51
|
Abstract
The carbonyl group stands as a fundamental scaffold and plays a ubiquitous role in synthetically important chemical reactions in both academic and industrial contexts. Venerable transformations, including the aldol reaction, Grignard reaction, Wittig reaction, and Nozaki-Hiyama-Kishi reaction, constitute a vast and empowering synthetic arsenal. Notwithstanding, two-electron mechanisms inherently confine the breadth of accessible reactivity and topological patterns.Fostered by the rapid development of photoredox catalysis, combing well-entrenched carbonyl addition and radicals can harness several unique and increasingly sustainable transformations. In particular, unusual carbon-carbon and carbon-heteroatom disconnections, which are out of reach of two-electron carbonyl chemistry, can be conceived. To meet this end, a novel strategy toward the utilization of simple carbonyl compounds as intermolecular radical acceptors was developed. The reaction is enabled by visible-light photoredox-initiated hole catalysis. In situ Brønsted acid activation of the carbonyl moiety prevents β-scission from occurring. Furthermore, this regioselective alkyl radical addition reaction obviates the use of metals, ligands, or additives, thus offering a high degree of atom economy under mild conditions. On the basis of the same concept and the work of Schindler and co-workers, carbonyl-olefin cross-metathesis, induced by visible light, has also been achieved, leveraging a radical Prins-elimination sequence.Recently, dual chromium and photoredox catalysis has been developed by us and Kanai, offering a complementary approach to the revered Nozaki-Hiyama-Kishi reaction. Leveraging the intertwined synergy between light and metal, several radical-to-polar crossover transformations toward eminent molecular motifs have been developed. Reactions such as the redox-neutral allylation of aldehydes and radical carbonyl alkylation can harvest the power of light and enable the use of catalytic chromium metal. Overall, exquisite levels of diastereoselectivity can be enforced via highly compact transition states. Other examples, such as the dialkylation of 1,3-dienes and radical carbonyl propargylation portray the versatile combination of radicals and carbonyl addition in multicomponent coupling endeavors. Highly valuable motifs, which commonly occur in complex drug and natural product architectures, can now be accessed in a single operational step. Going beyond carbonyl addition, seminal contributions from Fagnoni and MacMillan preconized photocatalytic HAT-based acyl radical formation as a key aldehyde valorization strategy. Our group articulated this concept, leveraging carboxy radicals as hydrogen atom abstractors in high regio- and chemoselective carbonyl alkynylation and aldehyde trifluoromethylthiolation.This Account, in addition to the narrative of our group and others' contributions at the interface between carbonyl addition and radical-based photochemistry, aims to provide core guiding foundations toward novel disruptive synthetic developments. We envisage that extending radical-to-polar crossovers beyond Nozaki-Hiyama-Kishi manifolds, taming less-activated carbonyls, leveraging multicomponent processes, and merging single electron steps with energy-transfer events will propel eminent breakthroughs in the near future.
Collapse
Affiliation(s)
- Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
52
|
Liu Y, Lin S, Zhang D, Song B, Jin Y, Hao E, Shi L. Photochemical Nozaki-Hiyama-Kishi Coupling Enabled by Excited Hantzsch Ester. Org Lett 2022; 24:3331-3336. [PMID: 35412841 DOI: 10.1021/acs.orglett.2c00877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This work reports the first photochemical Nozaki-Hiyama-Kishi coupling enabled by bioinspired Hantzsch ester. The salient feature of this process is that commercially available and low-cost organic photoactive Hantzsch ester can serve as both an electron and a proton donor to reduce Cr/Ni to low-valent species and hydrolyze the CrIII-alkoxy bond, thus bypassing the use of stoichiometric metallic reductants and additives such as TMSCl and Cp2ZrCl2. The mild conditions and operationally easy method showed broad compatibility with various alkenyl triflates and aldehydes, including electron-poor pentafluorobenzaldehyde which failed under previous conditions.
Collapse
Affiliation(s)
- Yonghong Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Shuangjie Lin
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Dandan Zhang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Bingkun Song
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, China.,School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| |
Collapse
|
53
|
Calogero F, Potenti S, Magagnano G, Mosca G, Gualandi A, Marchini M, Ceroni P, Cozzi PG. A Photoredox Nozaki‐Hiyama Reaction Catalytic in Chromium. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Francesco Calogero
- University of Bologna Faculty of Mathematical Physical and Natural Sciences: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Simone Potenti
- University of Bologna Faculty of Mathematical Physical and Natural Sciences: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Giandomenico Magagnano
- University of Bologna Faculty of Mathematical Physical and Natural Sciences: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Giampaolo Mosca
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Andrea Gualandi
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Marianna Marchini
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Paola Ceroni
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Pier Giorgio Cozzi
- Universita di Bologna Dipartimento di chimica Via Selmi 2 40126 Bologna ITALY
| |
Collapse
|
54
|
Mitsunuma H, Kanai M, Katayama Y. Recent Progress in Chromium-Mediated Carbonyl Addition Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1696-6429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractOrganochromium(III) species are versatile nucleophiles in complex molecule synthesis due to their high functional group tolerance and chemoselectivity for aldehydes. Traditionally, carbonyl addition reactions of organochromium(III) species were performed through reduction of organohalides either using stoichiometric chromium(II) salts or catalytic chromium salts in the presence of stoichiometric reductants [such as Mn(0)]. Recently, alternative methods emerged involving organoradical formation from readily available starting materials (e.g., N-hydroxyphthalimide esters, alkenes, and alkanes), followed by trapping the radical with stoichiometric or catalytic chromium(II) salts. Such methods, especially using catalytic chromium(II) salts, will lead to the development of sustainable chemical processes minimizing salt wastes and number of synthetic steps. In this review, methods for generation of organochromium(III) species for addition reactions to carbonyl compounds, classified by nucleophiles are described.1 Introduction2 Alkylation2.1 Branch-Selective Reductive Alkylation of Aldehydes Using Unactivated Alkenes2.2 Linear-Selective Alkylation of Aldehydes2.2.1 Catalytic Decarboxylative Alkylation of Aldehydes Using NHPI Esters2.2.2 Catalytic Reductive Alkylation of Aldehydes Using Unactivated Alkenes2.2.3 Alkylation of Aldehydes via C(sp3)–H Bond Functionalization of Unactivated Alkanes2.3 Catalytic α-Aminoalkylation of Carbonyl Compounds3 Allylation3.1 Catalytic Allylation of Aldehydes via Three-Component Coupling3.2 Catalytic Allylation of Aldehydes via C(sp3)–H Bond Functionalization of Alkenes4 Propargylation: Catalytic Propargylation of Aldehydes via Three-Component Coupling5 Conclusion
Collapse
|
55
|
Murugesan K, Donabauer K, Narobe R, Derdau V, Bauer A, König B. Photoredox-Catalyzed Site-Selective Generation of Carbanions from C(sp 3)–H Bonds in Amines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kathiravan Murugesan
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Karsten Donabauer
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Rok Narobe
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Armin Bauer
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
56
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C-H Alkylation via a Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022; 61:e202115715. [PMID: 35040550 DOI: 10.1002/anie.202115715] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 01/08/2023]
Abstract
An asymmetric allylic C-H functionalization has been developed by making use of transient chiral nucleophiles, as well as bimetallic synergistic catalysis with an achiral Pd0 catalyst and a chiral N,N'-dioxide-CoII complex. A variety of β-ketoesters and N-Boc oxindoles coupled with allylbenzenes and aliphatic terminal alkenes were well tolerated, furnishing the desired allylic alkylation products in high yields (up to 99 %) with excellent regioselectivities and enantioselectivities (up to 99 % ee).
Collapse
Affiliation(s)
- Hongkai Wang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yang Xu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Fangqing Zhang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yangbin Liu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
57
|
Buendia MB, Higginson B, Kegnæs S, Kramer S, Martin R. Redox-Neutral Ni-Catalyzed sp 3 C–H Alkylation of α-Olefins with Unactivated Alkyl Bromides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mikkel B. Buendia
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bradley Higginson
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Department de Quimica, c/Marcel i Domingo, 1, 43007 Tarragona, Spain
| | - Søren Kegnæs
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
58
|
Diallo AG, Paris D, Faye D, Gaillard S, Lautens M, Renaud JL. Dual Ni/Organophotoredox Catalyzed Allylative Ring Opening Reaction of Oxabenzonorbornadienes and Analogs. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Abdoul G. Diallo
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Déborah Paris
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Djiby Faye
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
- University of Cheikh Anta Diop de Dakar, Department of Chemistry, Faculty of Sciences, 10700 Dakar, Sénégal
| | - Sylvain Gaillard
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jean-Luc Renaud
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| |
Collapse
|
59
|
Lin D, Jiang S, Zhang A, Wu T, Qian Y, Shao Q. Structural derivatization strategies of natural phenols by semi-synthesis and total-synthesis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:8. [PMID: 35254538 PMCID: PMC8901917 DOI: 10.1007/s13659-022-00331-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
Structural derivatization of natural products has been a continuing and irreplaceable source of novel drug leads. Natural phenols are a broad category of natural products with wide pharmacological activity and have offered plenty of clinical drugs. However, the structural complexity and wide variety of natural phenols leads to the difficulty of structural derivatization. Skeleton analysis indicated most types of natural phenols can be structured by the combination and extension of three common fragments containing phenol, phenylpropanoid and benzoyl. Based on these fragments, the derivatization strategies of natural phenols were unified and comprehensively analyzed in this review. In addition to classical methods, advanced strategies with high selectivity, efficiency and practicality were emphasized. Total synthesis strategies of typical fragments such as stilbenes, chalcones and flavonoids were also covered and analyzed as the supplementary for supporting the diversity-oriented derivatization of natural phenols.
Collapse
Affiliation(s)
- Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Senze Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yongchang Qian
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
60
|
Michigami K, Mita T, Sato Y. Catalytic Carbonyl Allylation Using Terminal Alkenes as Nucleophiles. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kenichi Michigami
- Department of Chemistry, Faculty of Science, Osaka Prefecture University
| | - Tsuyoshi Mita
- Institution for Chemical Reaction Design and Discovery, Hokkaido University
| | | |
Collapse
|
61
|
Xie H, Breit B. Organophotoredox/Ni-Cocatalyzed Allylation of Allenes: Regio- and Diastereoselective Access to Homoallylic Alcohols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hui Xie
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
62
|
Yamashita Y, Sato I, Fukuyama R, Kobayashi S. Brønsted base-catalyzed imino-ene-type allylation reactions of simple alkenes as unactivated allyl compounds. Chem Commun (Camb) 2022; 58:2866-2869. [PMID: 35144278 DOI: 10.1039/d1cc06983g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic imino-ene-type allylation reactions of unactivated allyl compounds were achieved. In the presence of a catalytic amount of a strongly basic KOtBu-LiTMP or NaOtBu-LiTMP mixed system, the desired reactions proceeded smoothly at low temperature. Notably, a gaseous alkene, propylene, could also be used in this reaction system.
Collapse
Affiliation(s)
- Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Io Sato
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ryota Fukuyama
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
63
|
Yamane M, Kanzaki Y, Mitsunuma H, Kanai M. Titanium(IV) Chloride-Catalyzed Photoalkylation via C(sp 3)-H Bond Activation of Alkanes. Org Lett 2022; 24:1486-1490. [PMID: 35166548 DOI: 10.1021/acs.orglett.2c00138] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the sophistication of C-H functionalization as one of the most powerful tools in organic synthesis, methodology for performing hydrogen-atom transfer of unactivated alkanes remains rather scarce. Herein, we describe chlorine radical-catalyzed C(sp3)-H photoalkylation using titanium(IV) chloride via a ligand-to-metal charge transfer process. Enabled by the unique properties of this abundant metal salt, the reaction not only effected the coupling of various alkanes with radical acceptors but also was shown to be applicable to direct photoalkylation of aromatic ketones.
Collapse
Affiliation(s)
- Mina Yamane
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yamato Kanzaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
64
|
Tanaka K, Kishimoto M, Tanaka Y, Kamiyama Y, Asada Y, Sukekawa M, Ohtsuka N, Suzuki T, Momiyama N, Honda K, Hoshino Y. Moderately Oxidizing Thioxanthylium Organophotoredox Catalysts for Radical-Cation Diels-Alder Reactions. J Org Chem 2022; 87:3319-3328. [PMID: 35142514 DOI: 10.1021/acs.joc.1c02972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Moderately oxidizing thioxanthylium photoredox catalysts that operate under irradiation with green light have been developed. These catalysts exhibit relatively moderate excited-state reduction potentials [E1/2(C*/C•-) = 1.75-1.94 V vs saturated calomel electrode (SCE)] and can efficiently promote radical-cation Diels-Alder reactions under irradiation with green light. Interestingly, β-halogenostyrenes (Ep/2 = 1.57-1.61 V vs SCE) are well tolerated, affording synthetically useful halocyclohexenes.
Collapse
Affiliation(s)
- Kenta Tanaka
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Mami Kishimoto
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yuta Tanaka
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yusuke Kamiyama
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yosuke Asada
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Mayumi Sukekawa
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Naoya Ohtsuka
- Institute for Molecular Science, Okazaki, Aichi 444-8787, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | | | - Norie Momiyama
- Institute for Molecular Science, Okazaki, Aichi 444-8787, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kiyoshi Honda
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yujiro Hoshino
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
65
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
66
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
67
|
Liu MS, Du HW, Shu W. Metal-free allylic C-H nitrogenation, oxygenation, and carbonation of alkenes by thianthrenation. Chem Sci 2022; 13:1003-1008. [PMID: 35211265 PMCID: PMC8790768 DOI: 10.1039/d1sc06577g] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
Selective functionalization of allylic C–H bonds into other chemical bonds is among the most straightforward and attractive, yet challenging transformations. Herein, a transition-metal-free protocol for direct allylic C–H nitrogenation, oxygenation, and carbonation of alkenes by thianthrenation was developed. This operationally simple protocol allows for the unified allylic C–H amination, esterification, etherification, and arylation of vinyl thianthrenium salts. Notably, the reaction furnishes multialkyl substituted allylic amines, ammonium salts, sulfonyl amides, esters, and ethers in good yields. The reaction proceeds under mild conditions with excellent functional group tolerance and could be applied to late-stage allylation of natural products, drug molecules and peptides with excellent chemoselectivity. Diverse functionalizations of allylic C–H bonds of alkenes by thianthrenation have been demonstrated, featuring Z-selectivity to afford multi-alkyl substituted allylic esters, thioesters, ethers, amines, amides and arenes under metal-free conditions.![]()
Collapse
Affiliation(s)
- Ming-Shang Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Hai-Wu Du
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
68
|
Calogero F, Potenti S, Bassan E, Fermi A, Gualandi A, Monaldi J, Dereli B, Maity B, Cavallo L, Ceroni P, Giorgio Cozzi P. Nickel‐Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francesco Calogero
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Simone Potenti
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
- Laboratorio SMART Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Elena Bassan
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Fermi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Gualandi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Jacopo Monaldi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Busra Dereli
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Paola Ceroni
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
69
|
Liu J, Lu LQ, Luo Y, Zhao W, Sun PC, Jin W, Qi X, Cheng Y, Xiao WJ. Photoredox-Enabled Chromium-Catalyzed Alkene Diacylations. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Liu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yixin Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wei Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Peng-Chao Sun
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
70
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C−H Alkylation via Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hongkai Wang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yang Xu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Fangqing Zhang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yangbin Liu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Xiaoming Feng
- Sichuan University College of Chemistry 29 Wangjiang Road, Jiuyan Bridge 610064 Chengdu CHINA
| |
Collapse
|
71
|
Narjinari H, Tanwar N, Kathuria L, Jasra RV, Kumar A. Guerbet-type β-alkylation of secondary alcohols catalyzed by chromium chloride and its corresponding NNN pincer complex. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00759b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
β-Alkylation of alcohols has been efficiently accomplished using readily available 3d metal Cr under microwave conditions in air. Well-defined molecular Cr is involved with a KIE of 7.33 and insertion of α-alkylated ketone into Cr–H bond as the RDS.
Collapse
Affiliation(s)
- Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Niharika Tanwar
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Lakshay Kathuria
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Raksh Vir Jasra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Reliance Industries limited, R&D Centre, Vadodara Manufacturing Division, Vadodara, 391 346, Gujarat, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Jyoti and Bhupat School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
72
|
Abstract
A light-driven method for the contra-thermodynamic positional isomerization of olefins is described. In this work, stepwise PCET activation of a more substituted and more thermodynamically stable olefin substrate is mediated by an excited-state oxidant and a Brønsted base to afford an allylic radical that is captured by a Cr(II) cocatalyst to furnish an allylchromium(III) intermediate. In situ protodemetalation of this allylchromium complex by methanol is highly regioselective and affords an isomerized and less thermodynamically stable alkene product. The higher oxidation potential of the less substituted olefin isomer renders it inert to further oxidation by the excited-state oxidant, enabling it to accumulate in solution over the course of the reaction. A broad range of isopropylidene substrates are accommodated, including enol ethers, enamides, styrenes, 1,3-dienes, and tetrasubstituted alkyl olefins. Mechanistic investigations of the protodemetalation step are also presented.
Collapse
Affiliation(s)
- Kuo Zhao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert R Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
73
|
Yue H, Zhu C, Huang L, Dewanji A, Rueping M. Advances in allylic and benzylic C-H bond functionalization enabled by metallaphotoredox catalysis. Chem Commun (Camb) 2021; 58:171-184. [PMID: 34882164 DOI: 10.1039/d1cc06285a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metallaphoto-catalysis has been established as a robust platform for efficient construction of a range of chemical bonds. Moreover, transformation of native functionalities such as C(sp3)-H bonds to produce functional molecules represents one of the most attractive strategies in organic synthesis. Merging two powerful methodologies, metallaphoto-catalyzed benzylic and allylic C(sp3)-H bond functionalizations provide a series of general and mild approaches for diversification of alkylbenzenes and alkenes.
Collapse
Affiliation(s)
- Huifeng Yue
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| | - Chen Zhu
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| | - Long Huang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Abhishek Dewanji
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
74
|
Cozzi PG, Calogero F, Potenti S, Bassan E, Fermi A, Gualandi A, Monaldi J, Dereli B, Maity B, Cavallo L, Ceroni P. Nickel Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angew Chem Int Ed Engl 2021; 61:e202114981. [PMID: 34937125 DOI: 10.1002/anie.202114981] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/11/2022]
Abstract
Here we report a practical, highly enantioselective photoredox allylation of aldehydes mediated by chiral nickel complexes with commercially available allyl acetate as the allylating agent. The methodology allows the clean stereoselective allylation of aldehydes in good to excellent yields and up to 93% e.e. using a catalytic amount of NiCl 2 (glyme) in the presence of the chiral aminoindanol-derived bis(oxazoline) as the chiral ligand. The photoredox system is constituted by the organic dye 3DPAFIPN and a Hantzsch's ester as the sacrificial reductant. The reaction proceeds under visible light irradiation (blue LEDs, 456 nm) at 8-12 °C with excellent stereoselectivities. Compared to other published procedures, no metal reductants (such as Zn or Mn), additives (e.g. CuI) or air-sensitive Ni(COD) 2 are necessary for this reaction. Accurate DFT calculations and photophysical experiments have clarified the mechanistic picture of this stereoselective allylation reaction showing a key role played by Hantzsch's ester for the turnover of the catalyst.
Collapse
Affiliation(s)
- Pier Giorgio Cozzi
- Universita di Bologna, Dipartimento di chimica, Via Selmi 2, 40126, Bologna, ITALY
| | - Francesco Calogero
- Università degli Studi di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo CIamician, ITALY
| | - Simone Potenti
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo CIamician, ITALY
| | - Elena Bassan
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo Ciamician, ITALY
| | - Andrea Fermi
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo Ciamician, ITALY
| | - Andrea Gualandi
- Università di Bologna: Universita di Bologna, Dipartimento di CHimica Gicacomo Ciamician, ITALY
| | - Jacopo Monaldi
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo Ciamician, ITALY
| | - Busra Dereli
- King Abdullah University of Science and Technology, KAUST Catalysis Center, SAUDI ARABIA
| | - Bholanath Maity
- King Abdullah University of Science and Technology, Kaust Catalysis Center, SAUDI ARABIA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology, Kaust Catalysis Center, SAUDI ARABIA
| | - Paola Ceroni
- Università di Bologna: Universita di Bologna, Dipartimento di CHimica Giacomo Ciamician, ITALY
| |
Collapse
|
75
|
Berger M, Carboni D, Melchiorre P. Photochemical Organocatalytic Regio- and Enantioselective Conjugate Addition of Allyl Groups to Enals. Angew Chem Int Ed Engl 2021; 60:26373-26377. [PMID: 34695283 PMCID: PMC9298816 DOI: 10.1002/anie.202111648] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Indexed: 11/18/2022]
Abstract
We report the first catalytic enantioselective conjugate addition of allyl groups to α,β‐unsaturated aldehydes. The chemistry exploits the visible‐light‐excitation of chiral iminium ions to activate allyl silanes towards the formation of allylic radicals, which are then intercepted stereoselectively. The underlying radical mechanism of this process overcomes the poor regio‐ and chemoselectivity that traditionally affects the conjugate allylation of enals proceeding via polar pathways. We also demonstrate how this organocatalytic strategy could selectively install a valuable prenyl fragment at the β‐carbon of enals.
Collapse
Affiliation(s)
- Martin Berger
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Davide Carboni
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Paolo Melchiorre
- ICREA-Passeig Lluís Companys 23, 08010, Barcelona, Spain.,ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
76
|
Berger M, Carboni D, Melchiorre P. Photochemical Organocatalytic Regio‐ and Enantioselective Conjugate Addition of Allyl Groups to Enals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Martin Berger
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Davide Carboni
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Paolo Melchiorre
- ICREA—Passeig Lluís Companys 23 08010 Barcelona Spain
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
77
|
Struwe J, Korvorapun K, Zangarelli A, Ackermann L. Photo-Induced Ruthenium-Catalyzed C-H Benzylations and Allylations at Room Temperature. Chemistry 2021; 27:16237-16241. [PMID: 34435716 PMCID: PMC9293244 DOI: 10.1002/chem.202103077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/30/2022]
Abstract
The ruthenium-catalyzed synthesis of diarylmethane compounds was realized under exceedingly mild photoredox conditions without the use of exogenous photocatalysts. The versatility and robustness of the ruthenium-catalyzed C-H benzylation was reflected by an ample scope, including multifold C-H functionalizations, as well as transformable pyrazoles, imidates and sensitive nucleosides. Mechanistic studies were indicative of a photoactive cyclometalated ruthenium complex, which also enabled versatile C-H allylations.
Collapse
Affiliation(s)
- Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Korkit Korvorapun
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
78
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 665] [Impact Index Per Article: 166.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
79
|
Lu FD, Chen J, Jiang X, Chen JR, Lu LQ, Xiao WJ. Recent advances in transition-metal-catalysed asymmetric coupling reactions with light intervention. Chem Soc Rev 2021; 50:12808-12827. [PMID: 34652345 DOI: 10.1039/d1cs00210d] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition metal-catalysed asymmetric coupling has been established as a robust tool for constructing complex organic molecules. Although this area has been extensively studied, the development of efficient protocols to construct stereogenic centres with excellent regio- and enantioselectivities is highly desirable and remains challenging. Asymmetric transition metal catalysis with light intervention provides a practical alternative strategy to current methods and considerably expands the synthetic utility as a result of abundant feedstocks and mild conditions. This tutorial review comprehensively summarizes the recent advances in transition-metal-catalysed asymmetric coupling reactions with light intervention; in particular, a concise analysis of substrate scope and the mechanistic scenarios governing stereocontrol is discussed.
Collapse
Affiliation(s)
- Fu-Dong Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Jun Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
80
|
Lin S, Chen Y, Yan H, Liu Y, Sun Y, Hao E, Shi C, Zhang D, Zhu N, Shi L. Activation of Chromium Catalysts by Photoexcited Hantzsch Ester for Decarboxylative Allylation of Aldehydes with Butadiene. Org Lett 2021; 23:8077-8081. [PMID: 34606288 DOI: 10.1021/acs.orglett.1c03098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metallaphotocatalysis often needs light-absorbing metal-polypyridyl complexes, semiconductors, or organic dyes, which can modify the oxidation state of metal catalysts. Here, we first report that photoexcitation of Hantzsch ester can directly activate chromium reagents through a single-electron transfer process. The synthetic application was demonstrated through a photoredox decarboxylative allylation of aldehydes with feedstock butadiene without exogenous photocatalysts, metallic reductants, or additives.
Collapse
Affiliation(s)
- Shuangjie Lin
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yuqing Chen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Huaipu Yan
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yonghong Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yuchen Sun
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Caizhe Shi
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Dandan Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lei Shi
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
81
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
82
|
Liu Z, Kole GK, Budiman YP, Tian Y, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Transition Metal Catalyst‐Free, Base‐Promoted 1,2‐Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Goutam Kumar Kole
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry College of Engineering and Technology SRM Institute of Science and Technology SRM Nagar Kattankulathur Tamil Nadu 603203 India
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Padjadjaran 45363 Jatinangor Indonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional Materials College of Chemistry Chongqing Normal University Chongqing 401331 China
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry Mount Allison University Sackville NB E4L 1G8 Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
83
|
Liu Z, Kole GK, Budiman YP, Tian Y, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Transition Metal Catalyst-Free, Base-Promoted 1,2-Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angew Chem Int Ed Engl 2021; 60:16529-16538. [PMID: 33901332 PMCID: PMC8362073 DOI: 10.1002/anie.202103686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Indexed: 12/23/2022]
Abstract
A novel protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones. Control experiments and DFT calculations indicate that both the ortho-F substituents on the polyfluorophenyl boronates and the counterion K+ in the carbonate base are critical. The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Intriguing structural features involving O-H⋅⋅⋅O and O-H⋅⋅⋅N hydrogen bonding, as well as arene-perfluoroarene interactions, in this series of racemic polyfluoroaryl carbinols have also been addressed.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Goutam Kumar Kole
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryCollege of Engineering and TechnologySRM Institute of Science and TechnologySRM NagarKattankulathurTamil Nadu603203India
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryFaculty of Mathematics and Natural SciencesUniversitas Padjadjaran45363JatinangorIndonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional MaterialsCollege of ChemistryChongqing Normal UniversityChongqing401331China
| | - Stephen A. Westcott
- Department of Chemistry and BiochemistryMount Allison UniversitySackvilleNBE4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
84
|
Cristòfol À, Limburg B, Kleij AW. Expedient Dual Co/Organophotoredox Catalyzed Stereoselective Synthesis of All‐Carbon Quaternary Centers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Bart Limburg
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
85
|
Cristòfol À, Limburg B, Kleij AW. Expedient Dual Co/Organophotoredox Catalyzed Stereoselective Synthesis of All-Carbon Quaternary Centers. Angew Chem Int Ed Engl 2021; 60:15266-15270. [PMID: 33860978 DOI: 10.1002/anie.202103479] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/08/2021] [Indexed: 01/20/2023]
Abstract
An efficient and attractive Co/organophotoredox dual catalysis protocol has been developed allowing the stereoselective access to a wide variety of syn-configured 1,3-diols featuring quaternary carbon centers. The synthesis of the target molecules is achieved under ambient reaction conditions using modular and accessible reagents, substituted vinyl cyclic carbonates and aldehydes, and in short reaction times. Mechanistic control experiments suggest that the stereoselectivity can be rationalized via a preferred Zimmerman-Traxler transition state comprising a Co(allyl) species and an activated aldehyde. This newly developed process thus expands the use of base metal catalysis in the construction of challenging quaternary carbon stereocenters.
Collapse
Affiliation(s)
- Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Bart Limburg
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
86
|
Fu A, Zhao L, Li C, Luo M, Zeng X. Chromium-Catalyzed Borylative Coupling of Aliphatic Bromides with Pinacolborane by Hydrogen Evolution. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Aiping Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Lixing Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| |
Collapse
|
87
|
Huang C, Qiao J, Ci RN, Wang XZ, Wang Y, Wang JH, Chen B, Tung CH, Wu LZ. Quantum dots enable direct alkylation and arylation of allylic C(sp3)–H bonds with hydrogen evolution by solar energy. Chem 2021. [DOI: 10.1016/j.chempr.2021.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
88
|
Calogero F, Gualandi A, Matteo MD, Potenti S, Fermi A, Bergamini G, Cozzi PG. Photoredox Propargylation of Aldehydes Catalytic in Titanium. J Org Chem 2021; 86:7002-7009. [PMID: 33884879 PMCID: PMC8279488 DOI: 10.1021/acs.joc.1c00521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
A practical and effective
photoredox propargylation of aldehydes
promoted by 10 mol % of [Cp2TiCl2] is presented.
No stoichiometric metals or scavengers are used for the process. A
catalytic amount of the cheap and simply prepared organic dye 3DPAFIPN
is used as the reductant for titanium. The reaction displayed a broad
scope, and no traces of allenyl isomers were detected for simple propargyl
bromide, whereas mixtures of propargyl and allenyl isomers were observed
for substituted propargyl bromides.
Collapse
Affiliation(s)
- Francesco Calogero
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Gualandi
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Marco Di Matteo
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Simone Potenti
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy.,Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Andrea Fermi
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Giacomo Bergamini
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Pier Giorgio Cozzi
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
89
|
Sharma S, Singh J, Sharma A. Visible Light Assisted Radical‐Polar/Polar‐Radical Crossover Reactions in Organic Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100205] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shivani Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
90
|
Cong X, Zeng X. Mechanistic Diversity of Low-Valent Chromium Catalysis: Cross-Coupling and Hydrofunctionalization. Acc Chem Res 2021; 54:2014-2026. [PMID: 33829759 DOI: 10.1021/acs.accounts.1c00096] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ConspectusTransition-metal catalysis has traditionally been dominated by precious metals because of their high reactivity toward chemical transformations. As a cost-effective alternative, catalysis by earth-abundant group 6 metal chromium is underdeveloped, and its reactivity remains largely unexplored, although the industrially important Phillips catalyst, which is composed of Cr as the active metal, is currently used to supply almost 40% of the total world demand for high-density polyethylene. Cr has traditionally served in organoreagents with high-valent states (≥2+), which are typified by reactions involving Nozaki-Hiyama-Kishi (NHK) and Takai-Utimoto one-electron transfer processes. Given that low-valent metals usually facilitate the process of oxidative addition (OA), studying the catalysis of Cr in the low-valent state provides the opportunity to develop new transformations. However, probably because of the low stability of reactive low-valent Cr or the lack of catalytic activity of structurally stable complexes, there has been limited success with respect to developing catalysis promoted by low-valent Cr. In recent years, our group has probed the reactivity of low-valent Cr in catalysis by adopting a strategy of forming reactive Cr in situ. In this Account, we detail our efforts to study the catalytic behavior and mechanism of low-valent Cr in challenging transformations, such as the cleavage of chemically inert bonds for the cross-coupling and hydrofunctionalization of arenes and nitro motifs, by developing strategies to address the prominent selectivity issues. We highlight the finding that low-valent Cr, being formed in situ, possesses the intriguing ability to promote the catalytic cleavage of unactivated C-O, C-N, and C-H bonds to achieve the Kumada couplings and even to enable challenging cross-coupling between two unactivated C(aryl)-O/C(aryl)-N bonds. During these catalytic processes, Cr usually adopts a high-spin state to interact with chemicals, allowing for insertion into unactivated σ-bonds. The OA catalytic model involving a two-electron process for the cleavage of unactivated bonds has rarely been considered for Cr. We highlight the finding that Cr allows for the breakage of two chemically inert bonds in one catalytic cycle. This ability is intriguing because most transition metals are suitable only for the cleavage of one unactivated bond in catalysis. Mechanisms involving two-electron OA for Cr are unusual, with processes involving one-electron transfer more often proposed, as exemplified in the NHK reactions. These reactions provide efficient strategies for forming functionalized benzaldehydes, amides, anilines, and amines, usually with high levels of selectivity. We hope that this account will extend the scope of cognition to Cr catalysis.
Collapse
Affiliation(s)
- Xuefeng Cong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
91
|
Rafferty SM, Rutherford JE, Zhang L, Wang L, Nagib DA. Cross-Selective Aza-Pinacol Coupling via Atom Transfer Catalysis. J Am Chem Soc 2021; 143:5622-5628. [DOI: 10.1021/jacs.1c00886] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sean M. Rafferty
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joy E. Rutherford
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lumin Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lu Wang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A. Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
92
|
|
93
|
Shi C, Li F, Chen Y, Lin S, Hao E, Guo Z, Wosqa UT, Zhang D, Shi L. Photocatalytic Umpolung Synthesis of Nucleophilic π-Allylcobalt Complexes for Allylation of Aldehydes. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05330] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Caizhe Shi
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fusheng Li
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuqing Chen
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shuangjie Lin
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Erjun Hao
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhuowen Guo
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Urwa Tul Wosqa
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dandan Zhang
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lei Shi
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
94
|
Potenti S, Gualandi A, Puggioli A, Fermi A, Bergamini G, Cozzi PG. Photoredox Allylation Reactions Mediated by Bismuth in Aqueous Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001640] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Simone Potenti
- Dipartimento di Chimica “G. Ciamician” ALMA MATER STUDIORUM Università di Bologna Via Selmi 2 40126 Bologna Italy
- Laboratorio SMART Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Andrea Gualandi
- Dipartimento di Chimica “G. Ciamician” ALMA MATER STUDIORUM Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Alessio Puggioli
- Dipartimento di Chimica “G. Ciamician” ALMA MATER STUDIORUM Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Fermi
- Dipartimento di Chimica “G. Ciamician” ALMA MATER STUDIORUM Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Giacomo Bergamini
- Dipartimento di Chimica “G. Ciamician” ALMA MATER STUDIORUM Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “G. Ciamician” ALMA MATER STUDIORUM Università di Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
95
|
Zhao Y, Ge S. Chromium-Catalyzed Selective Dimerization/Hydroboration of Allenes to Access Boryl-Functionalized Skipped (E,Z)-Dienes. Angew Chem Int Ed Engl 2021; 60:2149-2154. [PMID: 33027539 DOI: 10.1002/anie.202012344] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 11/10/2022]
Abstract
A chromium-catalyzed dimerization/hydroboration of allenes is developed to access synthetically versatile boryl-functionalized skipped dienes with a catalyst generated in situ from CrCl2 and a pyridine-2,6-diimine ligand mes PDI. A variety of allenes reacted with pinacolborane (HBpin) to afford the corresponding boryl-functionalized (E,Z)-1,4-dienes in high yields and with excellent selectivity. Electron paramagnetic resonance (EPR) spectroscopic studies suggest that this chromium-catalyzed reaction probably proceeds through a chromium(I) hydride intermediate.
Collapse
Affiliation(s)
- Yinsong Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
96
|
Zhao Y, Ge S. Chromium‐Catalyzed Selective Dimerization/Hydroboration of Allenes to Access Boryl‐Functionalized Skipped (
E
,
Z
)‐Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yinsong Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shaozhong Ge
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
97
|
Zhao L, Hu C, Cong X, Deng G, Liu LL, Luo M, Zeng X. Cyclic (Alkyl)(amino)carbene Ligand-Promoted Nitro Deoxygenative Hydroboration with Chromium Catalysis: Scope, Mechanism, and Applications. J Am Chem Soc 2021; 143:1618-1629. [DOI: 10.1021/jacs.0c12318] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lixing Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chenyang Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuefeng Cong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gongda Deng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
98
|
Donabauer K, König B. Strategies for the Photocatalytic Generation of Carbanion Equivalents for Reductant-Free C-C Bond Formations. Acc Chem Res 2021; 54:242-252. [PMID: 33325678 PMCID: PMC7871440 DOI: 10.1021/acs.accounts.0c00620] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/18/2022]
Abstract
ConspectusThe use of photocatalysis in organic chemistry has encountered a surge of novel transformations since the start of the 21st century. The majority of these transformations are driven by the generation and subsequent reaction of radicals, owing to the intrinsic property of common photocatalysts to transfer single electrons from their excited state. While this is a powerful and elegant method to develop novel transformations, several research groups recently sought to further extend the toolbox of photocatalysis into the realm of polar ionic reactivity by the formation of cationic as well as anionic key reaction intermediates to furnish a desired product.Our group became especially interested in the photocatalytic formation of anionic carbon nucleophiles, as the overall transformation resembles classical organometallic reactions like Grignard, Barbier, and Reformatsky reactions, which are ubiquitous in organic synthesis with broad applications especially in the formation of valuable C-C bonds. Although these classical reactions are frequently applied, their use still bears certain disadvantages; one is the necessity of an (over)stoichiometric amount of a reducing metal. The reducing, low-valent, metal is solely applied to activate the starting material to form the organometallic carbanion synthon, while the final reaction product does generally not contain a metal species. Hence, a stoichiometric amount of metal salt is bound to be generated at the end of each reaction, diminishing the atom economy. The use of visible light as mild and traceless activation agent to drive chemical reactions can be a means to arrive at a more atom economic transformation, as a reducing metal source is avoided. Beyond this, the vast pool of photocatalytic activation methods offers the potential to employ easily available starting materials, as simple as unfunctionalized alkanes, to open novel and more facile retrosynthetic pathways. However, as mentioned above, photocatalysis is dominated by open-shell radical reactivity. With neutral radicals showing an intrinsically different reactivity than ionic species, novel strategies to form intermediates expressing a polar behavior need to be developed in order to achieve this goal.In the last couple of years, several methods toward this aim have been reported by our group and others. This Account aims to give an overview of the different existing strategies to photocatalytically form carbon centered anions or equivalents of those in order to form C-C bonds. As the main concept is to omit a stoichiometric reductant source (like a low-valent metal in classical organometallic reactions), only redox-neutral and reductant-free transformations were taken into closer consideration. We present selected examples of important strategies and try to illustrate the intentions and concepts behind the methods developed by our group and others.
Collapse
Affiliation(s)
- Karsten Donabauer
- Institute for Organic Chemistry, University of
Regensburg, Universitätsstraße 31, 93053 Regensburg,
Germany
| | - Burkhard König
- Institute for Organic Chemistry, University of
Regensburg, Universitätsstraße 31, 93053 Regensburg,
Germany
| |
Collapse
|
99
|
Gualandi A, Anselmi M, Calogero F, Potenti S, Bassan E, Ceroni P, Cozzi PG. Metallaphotoredox catalysis with organic dyes. Org Biomol Chem 2021; 19:3527-3550. [DOI: 10.1039/d1ob00196e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here…comes the fun…Combination of metals and organic photocatalysts allows the practical invention of new methodologies!
Collapse
Affiliation(s)
- Andrea Gualandi
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| | - Michele Anselmi
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| | - Francesco Calogero
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| | - Simone Potenti
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
- Laboratorio SMART
| | - Elena Bassan
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| | - Paola Ceroni
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| | - Pier Giorgio Cozzi
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| |
Collapse
|
100
|
Huang M, Jia Z, Luo S, Cheng JP. Quantitative Thermodynamic and Kinetic Parameters of Radical. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|