51
|
Topology control of three-dimensional covalent organic frameworks by adjusting steric hindrance effect. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
52
|
Xu X, Cai P, Chen H, Zhou HC, Huang N. Three-Dimensional Covalent Organic Frameworks with she Topology. J Am Chem Soc 2022; 144:18511-18517. [PMID: 36170014 DOI: 10.1021/jacs.2c07733] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reticular chemistry allows the control of crystalline frameworks at atomic precision according to the predesigned topological structures. However, only a limited number of topological structures of three-dimensional (3D) covalent organic frameworks (COFs) have been established. In this work, we developed a series of 3D COFs with an unprecedented she topology, which were constructed with D3d- and D4h-symmetric building blocks. The resulting COFs crystallize in a space group of Im3̅m, in which each D3d unit connects with six D4h units to form a noninterpenetrated network with a uniform pore size of 2.0 nm. In addition, these COFs exhibited high crystallinity, excellent porosity, and good chemical and thermal stability. The crystalline structures, composition, and physicochemical properties of these networks were unambiguously characterized. Notably, the inbuilt porphyrin units render these COFs as efficient catalysts for photoredox C-C bond forming and photocatalytic carbon dioxide reduction reactions. Thus, this work constitutes a new approach for the construction of 3D she-net COFs and also enhances the structural diversity and complexity of COFs.
Collapse
Affiliation(s)
- Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
53
|
Composite Nanoarchitectonics of Cellulose with Porphyrin-Zn for Antibacterial Properties. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
54
|
Liu W, Gong L, Liu Z, Jin Y, Pan H, Yang X, Yu B, Li N, Qi D, Wang K, Wang H, Jiang J. Conjugated Three-Dimensional High-Connected Covalent Organic Frameworks for Lithium-Sulfur Batteries. J Am Chem Soc 2022; 144:17209-17218. [PMID: 36084308 DOI: 10.1021/jacs.2c07596] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing conjugated three-dimensional (3D) covalent organic frameworks (COFs) still remains an extremely difficult task due to the lack of enough conjugated 3D building blocks. Herein, condensation between an 8-connected pentiptycene-based D2h building block (DMOPTP) and 4-connected square-planar linkers affords two 3D COFs (named 3D-scu-COF-1 and 3D-scu-COF-2). A combination of the 3D homoaromatic conjugated structure of the former building block with the 2D conjugated structure of the latter linking units enables the π-electron delocalization over the whole frameworks of both COFs, endowing them with excellent conductivities of 3.2-3.5 × 10-5 S cm-1. In particular, the 3D rigid quadrangular prism shape of DMOPTP guides the formation of a twofold interpenetrated scu 3D topology and high-connected permanent porosity with a large Brunauer-Emmett-Teller (BET) surface area of 2340 and 1602 m2 g-1 for 3D-scu-COF-1 and 3D-scu-COF-2, respectively, ensuring effective small molecule storage and mass transport characteristics. This, in combination with their good charge transport properties, renders them promising sulfur host materials for lithium-sulfur batteries (LSBs) with high capacities (1035-1155 mA h g-1 at 0.2 C, 1 C = 1675 mA g-1), excellent rate capabilities (713-757 mA h g-1 at 5.0 C), and superior cycling stability (71-83% capacity retention at 2.0 C after 500 cycles), surpassing the most of organic LSB cathodes reported thus far.
Collapse
Affiliation(s)
- Wenbo Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhixin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Houhe Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
55
|
Deng Y, Wang Y, Xiao X, Saucedo BJ, Zhu Z, Xie M, Xu X, Yao K, Zhai Y, Zhang Z, Chen J. Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202928. [PMID: 35986438 DOI: 10.1002/smll.202202928] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) hybrid materials are a class of porous crystalline materials that integrate MOFs and COFs with hierarchical pore structures. As an emerging porous frame material platform, MOF/COF hybrid materials have attracted tremendous attention, and the field is advancing rapidly and extending into more diverse fields. Extensive studies have shown that a broad variety of MOF/COF hybrid materials with different structures and specific properties can be synthesized from diverse building blocks via different chemical reactions, driving the rapid growth of the field. The allowed complementary utilization of π-conjugated skeletons and nanopores for functional exploration has endowed these hybrid materials with great potential in challenging energy and environmental issues. It is necessary to prepare a "family tree" to accurately trace the developments in the study of MOF/COF hybrid materials. This review comprehensively summarizes the latest achievements and advancements in the design and synthesis of MOF/COF hybrid materials, including COFs covalently bonded to the surface functional groups of MOFs (MOF@COF), MOFs grown on the surface of COFs (COF@MOF), bridge reaction between COF and MOF (MOF+COF), and their various applications in catalysis, energy storage, pollutant adsorption, gas separation, chemical sensing, and biomedicine. It concludes with remarks concerning the trend from the structural design to functional exploration and potential applications of MOF/COF hybrid materials.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Brett Jacob Saucedo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhijun Zhu
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Kun Yao
- Shenzhen Zhongxing New Material Technology Company Ltd., Shenzhen, 518000, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
56
|
A photo- and redox actives mesoporous 3D covalent organic framework enables highly efficient metal-free photoredox catalysis. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
57
|
Kang X, Stephens ER, Spector-Watts BM, Li Z, Liu Y, Liu L, Cui Y. Challenges and opportunities for chiral covalent organic frameworks. Chem Sci 2022; 13:9811-9832. [PMID: 36199638 PMCID: PMC9431510 DOI: 10.1039/d2sc02436e] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
As highly versatile crystalline porous materials, covalent organic frameworks (COFs) have emerged as an ideal platform for developing novel functional materials, attributed to their precise tunability of structure and functionality. Introducing chiral functional units into frameworks produces chiral COFs (CCOFs) with chiral superiorities through chirality conservation and conversion processes. This review summarises recent research progress in CCOFs, including synthetic methods, chiroptical characterisations, and their applications in asymmetric catalysis, chiral separation, and enantioselective recognition and sensing. Challenges and limitations are discussed to uncover future opportunities in CCOF research.
Collapse
Affiliation(s)
- Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Emily R Stephens
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington Wellington 6012 New Zealand
| | - Benjamin M Spector-Watts
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington Wellington 6012 New Zealand
| | - Ziping Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Lujia Liu
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington Wellington 6012 New Zealand
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
58
|
Gong C, Wang H, Sheng G, Wang X, Xu X, Wang J, Miao X, Liu Y, Zhang Y, Dai F, Chen L, Li N, Xu G, Jia J, Zhu Y, Peng Y. Synthesis and Visualization of Entangled 3D Covalent Organic Frameworks with High-Valency Stereoscopic Molecular Nodes for Gas Separation. Angew Chem Int Ed Engl 2022; 61:e202204899. [PMID: 35639417 DOI: 10.1002/anie.202204899] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Indexed: 12/30/2022]
Abstract
The structural diversity of three-dimensional (3D) covalent organic frameworks (COFs) are limited as there are only a few choices of building units with multiple symmetrically distributed connection sites. To date, 4 and 6-connected stereoscopic nodes with Td , D3h , D3d and C3 symmetries have been mostly reported, delivering limited 3D topologies. We propose an efficient approach to expand the 3D COF repertoire by introducing a high-valency quadrangular prism (D4h ) stereoscopic node with a connectivity of eight, based on which two isoreticular 3D imine-linked COFs can be created. Low-dose electron microscopy allows the direct visualization of their 2-fold interpenetrated bcu networks. These 3D COFs are endowed with unique pore architectures and strong molecular binding sites, and exhibit excellent performance in separating C2 H2 /CO2 and C2 H2 /CH4 gas pairs. The introduction of high-valency stereoscopic nodes would lead to an outburst of new topologies for 3D COFs.
Collapse
Affiliation(s)
- Chengtao Gong
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Hao Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaoqiu Xu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Jian Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaohe Miao
- The Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yinling Zhang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Fangna Dai
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Liangjun Chen
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Nanjun Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Guodong Xu
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, China
| | - Jianhong Jia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yongwu Peng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
59
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
60
|
Fabrication of cellulose derivative coated spherical covalent organic frameworks as chiral stationary phases for high-performance liquid chromatographic enantioseparation. J Chromatogr A 2022; 1675:463155. [DOI: 10.1016/j.chroma.2022.463155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
|
61
|
Guan X, Fang Q, Yan Y, Qiu S. Functional Regulation and Stability Engineering of Three-Dimensional Covalent Organic Frameworks. Acc Chem Res 2022; 55:1912-1927. [DOI: 10.1021/acs.accounts.2c00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, Delaware 19716, United States
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
62
|
Gong C, Wang H, Sheng G, Wang X, Xu X, Wang J, Miao X, Liu Y, Zhang Y, Dai F, Chen L, Li N, Xu G, Jia J, Zhu Y, Peng Y. Synthesis and Visualization of Entangled 3D Covalent Organic Frameworks with High‐Valency Stereoscopic Molecular Nodes for Gas Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chengtao Gong
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Hao Wang
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Guan Sheng
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Xiaokang Wang
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Xiaoqiu Xu
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Jian Wang
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Xiaohe Miao
- The Instrumentation and Service Center for Physical Sciences Westlake University Hangzhou 310024, Zhejiang China
| | - Yikuan Liu
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Yinling Zhang
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Fangna Dai
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Liangjun Chen
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Nanjun Li
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Guodong Xu
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource Yancheng Teachers University Yancheng 224007 China
| | - Jianhong Jia
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Yihan Zhu
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Yongwu Peng
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| |
Collapse
|
63
|
Liu Y, Chen P, Wang Y, Suo J, Ding J, Zhu L, Valtchev V, Yan Y, Qiu S, Sun J, Fang Q. Design and Synthesis of a Zeolitic Organic Framework**. Angew Chem Int Ed Engl 2022; 61:e202203584. [DOI: 10.1002/anie.202203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
64
|
Liu Y, Chen P, Wang Y, Suo J, Ding J, Zhu L, Valtchev V, Yan Y, Qiu S, Sun J, Fang Q. Design and Synthesis of a Zeolitic Organic Framework**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
65
|
Sun R, Wang X, Wang X, Tan B. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angew Chem Int Ed Engl 2022; 61:e202117668. [PMID: 35038216 DOI: 10.1002/anie.202117668] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/09/2022]
Abstract
The growth of crystalline covalent triazine frameworks (CTFs) is still considered as a great challenge due to the less reversible covalent bonds of triazine linkages. The research studies of crystalline CTFs to date have been limited to two-dimensional (2D) structures, and the three-dimensional (3D) crystalline CTFs have never been reported before. Herein we report the design and synthesis of two 3D crystalline CTFs, termed 3D CTF-TPM and 3D CTF-TPA through a reversible/irreversible polycondensation approach. The targeted 3D CTFs adopt ctn topology, and show moderate crystallinity, relatively large surface area (ca. 2000 m2 g-1 ), and high CO2 uptake capacity (23.61 wt.%). Moreover, these 3D CTFs exhibit ultrastability in the presence of boiling water, strong acid (1 M HCl) and strong base (1 M NaOH). This contribution represents the first report of 3D crystalline CTFs, which not only extends their structural diversity but also offers a synthetic strategy and structural basis for expanding practical applications of CTF materials.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xuepeng Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
66
|
Jin F, Lin E, Wang T, Geng S, Wang T, Liu W, Xiong F, Wang Z, Chen Y, Cheng P, Zhang Z. Bottom-Up Synthesis of 8-Connected Three-Dimensional Covalent Organic Frameworks for Highly Efficient Ethylene/Ethane Separation. J Am Chem Soc 2022; 144:5643-5652. [PMID: 35313103 DOI: 10.1021/jacs.2c01058] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Developing cost-/energy-efficient separation techniques for purifying ethylene from an ethylene/ethane mixture is highly important but very challenging in the industrial process. Herein, using a bottom-up [8 + 2] construction approach, we rationally designed and synthesized three three-dimensional covalent organic frameworks (COFs) with 8-connected bcu networks, which can selectively remove ethane from an ethylene/ethane mixture with high efficiency. These COF materials, which are fabricated by the condensation reaction of a customer-designed octatopic aldehyde monomer with linear diamino linkers, possess high crystallinity, good structural robustness, and high porosity. Attributed to the well-organized micro-sized pores with a nonpolar/inert pore environment, these COFs display high ethane adsorption capacity and good selectivity over ethylene, making them among the best ethane-selective adsorbents for ethylene purification. Their excellent ethylene/ethane separation performance is validated by dynamic breakthrough experiments with high-purity ethylene (>99.99%) produced through a single adsorption process. The separation performance surpasses all reported C2H6-selective COFs and even some benchmark metal-organic frameworks. This work provides important guidance for the design of new adsorbents for value-added gas purification.
Collapse
Affiliation(s)
- Fazheng Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - En Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Tonghai Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Shubo Geng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Ting Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Wansheng Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Fanhao Xiong
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China.,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China.,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
67
|
Shan Z, Wu M, Zhu D, Wu X, Zhang K, Verduzco R, Zhang G. 3D Covalent Organic Frameworks with Interpenetrated pcb Topology Based on 8-Connected Cubic Nodes. J Am Chem Soc 2022; 144:5728-5733. [PMID: 35319193 DOI: 10.1021/jacs.2c01037] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The connectivity of building units for 3D covalent organic frameworks (COFs) has long been primarily 4 and 6, which have severely curtailed the structural diversity of 3D COFs. Here we demonstrate the successful design and synthesis of a porphyrin based, 8-connected building block with cubic configuration, which could be further reticulated into an unprecedented interpenetrated pcb topology by imine condensation with linear amine monomers. This study presents the first case of high-connectivity building units bearing 8-connected cubic nodes, thus greatly enriching the topological possibilities of 3D COFs.
Collapse
Affiliation(s)
- Zhen Shan
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Miaomiao Wu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Xiaowei Wu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States.,Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Gen Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
68
|
Yu C, Li H, Wang Y, Suo J, Guan X, Wang R, Valtchev V, Yan Y, Qiu S, Fang Q. Three-Dimensional Triptycene-Functionalized Covalent Organic Frameworks with hea Net for Hydrogen Adsorption. Angew Chem Int Ed Engl 2022; 61:e202117101. [PMID: 35072318 DOI: 10.1002/anie.202117101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Owing to the finite building blocks and difficulty in structural identification, it remains a tremendous challenge to elaborately design and synthesize three-dimensional covalent organic frameworks (3D COFs) with predetermined topologies. Herein, we report the first two cases of 3D COFs with the non-interpenetrated hea net, termed JUC-596 and JUC-597, by using the combination of tetrahedral and triangular prism building units. Due to the presence of triptycene functional groups and fluorine atoms, JUC-596 exhibits an exceptional performance in the H2 adsorption up to 305 cm3 g-1 (or 2.72 wt%) at 77 K and 1 bar, which is higher than previous benchmarks from porous organic materials reported so far. Furthermore, the strong interaction between H2 and COF materials is verified through the DFT theoretical calculations. This work represents a captivating example of rational design of functional COFs based on a reticular chemistry guide and demonstrates its promising application in clean energy storage.
Collapse
Affiliation(s)
- Chengyang Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jinqun Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Rui Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Song Ling Rd, Qingdao, Shandong, 266101, China.,Normandie University, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050, Caen, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716, USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
69
|
Gui B, Ding H, Cheng Y, Mal A, Wang C. Structural design and determination of 3D covalent organic frameworks. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
70
|
Fang Q, Yu C, Li H, Wang Y, Suo J, Guan X, Wang R, Valtchev V, Yan Y, Qiu S. Three‐Dimensional Triptycene‐Functionalized Covalent Organic Frameworks with hea net for Hydrogen Adsorption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qianrong Fang
- Jilin University Department of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| | | | - Hui Li
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| | - Yujie Wang
- Jilin University College of Chemistry CHINA
| | | | - Xinyu Guan
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| | - Rui Wang
- Jilin University College of Chemistry CHINA
| | - Valentin Valtchev
- Normandie Université: Normandie Universite Laboratoire Catalyse et Spectrochimie FRANCE
| | - Yushan Yan
- University of Delaware Chemical and Biomolecular Engineering UNITED STATES
| | - Shilun Qiu
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| |
Collapse
|
71
|
Sun R, Wang X, Wang X, Tan B. Three‐Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruixue Sun
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Xiaoyan Wang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Xuepeng Wang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Bien Tan
- Huazhong University of Science and Technology School of Chemisry & Chemical Engineering 1037 Luoyu Road 430074 Wuhan CHINA
| |
Collapse
|
72
|
Wang X, Chang G, Liu C, Li R, Jin Y, Ding X, Liu X, Wang H, Wang T, Jiang J. Chemical conversion of metal–organic frameworks into hemi-covalent organic frameworks. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01234k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hemi-covalent organic framework, P-Ni3(TAA)3, with the different conversion efficiency (P) of 34–72% for bis(diimine) nickel units has been obtained. The 40%-Ni3(TAA)3 exhibits the improved chemical stability and significantly catalytic property.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122, Luoshi Road, 430070, Wuhan, Hubei, China
| | - Chenxi Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruidong Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122, Luoshi Road, 430070, Wuhan, Hubei, China
| | - Yucheng Jin
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Ding
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolin Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
73
|
Zhu Y, Zhu D, Chen Y, Yan Q, Liu CY, Ling K, Liu Y, Lee D, Wu X, Senftle TP, Verduzco R. Porphyrin-based donor-acceptor COFs as efficient and reusable photocatalysts for PET-RAFT polymerization under broad spectrum excitation. Chem Sci 2021; 12:16092-16099. [PMID: 35024131 PMCID: PMC8672717 DOI: 10.1039/d1sc05379e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023] Open
Abstract
Covalent organic frameworks (COFs) are crystalline and porous organic materials attractive for photocatalysis applications due to their structural versatility and tunable optical and electronic properties. The use of photocatalysts (PCs) for polymerizations enables the preparation of well-defined polymeric materials under mild reaction conditions. Herein, we report two porphyrin-based donor-acceptor COFs that are effective heterogeneous PCs for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT). Using density functional theory (DFT) calculations, we designed porphyrin COFs with strong donor-acceptor characteristics and delocalized conduction bands. The COFs were effective PCs for PET-RAFT, successfully polymerizing a variety of monomers in both organic and aqueous media using visible light (λ max from 460 to 635 nm) to produce polymers with tunable molecular weights (MWs), low molecular weight dispersity, and good chain-end fidelity. The heterogeneous COF PCs could also be reused for PET-RAFT polymerization at least 5 times without losing photocatalytic performance. This work demonstrates porphyrin-based COFs that are effective catalysts for photo-RDRP and establishes design principles for the development of highly active COF PCs for a variety of applications.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Yu Chen
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Qianqian Yan
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
| | - Chun-Yen Liu
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Kexin Ling
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Yifeng Liu
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
| | - Dongjoo Lee
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Xiaowei Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences Fuzhou 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials (XMIREM), Haixi Institutes, Chinese Academy of Sciences Xiamen 361021 China
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Rafael Verduzco
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| |
Collapse
|
74
|
Guan Q, Zhou L, Dong Y. Construction of Nanoscale Covalent Organic Frameworks via Photocatalysis‐Involved Cascade Reactions for Tumor‐Selective Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qun Guan
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 China
| | - Le‐Le Zhou
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 China
| | - Yu‐Bin Dong
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 China
| |
Collapse
|
75
|
Wang X, Bahri M, Fu Z, Little MA, Liu L, Niu H, Browning ND, Chong SY, Chen L, Ward JW, Cooper AI. A Cubic 3D Covalent Organic Framework with nbo Topology. J Am Chem Soc 2021; 143:15011-15016. [PMID: 34516737 DOI: 10.1021/jacs.1c08351] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis of three-dimensional (3D) covalent organic frameworks (COFs) requires high-connectivity polyhedral building blocks or the controlled alignment of building blocks. Here, we use the latter strategy to assemble square-planar cobalt(II) phthalocyanine (PcCo) units into the nbo topology by using tetrahedral spiroborate (SPB) linkages that were chosen to provide the necessary 90° dihedral angles between neighboring PcCo units. This yields a porous 3D COF, SPB-COF-DBA, with a noninterpenetrated nbo topology. SPB-COF-DBA shows high crystallinity and long-range order, with 11 resolved diffraction peaks in the experimental powder X-ray diffraction (PXRD) pattern. This well-ordered crystal lattice can also be imaged by using high-resolution transmission electron microscopy (HR-TEM). SPB-COF-DBA has cubic pores and exhibits permanent porosity with a Brunauer-Emmett-Teller (BET) surface area of 1726 m2 g-1.
Collapse
Affiliation(s)
- Xue Wang
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, L7 3NY, U.K.,Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, L69 7ZD, U.K
| | - Mounib Bahri
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool, L69 3GL, U.K
| | - Zhiwei Fu
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, L69 7ZD, U.K
| | - Marc A Little
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, L69 7ZD, U.K
| | - Lunjie Liu
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, L69 7ZD, U.K
| | - Hongjun Niu
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, L69 7ZD, U.K
| | - Nigel D Browning
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool, L69 3GL, U.K
| | - Samantha Y Chong
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, L69 7ZD, U.K
| | - Linjiang Chen
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, L7 3NY, U.K.,Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, L69 7ZD, U.K
| | - John W Ward
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, L7 3NY, U.K.,Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, L69 7ZD, U.K
| | - Andrew I Cooper
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, L7 3NY, U.K.,Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, L69 7ZD, U.K
| |
Collapse
|
76
|
Xu W, Zhang Q, Shao Q, Xia C, Wu M. Photocatalytic C−F Bond Activation of Fluoroarenes,
gem
‐Difluoroalkenes and Trifluoromethylarenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wengang Xu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
| | - Qiao Zhang
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Qi Shao
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Congjian Xia
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Mingbo Wu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| |
Collapse
|
77
|
Li Q, Wang J, Zhang Y, Ricardez-Sandoval L, Bai G, Lan X. Structural and Morphological Engineering of Benzothiadiazole-Based Covalent Organic Frameworks for Visible Light-Driven Oxidative Coupling of Amines. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39291-39303. [PMID: 34392679 DOI: 10.1021/acsami.1c08951] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) are appealing platforms for photocatalysts because of their structural diversity and adjustable optical band gaps. The construction of efficient COFs for heterogeneous photocatalysis of organic transformations is highly desirable. Herein, we constructed a photoactive COF containing benzothiadiazole and triazine (BTDA-TAPT), for which the morphology and crystallinity might be easily tuned by slight synthetic variation. To unveil the relationship of photocatalytic properties between the structure and morphology, analogous COFs were synthesized by precisely tailoring building blocks. Systematic investigations indicated that tuning the structure and morphology might greatly impact photoelectric properties. The BTDA-TAPT featuring ordered alignment and perfect crystalline nature was more beneficial for promoting charge transfer and separation, which exhibited superior photocatalytic activity for visible light-driven oxidative coupling of amines. Outcomes from this study reveal the intrinsic synergy effects between the structure and morphology of COFs for photocatalysis.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Yize Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Luis Ricardez-Sandoval
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
78
|
Sarkar C, Shit SC, Das N, Mondal J. Presenting porous-organic-polymers as next-generation invigorating materials for nanoreactors. Chem Commun (Camb) 2021; 57:8550-8567. [PMID: 34369958 DOI: 10.1039/d1cc02616j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Porous organic polymers (POPs) represent an emerging class of porous organic materials which mainly comprise organic building blocks that are interconnected via strong covalent bonds, thereby offering highly cross-linked frameworks with rigid structures and specific void spaces for accommodating guest molecules. In the past few years, POPs have garnered colossal research interest as nanoreactors for heterogeneous catalysis (thermal, photochemical, electrochemical, etc.) because of their intriguing characteristic features, such as high thermal and chemical stabilities, adjustable chemical functionalities, large surface areas, and tunable pore size distributions. This feature article provides an overview of existing research relating to diverse POP synthetic approaches (COFs, CTFs, and some amorphous POPs), the possible modification of the functionality of POPs, and their exciting application as next-generation nanoreactors. These POPs are extremely interesting, as they offer the potential for either metal-free or metalated polymer catalysts allowing photocatalytic CO2 reduction to solar-fuel, biofuel upgrades, the conversion of waste cooking oil to bio-oil, and clean H2 production from water, addressing many scientific and technological challenges and providing new opportunities for various specific topics in catalysis. Finally, we emphasize that the integration of various synthetic approaches and the application of POPs as nanoreactors will provide opportunities in the near future for the precision synthesis of functional materials with significant impact in both basic and applied research areas.
Collapse
Affiliation(s)
- Chitra Sarkar
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 50007, India.
| | | | | | | |
Collapse
|
79
|
Wang K, Kang X, Yuan C, Han X, Liu Y, Cui Y. Porous 2D and 3D Covalent Organic Frameworks with Dimensionality-Dependent Photocatalytic Activity in Promoting Radical Ring-Opening Polymerization. Angew Chem Int Ed Engl 2021; 60:19466-19476. [PMID: 34164891 DOI: 10.1002/anie.202107915] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/06/2022]
Abstract
Dimensionality is a fundamental parameter to modulate the properties of solid materials by tuning electronic structures. Covalent organic frameworks (COFs) are a prominent class of porous crystalline materials, but the study of dimensional dependence on their physicochemical properties is still lacking. Herein we illustrate photocatalytic performances of N,N-diaryl dihydrophenazine (PN)-based COFs are heavily dependent on the structural dimensionality. Six isostructural imine-bonded 2D-PN COFs and one 3D-PN COF were prepared. All can be heterogeneous photocatalysts to promote radical ring-opening polymerization of vinylcyclopropanes (VCPs), which typically produces polymers with a combination of linear (l) and cyclic (c) repeat units. The 2D-PN COFs have much higher catalytic activity than the 3D-PN COF, allowing the efficient synthesis of poly(VCPs) with controlled molecular weight, low dispersity and high l/c selectivity (up to 97 %). The improved performance can be ascribed to the 2D structure which has a larger internal surface area, more catalytically active sites, higher photosensitizing ability and photoinduced electron transfer efficiency.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xing Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
80
|
Wang K, Kang X, Yuan C, Han X, Liu Y, Cui Y. Porous 2D and 3D Covalent Organic Frameworks with Dimensionality‐Dependent Photocatalytic Activity in Promoting Radical Ring‐Opening Polymerization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kaixuan Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xing Kang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Chen Yuan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xing Han
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yong Cui
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
81
|
Lu HS, Han WK, Yan X, Chen CJ, Niu T, Gu ZG. A 3D Anionic Metal Covalent Organic Framework with soc Topology Built from an Octahedral Ti IV Complex for Photocatalytic Reactions. Angew Chem Int Ed Engl 2021; 60:17881-17886. [PMID: 34008273 DOI: 10.1002/anie.202102665] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Indexed: 11/10/2022]
Abstract
The construction of three-dimensional (3D) covalent organic frameworks (COFs) remains challenging due to the limited types of organic building blocks. With octahedral TiIV complex as the building unit, this study reports on the first 3D anionic titanium-based COF (Ti-COF-1) with an edge-transitive (6, 4)-connected soc topology. Ti-COF-1 exhibits high crystallinity, superior stability, and large specific surface area (1000.4 m2 g-1 ). Moreover, Ti-COF-1 has a broad absorption band in the UV spectrum with an optical energy gap of 1.86 eV, and exhibits high photocatalytic activity toward Meerwein addition reactions. This research demonstrates an attractive strategy for the design of 3D functional COFs.
Collapse
Affiliation(s)
- Hui-Shu Lu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wang-Kang Han
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaodong Yan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chuan-Jie Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Tengfei Niu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Guo Gu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
82
|
Lu H, Han W, Yan X, Chen C, Niu T, Gu Z. A 3D Anionic Metal Covalent Organic Framework with soc Topology Built from an Octahedral Ti
IV
Complex for Photocatalytic Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hui‐Shu Lu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| | - Wang‐Kang Han
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| | - Xiaodong Yan
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| | - Chuan‐Jie Chen
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| | - Tengfei Niu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| | - Zhi‐Guo Gu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| |
Collapse
|
83
|
Wang X, Enomoto R, Murakami Y. Ionic additive strategy to control nucleation and generate larger single crystals of 3D covalent organic frameworks. Chem Commun (Camb) 2021; 57:6656-6659. [PMID: 34128021 DOI: 10.1039/d1cc01857d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To generate large single crystals of 3D covalent organic frameworks, the active use of ionic additives, which can greatly impact crystal size, is proposed. The crystal size ranking was found to be in accordance with the Hofmeister series and Gutmann donor number, providing a useful strategy to enhance crystal size and, consequently, generate COF-300 single crystals of >200 μm in size.
Collapse
Affiliation(s)
- Xiaohan Wang
- School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Riku Enomoto
- School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Yoichi Murakami
- School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan. and PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
84
|
Chen L, Gong C, Wang X, Dai F, Huang M, Wu X, Lu CZ, Peng Y. Substoichiometric 3D Covalent Organic Frameworks Based on Hexagonal Linkers. J Am Chem Soc 2021; 143:10243-10249. [PMID: 34192869 DOI: 10.1021/jacs.1c03739] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covalent organic frameworks (COFs), a fast-growing field in crystalline porous materials, have achieved tremendous success in structure development and application exploration over the past decade. The vast majority of COFs reported to date are designed according to the basic concept of reticular chemistry, which is rooted in the idea that building blocks are fully connected within the frameworks. We demonstrate here that sub-stoichiometric construction of 2D/3D COFs can be accomplished by the condensation of a hexagonal linker with 4-connected building units. It is worth noting that the partially connected frameworks were successfully reticulated for 3D COFs for the first time, representing the highest BET surface area among imine-linked 3D COFs to data. The unreacted benzaldehydes in COF frameworks can enhance C2H2 and CO2 adsorption capacity and selectivities between C2H2/CH4 and C2H2/CO2 for sub-stoichiometric 2D COFs, while the reserved benzaldehydes control the interpenetrated architectures for the 3D case, achieving a rare non-interpenetrated pts topology for 3D COFs. This work not only paves a new avenue to build new COFs and endows residual function groups with further applications but also prompts redetermination of reticular frameworks in highly connected and symmetrical COFs.
Collapse
Affiliation(s)
- Liangjun Chen
- College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fangna Dai
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingchu Huang
- College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaowei Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences, Fuzhou 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials (XMIREM), Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Can-Zhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences, Fuzhou 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials (XMIREM), Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongwu Peng
- College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
85
|
Frimpong J, Liu ZF. Quasiparticle electronic structure of two-dimensional heterotriangulene-based covalent organic frameworks adsorbed on Au(111). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:254004. [PMID: 33848999 DOI: 10.1088/1361-648x/abf7a0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The modular nature and unique electronic properties of two-dimensional (2D) covalent organic frameworks (COFs) make them an attractive option for applications in catalysis, optoelectronics, and spintronics. The fabrications of such devices often involve interfaces formed between COFs and substrates. In this work, we employ the first-principlesGWapproach to accurately determine the quasiparticle electronic structure of three 2D carbonyl bridged heterotriangulene-based COFs featuring honeycomb-kagome lattice, with their properties ranging from a semi-metal to a wide-gap semiconductor. Moreover, we study the adsorption of these COFs on Au(111) surface and characterize the quasiparticle electronic structure at the heterogeneous COF/Au(111) interfaces. To reduce the computational cost, we apply the recently developed dielectric embeddingGWapproach and show that our results agree with existing experimental measurement on the interfacial energy level alignment. Our calculations illustrate how the many-body dielectric screening at the interface modulates the energies and shapes of the Dirac bands, the effective masses of semiconducting COFs, as well as the Fermi velocity of the semi-metallic COF.
Collapse
Affiliation(s)
- Joseph Frimpong
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States of America
| | - Zhen-Fei Liu
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States of America
| |
Collapse
|
86
|
He J, Jiang X, Xu F, Li C, Long Z, Chen H, Hou X. Low Power, Low Temperature and Atmospheric Pressure Plasma‐Induced Polymerization: Facile Synthesis and Crystal Regulation of Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juan He
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
| | - Xue Jiang
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu Sichuan 610066 China
| | - Fujian Xu
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- College of Chemistry and Environment Southwest Minzu University Chengdu Sichuan 610041 China
| | - Chenghui Li
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Zhou Long
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Hanjiao Chen
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Xiandeng Hou
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
| |
Collapse
|
87
|
Xiao G, Li W, Chen T, Hu W, Yang H, Liu YA, Wen K. Application of Electron‐Rich Covalent Organic Frameworks COF‐JLU25 for Photocatalytic Aerobic Oxidative Hydroxylation of Arylboronic Acids to Phenols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guangjun Xiao
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Wenqian Li
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Tao Chen
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Wei‐Bo Hu
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Hui Yang
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Yahu A. Liu
- Medicinal Chemistry ChemBridge Research Laboratories San Diego CA 92127 USA
| | - Ke Wen
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
88
|
He J, Jiang X, Xu F, Li C, Long Z, Chen H, Hou X. Low Power, Low Temperature and Atmospheric Pressure Plasma‐Induced Polymerization: Facile Synthesis and Crystal Regulation of Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:9984-9989. [DOI: 10.1002/anie.202102051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Juan He
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
| | - Xue Jiang
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu Sichuan 610066 China
| | - Fujian Xu
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- College of Chemistry and Environment Southwest Minzu University Chengdu Sichuan 610041 China
| | - Chenghui Li
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Zhou Long
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Hanjiao Chen
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Xiandeng Hou
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
| |
Collapse
|
89
|
Martínez‐Abadía M, Strutyński K, Lerma‐Berlanga B, Stoppiello CT, Khlobystov AN, Martí‐Gastaldo C, Saeki A, Melle‐Franco M, Mateo‐Alonso A. π‐Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marta Martínez‐Abadía
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Karol Strutyński
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | | | - Craig T. Stoppiello
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- The Nanoscale and Microscale Research Centre University of Nottingham University Park Nottingham NG7 2RD UK
| | - Andrei N. Khlobystov
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- The Nanoscale and Microscale Research Centre University of Nottingham University Park Nottingham NG7 2RD UK
| | | | - Akinori Saeki
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Osaka 565-0871 Japan
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- Ikerbasque Basque Foundation for Science Bilbao Spain
| |
Collapse
|
90
|
Martínez‐Abadía M, Strutyński K, Lerma‐Berlanga B, Stoppiello CT, Khlobystov AN, Martí‐Gastaldo C, Saeki A, Melle‐Franco M, Mateo‐Alonso A. π‐Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021; 60:9941-9946. [DOI: 10.1002/anie.202100434] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Marta Martínez‐Abadía
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Karol Strutyński
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | | | - Craig T. Stoppiello
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- The Nanoscale and Microscale Research Centre University of Nottingham University Park Nottingham NG7 2RD UK
| | - Andrei N. Khlobystov
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- The Nanoscale and Microscale Research Centre University of Nottingham University Park Nottingham NG7 2RD UK
| | | | - Akinori Saeki
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Osaka 565-0871 Japan
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- Ikerbasque Basque Foundation for Science Bilbao Spain
| |
Collapse
|
91
|
Hou B, Yang S, Yang K, Han X, Tang X, Liu Y, Jiang J, Cui Y. Confinement-Driven Enantioselectivity in 3D Porous Chiral Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:6086-6093. [PMID: 33295124 DOI: 10.1002/anie.202013926] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Indexed: 11/09/2022]
Abstract
3D covalent organic frameworks (COFs) with well-defined porous channels are shown to be capable of inducing chiral molecular catalysts from non-enantioselective to highly enantioselective in catalyzing organic transformations. By condensations of a tetrahedral tetraamine and two linear dialdehydes derived from enantiopure 1,1'-binaphthol (BINOL), two chiral 3D COFs with a 9-fold or 11-fold interpenetrated diamondoid framework are prepared. Enhanced Brønsted acidity was observed for the chiral BINOL units that are uniformly distributed within the tubular channels compared to the non-immobilized acids. This facilitates the Brønsted acid catalysis of cyclocondensation of aldehydes and anthranilamides to produce 2,3-dihydroquinazolinones. DFT calculations show the COF catalyst provides preferential secondary interactions between the substrate and framework to induce enantioselectivities that are not achievable in homogeneous systems.
Collapse
Affiliation(s)
- Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shi Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore, Singapore
| | - Xing Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore, Singapore
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
92
|
Li H, Chen F, Guan X, Li J, Li C, Tang B, Valtchev V, Yan Y, Qiu S, Fang Q. Three-Dimensional Triptycene-Based Covalent Organic Frameworks with ceq or acs Topology. J Am Chem Soc 2021; 143:2654-2659. [DOI: 10.1021/jacs.0c12499] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiali Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Cuiyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bin Tang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, Shandong 266101, P. R. China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050 Caen, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, Delaware 19716, United States
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
93
|
Hou B, Yang S, Yang K, Han X, Tang X, Liu Y, Jiang J, Cui Y. Confinement‐Driven Enantioselectivity in 3D Porous Chiral Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bang Hou
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Shi Yang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering National University of Singapore 117576 Singapore Singapore
| | - Xing Han
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering National University of Singapore 117576 Singapore Singapore
| | - Yong Cui
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
94
|
An X, Feng Z, Huang L, Yang Y, Liu Z. Recent Advances in the Single C—F Bond Cleavage Reactions of Trifluoromethylarenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
95
|
Yuan C, Fu S, Yang K, Hou B, Liu Y, Jiang J, Cui Y. Crystalline C-C and C═C Bond-Linked Chiral Covalent Organic Frameworks. J Am Chem Soc 2020; 143:369-381. [PMID: 33356183 DOI: 10.1021/jacs.0c11050] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
While crystalline covalent organic frameworks (COFs) linked by C-C bonds are highly desired in synthetic chemistry, it remains a formidable challenge to synthesize. Efforts to generate C-C single bonds in COFs via de novo synthesis usually afford amorphous structures rather than crystalline phases. We demonstrate here that C-C single bond-based COFs can be prepared by direct reduction of C═C bond-linked frameworks via crystal-to-crystal transformation. By Knoevenagel polycondensation of chiral tetrabenzaldehyde of dibinaphthyl-22-crown-6 with 1,4-phenylenediacetonitrile or 4,4'-biphenyldiacetonitrile, two olefin-linked chiral COFs with 2D layered tetragonal structure are prepared. Reduction of olefin linkages of the as-prepared CCOFs produces two C-C single bond linked frameworks, which retains high crystallinity and porosity as well as high chemical stability in both strong acids and bases. The quantitative reduction is confirmed by Fourier transform infrared and cross-polarization magic angle spinning 13C NMR spectroscopy. Compared to the pristine structures, the reduced CCOFs display blue-shifted emission with enhanced quantum yields and fluorescence lifetimes, while the parent CCOFs exhibit higher enantioselectivity than the reduced analogs when be used as fluorescent sensors to detect chiral amino alcohols via supramolecular interactions with the built-in crown ether moieties. This work provides an attractive strategy for making chemically stable functionalized COFs with new linkages that are otherwise hard to produce.
Collapse
Affiliation(s)
- Chen Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shiguo Fu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
96
|
Li Z, Sheng L, Wang H, Wang X, Li M, Xu Y, Cui H, Zhang H, Liang H, Xu H, He X. Three-Dimensional Covalent Organic Framework with ceq Topology. J Am Chem Soc 2020; 143:92-96. [PMID: 33332116 DOI: 10.1021/jacs.0c11313] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three-dimensional covalent organic frameworks (3D-COFs) are emerging as designable porous materials because of their unique structural characteristics and porous features. However, because of the lack of 3D organic building units and the less reversible covalent bonds, the topologies of 3D-COFs to date have been limited to dia, ctn, ffc, bor, rra, srs, pts, lon, stp, acs, tbo, bcu, and fjh. Here we report a 3D-COF with the ceq topology utilizing a D3h-symmetric triangular prism vertex with a planar triangular linker. The as-synthesized COF displays a twofold-interpenetrated structure with a Brunauer-Emmett-Teller surface area of 1148.6 m2 g-1. Gas sorption measurements revealed that 3D-ceq-COF could efficiently absorb CO2, CH4, and H2 under a moderate surface area. This work provides new building units and approaches for structural and application exploration of 3D-COFs.
Collapse
Affiliation(s)
- Zonglong Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Li Sheng
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Hangchao Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xiaolin Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Mingyang Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yulong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Hao Cui
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Haitian Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Hongmei Liang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
97
|
Nguyen HL, Gropp C, Ma Y, Zhu C, Yaghi OM. 3D Covalent Organic Frameworks Selectively Crystallized through Conformational Design. J Am Chem Soc 2020; 142:20335-20339. [PMID: 33186498 DOI: 10.1021/jacs.0c11064] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present a strategy whereby selective formation of imine covalent organic frameworks (COFs) based on linking of triangles and squares into the fjh topology was achieved by the conformational design of the building units. 1,3,5-Trimethyl-2,4,6-tris(4-formylphenyl)benzene (TTFB, triangle) and 1,1,2,2-tetrakis(4-aminophenyl)ethene (ETTA, square) were reticulated into [(TTFB)4(ETTA)3]imine, termed COF-790, which was fully characterized by spectroscopic, microscopic, and X-ray diffraction techniques. COF-790 exhibits permanent porosity and a Brunauer-Emmett-Teller (BET) surface area of 2650 m2 g-1. Key to the formation of this COF in crystalline form is the pre-designed conformation of the triangle and the square units to give dihedral angles in the range of 75-90°, without which the reaction results in the formation of amorphous product. We demonstrate the versatility of our strategy by also reporting the synthesis and characterization of two isoreticular forms of COF-790, COF-791 and COF-792, based on other square building units.
Collapse
Affiliation(s)
- Ha L Nguyen
- Department of Chemistry, University of California Berkeley; Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global Science Institute, Berkeley, California 94720, United States
- Joint UAEU-UC Berkeley Laboratories for Materials Innovations
| | - Cornelius Gropp
- Department of Chemistry, University of California Berkeley; Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global Science Institute, Berkeley, California 94720, United States
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Omar M Yaghi
- Department of Chemistry, University of California Berkeley; Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global Science Institute, Berkeley, California 94720, United States
- Joint UAEU-UC Berkeley Laboratories for Materials Innovations
| |
Collapse
|