51
|
Synthesis and magnetic properties of two cobalt-coordination polymers containing 1,10-phenanthroline and alkyl dicarboxylates ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
52
|
Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D. The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev 2022; 51:6065-6086. [PMID: 35770998 PMCID: PMC9289890 DOI: 10.1039/d0cs01414a] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 12/25/2022]
Abstract
The application of metal-organic frameworks (MOFs) in drug delivery has advanced rapidly over the past decade, showing huge progress in the development of novel systems. Although a large number of versatile MOFs that can carry and release multiple compounds have been designed and tested, one of the main limitations to their translation to the clinic is the limited biological understanding of their interaction with cells and the way they penetrate them. This is a crucial aspect of drug delivery, as MOFs need to be able not only to enter into cells but also to release their cargo in the correct intracellular location. While small molecules can enter cells by passive diffusion, nanoparticles (NPs) usually require an energy-dependent process known as endocytosis. Importantly, the fate of NPs after being taken up by cells is dependent on the endocytic pathways they enter through. However, no general guidelines for MOF particle internalization have been established due to the inherent complexity of endocytosis as a mechanism, with several factors affecting cellular uptake, namely NP size and surface chemistry. In this review, we cover recent advances regarding the understanding of the mechanisms of uptake of nano-sized MOFs (nanoMOFs)s, their journey inside the cell, and the importance of biological context in their final fate. We examine critically the impact of MOF physicochemical properties on intracellular trafficking and successful cargo delivery. Finally, we highlight key unanswered questions on the topic and discuss the future of the field and the next steps for nanoMOFs as drug delivery systems.
Collapse
Affiliation(s)
- Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Salame Haddad
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Zihan Mei
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| |
Collapse
|
53
|
Zhang Z, Zhang A, Liu Y, Hu X, Fang Y, Wang X, Luo Y, Lenahan C, Chen S. New Mechanisms and Targets of Subarachnoid Hemorrhage: A Focus on Mitochondria. Curr Neuropharmacol 2022; 20:1278-1296. [PMID: 34720082 PMCID: PMC9881073 DOI: 10.2174/1570159x19666211101103646] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) accounts for 5-10% of all strokes and is a subtype of hemorrhagic stroke that places a heavy burden on health care. Despite great progress in surgical clipping and endovascular treatment for ruptured aneurysms, cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) threaten the long-term outcomes of patients with SAH. Moreover, there are limited drugs available to reduce the risk of DCI and adverse outcomes in SAH patients. New insight suggests that early brain injury (EBI), which occurs within 72 h after the onset of SAH, may lay the foundation for further DCI development and poor outcomes. The mechanisms of EBI mainly include excitotoxicity, oxidative stress, neuroinflammation, blood-brain barrier (BBB) destruction, and cellular death. Mitochondria are a double-membrane organelle, and they play an important role in energy production, cell growth, differentiation, apoptosis, and survival. Mitochondrial dysfunction, which can lead to mitochondrial membrane potential (Δψm) collapse, overproduction of reactive oxygen species (ROS), release of apoptogenic proteins, disorders of mitochondrial dynamics, and activation of mitochondria-related inflammation, is considered a novel mechanism of EBI related to DCI as well as post-SAH outcomes. In addition, mitophagy is activated after SAH. In this review, we discuss the latest perspectives on the role of mitochondria in EBI and DCI after SAH. We emphasize the potential of mitochondria as therapeutic targets and summarize the promising therapeutic strategies targeting mitochondria for SAH.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital, Taizhou, Zhejiang Province, China;
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,Address correspondence to this author at the Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Tel: +86-571-87784815; Fax: +86-571-87784755; E-mail:
| |
Collapse
|
54
|
Song F, Cao S, Liu Z, Su H, Chen Z. Different decorated ZIF-67 adsorption performance towards methamphetamine revealed by theoretical and experimental investigations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
55
|
Lee J, Kim D, Byun J, Wu Y, Park J, Oh YK. In vivo fate and intracellular trafficking of vaccine delivery systems. Adv Drug Deliv Rev 2022; 186:114325. [PMID: 35550392 PMCID: PMC9085465 DOI: 10.1016/j.addr.2022.114325] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 01/12/2023]
Abstract
With the pandemic of severe acute respiratory syndrome coronavirus 2, vaccine delivery systems emerged as a core technology for global public health. Given that antigen processing takes place inside the cell, the intracellular delivery and trafficking of a vaccine antigen will contribute to vaccine efficiency. Investigations focusing on the in vivo behavior and intracellular transport of vaccines have improved our understanding of the mechanisms relevant to vaccine delivery systems and facilitated the design of novel potent vaccine platforms. In this review, we cover the intracellular trafficking and in vivo fate of vaccines administered via various routes and delivery systems. To improve immune responses, researchers have used various strategies to modulate vaccine platforms and intracellular trafficking. In addition to progress in vaccine trafficking studies, the challenges and future perspectives for designing next-generation vaccines are discussed.
Collapse
Affiliation(s)
- Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
56
|
Mosavi SH, Zare-Dorabei R. Synthesis of NMOF-5 Using Microwave and Coating with Chitosan: A Smart Biocompatible pH-Responsive Nanocarrier for 6-Mercaptopurine Release on MCF-7 Cell Lines. ACS Biomater Sci Eng 2022; 8:2477-2488. [PMID: 35609182 DOI: 10.1021/acsbiomaterials.2c00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is one of the most difficult diseases to treat, threatening the lives of millions of people today. So far, various methods have been used to treat cancer, each having its drawbacks. One of these methods is treatment with anticancer drugs, which unfortunately have severe side effects. One of the causes of these complications is the nonspecific effects of anticancer drugs, which attack normal cells in addition to cancer cells and damage healthy tissues. In this study, we are trying to reduce the side effects and increase the efficacy of the drug by providing smart drug delivery. The metal-organic framework (MOF) was rapidly synthesized using a microwave method and at the nanoscale. The particle size of NMOF-5 was 18-20 nm, and its surface area was 2690 m2·g-1. A chitosan polymer coating was formed on the nanocarrier after 6-mercaptopurine was introduced. The biocompatible nanocarrier exhibited a high capacity to adsorb the drug. The biocompatible nanocarrier slowly and uniformly released 96.78% of the drug in a simulated solution at pH 5 and 20.52% at pH 7.4. This showed that CS-6-MP-NMOF-5 released the drug smartly and pH-sensitively. The stability of the biocompatible nanocarrier was studied at different pH values and remained stable at pH 5 for up to 48 h. The toxicity study of the MCF-7 cell line at different concentrations for 24 h showed the excellent performance of the biocompatible nanocarrier compared to the free drug in terms of toxicity to breast cancer cells.
Collapse
Affiliation(s)
- Seyed Hossein Mosavi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
57
|
Ceballos M, Cedrún-Morales M, Rodríguez-Pérez M, Funes-Hernando S, Vila-Fungueiriño JM, Zampini G, Navarro Poupard MF, Polo E, Del Pino P, Pelaz B. High-yield halide-assisted synthesis of metal-organic framework UiO-based nanocarriers. NANOSCALE 2022; 14:6789-6801. [PMID: 35467684 PMCID: PMC9109712 DOI: 10.1039/d1nr08305h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The synthesis of nanosized metal-organic frameworks (NMOFs) is requisite for their application as injectable drug delivery systems (DDSs) and other biorelevant purposes. Herein, we have critically examined the role of different synthetic parameters leading to the production of UiO-66 crystals smaller than 100 nm. Of note, we demonstrate the co-modulator role conferred by halide ions, not only to produce NMOFs with precise morphology and size, but also to significantly improve the reaction yield. The resulting NMOFs are highly crystalline and exhibit sustained colloidal stability in different biologically relevant media. As a proof of concept, these NMOFs were loaded with Rhodamine 6G (R6G), which remained trapped in most common biologically relevant media. When incubated with living mammalian cells, the R6G-loaded NMOFs were efficiently internalized and did not impair cell viability even at relatively high doses.
Collapse
Affiliation(s)
- Manuel Ceballos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Manuela Cedrún-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Manuel Rodríguez-Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Samuel Funes-Hernando
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Manuel Vila-Fungueiriño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giulia Zampini
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria F Navarro Poupard
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
58
|
Five new isomorphic coordination polymers with large conjugated ligands: Synthesis, crystal structures and performances. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
59
|
Liu Y, Jiang T, Liu Z. Metal-Organic Frameworks for Bioimaging: Strategies and Challenges. Nanotheranostics 2022; 6:143-160. [PMID: 34976590 PMCID: PMC8671950 DOI: 10.7150/ntno.63458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022] Open
Abstract
Metal-organic frameworks (MOFs), composited with metal ions and organic linkers, have become promising candidates in the biomedical field own to their unique properties, such as high surface area, pore-volume, tunable pore size, and versatile functionalities. In this review, we introduce and summarize the synthesis and characterization methods of MOFs, and their bioimaging applications, including optical bioimaging, magnetic resonance imaging (MRI), computed tomography (CT), and multi-mode. Furthermore, their bioimaging strategies, remaining challenges and future directions are discussed and proposed. This review provides valuable references for the designing of molecular bioimaging probes based on MOFs.
Collapse
Affiliation(s)
- Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China
- Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
60
|
Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Precise Subcellular Organelle Targeting for Boosting Endogenous-Stimuli-Mediated Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101572. [PMID: 34611949 DOI: 10.1002/adma.202101572] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Though numerous external-stimuli-triggered tumor therapies, including phototherapy, radiotherapy, and sonodynamic therapy have made great progress in cancer therapy, the low penetration depth of the laser, safety concerns of radiation, the therapeutic resistance, and the spatio-temporal constraints of the specific equipment restrict their convenient clinical applications. What is more, the inherent physiological barriers of the tumor microenvironment (TME), including hypoxia, heterogeneity, and high expression of antioxidant molecules also restrict the efficiency of tumor therapy. As a result, the development of nanoplatforms responsive to endogenous stimuli (such as glucose, acidic pH, cellular redox events, and etc.) has attracted great attention for starvation therapy, ion therapy, prodrug-mediated chemotherapy, or enzyme-catalyzed therapy. In addition, nanomedicines can be modified by some targeted units for precisely locating in subcellular organelles and boosting the destroying of tumor tissue, decreasing the dosage of nanoagents, reducing side effects, and enhancing the therapeutic efficiency. Herein, the properties of the TME, the advantages of endogenous stimuli, and the principles of subcellular-organelle-targeted strategies will be emphasized. Some necessary considerations for the exploitation of precision medicine and clinical translation of multifunctional nanomedicines in the future are also pointed out.
Collapse
Affiliation(s)
- Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shangjie An
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuqi Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenxue Hu
- Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China
| | - Yujie Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
61
|
Liu X, Xiao Y, Zhang Z, You Z, Li J, Ma D, Li B. Recent Progress in
Metal‐Organic
Frameworks@Cellulose Hybrids and Their Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Yun Xiao
- General English Department, College of Foreign Languages Nankai University Tianjin 300071 China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Dingxuan Ma
- College of Chemistry and Molecular Engineering, Laboratory of Eco‐chemical Engineering, Ministry of Education Qingdao University of Science and Technology Qingdao 266042 China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| |
Collapse
|
62
|
Turner GF, McKellar SC, Allan DR, Cheetham AK, Henke S, Moggach SA. Guest-mediated phase transitions in a flexible pillared-layered metal-organic framework under high-pressure. Chem Sci 2021; 12:13793-13801. [PMID: 34760164 PMCID: PMC8549792 DOI: 10.1039/d1sc03108b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
The guest-dependent flexibility of the pillared-layered metal-organic framework (MOF), Zn2bdc2dabco·X(guest), where guest = EtOH, DMF or benzene, has been examined by high-pressure single crystal X-ray diffraction. A pressure-induced structural phase transition is found for the EtOH- and DMF-included frameworks during compression in a hydrostatic medium of the guest species, which is dependent upon the nature and quantity of the guest in the channels. The EtOH-included material undergoes a phase transition from P4/mmm to C2/m at 0.69 GPa, which is accompanied by a change in the pore shape from square to rhombus via super-filling of the pores. The DMF-included material undergoes a guest-mediated phase transition from I4/mcm to P4/mmm at 0.33 GPa via disordering of the DMF guest. In contrast, the benzene-included framework features a structure with rhombus-shaped channels at ambient pressure and shows direct compression under hydrostatic pressure. These results demonstrate the large influence of guest molecules on the high-pressure phase behavior of flexible MOFs. Guest-mediated framework flexibility is useful for engineering MOFs with bespoke pore shapes and compressibility.
Collapse
Affiliation(s)
- Gemma F Turner
- School of Molecular Sciences, University of Western Australia Perth 6009 Western Australia Australia
| | - Scott C McKellar
- EastChem School of Chemistry, University of Edinburgh Edinburgh EH9 3JW UK
| | - David R Allan
- Diamond Light Source, Harwell Science and Innovation Campus Didcot O11 ODE UK
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California Santa Barbara CA 93106 USA
| | - Sebastian Henke
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund Dortmund 44227 Germany
| | - Stephen A Moggach
- School of Molecular Sciences, University of Western Australia Perth 6009 Western Australia Australia
| |
Collapse
|
63
|
He H, Guo J, Xu B. Enzymatic Delivery of Magnetic Nanoparticles into Mitochondria of Live Cells. CHEMNANOMAT : CHEMISTRY OF NANOMATERIALS FOR ENERGY, BIOLOGY AND MORE 2021; 7:1104-1107. [PMID: 34900519 PMCID: PMC8659849 DOI: 10.1002/cnma.202100249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 06/14/2023]
Abstract
Delivering magnetic nanoparticles (MNPs) into mitochondria provide a facile approach to manipulate cell life because mitochondria play essential roles in cell survival and death. Here we report the use of enzyme-responsive peptide assemblies to deliver MNPs into mitochondria of live cells. The mitochondria-targeting peptide (Mito-Flag), as the substrate of enterokinase (ENTK), assembles with MNPs in solution. The MNPs that are encapsulated by Mito-Flag peptides selectively accumulate to the mitochondria of cancer cells, rather than normal cells. The mitochondrial localization of MNPs reduces the viability of the cancer cells, but hardly affects the survival of the normal cell. This work demonstrates a new and facile strategy to specifically transport MNPs to the mitochondria in cancer cells for exploring the applications of MNPs as the targeted drug for biomedicine and cancer therapy.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
64
|
Király N, Zeleňák V, Lenártová N, Zeleňáková A, Čižmár E, Almáši M, Meynen V, Hovan A, Gyepes R. Novel Lanthanide(III) Porphyrin-Based Metal-Organic Frameworks: Structure, Gas Adsorption, and Magnetic Properties. ACS OMEGA 2021; 6:24637-24649. [PMID: 34604646 PMCID: PMC8482518 DOI: 10.1021/acsomega.1c03327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The present work focuses on the hydrothermal synthesis and properties of porous coordination polymers of metal-porphyrin framework (MPF) type, namely, {[Pr4(H2TPPS)3]·11H2O} n (UPJS-10), {[Eu/Sm(H2TPPS)]·H3O+·16H2O} n (UPJS-11), and {[Ce4(H2TPPS)3]·11H2O} n (UPJS-12) (H2TPPS = 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakisbenzenesulfonate(4-)). The compounds were characterized using several analytical techniques: infrared spectroscopy, thermogravimetric measurements, elemental analysis, gas adsorption measurements, and single-crystal structure analysis (SXRD). The results of SXRD revealed a three-dimensional open porous framework containing crossing cavities propagating along all crystallographic axes. Coordination of H2TPPS4- ligands with Ln(III) ions leads to the formation of 1D polymeric chains propagating along the c crystallographic axis. Argon sorption measurements at -186 °C show that the activated MPFs have apparent BET surface areas of 260 m2 g-1 (UPJS-10) and 230 m2 g-1 (UPJS-12). Carbon dioxide adsorption isotherms at 0 °C show adsorption capacities up to 1 bar of 9.8 wt % for UPJS-10 and 8.6 wt % for UPJS-12. At a temperature of 20 °C, the respective CO2 adsorption capacities decreased to 6.95 and 5.99 wt %, respectively. The magnetic properties of UPJS-10 are characterized by the presence of a close-lying nonmagnetic ground singlet and excited doublet states in the electronic spectrum of Pr(III) ions. A much larger energy difference was suggested between the two lowest Kramers doublets of Ce(III) ions in UPJS-12. Finally, the analysis of X-band EPR spectra revealed the presence of radical spins, which were tentatively assigned to be originating from the porphyrin ligands.
Collapse
Affiliation(s)
- Nikolas Király
- Department
of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, Košice SK-041 54, Slovakia
| | - Vladimír Zeleňák
- Department
of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, Košice SK-041 54, Slovakia
| | - Nina Lenártová
- Department
of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, Košice SK-041 54, Slovakia
| | - Adriana Zeleňáková
- Institute
of Physics, P. J. Šafárik
University, Park Angelinum 9, Košice SK-04154, Slovakia
| | - Erik Čižmár
- Institute
of Physics, P. J. Šafárik
University, Park Angelinum 9, Košice SK-04154, Slovakia
| | - Miroslav Almáši
- Department
of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, Košice SK-041 54, Slovakia
| | - Vera Meynen
- Laboratory
of Adsorption and Catalysis, University
of Antwerp, Universiteitsplein
1, Wilrijk B-2610, Belgium
| | - Andrej Hovan
- Institute
of Physics, P. J. Šafárik
University, Park Angelinum 9, Košice SK-04154, Slovakia
| | - Róbert Gyepes
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague CZ-128
43, Czech Republic
| |
Collapse
|
65
|
Arafa KK, Fytory M, Mousa SA, El-Sherbiny IM. Nanosized biligated metal-organic framework systems for enhanced cellular and mitochondrial sequential targeting of hepatic carcinoma. Biomater Sci 2021; 9:6609-6622. [PMID: 34582539 DOI: 10.1039/d1bm01247a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitochondria are reported to play a paramount role in tumorigenesis which positions them as an instrumental druggable target. However, selective drug delivery to cancer-localized mitochondria remains challenging. Herein, we report for the first time, the design, development and evaluation of a hepatic cancer-specific mitochondria-targeted dual ligated nanoscale metal-organic framework (NMOF) for cellular and mitochondrial sequential drug delivery. Surface functionalization was performed through covalent-linking of folic acid and triphenylphosphonium moieties to the aminated Zr-based MOF, NH2-UiO-66. The characterization of the dual-ligated NMOFs using XRD, FTIR, DSC and BET analysis proved the successful conjugation process. Assessment of the drug loading and release profiling of doxorubicin (DOX)-loaded NMOF confirmed the proper retention of the drug within the NMOF porous structure alongside enhanced release in the tumor acidic environment. Furthermore, biological evaluation of the anti-tumor activity of the DOX-loaded dual-ligated NMOF on hepatocellular carcinoma affirmed the superiority of the developed system in killing the cancerous cells via apoptosis induction and halting cell cycle progression. This study attempts to underscore the promising potential of surface functionalized NMOFs in developing anticancer drug delivery systems to achieve targeted therapy.
Collapse
Affiliation(s)
- Kholoud K Arafa
- Nanomedicine Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Mostafa Fytory
- Nanomedicine Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza 12578, Egypt.
| |
Collapse
|
66
|
Gong W, Cui H, Xie Y, Li Y, Tang X, Liu Y, Cui Y, Chen B. Efficient C 2H 2/CO 2 Separation in Ultramicroporous Metal-Organic Frameworks with Record C 2H 2 Storage Density. J Am Chem Soc 2021; 143:14869-14876. [PMID: 34463501 DOI: 10.1021/jacs.1c07191] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Physical separation of C2H2 from CO2 on metal-organic frameworks (MOFs) has received substantial research interest due to the advantages of simplicity, security, and energy efficiency. However, that C2H2 and CO2 exhibit very close physical properties makes their separation exceptionally challenging. Previous work appeared to mostly focused on introducing open metal sites that aims to enhance the C2H2 affinity at desired sites, whereas the reticular manipulation of organic components has rarely been investigated. In this work, by reticulating preselected amino and hydroxy functionalities into isostructural ultramicroporous chiral MOFs-Ni2(l-asp)2(bpy) (MOF-NH2) and Ni2(l-mal)2(bpy) (MOF-OH)-we targeted efficient C2H2 uptake and C2H2/CO2 separation, which outperforms most benchmark materials. Explicitly, MOF-OH adsorbs substantial amount of C2H2 with record storage density of 0.81 g mL-1 at ambient conditions, which even exceeds the solid density of C2H2 at 189 K. In addition, MOF-OH gave IAST selectivity of 25 toward equimolar mixture of C2H2/CO2, which is nearly twice higher than that of MOF-NH2. Notably, the adsorption enthalpies for C2H2 at zero converge in both MOFs are remarkably low (17.5 kJ mol-1 for MOF-OH and 16.7 kJ mol-1 for MOF-NH2), which to our knowledge are the lowest among efficient rigid C2H2 sorbents. The efficiencies of both MOFs for the separation of C2H2/CO2 are validated by multicycle breakthrough experiments. DFT calculations provide molecular-level insight over the adsorption/separation mechanism. Moreover, MOF-OH can survive in boiling water for at least 1 week and can be easily scaled up to kilograms eco-friendly and economically, which is very crucial for potential industrial implementation.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and Stat Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Hui Cui
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Yingguo Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and Stat Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and Stat Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and Stat Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and Stat Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
67
|
Gu J, Sun X, Kan L, Qiao J, Li G, Liu Y. Structural Regulation and Light Hydrocarbon Adsorption/Separation of Three Zirconium-Organic Frameworks Based on Different V-Shaped Ligands. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41680-41687. [PMID: 34433263 DOI: 10.1021/acsami.1c11224] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
On the basis of different V-shaped ligands, three zirconium-organic frameworks (JLU-Liu45, Zr-SDBA, and Zr-OBBA) have been successfully constructed. By regulating spatial configuration and functional groups of organic ligands, these as-synthesized Zr-MOFs (MOF = metal-organic framework) display distinct structures and different light hydrocarbon adsorption/separation capabilities. JLU-Liu45, with a double-walled interpenetrated 3D primitive cubic (pcu) framework, exhibits good gas-adsorption capacity but not prominent selective separation ability. Through regulating sizes and torsion angles of the organic ligands, Zr-SDBA possesses a 2D square lattice (sql) network, while Zr-OBBA displays a non-interpenetrated 3D pcu framework. Furthermore, by regulating functional groups on the ligands, Zr-SDBA shows prominent C2H2 uptake (101.2 cm3·g-1) and the best C2H2/CH4 selectivity (230.5, 1:1) among the three Zr-MOFs, and Zr-OBBA shows a significant C3H8/CH4 selectivity (105.6, 1:1). This work demonstrates the feasibility of structural regulation for MOF materials in the light hydrocarbon adsorption/separation field.
Collapse
Affiliation(s)
- Jiaming Gu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaodong Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Liang Kan
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Junyi Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
68
|
Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
69
|
Bhowal S, Ghosh A. Highly selective fluorescent turn-on-off sensing of OH -, Al 3+ and Fe 3+ ions by tuning ESIPT in metal organic frameworks and mitochondria targeted bio-imaging. RSC Adv 2021; 11:27787-27800. [PMID: 35480748 PMCID: PMC9037803 DOI: 10.1039/d1ra03078g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Herein we report a multifunctional high performance metal organic framework (Zn-DHNDC MOF) based chemosensor that displays an exceptional excited state intramolecular proton transfer (ESIPT) tuned fluorescence turn-on-off response for OH-, Al3+ and Fe3+ ions along with mitochondria targeted bio-imaging. Properly tuning ESIPT as well as the hydroxyl group (-OH) allows Zn-DHNDC MOF to optimize and establish chelation enhanced fluorescence (CHEF) and chelation enhanced quenching (CHEQ) based sensing mechanisms. The MOF benefits from acid-base interactions with the ions which generate a turn-on bluish green fluorescence (λ Em 492 nm) for OH-, an intense turn-on green fluorescence (λ Em 528 nm) for Al3+ and a turn-off fluorescence quenching response for Fe3+ ions. The aromatic -OH group indeed plays its part in triggering CHEF and CHEQ processes responsible for the turn-on-off events. Low limits of detection (48 nM of OH-, 95 nM for Al3+, 33 nM for Fe3+ ions), high recyclability and fast response time (8 seconds) further assist the MOF to implement an accurate quantitative sensing strategy for OH-, Al3+ and Fe3+ ions. The study further demonstrates the MOF's behaviour in cellular medium by subjecting it to live cell confocal microscopy. Along with a bio-compatible nature the MOF exhibited successful accumulation inside the mitochondria of MCF7 cancer cells, which defines it as a significant bio-marker. Therefore the present work successfully represents the multidisciplinary nature of Zn-DHNDC MOFs, primarily in sensing and biomedical studies.
Collapse
Affiliation(s)
- Soumya Bhowal
- School of Chemical Sciences IACS Jadavpur Kolkata West Bengal 700032 India
| | - Arijit Ghosh
- School of Biological Sciences IACS Jadavpur Kolkata West Bengal 700032 India
| |
Collapse
|
70
|
Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120381] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
Zhou Y, Chen Z, Zhao D, Li D, He C, Chen X. A pH-Triggered Self-Unpacking Capsule Containing Zwitterionic Hydrogel-Coated MOF Nanoparticles for Efficient Oral Exendin-4 Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102044. [PMID: 34216408 DOI: 10.1002/adma.202102044] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/04/2021] [Indexed: 06/13/2023]
Abstract
Oral peptide or protein delivery is considered a revolutionary alternative to daily subcutaneous injection; however, major challenges remain in terms of impediments of the gastrointestinal environment and the intestinal epithelium consisting of mucus and the epithelial cell layer, leading to low bioavailability. To protect against gastrointestinal degradation and promote penetration across the intestinal mucosa, a pH-triggered self-unpacking capsule encapsulating zwitterionic hydrogel-coated metal-organic framework (MOF) nanoparticles is engineered. The MOF nanoparticles possess a high exendin-4 loading capacity, and the zwitterionic hydrogel layer imparts unique capability of permeation across the mucus layer and effective internalization by epithelial cells to the nano-vehicles. In addition to the gastro-resistant feature, the pH-responsive capsules are dissociated drastically in the intestinal environment due to the rapid generation of abundant CO2 bubbles, which triggers a sudden release of the nanoparticles. After oral administration of the capsules containing exendin-4-loaded nanoparticles into a diabetes rat model, markedly enhanced plasma exendin-4 levels are achieved for over 8 h, leading to significantly increased endogenous insulin secretion and a remarkable hypoglycemic effect with a relative pharmacological availability of 17.3%. Owing to the low risk of hypoglycemia, this oral exendin-4 strategy will provide a vast potential for daily and facile diabetes treatment.
Collapse
Affiliation(s)
- Yuhao Zhou
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhixiong Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Dan Zhao
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Dong Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
72
|
He S, Wu L, Li X, Sun H, Xiong T, Liu J, Huang C, Xu H, Sun H, Chen W, Gref R, Zhang J. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B 2021; 11:2362-2395. [PMID: 34522591 PMCID: PMC8424373 DOI: 10.1016/j.apsb.2021.03.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-organic frameworks (MOFs), comprised of organic ligands and metal ions/metal clusters via coordinative bonds are highly porous, crystalline materials. Their tunable porosity, chemical composition, size and shape, and easy surface functionalization make this large family more and more popular for drug delivery. There is a growing interest over the last decades in the design of engineered MOFs with controlled sizes for a variety of biomedical applications. This article presents an overall review and perspectives of MOFs-based drug delivery systems (DDSs), starting with the MOFs classification adapted for DDSs based on the types of constituting metals and ligands. Then, the synthesis and characterization of MOFs for DDSs are developed, followed by the drug loading strategies, applications, biopharmaceutics and quality control. Importantly, a variety of representative applications of MOFs are detailed from a point of view of applications in pharmaceutics, diseases therapy and advanced DDSs. In particular, the biopharmaceutics and quality control of MOFs-based DDSs are summarized with critical issues to be addressed. Finally, challenges in MOFs development for DDSs are discussed, such as biostability, biosafety, biopharmaceutics and nomenclature.
Collapse
Affiliation(s)
- Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Li
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengxi Huang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huimin Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Weidong Chen
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ruxandra Gref
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
73
|
Kolygina DV, Siek M, Borkowska M, Ahumada G, Barski P, Witt D, Jee AY, Miao H, Ahumada JC, Granick S, Kandere-Grzybowska K, Grzybowski BA. Mixed-Charge Nanocarriers Allow for Selective Targeting of Mitochondria by Otherwise Nonselective Dyes. ACS NANO 2021; 15:11470-11490. [PMID: 34142807 DOI: 10.1021/acsnano.1c01232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Targeted delivery of molecular cargos to specific organelles is of paramount importance for developing precise and effective therapeutics and imaging probes. This work describes a disulfide-based delivery method in which mixed-charged nanoparticles traveling through the endolysosomal tract deliver noncovalently bound dye molecules selectively into mitochondria. This system comprises three elements: (1) The nanoparticles deliver their payloads by a kiss-and-go mechanism - that is, they drop off their dye cargos proximate to mitochondria but do not localize therein; (2) the dye molecules are by themselves nonspecific to any cellular structures but become so with the help of mixed-charge nanocarriers; and (3) the dye is engineered in such a way as to remain in mitochondria for a long time, up to days, allowing for observing dynamic remodeling of mitochondrial networks and long-term tracking of mitochondria even in dividing cells. The selectivity of delivery and long-lasting staining derive from the ability to engineer charge-imbalanced, mixed [+/-] on-particle monolayers and from the structural features of the cargo. Regarding the former, the balance of [+] and [-] ligands can be adjusted to limit cytotoxicity and control the number of dye molecules adsorbed onto the particles' surfaces. Regarding the latter, comparative studies with multiple dye derivatives we synthesized rationalize the importance of polar groups, long alkyl chains, and disulfide moieties in the assembly of fluorescent nanoconstructs and long-lasting staining of mitochondria. Overall, this strategy could be useful for delivering hydrophilic and/or anionic small-molecule drugs difficult to target to mitochondria by classical approaches.
Collapse
Affiliation(s)
- Diana V Kolygina
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Marta Siek
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Magdalena Borkowska
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Guillermo Ahumada
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Piotr Barski
- ProChimia Surfaces Sp. z o.o., Al Zwycięstwa 96/98 F8, 81-451 Gdynia, Poland
| | - Dariusz Witt
- ProChimia Surfaces Sp. z o.o., Al Zwycięstwa 96/98 F8, 81-451 Gdynia, Poland
| | - Ah-Young Jee
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Han Miao
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Juan Carlos Ahumada
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Steve Granick
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kristiana Kandere-Grzybowska
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Bartosz A Grzybowski
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
74
|
Liu Z, Wang X, Chen Q, Ma F, Huang Y, Gao Y, Deng Q, Qiao Z, Xing X, Zhu J, Lu F, Wang H. Regulating Twisted Skeleton to Construct Organ‐Specific Perylene for Intensive Cancer Chemotherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhonghua Liu
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Xuejuan Wang
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Qing Chen
- Joint National Laboratory for Antibody Drug Engineering School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Feiyan Ma
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Yijian Gao
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Qingyuan Deng
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Science (UCAS) Beijing 100049 China
| | - Xiaoyi Xing
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Jianling Zhu
- Joint National Laboratory for Antibody Drug Engineering School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Feng Lu
- Joint National Laboratory for Antibody Drug Engineering School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Science (UCAS) Beijing 100049 China
| |
Collapse
|
75
|
Liu Z, Wang X, Chen Q, Ma F, Huang Y, Gao Y, Deng Q, Qiao ZY, Xing X, Zhu J, Lu F, Wang H. Regulating Twisted Skeleton to Construct Organ-Specific Perylene for Intensive Cancer Chemotherapy. Angew Chem Int Ed Engl 2021; 60:16215-16223. [PMID: 33971079 DOI: 10.1002/anie.202105607] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/12/2022]
Abstract
The systemic use of pharmaceutical drugs for cancer patients is a compromise between desirable therapy and side effects because of the intrinsic shortage of organ-specific pharmaceutical drug. Design and construction of pharmaceutical drug to achieve the organ-specific delivery is thus desperately desirable. We herein regulate perylene skeleton to effect organ-specificity and present an example of lung-specific distribution on the basis of bay-twisted PDIC-NC. We further demonstrate that PDIC-NC can target into mitochondria to act as cellular respiration inhibitor, inducing insufficient production of adenosine triphosphate, promoting endogenous H2 O2 and . OH burst, elevating calcium overload, efficiently triggering the synergistic apoptosis, autophagy and endoplasmic reticulum stress of lung cancer cells. The antitumor performance of PDIC-NC is verified on in vivo xenografted, metastasis and orthotopic lung cancer, presenting overwhelming evidences for potentially clinical application. This study contributes a proof-of-concept demonstration of twisted perylene to well attain lung-specific distribution, and meanwhile achieves intensive lung cancer chemotherapy.
Collapse
Affiliation(s)
- Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Xuejuan Wang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Qing Chen
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Feiyan Ma
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Yijian Gao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Qingyuan Deng
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science (UCAS), Beijing, 100049, China
| | - Xiaoyi Xing
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Jianling Zhu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Feng Lu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science (UCAS), Beijing, 100049, China
| |
Collapse
|
76
|
Xue J, Liu J, Yong J, Liang K. Biomedical Applications of Metal–Organic Frameworks at the Subcellular Level. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jueyi Xue
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Jian Liu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
77
|
Yang X, Jiang J, Li Z, Liang J, Xiang Y. Strategies for mitochondrial gene editing. Comput Struct Biotechnol J 2021; 19:3319-3329. [PMID: 34188780 PMCID: PMC8202187 DOI: 10.1016/j.csbj.2021.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria, as the energy factory of cells, participate in metabolism processes and play a critical role in the maintenance of human life activities. Mitochondria belong to semi-automatic organelles, which have their own genome different from nuclear genome. Mitochondrial DNA (mtDNA) mutations can cause a series of diseases and threaten human health. However, an effective approach to edit mitochondrial DNA, though long-desired, is lacking. In recent years, gene editing technologies, represented by restriction endonucleases (RE) technology, zinc finger nuclease (ZFN) technology, transcription activator-like effector nuclease (TALEN) technology, CRISPR system and pAgo-based system have been comprehensively explored, but the application of these technologies in mitochondrial gene editing is still to be explored and optimized. The present study highlights the progress and limitations of current mitochondrial gene editing technologies and approaches, and provides insights for development of novel strategies for future attempts.
Collapse
Affiliation(s)
- Xingbo Yang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiacheng Jiang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zongyu Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayi Liang
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yaozu Xiang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai East Hospital, Tongji University, Shanghai 200092, China
| |
Collapse
|
78
|
Nirosha Yalamandala B, Shen W, Min S, Chiang W, Chang S, Hu S. Advances in Functional Metal‐Organic Frameworks Based On‐Demand Drug Delivery Systems for Tumor Therapeutics. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| | - Wei‐Ting Shen
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| | - Sheng‐Hao Min
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| | - Wen‐Hsuan Chiang
- Department of Chemical Engineering National Chung Hsing University Taichung 402 Taiwan
| | - Shing‐Jyh Chang
- Department of Obstetrics and Gynecology Hsinchu MacKay Memorial Hospital Hsinchu 300 Taiwan
| | - Shang‐Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| |
Collapse
|
79
|
Guo Y, Li Y, Zhou S, Ye Q, Zan X, He Y. Metal-Organic Framework-Based Composites for Protein Delivery and Therapeutics. ACS Biomater Sci Eng 2021; 8:4028-4038. [PMID: 33901394 DOI: 10.1021/acsbiomaterials.0c01600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Owing to high bioactivity and specificity, protein drugs have achieved great success in both diagnosis and therapy. The idea of delivering active proteins directly to targets is becoming more and more attractive. However, due to their large size and environmental sensitivity, it is not easy for proteins to maintain bioactivity in extracellular fluids and cross cell membrane without being damaged. A series of techniques and carriers have been developed to deliver proteins. Thereinto, metal-organic frameworks (MOFs), which are made of metal ions connected by organic linkers, are one of the most important vehicles for protein delivery. Their porous structures, stability, biocompatibility, reproducibility, and the possibility for further functionalities offer great potential for protein delivery. In this review, recent developments of protein encapsulated by MOF nanoparticles, including mechanism of treatment, structural design, loading capacity, delivery, and release properties of proteins, are summarized, and the relationship between structure and performance is emphasized. Meanwhile, further improvements and implementations are discussed.
Collapse
Affiliation(s)
- Yan Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China.,University of Chinese Academy of Sciences, Wenzhou Institute, 1 Jinlian Rd, Wenzhou, Zhejiang Province 325001, P. R. China.,Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Yantao Li
- Australia River Institute, Nathan Campus, Griffith University, 170 Kessels Road, Nathan QLD 4111, Australia
| | - Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.,Skeletal Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China.,University of Chinese Academy of Sciences, Wenzhou Institute, 1 Jinlian Rd, Wenzhou, Zhejiang Province 325001, P. R. China
| | - Yan He
- Skeletal Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
80
|
Demir Duman F, Forgan RS. Applications of nanoscale metal-organic frameworks as imaging agents in biology and medicine. J Mater Chem B 2021; 9:3423-3449. [PMID: 33909734 DOI: 10.1039/d1tb00358e] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoscale metal-organic frameworks (NMOFs) are an interesting and unique class of hybrid porous materials constructed by the self-assembly of metal ions/clusters with organic linkers. The high storage capacities, facile synthesis, easy surface functionalization, diverse compositions and excellent biocompatibilities of NMOFs have made them promising agents for theranostic applications. By combination of a large variety of metal ions and organic ligands, and incorporation of desired molecular functionalities including imaging modalities and therapeutic molecules, diverse MOF structures with versatile functionalities can be obtained and utilized in biomedical imaging and drug delivery. In recent years, NMOFs have attracted great interest as imaging agents in optical imaging (OI), magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET) and photoacoustic imaging (PAI). Furthermore, the significant porosity of MOFs allows them to be loaded with multiple imaging agents and therapeutics simultaneously and applied for multimodal imaging and therapy as a single entity. In this review, which is intended as an introduction to the use of MOFs in biomedical imaging for a reader entering the subject, we summarize the up-to-date progress of NMOFs as bioimaging agents, giving (i) a broad perspective of the varying imaging techniques that MOFs can enable, (ii) the different routes to manufacturing functionalised MOF nanoparticles and hybrids, and (iii) the integration of imaging with differing therapeutic techniques. The current challenges and perspectives of NMOFs for their further clinical translation are also highlighted and discussed.
Collapse
Affiliation(s)
- Fatma Demir Duman
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
81
|
Mugaka BP, Zhang S, Li RQ, Ma Y, Wang B, Hong J, Hu YH, Ding Y, Xia XH. One-Pot Preparation of Peptide-Doped Metal-Amino Acid Framework for General Encapsulation and Targeted Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11195-11204. [PMID: 33645961 DOI: 10.1021/acsami.0c22194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs), especially those made by biological molecules (bio-MOFs), have been proved to be prospective candidates for biomedical applications. However, a simple and universal bio-MOF to load different substances for precise targeting is still lacking. In this work, we propose a facile one-pot method to prepare a peptide-doped bio-MOF for general encapsulation and targeted delivery. This bio-MOF is constructed by 9-fluorenylmethyloxycarbonyl-modified histidine (Fmoc-His) as a bridging linker that coordinates with Zn2+ ions, denoted as ZFH. The Fmoc-His-Asp-Gly-Arg peptide (Fmoc-HDGR) can be easily doped into the ZFH structure with different ratios to modulate the targeting ability of ZFH-DGR. Containing both hydrophobic Fmoc and hydrophilic His moieties, this framework is compatible with encapsulating various types of payloads, including hydrophobic chemotherapeutic, hydrophilic protein, and positively/negatively charged inorganic nanoparticles. It has also been proved to be highly biocompatible and stable in circulation, exhibit the capabilities to target ανβ3 integrin overexpressed on tumor cells, and trigger drug release in a low pH microenvironment at the tumor site. As a proof of concept, Doxorubicin (Dox)-loaded ZFH-DGR (ZFH-DGR/Dox) demonstrated high cell selectivity between liver hepatocellular carcinoma (HepG2) cells and normal liver (L02) cells, which express high and low ανβ3 integrin, respectively. This selectivity endows ZFH-DGR/Dox precise treatment and low toxicity in Heps-bearing liver cancer mice. This work develops a de novo approach to construct a peptide-doped bio-MOF system for universal load, precise delivery, and peptide drug combination therapy in the future.
Collapse
Affiliation(s)
- Benson Peter Mugaka
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Rui-Qi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Biomedical Functional Materials, School of Sciences, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Jin Hong
- Key Laboratory of Biomedical Functional Materials, School of Sciences, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Yi-Hui Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
82
|
Xu H, Sheng G, Lu L, Wang C, Zhang Y, Feng L, Meng L, Min P, Zhang L, Wang Y, Han F. GRPr-mediated photothermal and thermodynamic dual-therapy for prostate cancer with synergistic anti-apoptosis mechanism. NANOSCALE 2021; 13:4249-4261. [PMID: 33595022 DOI: 10.1039/d0nr07196j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Conventional prostate cancer treatment strategies, including chemotherapy and radiotherapy, cannot effectively eradicate prostate cancer, especially castration resistance prostate cancer. Herein, we developed a novel nanotherapy platform that consists of synergic photothermal and photodynamic therapy via the unique properties of photothermal conversion by gold nanorods and free radicals generation by encapsulated initiators (AIPH). Mesoporous silica was employed as a coating material, and the bombesin peptide was conjugated onto the mesoporous silica coating layer as the targeting moiety to prostate cancer via its overexpressed gastrin-releasing peptide receptors. An in vitro study with the castration resistance prostate cancer cell exhibited a significant photothermal therapeutic effect as well as enhanced thermodynamic therapy via generating free radicals. P-p38 and p-JNK proteins, as key proteins involved in the cells' stress responses, were found to be upregulated by the synergetic treatment. The in vivo study demonstrated that a significant eradication of prostate tumour could be achieved by the nanoparticle therapeutic platform with a good biocompatibility profile. This work pioneers a novel approach for high-efficient castration resistance prostate cancer treatment by combining photothermal, thermodynamic, and site-specific drug delivery directed by an integrated nanoparticle system.
Collapse
Affiliation(s)
- Hang Xu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Gang Sheng
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Lu Lu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Cuirong Wang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yu Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lili Feng
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Lingtong Meng
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Pengxiang Min
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Li Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yijun Wang
- Department of Pharmacy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China. and Center for Global Health of Nanjing Medical University, Nanjing, 211166, China and Institute of Brain Science, Nanjing Brain Hospital, Nanjing, 210029, China
| |
Collapse
|
83
|
Jiang X, He C, Lin W. Supramolecular metal-based nanoparticles for drug delivery and cancer therapy. Curr Opin Chem Biol 2021; 61:143-153. [PMID: 33631394 DOI: 10.1016/j.cbpa.2021.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/05/2023]
Abstract
Although conventional cancer therapies such as chemotherapy and radiotherapy prevail in clinic, they tend to have narrow therapeutic windows. Many chemotherapies have unfavorable pharmacokinetics while radiotherapy incurs radiotoxicity to normal tissues surrounding tumors. The chemical tunability of supramolecular metal-based nanoparticles (SMNPs) enables the incorporation of various therapeutics, including hydrophilic and hydrophobic chemotherapeutic drugs, photosensitizers, radiosensitizers, and biological therapeutics for more effective delivery to tumors. In this mini-review, we highlight recent advances in SMNPs, namely nanoscale coordination polymers and nanoscale metal-organic frameworks, for drug delivery and cancer therapy. We particularly focus on innovative uses of metal clusters, ligands, pores, and surface modifications to load various therapeutics into SMNPs and critical evaluations of the anticancer efficacies of SMNPs.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Chunbai He
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758, S Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
84
|
Lawson HD, Walton SP, Chan C. Metal-Organic Frameworks for Drug Delivery: A Design Perspective. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7004-7020. [PMID: 33554591 PMCID: PMC11790311 DOI: 10.1021/acsami.1c01089] [Citation(s) in RCA: 317] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of metal-organic frameworks (MOFs) in biomedical applications has greatly expanded over the past decade due to the precision tunability, high surface areas, and high loading capacities of MOFs. Specifically, MOFs are being explored for a wide variety of drug delivery applications. Initially, MOFs were used for delivery of small-molecule pharmaceuticals; however, more recent work has focused on macromolecular cargos, such as proteins and nucleic acids. Here, we review the historical application of MOFs for drug delivery, with a specific focus on the available options for designing MOFs for specific drug delivery applications. These options include choices of MOF structure, synthetic method, and drug loading. Further considerations include tuning, modifications, biocompatibility, cellular targeting, and uptake. Altogether, this Review aims to guide MOF design for novel biomedical applications.
Collapse
Affiliation(s)
- Harrison D Lawson
- Michigan State University, Department of Chemical Engineering and Materials Science, 428 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - S Patrick Walton
- Michigan State University, Department of Chemical Engineering and Materials Science, 428 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Christina Chan
- Michigan State University, Department of Chemical Engineering and Materials Science, 428 South Shaw Lane, East Lansing, Michigan 48824, United States
- Michigan State University, Department of Biochemistry and Molecular Biology, 603 Wilson Road, East Lansing, Michigan 48824, United States
| |
Collapse
|
85
|
Sharma J, Kumari R, Bhargava A, Tiwari R, Mishra PK. Mitochondrial-induced Epigenetic Modifications: From Biology to Clinical Translation. Curr Pharm Des 2021; 27:159-176. [PMID: 32851956 DOI: 10.2174/1381612826666200826165735] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Mitochondria are maternally inherited semi-autonomous organelles that play a central role in redox balance, energy metabolism, control of integrated stress responses, and cellular homeostasis. The molecular communication between mitochondria and the nucleus is intricate and bidirectional in nature. Though mitochondrial genome encodes for several key proteins involved in oxidative phosphorylation, several regulatory factors encoded by nuclear DNA are prominent contributors to mitochondrial biogenesis and function. The loss of synergy between this reciprocal control of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling, triggers epigenomic imbalance and affects mitochondrial function and global gene expressions. Recent expansions of our knowledge on mitochondrial epigenomics have offered novel perspectives for the study of several non-communicable diseases including cancer. As mitochondria are considered beacons for pharmacological interventions, new frontiers in targeted delivery approaches could provide opportunities for effective disease management and cure through reversible epigenetic reprogramming. This review focuses on recent progress in the area of mitochondrial-nuclear cross-talk and epigenetic regulation of mitochondrial DNA methylation, mitochondrial micro RNAs, and post-translational modification of mitochondrial nucleoid-associated proteins that hold major opportunities for targeted drug delivery and clinical translation.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
86
|
Toprak Ö, Topuz B, Monsef YA, Oto Ç, Orhan K, Karakeçili A. BMP-6 carrying metal organic framework-embedded in bioresorbable electrospun fibers for enhanced bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111738. [PMID: 33545881 DOI: 10.1016/j.msec.2020.111738] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Biomolecule carrier structures have attracted substantial interest owing to their potential utilizations in the field of bone tissue engineering. In this study, MOF-embedded electrospun fiber scaffold for the controlled release of BMP-6 was developed for the first time, to enrich bone regeneration efficacy. The scaffolds were achieved by first, one-pot rapid crystallization of BMP-6 encapsulated ZIF-8 nanocrystals-as a novel carrier for growth factor molecules- and then electrospinning of the blending solution composed of poly (ε-caprolactone) and BMP-6 encapsulated ZIF-8 nanocrystals. BMP-6 molecule encapsulation efficiency for ZIF-8 nanocrystals was calculated as 98%. The in-vitro studies showed that, the bioactivity of BMP-6 was preserved and the release lasted up to 30 days. The release kinetics fitted the Korsmeyer-Peppas model exhibiting a pseudo-Fickian behavior. The in-vitro osteogenesis studies revealed the superior effect of sustained release of BMP-6 towards osteogenic differentiation of MC3T3-E1 pre-osteoblasts. In-vivo studies also revealed that the sustained slow release of BMP-6 was responsible for the generation of well-mineralized, new bone formation in a rat cranial defect. Our results proved that; MOF-carriers embedded in electrospun scaffolds can be used as an effective platform for bone regeneration in bone tissue engineering applications. The proposed approach can easily be adapted for various growth factor molecules for different tissue engineering applications.
Collapse
Affiliation(s)
- Özge Toprak
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey
| | - Berna Topuz
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey
| | - Yanad Abou Monsef
- Ankara University, Faculty of Veterinary Medicine, Department of Pathology, 06110 Ankara, Turkey
| | - Çağdaş Oto
- Ankara University, Faculty of Veterinary Medicine, Department of Anatomy, 06110 Ankara, Turkey; Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey
| | - Kaan Orhan
- Ankara University, Faculty of Dentistry, Department of DentoMaxillofacial Radiology, 06100, Ankara, Turkey; Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey
| | - Ayşe Karakeçili
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey.
| |
Collapse
|
87
|
Liu J, Huang J, Zhang L, Lei J. Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chem Soc Rev 2020; 50:1188-1218. [PMID: 33283806 DOI: 10.1039/d0cs00178c] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal-organic frameworks (MOFs) are an emerging class of molecular crystalline materials built from metal ions or clusters bridged by organic linkers. By taking advantage of their synthetic tunability and structural regularity, MOFs can hierarchically integrate nanoparticles and/or biomolecules into a single framework to enable multifunctions. The MOF-protected heterostructures not only enhance the catalytic capacity of nanoparticle components but also retain the biological activity of biomolecules in an intracellular microenvironment. Therefore, the multifunctional MOF heterostructures have great advantages over single components in cancer therapy. In this review, we comprehensively summarize the general principle of the design and functional modulation of nanoscaled MOF heterostructures, and biomedical applications in enhanced therapy within the last five years. The functions of MOF heterostructures with a controlled size can be regulated by designing various functional ligands and in situ growth/postmodification of nanoparticles and/or biomolecules. The advances in the application of multifunctional MOF heterostructures are also explored for enhanced cancer therapies involving photodynamic therapy, photothermal therapy, chemotherapy, radiotherapy, immunotherapy, and theranostics. The remaining challenges and future opportunities in this field, in terms of precisely localized assembly, maximizing composite properties, and processing new techniques, are also presented. The introduction of multiple components into one crystalline MOF provides a promising approach to design all-in-one theranostics in clinical treatments.
Collapse
Affiliation(s)
- Jintong Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
88
|
Duo H, Lu X, Wang S, Liang X, Guo Y. Preparation and applications of metal-organic framework derived porous carbons as novel adsorbents in sample preparation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
89
|
Markopoulou P, Panagiotou N, Li A, Bueno-Perez R, Madden D, Buchanan S, Fairen-Jimenez D, Shiels PG, Forgan RS. Identifying Differing Intracellular Cargo Release Mechanisms by Monitoring In Vitro Drug Delivery from MOFs in Real Time. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100254. [PMID: 33244524 PMCID: PMC7674849 DOI: 10.1016/j.xcrp.2020.100254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 05/09/2023]
Abstract
Metal-organic frameworks (MOFs) have been proposed as biocompatible candidates for the targeted intracellular delivery of chemotherapeutic payloads, but the site of drug loading and subsequent effect on intracellular release is often overlooked. Here, we analyze doxorubicin delivery to cancer cells by MIL-101(Cr) and UiO-66 in real time. Having experimentally and computationally verified that doxorubicin is pore loaded in MIL-101(Cr) and surface loaded on UiO-66, different time-dependent cytotoxicity profiles are observed by real-time cell analysis and confocal microscopy. The attenuated release of aggregated doxorubicin from the surface of Dox@UiO-66 results in a 12 to 16 h induction of cytotoxicity, while rapid release of pore-dispersed doxorubicin from Dox@MIL-101(Cr) leads to significantly higher intranuclear localization and rapid cell death. In verifying real-time cell analysis as a versatile tool to assess biocompatibility and drug delivery, we show that the localization of drugs in (or on) MOF nanoparticles controls delivery profiles and is key to understanding in vitro modes of action.
Collapse
Affiliation(s)
- Panagiota Markopoulou
- Joseph Black Building, College of Science and Engineering, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Nikolaos Panagiotou
- Joseph Black Building, College of Science and Engineering, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary, & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Aurelia Li
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Rocio Bueno-Perez
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - David Madden
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Sarah Buchanan
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary, & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary, & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Ross S. Forgan
- Joseph Black Building, College of Science and Engineering, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
90
|
Paul A, Upadhyay KK, Backović G, Karmakar A, Vieira Ferreira LF, Šljukić B, Montemor MF, Guedes da Silva MFC, Pombeiro AJL. Versatility of Amide-Functionalized Co(II) and Ni(II) Coordination Polymers: From Thermochromic-Triggered Structural Transformations to Supercapacitors and Electrocatalysts for Water Splitting. Inorg Chem 2020; 59:16301-16318. [PMID: 33100004 DOI: 10.1021/acs.inorgchem.0c02084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The new 2D coordination polymers (CPs) [M(L)2(H2O)2]n [M = CoII (1) and NiII (2); L = 4-(pyridin-3-ylcarbamoyl)benzoate] were synthesized from pyridyl amide-functionalized benzoic acid (HL). They were characterized by elemental, Fourier transform infrared, thermogravimetric, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (XRD) structural analyses. Single-crystal XRD analysis revealed the presence of a 2D polymeric architecture, and topological analyses disclose a 2,4-connected binodal net. A thermochromic effect leads to the production of two new CPs, 1' and 2', by heating at ca. 220 °C, accompanied by a color change from orange to purple in the case of 1 and from blue to green in the case of 2. The transformation of 1 to 1' takes place through an intermediate (1a) with a different twist of the L- ligand, leading to the formation of a 1D polymeric architecture, as proven by single-crystal XRD analysis. The addition of water or keeping 1' or 2' in air for several days leads to regeneration of 1 or 2, respectively. The thermochromic-triggered structural transformations of 1 and 2 were further substantiated by PXRD and UV-vis ground-state diffuse-reflectance absorption studies. The supercapacitance ability of the CPs 1 and 2 and a Ni-Co composite (made from mixing the CPs 1 and 2) was investigated by electroanalytical techniques, such as cyclic voltammetry and electrochemical impedance spectroscopy. The CP 2 exhibits the highest specific capacity of 273.8 C g-1 at an applied current density of 1.5 A g-1. These newly developed CPs further act as electrocatalysts for the water-splitting reaction.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Kush K Upadhyay
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa,1049-001 Lisboa, Portugal
| | - Gordana Backović
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Luís F Vieira Ferreira
- Centro de Química-Física Molecular, Institute for Nanosciences and Nanotechnologies, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Biljana Šljukić
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria F Montemor
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa,1049-001 Lisboa, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| |
Collapse
|
91
|
Han C, Xu X, Zhang C, Yan D, Liao S, Zhang C, Kong L. Cytochrome c light-up graphene oxide nanosensor for the targeted self-monitoring of mitochondria-mediated tumor cell death. Biosens Bioelectron 2020; 173:112791. [PMID: 33190048 DOI: 10.1016/j.bios.2020.112791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Targeting mitochondria-mediated apoptosis has emerged as a promising strategy for tumor therapy. However, technologies used to treat tumors that enable the direct visualization of mitochondria-mediated apoptosis in living cells have not been developed to date. Cytochrome c (Cyt c) translocation from mitochondria is a central mediating event in cell apoptosis. In this study, we developed a multifunctional nanosensor that can monitor the real-time translocation of Cyt c from mitochondria in living cells to evaluate the antitumor effect of dihydroartemisinin (DHA). A fluorophore-tagged DNA aptamer is loaded on a graphene oxide (GO)-based nanovehicle, and the cytosolic release of Cyt c causes the dissociation of the aptamer from the GO nanovehicle and triggers the emission of a red fluorescence signal. Furthermore, DHA linked with a coumarin derivative is loaded on GO as a mitochondria-targeting ligand to improve its antitumor activity. This DHA prodrug also emits a green fluorescence signal when delivered to mitochondria. This nanosensor provides a convenient mechanism to monitor mitochondrial targeting by drugs and mitochondria-induced therapeutic efficacy, which may be possible to diagnose the drug efficacy to optimize the treatment for patients with cancer.
Collapse
Affiliation(s)
- Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery and Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Dan Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Shanting Liao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
92
|
Osterrieth JWM, Fairen-Jimenez D. Metal-Organic Framework Composites for Theragnostics and Drug Delivery Applications. Biotechnol J 2020; 16:e2000005. [PMID: 32330358 DOI: 10.1002/biot.202000005] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/09/2020] [Indexed: 12/23/2022]
Abstract
Among a plethora of nano-sized therapeutics, metal-organic frameworks (MOFs) have been some of the most investigated novel materials for, predominantly, cancer drug delivery applications. Due to their large drug uptake capacities and slow-release mechanisms, MOFs are desirable drug delivery vehicles that protect and transport sensitive drug molecules to target sites. The inclusion of other guest materials into MOFs to make MOF-composite materials has added further functionality, from externally triggered drug release to improved pharmacokinetics and diagnostic aids. MOF-composites are synthetically versatile and can include examples such as magnetic nanoparticles in MOFs for MRI image contrast and polymer coatings that improve the blood-circulation time. From synthesis to applications, this review will consider the main developments in MOF-composite chemistry for biomedical applications and demonstrate the potential of these novel agents in nanomedicine. It is concluded that, although vast synthetic progress has been made in the field, it requires now to develop more biomedical expertise with a focus on rational model selection, a major comparative toxicity study, and advanced targeting techniques.
Collapse
Affiliation(s)
- Johannes W M Osterrieth
- Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
93
|
Forgan RS. Modulated self-assembly of metal-organic frameworks. Chem Sci 2020; 11:4546-4562. [PMID: 34122913 PMCID: PMC8159241 DOI: 10.1039/d0sc01356k] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/03/2020] [Indexed: 11/29/2022] Open
Abstract
Exercising fine control over the synthesis of metal-organic frameworks (MOFs) is key to ensuring reproducibility of physical properties such as crystallinity, particle size, morphology, porosity, defectivity, and surface chemistry. The principle of modulated self-assembly - incorporation of modulator molecules into synthetic mixtures - has emerged as the primary means to this end. This perspective article will detail the development of modulated synthesis, focusing primarily on coordination modulation, from a technique initially intended to cap the growth of MOF crystals to one that is now used regularly to enhance crystallinity, control particle size, induce defectivity and select specific phases. The various mechanistic driving forces will be discussed, as well as the influence of modulation on physical properties and how this can facilitate potential applications. Modulation is also increasingly being used to exert kinetic control over self-assembly; examples of phase selection and the development of new protocols to induce this will be provided. Finally, the application of modulated self-assembly to alternative materials will be discussed, and future perspectives on the area given.
Collapse
Affiliation(s)
- Ross S Forgan
- WestCHEM School of Chemistry, University of Glasgow Glasgow UK
| |
Collapse
|
94
|
Liu S, Fang S, Huang Y, Xiang Z, Ouyang G. A heterogeneous pore decoration strategy on a hydrophobic microporous polymer for high-coverage capture of metabolites. Chem Commun (Camb) 2020; 56:7167-7170. [DOI: 10.1039/d0cc02544e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A heterogeneous pore decoration strategy on a hydrophobic microporous polymer resulted in its hydrophobic–hydrophilic hybrid properties and high-coverage capture ability of microbial metabolites.
Collapse
Affiliation(s)
- Shuqin Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
| | - Shuting Fang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
| | - Yiquan Huang
- KLGHEI of Environment and Energy Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zhangmin Xiang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
95
|
Chen J, Li Y, Gu J, Kirillova MV, Kirillov AM. Introducing a flexible tetracarboxylic acid linker into functional coordination polymers: synthesis, structural traits, and photocatalytic dye degradation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03628e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
2,3′,4,4′-Diphenyl ether tetracarboxylic acid was explored as a novel flexible linker for assembling new metal(ii) coordination polymers with notable structural, topological and catalytic features.
Collapse
Affiliation(s)
- Jinwei Chen
- School of Light Chemical Engineering/Guangdong Research Center for Special Building Materials and Its Green Preparation Technology
- Guangdong Industry Polytechnic
- Guangzhou
- People's Republic of China
| | - Yu Li
- School of Light Chemical Engineering/Guangdong Research Center for Special Building Materials and Its Green Preparation Technology
- Guangdong Industry Polytechnic
- Guangzhou
- People's Republic of China
| | - Jinzhong Gu
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Marina V. Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisbon 1049-001
- Portugal
| | - Alexander M. Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisbon 1049-001
- Portugal
| |
Collapse
|
96
|
Gu J, Sun X, Liu X, Yuan Y, Shan H, Liu Y. Highly efficient synergistic CO2 conversion with epoxide using copper polyhedron-based MOFs with Lewis acid and base sites. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00938e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The catalytic performances and effect of LASs and LBSs of four isomorphous Cu-PMOFs in CO2 cycloaddition reaction were systematically studied. JLU-Liu21 exhibited significant catalytic efficiency, remarkable recyclability and catalytic stability.
Collapse
Affiliation(s)
- Jiaming Gu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Xiaodong Sun
- Institute of Clean Energy Chemistry
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
| | - Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yang Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hongyan Shan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|