51
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
52
|
He M, Wang R, Wan P, Wang H, Cheng Y, Miao P, Wei Z, Leng X, Li Y, Du J, Fan J, Sun W, Peng X. Biodegradable Ru-Containing Polycarbonate Micelles for Photoinduced Anticancer Multitherapeutic Agent Delivery and Phototherapy Enhancement. Biomacromolecules 2022; 23:1733-1744. [PMID: 35107271 DOI: 10.1021/acs.biomac.1c01651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lack of selectivity between tumor and healthy cells, along with inefficient reactive oxygen species production in solid tumors, are two major impediments to the development of anticancer Ru complexes. The development of photoinduced combination therapy based on biodegradable polymers that can be light activated in the "therapeutic window" would be beneficial for enhancing the therapeutic efficacy of Ru complexes. Herein, a biodegradable Ru-containing polymer (poly(DCARu)) is developed, in which two different therapeutics (the drug and the Ru complex) are rationally integrated and then conjugated to a diblock copolymer (MPEG-b-PMCC) containing hydrophilic poly(ethylene glycol) and cyano-functionalized polycarbonate with good degradability and biocompatibility. The polymer self-assembles into micelles with high drug loading capacity, which can be efficiently internalized into tumor cells. Red light induces the generation of singlet oxygen and the release of anticancer drug-Ru complex conjugates from poly(DCARu) micelles, hence inhibiting tumor cell growth. Furthermore, the phototherapy of polymer micelles demonstrates remarkable inhibition of tumor growth in vivo. Meanwhile, polymer micelles exhibit good biocompatibility with blood and healthy tissues, which opens up opportunities for multitherapeutic agent delivery and enhanced phototherapy.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Peiyuan Wan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hexiang Wang
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Cheng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Pengcheng Miao
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
53
|
Chang M, Yan C, Shi L, Li D, Fu W, Guo Z. Rational design of shortwave infrared (SWIR) fluorescence probe: Cooperation of ICT and ESIPT processes for sensing endogenous cysteine. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
54
|
Kaur J, Nadimetla DN, Bhosale SV, Singh PK. Polyanionic Cyclodextrin-Induced Supramolecular Assembly of a Cationic Tetraphenylethylene Derivative with Aggregation-Induced Emission. J Phys Chem B 2022; 126:1147-1155. [PMID: 35103477 DOI: 10.1021/acs.jpcb.1c09780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The combination of supramolecular chemistry and aggregation-induced emission-based luminogens (AIEgens) has recently attracted tremendous attention because of its ability to offer large emission enhancement even in substantially dilute solutions. In this work, a new aggregation-induced emission (AIE)-based supramolecular assembly has been reported, which consists of a polyanionic cyclodextrin derivative and a tetracationic tetraphenylethylene (TPE) derivative. Ionic cyclodextrins have attracted significant attention in host-guest supramolecular chemistry and pharmaceutical industry. However, ionic derivatives of β-cyclodextrins have not been explored to establish noncovalent interactions-based aggregation assembly of the most popular class of AIEgens, i.e., tetraphenylethylene derivatives. The current report demonstrates AIE of a tetracationic methyl pyridinium derivative of tetraphenylethylene (TPy-TPE) induced by a polyanionic sulfated β-cyclodextrin (S-βCD). The AIE-based supramolecular assembly has been thoroughly investigated using steady-state fluorescence, ground-state absorbance, and time-resolved fluorescence measurements. Further, the response of the supramolecular assembly towards external stimuli, such as, ionic strength, pH, and temperature, has been investigated. In addition, the complexation behavior of the TPE derivative has also been compared with the native neutral β-cyclodextrin derivative, which delineates the important role of the negatively charged portal of S-βCD in inducing aggregation of the TPy-TPE. The stoichiometry of the complex has been found to be 3:1 for TPy-TPE:S-βCD, using Job's plot analysis. Finally, to get insights into the underlying interactions between the supramolecular assembly components, molecular docking calculations have been performed.
Collapse
Affiliation(s)
- Jasvir Kaur
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Dinesh N Nadimetla
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
55
|
Huang H, Xie W, Wan Q, Mao L, Hu D, Sun H, Zhang X, Wei Y. A Self-Degradable Conjugated Polymer for Photodynamic Therapy with Reliable Postoperative Safety. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104101. [PMID: 34898054 PMCID: PMC8811814 DOI: 10.1002/advs.202104101] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 05/05/2023]
Abstract
As a noninvasive therapeutic technique, photodynamic therapy (PDT) has attracted numerous research interests for cancer therapy. Nevertheless, the residual photosensitizers (PSs) still produce reactive oxygen species (ROS) and damage normal cells under sunlight after PDT, which limits their practical application in clinic. Herein, the authors propose a self-degradable type-I PS based on conjugated polymer, which is composed of aggregation-induced emission (AIE) and imidazole units. Due to the effective conjugated skeleton and unique AIE properties, thus-obtained polymers can effectively generate superoxide radical (O2-• ) through the type-I process under light irradiation, which is ideal for hypoxic tumors treatment. Intriguingly, under light irradiation, O2-• produced by the conjugated polymers can further lead to the self-degradation of the polymer to form nontoxic micro-molecules. It not only helps to resolve the potential phototoxicity problems of residual PSs, but also can accelerate the metabolism of the conjugated polymers to avoid the potential biotoxicity of drug accumulation. This work develops a self-degradable type-I PS, which can turn off the generation of ROS in time after PDT, providing a novel strategy to balance the PDT effect and postoperative safety.
Collapse
Affiliation(s)
- Hongye Huang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Qing Wan
- School of Materials Science and EngineeringNanchang Hangkong UniversityNanchang330063China
| | - Liucheng Mao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Danning Hu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Sun
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Xiaoyong Zhang
- Department of ChemistryNanchang UniversityNanchang330031China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
56
|
Tao Y, Yan C, Li D, Dai J, Cheng Y, Li H, Zhu WH, Guo Z. Sequence-Activated Fluorescent Nanotheranostics for Real-Time Profiling Pancreatic Cancer. JACS AU 2022; 2:246-257. [PMID: 35098241 PMCID: PMC8790745 DOI: 10.1021/jacsau.1c00553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), as one of the most malignant tumors with dense desmoplastic stroma, forms a specific matrix barrier to hinder effective diagnosis and therapy. To date, a paramount challenge is in the search for intelligent nanotheranostics for such hypopermeable tumors, especially in breaking the PDAC-specific physical barrier. The unpredictable in vivo behaviors of nanotheranostics, that is, real-time tracking where, when, and how they cross the physical barriers and are taken up by tumor cells, are the major bottleneck. Herein, we elaborately design sequence-activated nanotheranostic TCM-U11&Cy@P with dual-channel near-infrared fluorescence outputs for monitoring in vivo behaviors in a sequential fashion. This nanotheranostic with a programmable targeting capability effectively breaks through the PDAC barriers. Ultimately, the released aggregation-induced emission (AIE) particle TCM-U11 directly interacts with PDAC cells and penetrates into the deep tissue. Impressively, this fluorescent nanotheranostic intraoperatively can map human clinical PDAC specimens with high resolution. We believe that this unique sequence-activated fluorescent strategy expands the repertoire of nanotheranostics in the treatment of hypopermeable tumors.
Collapse
Affiliation(s)
- Yining Tao
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department
of Interventional Radiology, Shanghai Jiao
Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dan Li
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianfeng Dai
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yingsheng Cheng
- Department
of Interventional Radiology, Shanghai Jiao
Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Hui Li
- Department
of Interventional Radiology, Shanghai Jiao
Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqian Guo
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
57
|
Yu T, Zhang D, Wang J, Sun CL, Cui T, Xu Z, Jiang XD, Du J. Near-infared upper phenyl-fused BODIPY as photosensitizer for photothermal-photodynamic therapy. J Mater Chem B 2022; 10:3048-3054. [DOI: 10.1039/d2tb00012a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BODIPY scaffolds by introducing ring-fused segment promoted bathochromic-shift spectrum and enhanced intersystem crossing capability by a twisted structure. In this work, we designed the upper phenyl-fused BODIPY with 4-dimethylaminostyryl groups...
Collapse
|
58
|
Chen M, Qi C, Yin YT, Lv P, Xiang S, Tian J, Feng Zhao J, Feng HT, Tang BZ. Enantioselective determination of chiral acids and amino acids by chiral receptors with aggregation-induced emissions. Org Chem Front 2022. [DOI: 10.1039/d2qo01073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chiral AIEgens showed satisfying enantiomer discrimination not only for amino acids but also for chiral acids.
Collapse
Affiliation(s)
- Mingyu Chen
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Chunxuan Qi
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Yu-Ting Yin
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Panpan Lv
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Song Xiang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Jingjing Tian
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Jing Feng Zhao
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
59
|
Han H, Li S, Zhong Y, Huang Y, Wang K, Jin Q, Ji J, Yao K. Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian J Pharm Sci 2022; 17:35-52. [PMID: 35261643 PMCID: PMC8888143 DOI: 10.1016/j.ajps.2021.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/19/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Gemcitabine has been extensively applied in treating various solid tumors. Nonetheless, the clinical performance of gemcitabine is severely restricted by its unsatisfactory pharmacokinetic parameters and easy deactivation mainly because of its rapid deamination, deficiencies in deoxycytidine kinase (DCK), and alterations in nucleoside transporter. On this account, repeated injections with a high concentration of gemcitabine are adopted, leading to severe systemic toxicity to healthy cells. Accordingly, it is highly crucial to fabricate efficient gemcitabine delivery systems to obtain improved therapeutic efficacy of gemcitabine. A large number of gemcitabine pro-drugs were synthesized by chemical modification of gemcitabine to improve its biostability and bioavailability. Besides, gemcitabine-loaded nano-drugs were prepared to improve the delivery efficiency. In this review article, we introduced different strategies for improving the therapeutic performance of gemcitabine by the fabrication of pro-drugs and nano-drugs. We hope this review will provide new insight into the rational design of gemcitabine-based delivery strategies for enhanced cancer therapy.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Su Li
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yueyang Zhong
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Wang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
60
|
Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021; 10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Indexed: 12/15/2022]
Abstract
In the field of tumor imaging and therapy, the aggregation-caused quenching (ACQ) effect of fluorescent dyes at high concentration is a great challenge. In this regard, the aggregation-induced emission luminogens (AIEgens) show great potential, since AIEgens effectively overcome the ACQ effect and have better fluorescence quantum yield, photobleaching resistance, and photosensitivity. Polyethylene glycol (PEG)-polymer is the most commonly used carrier to prepare nanoparticles (NPs). The advantage of PEGylation is that it can greatly prolong the metabolic half-life and reduce immunogenicity and toxicity. Considering that the hydrophobicity of most AIEgens hinders their application in organisms, the use of PEG-polymer encapsulation is an effective strategy to overcome this obstacle. Importantly, bioactive functional groups can be modified on PEG-polymers to enhance the biological effect of NPs. The combination of powerful AIEgens and PEG-polymers provides a new strategy for tumor imaging and therapy, which is promising for clinical application.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology 1095 Jiefang Avenue Wuhan 430032 China
| | - Xiaoqi Dong
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology 1095 Jiefang Avenue Wuhan 430032 China
| |
Collapse
|
61
|
Wang J, Zhang L, Li Z. Aggregation-Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Adv Healthc Mater 2021; 10:e2101169. [PMID: 34783194 DOI: 10.1002/adhm.202101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Fluorescent biomedical materials can visualize subcellular structures and therapy processes in vivo. The aggregation-induced emission (AIE) phenomenon helps suppress the quenching effect in the aggregated state suffered by conventional fluorescent materials, thereby contributing to design strategies for fluorescent biomedical materials. Photoresponsive biomedical materials have attracted attention because of the inherent advantages of light; i.e., remote control, high spatial and temporal resolution, and environmentally friendly characteristics, and their combination with AIE facilitates development of fluorescent molecules with efficient photochemical reactions upon light irradiation. In this review, organic compounds with AIE features for biomedical applications and design strategies for photoresponsive AIE luminogens (AIEgens) are first summarized briefly. Applications are then reviewed, with the employment of photoresponsive and AIE-active molecules for photoactivation imaging, super-resolution imaging, light-induced drug delivery, photodynamic therapy with photochromic behavior, and bacterial targeting and killing being discussed at length. Finally, the future outlook for AIEgens is considered with the aim of stimulating innovative work for further development of this field.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Liyao Zhang
- School of Life Sciences Tianjin University Tianjin 300072 China
| | - Zhen Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Chemistry Wuhan University Wuhan 430072 China
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
62
|
A study on how to control the supramolecular amphiphilic assembly of anionic bola surfactant with calixpyridinium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
63
|
Zheng X, Jin Y, Liu X, Liu T, Wang W, Yu H. Photoactivatable nanogenerators of reactive species for cancer therapy. Bioact Mater 2021; 6:4301-4318. [PMID: 33997507 PMCID: PMC8105601 DOI: 10.1016/j.bioactmat.2021.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, reactive species-based cancer therapies have attracted tremendous attention due to their simplicity, controllability, and effectiveness. Herein, we overviewed the state-of-art advance for photo-controlled generation of highly reactive radical species with nanomaterials for cancer therapy. First, we summarized the most widely explored reactive species, such as singlet oxygen, superoxide radical anion (O2 ●-), nitric oxide (●NO), carbon monoxide, alkyl radicals, and their corresponding secondary reactive species generated by interaction with other biological molecules. Then, we discussed the generating mechanisms of these highly reactive species stimulated by light irradiation, followed by their anticancer effect, and the synergetic principles with other therapeutic modalities. This review might unveil the advantages of reactive species-based therapeutic methodology and encourage the pre-clinical exploration of reactive species-mediated cancer treatments.
Collapse
Affiliation(s)
- Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
64
|
Wang HP, Chen X, Qi YL, Huang LW, Wang CX, Ding D, Xue X. Aggregation-induced emission (AIE)-guided dynamic assembly for disease imaging and therapy. Adv Drug Deliv Rev 2021; 179:114028. [PMID: 34736987 DOI: 10.1016/j.addr.2021.114028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
The phenomenon of aggregation-induced emission (AIE) is inseparable from molecular aggregation and self-assembly. Therefore, the combination of AIE and supramolecular self-assembly is well-matched. AIE-guided dynamic assembly (AGDA) could effectively respond to the endogenous stimuli (such as pH, enzymes, redox molecules) and exogenous stimuli (temperature, light, ultrasound) in the disease microenvironment, so as to achieve specific imaging and diagnosis of the disease lesions. Moreover, AGDA also dynamically adjust the intramolecular motions of AIE molecules, thereby adjusting the energy dissipation pathways and realizing the switch between photodynamic therapy and photothermal therapy for superior therapeutic effects. In this review, we aim to give an overview of the constructing strategies, stimuli-responsive imaging, regulation of intramolecular motion of AGDA in recent years, which is expected to grasp the research status and striving directions of AGDA for imaging and therapy.
Collapse
Affiliation(s)
- He-Ping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yi-Lin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Li-Wen Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Chun-Xiao Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
| |
Collapse
|
65
|
Synthesis and characterization of a sensitive and selective Fe3+ fluorescent sensor based on novel sulfonated calix[4]arene‐based host‐guest complex. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
66
|
Yang G, Lu SB, Li C, Chen F, Ni JS, Zha M, Li Y, Gao J, Kang T, Liu C, Li K. Type I macrophage activator photosensitizer against hypoxic tumors. Chem Sci 2021; 12:14773-14780. [PMID: 34820093 PMCID: PMC8597846 DOI: 10.1039/d1sc04124j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Photodynamic immunotherapy has emerged as a promising strategy to treat cancer. However, the hypoxic nature of most solid tumors and notoriously immunosuppressive tumor microenvironment could greatly compromise the efficacy of photodynamic immunotherapy. To address this challenge, we rationally synthesized a type I photosensitizer of TPA-DCR nanoparticles (NPs) with aggregation-enhanced reactive oxygen species generation via an oxygen-independent pathway. We demonstrated that the free radicals produced by TPA-DCR NPs could reprogram M0 and M2 macrophages into an anti-tumor state, which is not restricted by the hypoxic conditions. The activated M1 macrophages could further induce the immunogenic cell death of cancer cells by secreting pro-inflammatory cytokines and phagocytosis. In addition, in vivo anti-tumor experiments revealed that the TPA-DCR NPs could further trigger tumor immune response by re-educating tumor-associated macrophages toward M1 phenotype and promoting T cell infiltration. Overall, this work demonstrates the design of type I organic photosensitizers and mechanistic investigation of their superior anti-tumor efficacy. The results will benefit the exploration of advanced strategies to regulate the tumor microenvironment for effective photodynamic immunotherapy against hypoxic tumors.
Collapse
Affiliation(s)
- Guang Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Song-Bo Lu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Chong Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Feng Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Jen-Shyang Ni
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yaxi Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Ji Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Tianyi Kang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Chao Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| |
Collapse
|
67
|
Jia H, Ding D, Hu J, Dai J, Yang J, Li G, Lou X, Xia F. AIEgen-Based Lifetime-Probes for Precise Furin Quantification and Identification of Cell Subtypes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104615. [PMID: 34553420 DOI: 10.1002/adma.202104615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Biochemical sensing probes based on aggregation-induced-emission luminogens (AIEgens) are widely used in biological imaging and therapy, chemical sensing, and material sciences. However, it is still a great challenge to quantify the targets through fluorescence intensity of AIEgen probes due to their undesirable aggregations. Here, a PyTPA-ZGO probe with three lifetime signals for precise quantification of furin is constructed: the lifetime signal 1 and signal 2 comes from AIEgen PyTPA-P (τPn ) and inorganic nanoparticles Zn2 GeO4 :Mn2+ -NH2 (τZn ), respectively, while the lifetime signal 3 is marked as the composite dual-lifetime signal (CDLSn , C D L S n = τ Z n τ P n ). In contrast, the fluorescence intensity signal of PyTPA-P shows defectively quantitative performance. Furthermore, it is found that the CDLSn exhibits higher significant differences than the two other lifetime signals (τPn and τZn ) thanks to its wide range between the maximum and minimum signal values and small standard deviation. Therefore, CDLSn is further used to accurately identify cell subtypes based on the specific concentration of furin in each subtype. The lifetime criterion can realize precise quantification, and it should be a promising direction of AIEgen-based quantitative analysis in the future.
Collapse
Affiliation(s)
- Hui Jia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Defang Ding
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jingjing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juliang Yang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Guogang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
68
|
Zhang X, Chen X, Guo Y, Gu L, Wu Y, Bindra AK, Teo WL, Wu FG, Zhao Y. Thiolate-Assisted Route for Constructing Chalcogen Quantum Dots with Photoinduced Fluorescence Enhancement. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48449-48456. [PMID: 34619967 DOI: 10.1021/acsami.1c15772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite great efforts in the development of diverse nanomaterials, a general route to synthesize metal-free chalcogen quantum dots (QDs) is still lacking. Moreover, the modification of chalcogen QDs is a bottleneck that severely hinders their applications. Herein, we develop a facile method to construct different chalcogen QDs (including S QDs, Se QDs, and Te QDs) with the assistance of thiolates. In addition to stabilizing chalcogen QDs, the thiolates also endow the chalcogen QDs with favorable modifiability. Different from most dyes whose fluorescence is quenched after short-term light irradiation, the prepared chalcogen QDs have significantly enhanced fluorescence emission under continuous light irradiation. Taking advantage of the distinctive photoinduced fluorescence enhancement property, long-time cell imaging with superb performance is realized using the chalcogen QDs. It is envisioned that the chalcogen QDs show promising potential as fluorescent materials in different fields beyond bioimaging.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiaokai Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yi Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Long Gu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yinglong Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Wei Liang Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
69
|
GSH/ROS Dual-Responsive Supramolecular Nanoparticles Based on Pillar[6]arene and Betulinic Acid Prodrug for Chemo-Chemodynamic Combination Therapy. Molecules 2021; 26:molecules26195900. [PMID: 34641443 PMCID: PMC8512399 DOI: 10.3390/molecules26195900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Chemodynamic therapy (CDT) based on intracellular Fenton reactions is attracting increasing interest in cancer treatment. A simple and novel method to regulate the tumor microenvironment for improved CDT with satisfactory effectiveness is urgently needed. Therefore, glutathione (GSH)/ROS (reactive oxygen species) dual-responsive supramolecular nanoparticles (GOx@BNPs) for chemo–chemodynamic combination therapy were constructed via host–guest complexation between water-soluble pillar[6]arene and the ferrocene-modified natural anticancer product betulinic acid (BA) prodrug, followed by encapsulation of glucose oxidase (GOx) in the nanoparticles. The novel supramolecular nanoparticles could be activated by the overexpressed GSH and ROS in the tumor microenvironment (TME), not only accelerating the dissociation of nanoparticles—and, thus, improving the BA recovery and release capability in tumors—but also showing the high-efficiency conversion of glucose into hydroxyl radicals (·OH) in succession through intracellular Fenton reactions. Investigation of antitumor activity and mechanisms revealed that the dramatic suppression of cancer cell growth induced by GOx@BNPs was derived from the elevation of ROS, decrease in ATP and mitochondrial transmembrane potential (MTP) and, finally, cell apoptosis. This work presents a novel method for the regulation of the tumor microenvironment for improved CDT, and the preparation of novel GSH/ROS dual-responsive supramolecular nanoparticles, which could exert significant cytotoxicity against cancer cells through the synergistic interaction of chemodynamic therapy, starvation therapy, and chemotherapy (CDT/ST/CT).
Collapse
|
70
|
Li Y, Liu S, Liang M, Cui Y, Zhao H, Gao Q. Glycocalixarene with luminescence for Warburg effect-mediated tumor imaging and targeted drug delivery. Chem Commun (Camb) 2021; 57:9728-9731. [PMID: 34474461 DOI: 10.1039/d1cc04169j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fluorescently labeled calix[4]arene glycoconjugates demonstrate multifunctional potential in both Warburg effect mediated tumor imaging and GLUT1 targeted drug delivery. Nitrobenzoxadiazole and mannose conjugated NBD-Man-CA was found to be selectively recognized by GLUT1 and act as a "molecular carrier" for selective tumor targeting.
Collapse
Affiliation(s)
- Yang Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai, Tianjin 300072, P. R. China.
| | - Shengnan Liu
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai, Tianjin 300072, P. R. China
| | - Min Liang
- Central Institute of Pharmaceutical Research, CSPC Pharmaceutical Group, 226 Huanghe Road, Shijiazhuang, Hebei, 050035, P. R. China
| | - Yujun Cui
- Transplantation Center, Tianjin First Central Hospital, 24 Fukang Road, Nankai, Tianjin 300192, P. R. China
| | - Hongxia Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai, Tianjin 300072, P. R. China.
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai, Tianjin 300072, P. R. China.
| |
Collapse
|
71
|
Argudo PG, Zhang N, Chen H, de Miguel G, Martín-Romero MT, Camacho L, Li MH, Giner-Casares JJ. Amphiphilic polymers for aggregation-induced emission at air/liquid interfaces. J Colloid Interface Sci 2021; 596:324-331. [PMID: 33839357 DOI: 10.1016/j.jcis.2021.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022]
Abstract
Polymersomes and related self-assembled nanostructures displaying Aggregation-Induced Emission (AIE) are highly relevant for plenty of applications in imaging, biology and functional devices. Experimentally simple, scalable and universal strategies for on-demand self-assembly of polymers rendering well-defined nanostructures are highly desirable. A purposefully designed combination of amphiphilic block copolymers including tunable lengths of hydrophilic polyethylene glycol (PEGm) and hydrophobic AIE polymer poly(tetraphenylethylene-trimethylenecarbonate) (P(TPE-TMC)n) has been studied at the air/liquid interface. The unique 2D assembly properties have been analyzed by thermodynamic measurements, UV-vis reflection spectroscopy and photoluminescence in combination with molecular dynamics simulations. The (PEG)m-b-P(TPE-TMC)n monolayers formed tunable 2D nanostructures self-assembled on demand by adjusting the available surface area. Tuning of the PEG length allows to modification of the area per polymer molecule at the air/liquid interface. Molecular detail on the arrangement of the polymer molecules and relevant molecular interactions has been convincingly described. AIE fluorescence at the air/liquid interface has been successfully achieved by the (PEG)m-b-P(TPE-TMC)n nanostructures. An experimentally simple 2D to 3D transition allowed to obtain 3D polymersomes in solution. This work suggests that engineered amphiphilic polymers for AIE may be suitable for selective 2D and 3D self-assembly for imaging and technological applications.
Collapse
Affiliation(s)
- Pablo G Argudo
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Nian Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China; Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris-UMR8247, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, Paris, France
| | - Hui Chen
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris-UMR8247, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, Paris, France
| | - Gustavo de Miguel
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - María T Martín-Romero
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Luis Camacho
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Min-Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China; Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris-UMR8247, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, Paris, France.
| | - Juan J Giner-Casares
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain.
| |
Collapse
|
72
|
Duan C, Hu J, Liu R, Dai J, Duan M, Yuan L, Xia F, Lou X. Spatial Order of Functional Modules Enabling Diverse Intracellular Performance of Fluorescent Probes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Jing‐Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Jun Dai
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| |
Collapse
|
73
|
Duan C, Hu JJ, Liu R, Dai J, Duan M, Yuan L, Xia F, Lou X. Spatial Order of Functional Modules Enabling Diverse Intracellular Performance of Fluorescent Probes. Angew Chem Int Ed Engl 2021; 60:18280-18288. [PMID: 34081387 DOI: 10.1002/anie.202106195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 12/15/2022]
Abstract
To overcome a series of challenges in tumor therapy, modular-agent probes (MAPs) comprised of various functional modules have been proposed. Researchers have tried to optimize the MAPs by exploiting the new modules or increasing the numbers of module, while neglecting the configuration of various modules. Here, we focus on the different spatial arrangements of existing modules. By utilizing a tetraphenylethylene (TPE) derivative with stereochemical structure and dual modifiable end-group sites as small molecule scaffold, two MAPs with same modular agents (module T for enhancing the internalization of MAPs by tumor cells and module M for causing mitochondrial dysfunction) but different spatial arrangements (on the one side, TM-AIE, and two sides, T-AIE-M, of the molecule scaffold) are designed. T-AIE-M with larger RGD binding angle performed higher specificity, while TM-AIE characterizing longer α-helix structure displayed superior toxicity.
Collapse
Affiliation(s)
- Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
74
|
The construction of supramolecular and hybrid Ag-AgCl nanoparticles with photodynamic therapy action on the base of tetraundecylсalix[4]resorcinarene-mPEG conjugate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
75
|
|
76
|
Zhang H, Cheng L, Nian H, Du J, Chen T, Cao L. Adaptive chirality of achiral tetraphenylethene-based tetracationic cyclophanes with dual responses of fluorescence and circular dichroism in water. Chem Commun (Camb) 2021; 57:3135-3138. [PMID: 33634292 DOI: 10.1039/d1cc00303h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two tetraphenylethene-based tetracationic cyclophanes 1 and 2 were synthesized via a one-step SN2 reaction without using any template. Based on the fluorescence and rotational conformation of the tetraphenylethene units, these water-soluble cyclophanes exhibited adaptive chirality with dual responses of turn-on fluorescence and induced circular dichroism when combined with nucleotides and DNA in water.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China.
| | | | | | | | | | | |
Collapse
|
77
|
Cai Y, Tang C, Wei Z, Song C, Zou H, Zhang G, Ran J, Han W. Fused-Ring Small-Molecule-Based Bathochromic Nano-agents for Tumor NIR-II Fluorescence Imaging-Guided Photothermal/Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:1942-1949. [PMID: 35014463 DOI: 10.1021/acsabm.0c01576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Cai
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang
Province, P.R. China
| | - Chuanchao Tang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Zheng Wei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Chuanhui Song
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Huihui Zou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Guorong Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Jianchuan Ran
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Wei Han
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| |
Collapse
|
78
|
Yang G, Ni JS, Li Y, Zha M, Tu Y, Li K. Acceptor Engineering for Optimized ROS Generation Facilitates Reprogramming Macrophages to M1 Phenotype in Photodynamic Immunotherapy. Angew Chem Int Ed Engl 2021; 60:5386-5393. [PMID: 33236483 DOI: 10.1002/anie.202013228] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Indexed: 12/17/2022]
Abstract
Reprogramming tumor-associated macrophages to an antitumor M1 phenotype by photodynamic therapy is a promising strategy to overcome the immunosuppression of tumor microenvironment for boosted immunotherapy. However, it remains unclear how the reactive oxygen species (ROS) generated from type I and II mechanisms, relate to the macrophage polarization efficacy. Herein, we design and synthesize three donor-acceptor structured photosensitizers with varied ROS-generating efficiencies. Surprisingly, we discovered that the extracellular ROS generated from type I mechanism are mainly responsible for reprogramming the macrophages from a pro-tumor type (M2) to an anti-tumor state (M1). In vivo experiments prove that the photosensitizer can trigger photodynamic immunotherapy for effective suppression of the tumor growth, while the therapeutic outcome is abolished with depleted macrophages. Overall, our strategy highlights the designing guideline of macrophage-activatable photosensitizers.
Collapse
Affiliation(s)
- Guang Yang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jen-Shyang Ni
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yaxi Li
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Menglei Zha
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yao Tu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
79
|
Yang G, Ni J, Li Y, Zha M, Tu Y, Li K. Acceptor Engineering for Optimized ROS Generation Facilitates Reprogramming Macrophages to M1 Phenotype in Photodynamic Immunotherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guang Yang
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Jen‐Shyang Ni
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yaxi Li
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Menglei Zha
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yao Tu
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Kai Li
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| |
Collapse
|
80
|
Clustering-triggered Emission of Nonaromatic Polymers with Multitype Heteroatoms and Effective Hydrogen Bonding. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0414-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
81
|
A Novel Fluorescence Tool for Monitoring Agricultural Industry Chain Based on AIEgens. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0401-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
82
|
Wang C, Zhao X, Jiang H, Wang J, Zhong W, Xue K, Zhu C. Transporting mitochondrion-targeting photosensitizers into cancer cells by low-density lipoproteins for fluorescence-feedback photodynamic therapy. NANOSCALE 2021; 13:1195-1205. [PMID: 33404030 DOI: 10.1039/d0nr07342c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low-density lipoproteins (LDLs) are an endogenous nanocarrier to transport lipids in vivo. Owing to their biocompatibility and biodegradability, reduced immunogenicity, and natural tumor-targeting capability, we, for the first time, report the reconstitution of native LDL particles with saturated fatty acids and a mitochondrion-targeting aggregation-induced emission (AIE) photosensitizer for fluorescence-feedback photodynamic therapy (PDT). In particular, a novel AIE photosensitizer (TPA-DPPy) with a donor-acceptor (D-A) structure and a pyridinium salt is designed and synthesized, which possesses typical AIE and twisted intramolecular charge transfer (TICT) characteristics as well as reactive oxygen species (ROS)-sensitizing capability. In view of its prominent photophysical and photochemical properties, TPA-DPPy is encapsulated into LDL particles for photodynamic killing of cancer cells that overexpress LDL receptors (LDLRs). The resultant LDL (rLDL) particles maintain a similar morphology and size distribution to native LDL particles, and are efficiently ingested by cancer cells via LDLR-mediated endocytosis, followed by the release of TPA-DPPy for mitochondrion-targeting. Upon light irradiation, the produced ROS surrounding mitochondria lead to efficient and irreversible cell apoptosis. Interestingly, this process can be fluorescently monitored in a real-time fashion, as reflected by the remarkably enhanced luminescence and blue-shifted emission, indicating the increased mechanical stress during apoptosis. Quantitative cell viability analysis suggests that TPA-DPPy exhibits an outstanding phototoxicity toward LDLR-overexpressing A549 cancer cells, with a killing efficiency of ca. 88%. The rLDL particles are a class of safe and multifunctional nanophototheranostic agents, holding great promise in high-quality PDT by providing real-time fluorescence feedback on the therapeutic outcome.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | |
Collapse
|
83
|
Sbeit W, Kadah A, Mari A, Mahamid M, Khoury T. A Comprehensive Narrative Review on the Evolving Role of Endoscopic Ultrasound in Focal Solid Liver Lesions Diagnosis and Management. Diagnostics (Basel) 2020; 10:688. [PMID: 32932960 PMCID: PMC7554970 DOI: 10.3390/diagnostics10090688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
The implications of endoscopic ultrasound (EUS) have expanded considerably in recent years to cover more fields in invasive gastroenterology practice, as both an investigative and therapeutic modality. The utility of EUS in the diagnosis and management of focal liver lesions has gained a special attractiveness recently. The EUS probe proximity to the liver and its excellent spatial resolution enables real-time images coupled with several enhancement techniques, such as contrast-enhanced (CE) EUS. Aside from its notable capability to execute targeted biopsies and therapeutic interventions, EUS has developed into a hopeful therapeutic tool for the management of solid liver lesions. Herein, we provide a comprehensive state-of-the-art review on the efficacy and safety of EUS in the diagnosis and management of focal solid liver lesions. Medline/PubMed and Embase database searches were conducted by two separate authors (T.K. and W.S.), all relevant studies were assessed, and relevant data was extracted and fully reported. EUS-guided diagnosis of focal liver lesions by sonographic morphologic appearance and cytological and histopathological finding of biopsies obtained via fine needle aspiration/biopsy have been shown to significantly improve the diagnosis of solid liver lesions compared with traditional imaging tools. Similarly, EUS-guided treatment has been shown to consistently have excellent technical success, high efficacy, and minor adverse events. The evolving valuable evidences of EUS utility might satisfy the unmet need of optimizing management of focal solid liver lesions.
Collapse
Affiliation(s)
- Wisam Sbeit
- Department of Gastroenterology, Galilee Medical Center, Nahariya 22100, Israel; (W.S.); (A.K.)
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel;
| | - Anas Kadah
- Department of Gastroenterology, Galilee Medical Center, Nahariya 22100, Israel; (W.S.); (A.K.)
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel;
| | - Amir Mari
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel;
- Gastroenterology and Endoscopy Units, The Nazareth Hospital, EMMS, Nazareth 16100, Israel
| | - Mahmud Mahamid
- Department of Gastroenterology and Liver Diseases, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Tawfik Khoury
- Department of Gastroenterology, Galilee Medical Center, Nahariya 22100, Israel; (W.S.); (A.K.)
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel;
| |
Collapse
|