51
|
Fu X, Tang J, Hua R, Li X, Kang Z, Qiu H, Hu W. Functionalization of DNA-Tagged Alkenes with Diazo Compounds via Photocatalysis. Org Lett 2022; 24:2208-2213. [PMID: 35289626 DOI: 10.1021/acs.orglett.2c00516] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To explore potential chemical space using DNA-encoded library (DEL) technology, the development of various types of robust DNA-compatible reactions is urgently needed. Diazo compounds, which serve as valuable building blocks and important synthons in synthetic chemistry, have been rarely applied in DEL synthesis, probably because of their potential modifications of the bases and phosphate backbone of DNA. Herein we report two cases of DNA-compatible reactions with alkenes and diazo compounds, providing corresponding hydroalkylation and cyclopropanation products in moderate to excellent yields. Notably, these transformations not only provide new access to C(sp3)-C(sp3) bond formation in DELs with excellent functional group tolerance but also represent practical ligation methods to introduce functionalized molecules into DNA.
Collapse
Affiliation(s)
- Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruyu Hua
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqian Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenghui Kang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Qiu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
52
|
Yan DM, Xu SH, Qian H, Gao PP, Bi MH, Xiao WJ, Chen JR. Photoredox-Catalyzed and Copper(II) Salt-Assisted Radical Addition/Hydroxylation Reaction of Alkenes, Sulfur Ylides, and Water. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dong-Mei Yan
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Shuang-Hua Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Hao Qian
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Pan-Pan Gao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ming-Hang Bi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| |
Collapse
|
53
|
Zhou H, Wang G, Wang C, Yang J. Visible-Light-Promoted Aerobic Oxyphosphorylation of α-Diazoesters with H-Phosphine Oxides. Org Lett 2022; 24:1530-1535. [DOI: 10.1021/acs.orglett.2c00198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cunhui Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
54
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
55
|
Li F, Pei C, Koenigs RM. Photokatalytische gem‐Difluorolefinierungsreaktionen durch eine formale C−C‐Kupplungs/Defluorierungsreaktion mit Diazoacetaten. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fang Li
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 52074 Aachen Deutschland
| | - Chao Pei
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 52074 Aachen Deutschland
| | - Rene M. Koenigs
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
56
|
Su YL, Liu GX, De Angelis L, He R, Al-Sayyed A, Schanze KS, Hu WH, Qiu H, Doyle MP. Radical Cascade Multicomponent Minisci Reactions with Diazo Compounds. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Geng-Xin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Ru He
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Ammar Al-Sayyed
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Kirk S. Schanze
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Wen-Hao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
57
|
Zhang Z, Kvasovs N, Dubrovina A, Gevorgyan V. Visible Light Induced Brønsted Acid Assisted Pd‐Catalyzed Alkyl Heck Reaction of Diazo Compounds and
N
‐Tosylhydrazones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| | - Nikita Kvasovs
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| | - Anastasiia Dubrovina
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| |
Collapse
|
58
|
Zhang Z, Kvasovs N, Dubrovina A, Gevorgyan V. Visible Light Induced Brønsted Acid Assisted Pd-Catalyzed Alkyl Heck Reaction of Diazo Compounds and N-Tosylhydrazones. Angew Chem Int Ed Engl 2022; 61:e202110924. [PMID: 34706124 PMCID: PMC8712420 DOI: 10.1002/anie.202110924] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/04/2021] [Indexed: 01/05/2023]
Abstract
A mild visible light-induced palladium-catalyzed alkyl Heck reaction of diazo compounds and N-tosylhydrazones is reported. A broad range of vinyl arenes and heteroarenes with high functional group tolerance, as well as a range of different diazo compounds, can efficiently undergo this transformation. This method features Brønsted acid-assisted generation of hybrid palladium C(sp3 )-centered radical intermediate, which allowed for new selective C-H functionalization protocol.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| | - Nikita Kvasovs
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| | - Anastasiia Dubrovina
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| |
Collapse
|
59
|
Han X, Liu X, Bao Y, Song H, Zhao YR, Wang X, Zhang J, Liu L, Duan XH, Hu J, Hu M. Water-promoted regio-selective trifluoromethylation of vinyl conjugated diazoacetates. Org Chem Front 2022. [DOI: 10.1039/d1qo01654g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An efficient trifluoromethylation reaction of vinyldiazoacetates under mild reaction conditions was depicted.
Collapse
Affiliation(s)
- Xinxin Han
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yueyun Bao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hunahuan Song
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu-Rou Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoying Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junjie Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
60
|
Li S, Zhou L. Visible Light-Promoted Radical Reactions of Diazo Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
61
|
Empel C, Pei C, Koenigs RM. Unlocking novel reaction pathways of diazoalkanes with visible light. Chem Commun (Camb) 2022; 58:2788-2798. [DOI: 10.1039/d1cc06521a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemistry has recently attracted the interest of synthetic chemists to conduct photolysis reactions of diazoalkanes. In this feature article, we provide a concise overview on this field, starting with discoveries...
Collapse
|
62
|
Zhang B, Qi JQ, Liu Y, Li Z, Wang J. Visible-Light-Driven Bisfunctionalization of Unactivated Olefins via the Merger of Proton-Coupled Electron Transfer and Carbene Catalysis. Org Lett 2021; 24:279-283. [PMID: 34932364 DOI: 10.1021/acs.orglett.1c03941] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we reported an N-heterocyclic carbene (NHC) and photo-co-catalyzed alkylacylation of olefins in the presence of the versatile synthon diazo ester, providing a new idea for transient radical generation with the only byproduct being N2. Particularly, this radical process employs traditional carbene precursor diazo esters as the radical source, which is the first case in NHC catalysis. Compared to the previous pathway that produces radicals with large discard fragments, this merged channel possesses great atom economy.
Collapse
Affiliation(s)
- Bei Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beiing 100084, China
| | - Jian-Qing Qi
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beiing 100084, China
| | - Yuhan Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beiing 100084, China
| | - Zhipeng Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beiing 100084, China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beiing 100084, China
| |
Collapse
|
63
|
Dworakowski K, Pisarek S, Hassan S, Gryko D. Vinyl Azides as Radical Acceptors in the Vitamin B 12-Catalyzed Synthesis of Unsymmetrical Ketones. Org Lett 2021; 23:9068-9072. [PMID: 34784475 PMCID: PMC8650103 DOI: 10.1021/acs.orglett.1c03321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/29/2022]
Abstract
Vinyl azides are very reactive species and as such are useful building blocks, in particular, in the synthesis of N-heterocycles. They can also serve as precursors of ketones. These form in reactions of vinyl azides with nucleophiles or radicals. We have found, however, that under light irradiation vitamin B12 catalyzes the reaction of vinyl azides with electrophiles to afford unsymmetrical carbonyl compounds in decent yields. Mechanistic studies revealed that alkyl radicals are key intermediates in this transformation.
Collapse
Affiliation(s)
| | | | - Sidra Hassan
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
64
|
Devi L, Pokhriyal A, Shekhar S, Kant R, Mukherjee S, Rastogi N. Organo‐photocatalytic Synthesis of 6‐
β
‐Disubstituted Phenanthridines from
α
‐Diazo‐
β‐
Keto Compounds and Vinyl Azides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalita Devi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ayushi Pokhriyal
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Shashi Shekhar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Saptarshi Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
65
|
Li F, Pei C, Koenigs RM. Photocatalytic gem-Difluoroolefination Reactions by a Formal C-C Coupling/Defluorination Reaction with Diazoacetates. Angew Chem Int Ed Engl 2021; 61:e202111892. [PMID: 34716734 PMCID: PMC9300101 DOI: 10.1002/anie.202111892] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/23/2022]
Abstract
The photolysis of diazoalkanes to conduct singlet carbene transfer reactions of colored diazoalkanes has recently attracted significant interest in organic synthesis. Herein, we describe a photocatalytic approach that allows the access of triplet carbene intermediates via energy transfer to conduct highly efficient gem‐difluoroolefination reactions with α‐trifluoromethyl styrenes. The use of a tertiary amines proved pivotal to unlock this unusual reaction pathway and to prevent undesired cyclopropanation pathways. The amine further facilitates the ultimate abstraction of fluoride to yield gem‐difluoroolefins (43 examples, up to 88 % yield), which is supported by experimental and theoretical mechanistic studies. We explored this synthesis method with a broad substrate scope, ranging from simple olefins and heterocyclic olefins towards the decoration of pharmaceutically relevant building blocks.
Collapse
Affiliation(s)
- Fang Li
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| |
Collapse
|
66
|
Zhang M, Chen M, Ding X, Kang J, Gao Y, He X, Wang Z, Lu A, Wang Q. The photoredox-catalyzed hydrosulfamoylation of styrenes and its application in the novel synthesis of naratriptan. Chem Commun (Camb) 2021; 57:9140-9143. [PMID: 34498639 DOI: 10.1039/d1cc04225d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The hydrosulfamoylation of diverse aryl olefins provides facile access to alkylsulfonamides. Here we report a novel protocol utilizing radical-mediated addition and a thiol-assisted strategy to achieve the hydrosulfamoylation of diverse styrenes in modest to excellent yields under mild and economic reaction conditions. The methodology was found to provide an efficient and convenient approach for the synthesis of the anti-migraine drug naratriptan and it also can be used for the late-stage functionalization of natural products or medicines.
Collapse
Affiliation(s)
- Mingjun Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Miaomiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Xin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Jin Kang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Yongyue Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Xingxing He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China.
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
67
|
Su Y, Dong K, Zheng H, Doyle MP. Generation of Diazomethyl Radicals by Hydrogen Atom Abstraction and Their Cycloaddition with Alkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yong‐Liang Su
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Kuiyong Dong
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Haifeng Zheng
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Michael P. Doyle
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
68
|
Ma N, Guo L, Qi D, Gao F, Yang C, Xia W. Visible-Light-Induced Multicomponent Synthesis of γ-Amino Esters with Diazo Compounds. Org Lett 2021; 23:6278-6282. [PMID: 34351163 DOI: 10.1021/acs.orglett.1c02071] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-induced multicomponent reaction of ethyl diazoacetate, diarylamines, and styrene-type alkenes is described. This novel 1,2-difunctionalization of alkenes can be readily achieved under a simple operation and mild conditions, affording γ-amino esters as major products. The reaction proceeds through the generation of carbon-centered radicals from diazo compounds by a visible-light-promoted proton-coupled electron transfer (PCET) process. The carbon radicals then add to diverse alkenes, delivering new carbon radical species, and the final products are formed with N-centered radicals via a radical-radical coupling.
Collapse
Affiliation(s)
- Na Ma
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Dan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fei Gao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
69
|
Liu W, Pu M, He J, Zhang T, Dong S, Liu X, Wu YD, Feng X. Iron-Catalyzed Enantioselective Radical Carboazidation and Diazidation of α,β-Unsaturated Carbonyl Compounds. J Am Chem Soc 2021; 143:11856-11863. [PMID: 34296601 DOI: 10.1021/jacs.1c05881] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Azidation of alkenes is an efficient protocol to synthesize organic azides which are important structural motifs in organic synthesis. Enantioselective radical azidation, as a useful strategy to install a C-N3 bond, remains challenging due to the inherently instability and unique structure of radicals. Here, we disclose an efficient enantioselective radical carboazidation and diazidation of α,β-unsaturated ketones and amides catalyzed by chiral N,N'-dioxide/Fe(OTf)2 complexes. An array of substituted alkenes was transformed to the corresponding α-azido carbonyl derivatives in good to excellent enantioselectivities, benefiting the preparation of chiral α-amino ketones, vicinal amino alcohols, and vicinal diamines. Control experiments and mechanistic studies proved the radical pathway in the reaction process. The DFT calculations showed that the azido transferred to the radical intermediate via an intramolecular five-membered transition state with the internal nitrogen of the Fe-N3 species.
Collapse
Affiliation(s)
- Wen Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jun He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Tinghui Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
70
|
Lei G, Xu M, Chang R, Funes-Ardoiz I, Ye J. Hydroalkylation of Unactivated Olefins via Visible-Light-Driven Dual Hydrogen Atom Transfer Catalysis. J Am Chem Soc 2021; 143:11251-11261. [PMID: 34269582 DOI: 10.1021/jacs.1c05852] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical hydroalkylation of olefins enabled by hydrogen atom transfer (HAT) catalysis represents a straightforward means to access C(sp3)-rich molecules from abundant feedstock chemicals without the need for prefunctionalization. While Giese-type hydroalkylation of activated olefins initiated by HAT of hydridic carbon-hydrogen bonds is well-precedented, hydroalkylation of unactivated olefins in a similar fashion remains elusive, primarily owing to a lack of general methods to overcome the inherent polarity-mismatch in this scenario. Here, we report the use of visible-light-driven dual HAT catalysis to achieve this goal, where catalytic amounts of an amine-borane and an in situ generated thiol were utilized as the hydrogen atom abstractor and donor, respectively. The reaction is completely atom-economical and exhibits a broad scope. Experimental and computational studies support the proposed mechanism and suggest that hydrogen-bonding between the amine-borane and substrates is beneficial to improving the reaction efficiency.
Collapse
Affiliation(s)
- Guangyue Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
71
|
Su YL, Dong K, Zheng H, Doyle MP. Generation of Diazomethyl Radicals by Hydrogen Atom Abstraction and Their Cycloaddition with Alkenes. Angew Chem Int Ed Engl 2021; 60:18484-18488. [PMID: 34043866 DOI: 10.1002/anie.202105472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Indexed: 12/16/2022]
Abstract
A general catalytic methodology for the synthesis of pyrazolines from α-diazo compounds and conjugated alkenes is reported. The direct hydrogen atom transfer (HAT) process of α-diazo compounds promoted by the tert-butylperoxy radical generates electrophilic diazomethyl radicals, thereby reversing the reactivity of the carbon atom attached with the diazo group. The regiocontrolled addition of diazomethyl radicals to carbon-carbon double bonds followed by intramolecular ring closure on the terminal diazo nitrogen and tautomerization affords a diverse set of pyrazolines in good yields with excellent regioselectivity. This strategy overcomes the limitations of electron-deficient alkenes in traditional dipolar [3+2]-cycloaddition of α-diazo compounds with alkenes. Furthermore, the straightforward formation of the diazomethyl radicals provides umpolung reactivity, thus opening new opportunities for the versatile transformations of diazo compounds.
Collapse
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kuiyong Dong
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Haifeng Zheng
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
72
|
Yi MJ, Zhang HX, Xiao TF, Zhang JH, Feng ZT, Wei LP, Xu GQ, Xu PF. Photoinduced Metal-Free α-C(sp3)–H Carbamoylation of Saturated Aza-Heterocycles via Rationally Designed Organic Photocatalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00242] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ming-Jun Yi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Huan-Xin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ji-Hua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhi-Tao Feng
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Li-Pu Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
73
|
Guo Y, Wang K, Wang R, Song H, Liu Y, Wang Q. Visible‐Light‐Induced Three‐Component Intermolecular Trifluoromethyl‐Alkenylation Reactions of Unactivated Alkenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuan‐Qiang Guo
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Kaihua Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Ruiguo Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 People's Republic of China
| |
Collapse
|
74
|
Wang DK, Li L, Xu Q, Zhang J, Zheng H, Wei WT. 1,3-Difunctionalization of alkenes: state-of-the-art and future challenges. Org Chem Front 2021. [DOI: 10.1039/d1qo01002f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the advances in 1,3-difunctionalization of alkenes mediated by Pd-, Ni-, Fe-, and Cu-based catalysts, as well as under metal-free conditions, with an emphasis on the reaction mechanisms and factors governing regioselectivity.
Collapse
Affiliation(s)
- Dong-Kai Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Long Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Jianfeng Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| |
Collapse
|
75
|
Yang X, Meng WD, Xu XH, Huang Y. Photoredox-catalyzed 2,2,2-trifluoroethylation and 2,2-difluoroethylation of alkenes with concomitant introduction of a quinoxalin-2(1 H)-one moiety. Org Chem Front 2021. [DOI: 10.1039/d1qo01170g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A photoredox-catalyzed three-component radical cascade reaction of alkenes, quinoxalin-2(1H)-ones, and ICH2CF3/ICH2CF2H is developed.
Collapse
Affiliation(s)
- Xiu Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Wei-Dong Meng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yangen Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|
76
|
Su YL, Tram L, Wherritt D, Arman H, Griffith WP, Doyle MP. α-Amino Radical-Mediated Diverse Difunctionalization of Alkenes: Construction of C–C, C–N, and C–S Bonds. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04243] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Linh Tram
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Daniel Wherritt
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Wendell P. Griffith
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
77
|
Chen P, Nan J, Hu Y, Kang Y, Wang B, Ma Y, Szostak M. Metal-free tandem carbene N-H insertions and C-C bond cleavages. Chem Sci 2020; 12:803-811. [PMID: 34163814 PMCID: PMC8178978 DOI: 10.1039/d0sc05763k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 01/16/2023] Open
Abstract
A metal-free C-H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C-C cleavage. Compared to the simple N-H insertion manipulation of diazo, this method elegantly accomplishes a tandem N-H insertion/SEAr/C-C cleavage/aromatization reaction, and the synthetic utility of this new transformation is exemplified by the succinct syntheses of trisphaeridine and bicolorine alkaloids.
Collapse
Affiliation(s)
- Pu Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yifan Kang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Bo Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Michal Szostak
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
- Department of Chemistry, Rutgers University 73 Warren Street Newark New Jersey 07102 USA
| |
Collapse
|
78
|
Yang J, Duan J, Wang G, Zhou H, Ma B, Wu C, Xiao J. Visible-Light-Promoted Site-Selective N1-Alkylation of Benzotriazoles with α-Diazoacetates. Org Lett 2020; 22:7284-7289. [DOI: 10.1021/acs.orglett.0c02619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiaokui Duan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hongyan Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Chengqi Wu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|