AA. Timely upstream events regulating nucleotide excision repair by ubiquitin-proteasome system: ubiquitin guides the way. DNA Repair (Amst) 2021; 103:103128. [PMID: 33991872 DOI: 10.1016/j.dnarep.2021.103128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of multiple DNA repair pathways, including nucleotide excision repair (NER), which eliminates a broad variety of helix-distorting DNA lesions that can otherwise cause deleterious mutations and genomic instability. In mammalian NER, DNA damage sensors, DDB and XPC acting in global genomic NER (GG-NER), and, CSB and RNAPII acting in transcription-coupled NER (TC-NER) sub-pathways, undergo an array of post-translational ubiquitination at the DNA lesion sites. Accumulating evidence indicates that ubiquitination orchestrates the productive assembly of NER preincision complex by driving well-timed compositional changes in DNA damage-assembled sensor complexes. Conversely, the deubiquitination is also intimately involved in regulating the damage sensing aftermath, via removal of degradative ubiquitin modification on XPC and CSB to prevent their proteolysis for the factor recycling. This review summaries the relevant research efforts and latest findings in our understanding of ubiquitin-mediated regulation of NER and active participation by new regulators of NER, e.g., Cullin-Ring ubiquitin ligases (CRLs), ubiquitin-specific proteases (USPs) and ubiquitin-dependent segregase, valosin-containing protein (VCP)/p97. We project hypothetical step-by-step models in which VCP/p97-mediated timely extraction of damage sensors is integral to overall productive NER. The USPs and proteasome subtly counteract in fine-tuning the vital stability and function of NER damage sensors.
Collapse
Affiliation(s)
- Anil K Chauhan
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States
| | - Yingming Sun
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States
| | - Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States.
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States; Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, 43210, United States; James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
78
|
Jiang C, Guo Y, Li Y, Kang J, Sun X, Wu H, Feng J, Xu Y. The association between the ERCC1/2 polymorphisms and radiotherapy efficacy in 87 patients with non-small cell lung cancer. J Thorac Dis 2021; 13:3126-3136. [PMID: 34164203 PMCID: PMC8182509 DOI: 10.21037/jtd-21-755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background This study sought to investigate the association between the ERCC1/2 single-nucleotide polymorphisms (SNPs) and the efficacy of radiotherapy and prognosis in patients with non-small cell lung cancer (NSCLC). Methods We examined 6 SNPs in the ERCC1 and ERCC2 genes in 87 consecutive patients with NSCLC who were treated with definitive radiotherapy. The objective remission rates (ORR), overall survival (OS), and progressive-free survival (PFS) were assessed. A Cox regression analysis was conducted to analyze the independent factors related to death and recurrence. Result Patients with the G allele had better OS than patients with the A allele, and there was a statistical difference between the two groups (30.9 vs. 16.2 months; P=0.003). Patients with the AA genotype had significantly worse OS than patients with the AG or GG genotypes (6.8 vs. 19.8 vs. 30.9 months, respectively; P=0.000). The median PFS of the G allele was 18.9 months, which was significantly better than that of the A allele (P=0.040). The median PFS of patients with the GG genotype, the AG genotype, and the AA genotype was 18.9, 11.3, and 5.1 months, respectively; the difference among the three groups was statistically significant (P=0.019). Patients with the G allele also had better PFS than those with the A allele (18.9 vs. 11.3 months, P=0.040). The multivariate cox proportional hazard analysis showed that the ERCC1 gene rs11615 was an independent survival indicator [HR: 1.623, 95% confidence interval (CI): 1.018–2.591, P=0.042] but not an independent recurrence indicator (HR: 1.497, 95% CI: 0.932–2.404, P=0.095). Conclusions The ERCC1 rs11615 SNP may be a potential biomarker for predicting survival prognosis in Chinese NSCLC patients who have undergone definitive radiotherapy. Patients with the G allele had better OS than those with the A allele.
Collapse
Affiliation(s)
- Chenxue Jiang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanling Guo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yefei Li
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjing Kang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojiang Sun
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Hongyu Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianguo Feng
- Laboratory Research Centre, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
79
|
Barve A, Galande AA, Ghaskadbi SS, Ghaskadbi S. DNA Repair Repertoire of the Enigmatic Hydra. Front Genet 2021; 12:670695. [PMID: 33995496 PMCID: PMC8117345 DOI: 10.3389/fgene.2021.670695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Since its discovery by Abraham Trembley in 1744, hydra has been a popular research organism. Features like spectacular regeneration capacity, peculiar tissue dynamics, continuous pattern formation, unique evolutionary position, and an apparent lack of organismal senescence make hydra an intriguing animal to study. While a large body of work has taken place, particularly in the domain of evolutionary developmental biology of hydra, in recent years, the focus has shifted to molecular mechanisms underlying various phenomena. DNA repair is a fundamental cellular process that helps to maintain integrity of the genome through multiple repair pathways found across taxa, from archaea to higher animals. DNA repair capacity and senescence are known to be closely associated, with mutations in several repair pathways leading to premature ageing phenotypes. Analysis of DNA repair in an animal like hydra could offer clues into several aspects including hydra’s purported lack of organismal ageing, evolution of DNA repair systems in metazoa, and alternative functions of repair proteins. We review here the different DNA repair mechanisms known so far in hydra. Hydra genes from various DNA repair pathways show very high similarity with their vertebrate orthologues, indicating conservation at the level of sequence, structure, and function. Notably, most hydra repair genes are more similar to deuterostome counterparts than to common model invertebrates, hinting at ancient evolutionary origins of repair pathways and further highlighting the relevance of organisms like hydra as model systems. It appears that hydra has the full repertoire of DNA repair pathways, which are employed in stress as well as normal physiological conditions and may have a link with its observed lack of senescence. The close correspondence of hydra repair genes with higher vertebrates further demonstrates the need for deeper studies of various repair components, their interconnections, and functions in this early metazoan.
Collapse
Affiliation(s)
- Apurva Barve
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India.,Centre of Excellence in Science and Mathematics Education, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Alisha A Galande
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| |
Collapse
|
80
|
Tavakoli A, Paul D, Mu H, Kuchlyan J, Baral S, Ansari A, Broyde S, Min JH. Light-induced modulation of DNA recognition by the Rad4/XPC damage sensor protein. RSC Chem Biol 2021; 2:523-536. [PMID: 34041491 PMCID: PMC8142930 DOI: 10.1039/d0cb00192a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Biomolecular structural changes upon binding/unbinding are key to their functions. However, characterization of such dynamical processes is difficult as it requires ways to rapidly and specifically trigger the assembly/disassembly as well as ways to monitor the resulting changes over time. Recently, various chemical strategies have been developed to use light to trigger changes in oligonucleotide structures, and thereby their activities. Here we report that photocleavable DNA can be used to modulate the DNA binding of the Rad4/XPC DNA repair complex using light. Rad4/XPC specifically recognizes diverse helix-destabilizing/distorting lesions including bulky organic adduct lesions and functions as a key initiator for the eukaryotic nucleotide excision repair (NER) pathway. We show that the 6-nitropiperonyloxymethyl (NPOM)-modified DNA is recognized by the Rad4 protein as a specific substrate and that the specific binding can be abolished by light-induced cleavage of the NPOM group from DNA in a dose-dependent manner. Fluorescence lifetime-based analyses of the DNA conformations suggest that free NPOM-DNA retains B-DNA-like conformations despite its bulky NPOM adduct, but Rad4-binding causes it to be heterogeneously distorted. Subsequent extensive conformational searches and molecular dynamics simulations demonstrate that NPOM in DNA can be housed in the major groove of the DNA, with stacking interactions among the nucleotide pairs remaining largely unperturbed and thus retaining overall B-DNA conformation. Our work suggests that photoactivable DNA may be used as a DNA lesion surrogate to study DNA repair mechanisms such as nucleotide excision repair.
Collapse
Affiliation(s)
- Amirrasoul Tavakoli
- Department of Chemistry and Biochemistry, Baylor UniversityWacoTX 76798USA+1 254-710-2095
| | - Debamita Paul
- Department of Chemistry and Biochemistry, Baylor UniversityWacoTX 76798USA+1 254-710-2095
| | - Hong Mu
- Department of Biology, New York UniversityNew YorkNY 10003USA
| | - Jagannath Kuchlyan
- Department of Chemistry and Biochemistry, Baylor UniversityWacoTX 76798USA+1 254-710-2095
| | - Saroj Baral
- Department of Physics, University of Illinois at ChicagoChicagoIL 60607USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at ChicagoChicagoIL 60607USA
| | - Suse Broyde
- Department of Biology, New York UniversityNew YorkNY 10003USA
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor UniversityWacoTX 76798USA+1 254-710-2095
| |
Collapse
|
81
|
The effect of Telomere Lengthening on Genetic Diseases. JOURNAL OF CONTEMPORARY MEDICINE 2021. [DOI: 10.16899/jcm.756562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
82
|
Núñez Y, Radović Č, Savić R, García-Casco JM, Čandek-Potokar M, Benítez R, Radojković D, Lukić M, Gogić M, Muñoz M, Fontanesi L, Óvilo C. Muscle Transcriptome Analysis Reveals Molecular Pathways Related to Oxidative Phosphorylation, Antioxidant Defense, Fatness and Growth in Mangalitsa and Moravka Pigs. Animals (Basel) 2021; 11:ani11030844. [PMID: 33809803 PMCID: PMC8002519 DOI: 10.3390/ani11030844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/28/2022] Open
Abstract
This work was aimed at evaluating loin transcriptome and metabolic pathway differences between the two main Serbian local pig breeds with divergent characteristics regarding muscle growth and fatness, as well as exploring nutrigenomic effects of tannin supplementation in Mangalitsa (MA) pigs. The study comprised 24 Mangalitsa and 10 Moravka (MO) males, which were kept under identical management conditions. Mangalitsa animals were divided in two nutritional groups (n = 12) receiving a standard (control) or tannin-supplemented diet (1.5%; MAT). Moravka pigs were fed the standard mixture. All animals were slaughtered at a similar age; 120 kg of average live weight (LW) and loin tissue was used for RNA-seq analysis. Results showed 306 differentially expressed genes (DEGs) according to breed, enriched in genes involved in growth, lipid metabolism, protein metabolism and muscle development, such as PDK4, FABP4, MYOD1 and STAT3, as well as a relevant number of genes involved in mitochondrial respiratory activity (MT-NDs, NDUFAs among others). Oxidative phosphorylation was the most significantly affected pathway, activated in Mangalitsa muscle, revealing the basis of a different muscle metabolism. Also, many other relevant pathways were affected by breed and involved in oxidative stress response, fat accumulation and development of skeletal muscle. Results also allowed the identification of potential regulators and causal networks such as those controlled by FLCN, PPARGC1A or PRKAB1 with relevant regulatory roles on DEGs involved in mitochondrial and lipid metabolism, or IL3 and TRAF2 potentially controlling DEGs involved in muscle development. The Tannin effect on transcriptome was small, with only 23 DEGs, but included interesting ones involved in lipid deposition such as PPARGC1B. The results indicate a significant effect of the breed on muscle tissue gene expression, affecting relevant biological pathways and allowing the identification of strong regulatory candidate genes to underlie the gene expression and phenotypic differences between the compared groups.
Collapse
Affiliation(s)
- Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Čedomir Radović
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - Radomir Savić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (R.S.); (D.R.)
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | | | - Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Dragan Radojković
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (R.S.); (D.R.)
| | - Miloš Lukić
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - Marija Gogić
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
- Correspondence: ; Tel.: +34-913471492
| |
Collapse
|
83
|
Excision of Oxidatively Generated Guanine Lesions by Competitive DNA Repair Pathways. Int J Mol Sci 2021; 22:ijms22052698. [PMID: 33800059 PMCID: PMC7962115 DOI: 10.3390/ijms22052698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. It is generally believed that small non-bulky oxidatively generated DNA base modifications are removed by BER pathways, whereas DNA helix-distorting bulky lesions derived from the attack of chemical carcinogens or UV irradiation are repaired by the NER machinery. However, existing and growing experimental evidence indicates that oxidatively generated DNA lesions can be repaired by competitive BER and NER pathways in human cell extracts and intact human cells. Here, we focus on the interplay and competition of BER and NER pathways in excising oxidatively generated guanine lesions site-specifically positioned in plasmid DNA templates constructed by a gapped-vector technology. These experiments demonstrate a significant enhancement of the NER yields in covalently closed circular DNA plasmids (relative to the same, but linearized form of the same plasmid) harboring certain oxidatively generated guanine lesions. The interplay between the BER and NER pathways that remove oxidatively generated guanine lesions are reviewed and discussed in terms of competitive binding of the BER proteins and the DNA damage-sensing NER factor XPC-RAD23B to these lesions.
Collapse
|
84
|
van den Boogaard WMC, van den Heuvel-Eibrink MM, Hoeijmakers JHJ, Vermeij WP. Nutritional Preconditioning in Cancer Treatment in Relation to DNA Damage and Aging. ANNUAL REVIEW OF CANCER BIOLOGY 2021; 5:161-179. [PMID: 35474917 PMCID: PMC9037985 DOI: 10.1146/annurev-cancerbio-060820-090737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dietary restriction (DR) is the most successful nutritional intervention for extending lifespan and preserving health in numerous species. Reducing food intake triggers a protective response that shifts energy resources from growth to maintenance and resilience mechanisms. This so-called survival response has been shown to particularly increase life- and health span and decrease DNA damage in DNA repair-deficient mice exhibiting accelerated aging. Accumulation of DNA damage is the main cause of aging, but also of cancer. Moreover, radiotherapies and most chemotherapies are based on damaging DNA, consistent with their ability to induce toxicity and accelerate aging. Since fasting and DR decrease DNA damage and its effects, nutritional preconditioning holds promise for improving (cancer) therapy and preventing short- and long-term side effects of anticancer treatments. This review provides an overview of the link between aging and cancer, highlights important preclinical studies applying such nutritional preconditioning, and summarizes the first clinical trials implementing nutritional preconditioning in cancer treatment.
Collapse
Affiliation(s)
- Winnie M C van den Boogaard
- Genome Instability and Nutrition Research Group, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Marry M van den Heuvel-Eibrink
- Pediatric Oncology Translational Research Group, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Jan H J Hoeijmakers
- Genome Instability and Nutrition Research Group, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- CECAD Forschungszentrum, University of Cologne, 50931 Cologne, Germany
| | - Wilbert P Vermeij
- Genome Instability and Nutrition Research Group, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
85
|
Kaur K, Kaur R. Modulation of DNA damage by XPF, XPG and ERCC1 gene polymorphisms in pesticide-exposed agricultural workers of Punjab, North-West India. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 861-862:503302. [PMID: 33551103 DOI: 10.1016/j.mrgentox.2020.503302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Inter-individual variations in DNA repair capacity (DRC) for repairing pesticide-induced DNA oxidation damage may influence adverse health outcomes. We aimed to evaluate whether polymorphisms in genes involved in nucleotide excision repair (NER) pathway could modulate DNA damage in pesticide-exposed agricultural workers. Xeroderma pigmentosum group F (XPF) (Arg415Gln, G1244A, rs1800067), xeroderma pigmentosum group G (XPG) (Asp1104His, G3507C, rs17655), excision repair cross complementation group 1 (ERCC1) (3'UTR, C8092A, rs3212986) and ERCC1 (Asn118Asn, C19007T, rs11615) polymorphisms were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique in 225 pesticide-exposed agricultural workers and 225 controls from Punjab, North-West India. The assessment of DNA damage was carried out by alkaline comet assay. Kruskal-Wallis test was used to evaluate the association of gene polymorphisms in NER pathway with DNA damage. Pesticide-exposed agricultural workers carrying variant XPF Gln/Gln (AA) genotype showed higher comet tail length (p < 0.01) than wild type Arg/Arg (GG) genotype. The comet tail length (p < 0.01) was found to be significantly increased in exposed agricultural workers carrying XPG His/His (CC) genotype than wild-type Asp/Asp (GG) genotype. In relation to the individuals carrying wild type ERCC1 3'UTR CC genotype, exposed individuals with variant ERCC1 3'UTR CA genotype showed elevation in the comet tail length (p = 0.029). However, we found no association of ERCC1 Asn118Asn (C19007T) genotype with DNA damage. These results indicate that XPF, XPG and ERCC1 genes of NER pathway may modulate the efficacy of the DNA repair system against pesticide exposure in our population.
Collapse
Affiliation(s)
- Karashdeep Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India.
| | - Rupinder Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India.
| |
Collapse
|
86
|
Sicińska P, Mokra K, Wozniak K, Michałowicz J, Bukowska B. Genotoxic risk assessment and mechanism of DNA damage induced by phthalates and their metabolites in human peripheral blood mononuclear cells. Sci Rep 2021; 11:1658. [PMID: 33462290 PMCID: PMC7814068 DOI: 10.1038/s41598-020-79932-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 12/15/2020] [Indexed: 01/20/2023] Open
Abstract
The human genome is persistently exposed to damage caused by xenobiotics, therefore the assessment of genotoxicity of substances having a direct contact with humans is of importance. Phthalates are commonly used in industrial applications. Widespread exposure to phthalates has been evidenced by their presence in human body fluids. We have assessed the genotoxic potential of selected phthalates and mechanism of their action in human peripheral blood mononuclear cells (PBMCs). Studied cells were incubated with di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBP) and their metabolites: mono-n-butylphthalate (MBP), mono-benzylphthalate (MBzP) in the concentrations range of 0.1-10 µg/mL for 24 h. Analyzed compounds induced DNA single and double strand-breaks (DBP and BBP ≥ 0.5 µg/mL, MBP and MBzP ≥ 1 µg/mL) and more strongly oxidized purines than pyrimidines. None of the compounds examined was capable of creating adducts with DNA. All studied phthalates caused an increase of total ROS level, while hydroxyl radical was generated mostly by DBP and BBP. PBMCs exposed to DBP and BBP could not completely repair DNA strand-breaks during 120 min of postincubation, in opposite to damage caused by their metabolites, MBP and MBzP. We have concluded that parent phthalates: DBP and BBP caused more pronounced DNA damage compared to their metabolites.
Collapse
Affiliation(s)
- Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236, Lodz, Poland.
| | - Katarzyna Mokra
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236, Lodz, Poland
| | - Katarzyna Wozniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236, Lodz, Poland
| | - Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236, Lodz, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236, Lodz, Poland
| |
Collapse
|
87
|
Kolbanovskiy M, Aharonoff A, Sales AH, Geacintov NE, Shafirovich V. Base and Nucleotide Excision Repair Pathways in DNA Plasmids Harboring Oxidatively Generated Guanine Lesions. Chem Res Toxicol 2021; 34:154-160. [PMID: 33405911 DOI: 10.1021/acs.chemrestox.0c00463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. We have demonstrated earlier that the oxidatively generated guanine lesions spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) are excised from double-stranded DNA by competing BER and NER in whole-cell extracts [Shafirovich, V., et al. (2016) J. Biol. Chem. 321, 5309-5319]. In this work we compared the NER and BER yields with single Gh or Sp lesions embedded at the same sites in covalently closed circular pUC19NN plasmid DNA (cccDNA) and in the same but linearized form (linDNA) of this plasmid. The kinetics of the Sp and Gh BER and NER incisions were monitored in HeLa cell extracts. The yield of NER products is ∼5 times greater in covalently closed circular DNA than in the linearized form, while the BER yield is smaller by ∼20-30% depending on the guanine lesion. Control BER experiments with 8-oxo-7,8-dihydroguanine (8-oxoG) show that the BER yield is increased by a factor of only 1.4 ± 0.2 in cccDNA relative to linDNA. These surprising differences in BER and NER activities are discussed in terms of the lack of termini in covalently closed circular DNA and the DNA lesion search dynamics of the NER DNA damage sensor XPC-RAD23B and the BER enzyme OGG1 that recognizes and excises 8-oxoG.
Collapse
Affiliation(s)
- Marina Kolbanovskiy
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Abraham Aharonoff
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Ana Helena Sales
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Nicholas E Geacintov
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Vladimir Shafirovich
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| |
Collapse
|
88
|
Paul D, Mu H, Tavakoli A, Dai Q, Chen X, Chakraborty S, He C, Ansari A, Broyde S, Min JH. Tethering-facilitated DNA 'opening' and complementary roles of β-hairpin motifs in the Rad4/XPC DNA damage sensor protein. Nucleic Acids Res 2020; 48:12348-12364. [PMID: 33119737 PMCID: PMC7708039 DOI: 10.1093/nar/gkaa909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/28/2020] [Accepted: 10/02/2020] [Indexed: 01/01/2023] Open
Abstract
XPC/Rad4 initiates eukaryotic nucleotide excision repair on structurally diverse helix-destabilizing/distorting DNA lesions by selectively 'opening' these sites while rapidly diffusing along undamaged DNA. Previous structural studies showed that Rad4, when tethered to DNA, could also open undamaged DNA, suggesting a 'kinetic gating' mechanism whereby lesion discrimination relied on efficient opening versus diffusion. However, solution studies in support of such a mechanism were lacking and how 'opening' is brought about remained unclear. Here, we present crystal structures and fluorescence-based conformational analyses on tethered complexes, showing that Rad4 can indeed 'open' undamaged DNA in solution and that such 'opening' can largely occur without one or the other of the β-hairpin motifs in the BHD2 or BHD3 domains. Notably, the Rad4-bound 'open' DNA adopts multiple conformations in solution notwithstanding the DNA's original structure or the β-hairpins. Molecular dynamics simulations reveal compensatory roles of the β-hairpins, which may render robustness in dealing with and opening diverse lesions. Our study showcases how fluorescence-based studies can be used to obtain information complementary to ensemble structural studies. The tethering-facilitated DNA 'opening' of undamaged sites and the dynamic nature of 'open' DNA may shed light on how the protein functions within and beyond nucleotide excision repair in cells.
Collapse
Affiliation(s)
- Debamita Paul
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Amirrasoul Tavakoli
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xuejing Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
89
|
The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 2020; 11:genes11121450. [PMID: 33276692 PMCID: PMC7761550 DOI: 10.3390/genes11121450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Collapse
|
90
|
Chen L, Bellone RR, Wang Y, Singer-Berk M, Sugasawa K, Ford JM, Artandi SE. A novel DDB2 mutation causes defective recognition of UV-induced DNA damages and prevalent equine squamous cell carcinoma. DNA Repair (Amst) 2020; 97:103022. [PMID: 33276309 DOI: 10.1016/j.dnarep.2020.103022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Squamous cell carcinoma (SCC) occurs frequently in the human Xeroderma Pigmentosum (XP) syndrome and is characterized by deficient UV-damage repair. SCC is the most common equine ocular cancer and the only associated genetic risk factor is a UV-damage repair protein. Specifically, a missense mutation in horse DDB2 (T338M) was strongly associated with both limbal SCC and third eyelid SCC in three breeds of horses (Halflinger, Belgian, and Rocky Mountain Horses) and was hypothesized to impair binding to UV-damaged DNA. Here, we investigate DDB2-T338M mutant's capacity to recognize UV lesions in vitro and in vivo, together with human XP mutants DDB2-R273H and -K244E. We show that the recombinant DDB2-T338M assembles with DDB1, but fails to show any detectable binding to DNA substrates with or without UV lesions, due to a potential structural disruption of the rigid DNA recognition β-loop. Consistently, we demonstrate that the cellular DDB2-T338M is defective in its recruitment to focally radiated DNA damages, and in its access to chromatin. Thus, we provide direct functional evidence indicating the DDB2-T338M recapitulates molecular defects of human XP mutants, and is the causal loss-of-function allele that gives rise to equine ocular SCCs. Our findings shed new light on the mechanism of DNA recognition by UV-DDB and on the initiation of ocular malignancy.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Yan Wang
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Moriel Singer-Berk
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - James M Ford
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
91
|
Functional impacts of the ubiquitin-proteasome system on DNA damage recognition in global genome nucleotide excision repair. Sci Rep 2020; 10:19704. [PMID: 33184426 PMCID: PMC7665181 DOI: 10.1038/s41598-020-76898-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of various biological processes, including DNA repair. In mammalian global genome nucleotide excision repair (GG-NER), activation of the DDB2-associated ubiquitin ligase upon UV-induced DNA damage is necessary for efficient recognition of lesions. To date, however, the precise roles of UPS in GG-NER remain incompletely understood. Here, we show that the proteasome subunit PSMD14 and the UPS shuttle factor RAD23B can be recruited to sites with UV-induced photolesions even in the absence of XPC, suggesting that proteolysis occurs at DNA damage sites. Unexpectedly, sustained inhibition of proteasome activity results in aggregation of PSMD14 (presumably with other proteasome components) at the periphery of nucleoli, by which DDB2 is immobilized and sequestered from its lesion recognition functions. Although depletion of PSMD14 alleviates such DDB2 immobilization induced by proteasome inhibitors, recruitment of DDB2 to DNA damage sites is then severely compromised in the absence of PSMD14. Because all of these proteasome dysfunctions selectively impair removal of cyclobutane pyrimidine dimers, but not (6-4) photoproducts, our results indicate that the functional integrity of the proteasome is essential for the DDB2-mediated lesion recognition sub-pathway, but not for GG-NER initiated through direct lesion recognition by XPC.
Collapse
|
92
|
Geng A, Tang H, Huang J, Qian Z, Qin N, Yao Y, Xu Z, Chen H, Lan L, Xie H, Zhang J, Jiang Y, Mao Z. The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2. Nucleic Acids Res 2020; 48:9181-9194. [PMID: 32789493 PMCID: PMC7498349 DOI: 10.1093/nar/gkaa661] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
The NAD+-dependent deacetylase and mono-ADP-ribosyl transferase SIRT6 stabilizes the genome by promoting DNA double strand break repair, thereby acting as a tumor suppressor. However, whether SIRT6 regulates nucleotide excision repair (NER) remains unknown. Here, we showed that SIRT6 was recruited to sites of UV-induced DNA damage and stimulated the repair of UV-induced DNA damage. Mechanistic studies further indicated that SIRT6 interacted with DDB2, the major sensor initiating global genome NER (GG-NER), and that the interaction was enhanced upon UV irradiation. SIRT6 deacetylated DDB2 at two lysine residues, K35 and K77, upon UV stress and then promoted DDB2 ubiquitination and segregation from chromatin, thereby facilitating downstream signaling. In addition, we characterized several SIRT6 mutations derived from melanoma patients. These SIRT6 mutants ablated the stimulatory effect of SIRT6 on NER and destabilized the genome due to (i) partial loss of enzymatic activity (P27S or H50Y), (ii) a nonsense mutation (R150*) or (iii) high turnover rates (G134W). Overall, we demonstrate that SIRT6 promotes NER by deacetylating DDB2, thereby preventing the onset of melanomagenesis.
Collapse
Affiliation(s)
- Anke Geng
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huanyin Tang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jin Huang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Zhen Qian
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Nan Qin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yunxia Yao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhu Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hao Chen
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hongjuan Xie
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, 200025 Shanghai, China
| | - Ying Jiang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Tsingtao Advanced Research Institute, Tongji University, 67 Yinchuan West Road, Qingdao 266071, China
| |
Collapse
|
93
|
New Perspectives on Unscheduled DNA Synthesis: Functional Assay for Global Genomic DNA Nucleotide Excision Repair. Methods Mol Biol 2020; 2102:483-507. [PMID: 31989573 DOI: 10.1007/978-1-0716-0223-2_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C (254 nm) irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results have been used to clinically diagnose human DNA repair deficiency disorders, and provide a basis for investigation of repair deficiency in human tissues or tumors. Genomic sequencing to establish the presence of specific mutations is also used now for clinical diagnosis of DNA repair deficiency syndromes. Few functional assays are available which directly measure the capacity to perform NER on the entire genome. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR). As discussed in Chap. 28 is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. Our laboratory also explored the fluorescent label-based Click-iT assay that uses EdU as the label, rather than 3H thymidine. Despite emerging studies in the literature finding this assay to be useful for other purposes, we found that the EdU-based UDS assay was not consistent or reproducible compared with the 3H thymidine-based assay.
Collapse
|
94
|
The Reactions of H 2O 2 and GSNO with the Zinc Finger Motif of XPA. Not A Regulatory Mechanism, But No Synergy with Cadmium Toxicity. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25184177. [PMID: 32932594 PMCID: PMC7570819 DOI: 10.3390/molecules25184177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022]
Abstract
Tetrathiolate zinc fingers are potential targets of oxidative assault under cellular stress conditions. We used the synthetic 37-residue peptide representing the tetrathiolate zinc finger domain of the DNA repair protein XPA, acetyl-DYVICEECGKEFMSYLMNHFDLPTCDNCRDADDKHK-amide (XPAzf) as a working model to study the reaction of its Zn(II) complex (ZnXPAzf) with hydrogen peroxide and S-nitrosoglutathione (GSNO), as oxidative and nitrosative stress agents, respectively. We also used the Cd(II) substituted XPAzf (CdXPAzf) to assess the situation of cadmium assault, which is accompanied by oxidative stress. Using electrospray mass spectrometry (ESI-MS), HPLC, and UV-vis and circular dichroism spectroscopies we demonstrated that even very low levels of H2O2 and GSNO invariably cause irreversible thiol oxidation and concomitant Zn(II) release from ZnXPAzf. In contrast, CdXPAzf was more resistant to oxidation, demonstrating the absence of synergy between cadmium and oxidative stresses. Our results indicate that GSNO cannot act as a reversible modifier of XPA, and rather has a deleterious effect on DNA repair.
Collapse
|
95
|
Yang S, Liu JDH, Diem M, Wesseling S, Vervoort J, Oostenbrink C, Rietjens IMCM. Molecular Dynamics and In Vitro Quantification of Safrole DNA Adducts Reveal DNA Adduct Persistence Due to Limited DNA Distortion Resulting in Inefficient Repair. Chem Res Toxicol 2020; 33:2298-2309. [PMID: 32786539 DOI: 10.1021/acs.chemrestox.0c00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The formation and repair of N2-(trans-isosafrol-3'-yl)-2'-deoxyguanosine (S-3'-N2-dG) DNA adduct derived from the spice and herbal alkenylbenzene constituent safrole were investigated. DNA adduct formation and repair were studied in vitro and using molecular dynamics (MD) simulations. DNA adduct formation was quantified using liquid chromatography-mass spectrometry (LCMS) in wild type and NER (nucleotide excision repair) deficient CHO cells and also in HepaRG cells and primary rat hepatocytes after different periods of repair following exposure to safrole or 1'-hydroxysafrole (1'-OH safrole). The slower repair of the DNA adducts found in NER deficient cells compared to that in CHO wild type cells indicates a role for NER in repair of S-3'-N2-dG DNA adducts. However, DNA repair in liver cell models appeared to be limited, with over 90% of the adducts remaining even after 24 or 48 h recovery. In our further studies, MD simulations indicated that S-3'-N2-dG adduct formation causes only subtle changes in the DNA structure, potentially explaining inefficient activation of NER. Inefficiency of NER mediated repair of S-3'-N2-dG adducts points at persistence and potential bioaccumulation of safrole DNA adducts upon daily dietary exposure.
Collapse
Affiliation(s)
- Shuo Yang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jakob D H Liu
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Matthias Diem
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jacques Vervoort
- Division of Biochemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
96
|
Kolbanovskiy M, Aharonoff A, Sales AH, Geacintov NE, Shafirovich V. Remarkable Enhancement of Nucleotide Excision Repair of a Bulky Guanine Lesion in a Covalently Closed Circular DNA Plasmid Relative to the Same Linearized Plasmid. Biochemistry 2020; 59:2842-2848. [PMID: 32786887 DOI: 10.1021/acs.biochem.0c00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The excision of DNA lesions by human nucleotide excision repair (NER) has been extensively studied in human cell extracts. Employing DNA duplexes with fewer than 200 bp containing a single bulky, benzo[a]pyrene-derived guanine lesion (B[a]P-dG), the NER yields are typically on the order of ∼5-10%, or less. Remarkably, the NER yield is enhanced by a factor of ∼6 when the B[a]P-dG lesion is embedded in a covalently closed circular pUC19NN plasmid (contour length of 2686 bp) rather than in the same plasmid linearized by a restriction enzyme with the B[a]P-dG adduct positioned at the 945th nucleotide counted from the 5'-end of the linearized DNA molecules. Furthermore, the NER yield in the circular pUC19NN plasmid is ∼9 times greater than in a short 147-mer DNA duplex with the B[a]P-dG adduct positioned in the middle. Although the NER factors responsible for these differences were not explicitly identified here, we hypothesize that the initial DNA damage sensor XPC-RAD23B is a likely candidate; it is known to search for DNA lesions by a constrained one-dimensional search mechanism [Cheon, N. Y., et al. (2019) Nucleic Acids Res. 47, 8337-8347], and our results are consistent with the notion that it dissociates more readily from the blunt ends than from the inner regions of linear DNA duplexes, thus accounting for the remarkable enhancement in NER yields associated with the single B[a]P-dG adduct embedded in covalently closed circular plasmids.
Collapse
Affiliation(s)
- Marina Kolbanovskiy
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Abraham Aharonoff
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Ana Helena Sales
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Nicholas E Geacintov
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Vladimir Shafirovich
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| |
Collapse
|
97
|
Kaur K, Kaur R. Polymorphisms in XPC and XPD genes modulate DNA damage in pesticide-exposed agricultural workers of Punjab, North-West India. Mol Biol Rep 2020; 47:5253-5262. [PMID: 32562175 DOI: 10.1007/s11033-020-05600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
Abstract
The genetic susceptibility of individuals to the genotoxic effect of pesticides may be modulated by variations in genes involved in nucleotide excision repair (NER) pathway and therefore plays an important role in the evaluation of occupational risk. We aimed to evaluate the role of xeroderma pigmentosum complementation group C (XPC) Lys939Gln (A2920C, rs2228001), XPC Ala499Val (C2151T, rs2228000), xeroderma pigmentosum complementation group D (XPD) Asp312Asn (G23591A, rs1799793) and XPD Lys751Gln (A35931C, rs13181) in the modulation of DNA damage. A total of 450 subjects (225 pesticide-exposed agricultural workers and 225 age- and sex-matched controls) from Punjab, North-West India were recruited to study DNA damage by alkaline comet assay. Genotyping was carried out by PCR-RFLP using site-specific restriction enzymes. We found significant elevation in DNA damage parameters in pesticide-exposed agricultural workers as compared to the controls (p < 0.01). Association of comet tail length with XPC 939Gln/Gln (CC), XPD 312Asp/Asn (GA) and XPD 312Asn/Asn (AA) genotypes was observed. Frequency of cells showing DNA migration was significantly higher in exposed workers with variant XPC 939Gln/Gln (CC), XPD 312Asp/Asn (GA) and XPD 312Asn/Asn (AA) genotypes. Mean tail length was significantly increased in agricultural workers carrying XPD 312Asn/Asn (AA) genotype. Elevation in total comet DNA migration was also observed in exposed workers carrying variant XPC 939Lys/Gln (AC), XPC 939Gln/Gln (CC), XPC 499Val/Val (TT) and XPD 312Asn/Asn (AA) genotypes. Our results strongly indicate significant positive association of variant XPC and XPD genotypes with higher pesticide-induced DNA damage in North-West Indian agricultural workers.
Collapse
Affiliation(s)
- Karashdeep Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India.,Department of Medical Lab Sciences, Gulzar Group of Institutes, Khanna, Punjab, 141401, India
| | - Rupinder Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India.
| |
Collapse
|
98
|
Niss K, Gomez-Casado C, Hjaltelin JX, Joeris T, Agace WW, Belling KG, Brunak S. Complete Topological Mapping of a Cellular Protein Interactome Reveals Bow-Tie Motifs as Ubiquitous Connectors of Protein Complexes. Cell Rep 2020; 31:107763. [PMID: 32553166 DOI: 10.1016/j.celrep.2020.107763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/03/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
The network topology of a protein interactome is shaped by the function of each protein, making it a resource of functional knowledge in tissues and in single cells. Today, this resource is underused, as complete network topology characterization has proved difficult for large protein interactomes. We apply a matrix visualization and decoding approach to a physical protein interactome of a dendritic cell, thereby characterizing its topology with no prior assumptions of structure. We discover 294 proteins, each forming topological motifs called "bow-ties" that tie together the majority of observed protein complexes. The central proteins of these bow-ties have unique network properties, display multifunctional capabilities, are enriched for essential proteins, and are widely expressed in other cells and tissues. Collectively, the bow-tie motifs are a pervasive and previously unnoted topological trend in cellular interactomes. As such, these results provide fundamental knowledge on how intracellular protein connectivity is organized and operates.
Collapse
Affiliation(s)
- Kristoffer Niss
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cristina Gomez-Casado
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden; Institute of Applied Molecular Medicine, Faculty of Medicine, San Pablo CEU University, 28925 Madrid, Spain
| | - Jessica X Hjaltelin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thorsten Joeris
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden
| | - William W Agace
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden; Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kirstine G Belling
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
99
|
Guardamagna I, Bassi E, Savio M, Perucca P, Cazzalini O, Prosperi E, Stivala LA. A functional in vitro cell-free system for studying DNA repair in isolated nuclei. J Cell Sci 2020; 133:jcs240010. [PMID: 32376788 DOI: 10.1242/jcs.240010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/19/2020] [Indexed: 12/31/2022] Open
Abstract
Assessment of DNA repair is an important endpoint measurement when studying the biochemical mechanisms of the DNA damage response and when investigating the efficacy of chemotherapy, which often uses DNA-damaging compounds. Numerous in vitro methods to biochemically characterize DNA repair mechanisms have been developed so far. However, such methods have some limitations, which are mainly due to the lack of chromatin organization in the DNA templates used. Here we describe a functional cell-free system to study DNA repair synthesis in vitro, using G1-phase nuclei isolated from human cells treated with different genotoxic agents. Upon incubation in the corresponding damage-activated cytosolic extracts, containing biotinylated dUTP, nuclei were able to initiate DNA repair synthesis. The use of specific DNA synthesis inhibitors markedly decreased biotinylated dUTP incorporation, indicating the specificity of the repair response. Exogenously added human recombinant PCNA protein, but not the sensors of UV-DNA damage DDB2 and DDB1, stimulated UVC-induced dUTP incorporation. In contrast, a DDB2PCNA- mutant protein, unable to associate with PCNA, interfered with DNA repair synthesis. Given its responsiveness to different types of DNA lesions, this system offers an additional tool to study DNA repair mechanisms.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Isabella Guardamagna
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elisabetta Bassi
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Monica Savio
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Paola Perucca
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare 'Luigi Luca Cavalli-Sforza', CNR, 27100 Pavia, Italy
| | - Lucia A Stivala
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| |
Collapse
|
100
|
Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front Pharmacol 2020; 11:343. [PMID: 32265714 PMCID: PMC7100275 DOI: 10.3389/fphar.2020.00343] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 01/17/2023] Open
Abstract
Platinum-based anticancer drugs, including cisplatin, carboplatin, oxaliplatin, nedaplatin, and lobaplatin, are heavily applied in chemotherapy regimens. However, the intrinsic or acquired resistance severely limit the clinical application of platinum-based treatment. The underlying mechanisms are incredibly complicated. Multiple transporters participate in the active transport of platinum-based antitumor agents, and the altered expression level, localization, or activity may severely decrease the cellular platinum accumulation. Detoxification components, which are commonly increasing in resistant tumor cells, can efficiently bind to platinum agents and prevent the formation of platinum–DNA adducts, but the adducts production is the determinant step for the cytotoxicity of platinum-based antitumor agents. Even if adequate adducts have formed, tumor cells still manage to survive through increased DNA repair processes or elevated apoptosis threshold. In addition, autophagy has a profound influence on platinum resistance. This review summarizes the critical participators of platinum resistance mechanisms mentioned above and highlights the most potential therapeutic targets or predicted markers. With a deeper understanding of the underlying resistance mechanisms, new solutions would be produced to extend the clinical application of platinum-based antitumor agents largely.
Collapse
Affiliation(s)
- Jiabei Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|