51
|
Gao R, Zhong N, Huang S, Li S, Chen G, Ouyang G. Multienzyme Biocatalytic Cascade Systems in Porous Organic Frameworks for Biosensing. Chemistry 2022; 28:e202200074. [DOI: 10.1002/chem.202200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Ningyi Zhong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 China
| | - Shuocong Li
- Institute of Biological and Medical Engineering Guangdong Academy of Sciences Guangzhou 510316 China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
52
|
Cui H, Vedder M, Zhang L, Jaeger K, Schwaneberg U, Davari MD. Polar Substitutions on the Surface of a Lipase Substantially Improve Tolerance in Organic Solvents. CHEMSUSCHEM 2022; 15:e202102551. [PMID: 35007408 PMCID: PMC9305861 DOI: 10.1002/cssc.202102551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Indexed: 06/09/2023]
Abstract
Biocatalysis in organic solvents (OSs) enables more efficient routes to the synthesis of various valuable chemicals. However, OSs often reduce enzymatic activity, which limits the use of enzymes in OSs. Herein, we report a comprehensive understanding of interactions between surface polar substitutions and DMSO by integrating molecular dynamics (MD) simulations of 45 variants from Bacillus subtilis lipase A (BSLA) and substitution landscape into a "BSLA-SSM" library. By systematically analyzing 39 structural-, solvation-, and interaction energy-based observables, we discovered that hydration shell maintenance, DMSO reduction, and decreased local flexibility simultaneously govern the stability of polar variants in OS. Moreover, the fingerprints of 1631 polar-related variants in three OSs demonstrated that substituting aromatic to polar amino acid(s) hold great potential to highly improve OSs resistance. Hence, surface polar engineering is a powerful strategy to generate OS-tolerant lipases and other enzymes, thereby adapting the catalyst to the desired reaction and process with OSs.
Collapse
Affiliation(s)
- Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 3Aachen52074Germany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- University of Illinois at Urbana-Champaign Carl R. Woese Institute for Genomic Biology1206 West Gregory DriveUrbana, IL61801USA
| | - Markus Vedder
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 3Aachen52074Germany
| | - Lingling Zhang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesWest 7th Avenue 32, Tianjin Airport Economic AreaTianjin300308P. R. China
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University DüsseldorfWilhelm Johnen StrasseJülich52426Germany
- Institute of Bio-and Geosciences IBG 1: BiotechnologyForschungszentrum Jülich GmbHWilhelm Johnen StrasseJülich52426Germany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 3Aachen52074Germany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
| | - Mehdi D. Davari
- Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryWeinberg 306120HalleGermany
| |
Collapse
|
53
|
Kosuri S, Borca CH, Mugnier H, Tamasi M, Patel RA, Perez I, Kumar S, Finkel Z, Schloss R, Cai L, Yarmush ML, Webb MA, Gormley AJ. Machine-Assisted Discovery of Chondroitinase ABC Complexes toward Sustained Neural Regeneration. Adv Healthc Mater 2022; 11:e2102101. [PMID: 35112508 PMCID: PMC9119153 DOI: 10.1002/adhm.202102101] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Indexed: 12/26/2022]
Abstract
Among the many molecules that contribute to glial scarring, chondroitin sulfate proteoglycans (CSPGs) are known to be potent inhibitors of neuronal regeneration. Chondroitinase ABC (ChABC), a bacterial lyase, degrades the glycosaminoglycan (GAG) side chains of CSPGs and promotes tissue regeneration. However, ChABC is thermally unstable and loses all activity within a few hours at 37 °C under dilute conditions. To overcome this limitation, the discovery of a diverse set of tailor-made random copolymers that complex and stabilize ChABC at physiological temperature is reported. The copolymer designs, which are based on chain length and composition of the copolymers, are identified using an active machine learning paradigm, which involves iterative copolymer synthesis, testing for ChABC thermostability upon copolymer complexation, Gaussian process regression modeling, and Bayesian optimization. Copolymers are synthesized by automated PET-RAFT and thermostability of ChABC is assessed by retained enzyme activity (REA) after 24 h at 37 °C. Significant improvements in REA in three iterations of active learning are demonstrated while identifying exceptionally high-performing copolymers. Most remarkably, one designed copolymer promotes residual ChABC activity near 30%, even after one week and notably outperforms other common stabilization methods for ChABC. Together, these results highlight a promising pathway toward sustained tissue regeneration.
Collapse
Affiliation(s)
- Shashank Kosuri
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Carlos H. Borca
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Heloise Mugnier
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Matthew Tamasi
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Roshan A. Patel
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Isabel Perez
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Suneel Kumar
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Zachary Finkel
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Rene Schloss
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Li Cai
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Martin L. Yarmush
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Michael A. Webb
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Adam J. Gormley
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
54
|
Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Nat Commun 2022; 13:951. [PMID: 35177632 PMCID: PMC8854593 DOI: 10.1038/s41467-022-28615-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Crystallization of biomacromolecules-metal-organic frameworks (BMOFs) allows for orderly assemble of symbiotic hybrids with desirable biological and chemical functions in one voxel. The structure-activity relationship of this symbiotic crystal, however, is still blurred. Here, we directly identify the atomic-level structure of BMOFs, using the integrated differential phase contrast-scanning transmission electron microscopy, cryo-electron microscopy and x-ray absorption fine structure techniques. We discover an obvious difference in the nanoarchitecture of BMOFs under different crystallization pathways that was previously not seen. In addition, we find the nanoarchitecture significantly affects the bioactivity of the BMOFs. This work gives an important insight into the structure-activity relationship of BMOFs synthesized in different scenarios, and may act as a guide to engineer next-generation materials with excellent biological and chemical functions. Biomolecule-metal-organic-frameworks allow for the creation of hybrid materials with desired biological and chemical function. Here, the authors refine the structure-function relationship by identifying the atomic-layer structure of the hybrids and show differences in structure upon different crystallisation pathways.
Collapse
|
55
|
Dashora K, Gattupalli M, Javed Z, Tripathi GD, Sharma R, Mishra M, Bhargava A, Srivastava S. Leveraging multiomics approaches for producing lignocellulose degrading enzymes. Cell Mol Life Sci 2022; 79:132. [PMID: 35152331 PMCID: PMC11072819 DOI: 10.1007/s00018-022-04176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
Abstract
Lignocellulosic materials form the building block of 50% of plant biomass comprising non-chewable agri-components like wheat straw, rice stubbles, wood shavings and other crop residues. The degradation of lignin, cellulose and hemicellulose is complicated and presently being done by chemical process for industrial application through a very energy intensive process. Lignin degradation is primarily an oxidative process where the enzyme lignin peroxidase digests the polymer into smaller fragments. Being a recalcitrant component, higher lignin content poses a challenge of lower recovery of product for industrial use. Globally, the scientists are working on leveraging fungal biotechnology for using the lignocellulose degrading enzymes secreted by actinomycetes and basidiomycetes fungal groups. Enzymes contributing to degradation of lignin are mainly performing the function of modifying the lignin and degrading the lignin. Ligninolytic enzymes do not act as an independent reaction but are vital to complete the degradation process. Microbial enzyme technology is an emerging green tool in industrial biotechnology for commercial application. Bioprocessing of lignocellulosic biomass is challenged by limitations in enzymatic and conversion process where pretreatment and separation steps are done to remove lignin and hydrolyze carbohydrate into fermentable sugars. This review highlights recent advances in molecular biotechnology, lignin valorization, sequencing, decipher microbial membership, and characterize enzyme diversity through 'omics' techniques. Emerging techniques to characterize the interwoven metabolism and spatial interactions between anaerobes are also reviewed, which will prove critical to developing a predictive understanding of anaerobic communities to guide in microbiome engineering This requires more synergistic collaborations from microbial biotechnologists, bioprocess engineers, enzymologists, and other biotechnological fields.
Collapse
Affiliation(s)
- Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India.
| | - Meghana Gattupalli
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Zoya Javed
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Gyan Datta Tripathi
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Ruchi Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Mansi Mishra
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Bihar, India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| |
Collapse
|
56
|
Soy S, Sharma SR, Nigam VK. Bio-fabrication of thermozyme-based nano-biosensors: their components and present scenario. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2022; 33:5523-5533. [PMID: 38624939 PMCID: PMC8800403 DOI: 10.1007/s10854-022-07741-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/06/2022] [Indexed: 05/30/2023]
Abstract
An amalgamation of microbiology, biocatalysis, recombinant molecular biology, and nanotechnology is crucial for groundbreaking innovation in developing nano-biomedicines and sensoristics. Enzyme-based nano-biosensor finds prospective applications in various sectors (environmental, pharmaceutical, food, biorefineries). These applications demand reliable catalytic efficiency and functionality of the enzyme under an extreme operational environment for a prolonged period. Over the last few years, bio-fabrication of nano-biosensors in conjunction with thermozymes from thermophilic microbes is being sought after as a viable design. Thermozymes are known for their robustness, are chemically resistant toward organic solvents, possess higher durability for constant use, catalytic ability, and stability at elevated temperatures. Additionally, several other attributes of thermozymes like substrate specificity, selectivity, and sensitivity make them desirable in developing a customized biosensor. In this review, crucial designing aspects of enzyme-based nano-biosensors like enzyme immobilization on an electrode surface, new materials derived from microbial sources (biopolymers based nanocomposites), improvisation measures for sensitivity, and selectivity have been addressed. It also covers microbial biosynthesis of nanomaterials used to develop sensoristic devices and its numerous applications such as wastewater treatment, biorefineries, and diagnostics. The knowledge will pave the way toward creating consistent eco-friendly, economically viable nanostructured-based technologies with broad applicability and exploitation for industrial use in the near future.
Collapse
Affiliation(s)
- Snehi Soy
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Shubha Rani Sharma
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Vinod Kumar Nigam
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
57
|
Wang Q, Wu Q, Ye T, Wang X, Qiu H, Xie J, Wang Y, Zhou S, Wu W. Reversible Regulating the Substrate Specificity of Enzymes in Microgels by a Phase Transition in Polymer Networks. ACS Macro Lett 2022; 11:26-32. [PMID: 35574802 DOI: 10.1021/acsmacrolett.1c00687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here, we report a distinct approach for regulating the substrate specificity of enzymes immobilized in microgels by a phase transition in polymer networks. The finding is demonstrated on glucose oxidase that is immobilized in thermoresponsive poly(N-isopropylacrylamide)-based microgels. Laser light scattering and enzymatic oxidation tests indicate that the broadened specificity appears at low temperatures, at which the gel matrix is in the relatively swollen state relative to its state at microgel synthesis temperature; upon heating to the relative higher temperatures, the gel matrix is not able to shrink further that offers a tight space in which the enzyme resides to retain high glucose specificity. It is proposed that polymer phase transition in the gel matrix mainly alter protein gates that control passage of substrates into active sites, making them open or close to a certain extent that enable reversible regulating the substrate specificity. The finding is also observed on bulk gels under a rational design, making it of potential interest in enzymatic biofuel cell applications.
Collapse
Affiliation(s)
- Qiangwei Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qingshi Wu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Ting Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaofei Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Huijuan Qiu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianda Xie
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China
| | - Yusong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiming Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
58
|
Mustafa AZ, Kent B, Chapman R, Stenzel MH. Fluorescence enables high throughput screening of polyelectrolyte–protein binding affinities. Polym Chem 2022. [DOI: 10.1039/d2py01056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Förster resonance energy transfer (FRET) in combination with high throughput controlled radical polymerisation allows quick identification of polymers that can bind strongly to enzymes such as glucose oxidase.
Collapse
Affiliation(s)
- Ahmed Z. Mustafa
- School of Chemistry, University of New South Wales UNSW, Sydney, NSW 2052, Australia
| | - Ben Kent
- School of Chemistry, University of New South Wales UNSW, Sydney, NSW 2052, Australia
| | - Robert Chapman
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Martina H. Stenzel
- School of Chemistry, University of New South Wales UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
59
|
Shen H, Shi H, Yang Y, Song J, Ding C, Yu S. Highly Efficient Synergistic Biocatalysis Driven by Stably Loaded Enzymes within Hierarchically Porous Iron/Cobalt Metal-Organic Framework via Biomimetic Mineralization. J Mater Chem B 2022; 10:1553-1560. [DOI: 10.1039/d1tb02596a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of multimodal chemo-/bio-catalysis for efficient cascade reactions has long provided broad prospects in the field of biotechnology for ages. In this work, we describe the synthesis of a...
Collapse
|
60
|
Dong W, Wang K, Zhao L, Li T, Wang Q, Ding Z. Selective immobilization of his-tagged phosphomannose isomerase on Ni chelated nanoparticles with good reusability and activity. Chembiochem 2021; 23:e202100497. [PMID: 34958513 DOI: 10.1002/cbic.202100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/02/2021] [Indexed: 11/06/2022]
Abstract
In this paper, self-stable precipitation polymerization was used to prepare the enzyme-immobilized microsphere composite. Phosphomannose isomerase (PMI) with His-tag was successfully immobilized on Ni 2+ charged pyridine-derived particles. The maximum amount of PMI immobilized on such particles was ~ 184 mg/g. Compared with the free enzymes, the activity of the immobilized enzymes has been significantly improved. In addition, the immoblized enzymes showed a much better thermostability than free enzymes. At the same time, the immobilized enzymes can be reused for multiple reaction cycles. We have observed that the enzyme activity did not decrease significantly after 6 cycles of repeating usages. We conclude that the pyridine-derived particles can be used to selectively immobilize His-tagged enzymes, which can couple the enzyme purification and catalysis steps and improve the efficiency of enzyme-catalyzed industrial processes.
Collapse
Affiliation(s)
- Weifu Dong
- Jiangnan University, School of Chemical and Material Engineering, Lihu Road 1800, 214122, Wuxi, CHINA
| | - Kangjing Wang
- Jiangnan University, school of chemical and material engineering, CHINA
| | - Liting Zhao
- Jiangnan University, School of Biotechnology, CHINA
| | - Ting Li
- Jiangnan University, school of chemical and material engineering, CHINA
| | - Qian Wang
- University of South Carolina, Chemistry and Biochemistry, UNITED STATES
| | | |
Collapse
|
61
|
Zhang W, Day GJ, Zampetakis I, Carrabba M, Zhang Z, Carter BM, Govan N, Jackson C, Chen M, Perriman AW. Three-Dimensional Printable Enzymatically Active Plastics. ACS APPLIED POLYMER MATERIALS 2021; 3:6070-6077. [PMID: 35983011 PMCID: PMC9376927 DOI: 10.1021/acsapm.1c00845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Here, we describe a facile route to the synthesis of enzymatically active highly fabricable plastics, where the enzyme is an intrinsic component of the material. This is facilitated by the formation of an electrostatically stabilized enzyme-polymer surfactant nanoconstruct, which, after lyophilization and melting, affords stable macromolecular dispersions in a wide range of organic solvents. A selection of plastics can then be co-dissolved in the dispersions, which provides a route to bespoke 3D enzyme plastic nanocomposite structures using a wide range of fabrication techniques, including melt electrowriting, casting, and piston-driven 3D printing. The resulting constructs comprising active phosphotriesterase (arPTE) readily detoxify organophosphates with persistent activity over repeated cycles and for long time periods. Moreover, we show that the protein guest molecules, such as arPTE or sfGFP, increase the compressive Young's modulus of the plastics and that the identity of the biomolecule influences the nanomorphology and mechanical properties of the resulting materials. Overall, we demonstrate that these biologically active nanocomposite plastics are compatible with state-of-the-art 3D fabrication techniques and that the methodology could be readily applied to produce robust and on-demand smart nanomaterial structures.
Collapse
Affiliation(s)
- William
H. Zhang
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| | - Graham J. Day
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ioannis Zampetakis
- Bristol
Composites Institute (ACCIS), University
of Bristol, Bristol BS8 1TR, United Kingdom
| | - Michele Carrabba
- Bristol
Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8DZ, United Kingdom
| | - Zhongyang Zhang
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus DK-8000, Denmark
| | - Ben M. Carter
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| | - Norman Govan
- Defence
Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Colin Jackson
- Australian
National University, Research School of
Chemistry, Canberra ACT 2601, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian
Research Council Centre of Excellence in Synthetic Biology, Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| | - Menglin Chen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus DK-8000, Denmark
| | - Adam W. Perriman
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
62
|
Chen Z, Yin Y, Cheng SQ, Sun Y, Liu Y. Construction of a caged single-molecule protein with ultra-stability. Chem 2021. [DOI: 10.1016/j.chempr.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
63
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|
64
|
A lipase/poly (ionic liquid)-styrene microspheres/PVA composite hydrogel for esterification application. Enzyme Microb Technol 2021; 152:109935. [PMID: 34749020 DOI: 10.1016/j.enzmictec.2021.109935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 01/01/2023]
Abstract
Enzymes are particularly attractive as biocatalysts for the green synthesis of chemicals and pharmaceuticals. However, the traditional enzyme purification and separation process is complex and inefficient, which limits the wide application of enzyme catalysis. In this paper, an efficient strategy for enzyme purification and immobilization in one step is proposed. A novel poly (ionic liquid)-styrene microsphere is prepared by molecular design and synthesis for adsorbing and purifying high activity lipase from fermentation broth directly. By optimizing the surface morphologies and charge of the microspheres, the enzyme loading is significantly improved. In order to further stabilize the catalytic environment of lipase, the resulting lipase/poly (ionic liquid)-styrene microspheres are immobilized in physical crosslinking hydrogel to obtain a complex lipase catalytic system, which can be prepared into various shapes according to the requirements of catalytic environment. In the actual catalytic reaction process, this complex lipase catalytic system exhibits excellent catalytic activity (6314.69 ± 21.27 U mg-1) and good harsh environment tolerance compared with the lipase fermentation broth (1672.87 ± 36.68 U mg-1). Under the condition of cyclic catalysis, the complex lipase catalytic system shows the outstanding reusability (After 8 cycles the enzymatic activity is still higher than that of the lipase fermentation broth) and is easily separated from the products.
Collapse
|
65
|
Wang Y, Milewska M, Foster H, Chapman R, Stenzel MH. The Core-Shell Structure, Not Sugar, Drives the Thermal Stabilization of Single-Enzyme Nanoparticles. Biomacromolecules 2021; 22:4569-4581. [PMID: 34617439 DOI: 10.1021/acs.biomac.1c00871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trehalose is widely assumed to be the most effective sugar for protein stabilization, but exactly how unique the structure is and the mechanism by which it works are still debated. Herein, we use a polyion complex micelle approach to control the position of trehalose relative to the surface of glucose oxidase within cross-linked and non-cross-linked single-enzyme nanoparticles (SENs). The distribution and density of trehalose molecules in the shell can be tuned by changing the structure of the underlying polymer, poly(N-[3-(dimethylamino)propyl] acrylamide (PDMAPA). SENs in which the trehalose is replaced with sucrose and acrylamide are prepared as well for comparison. Isothermal titration calorimetry, dynamic light scattering, and asymmetric flow field-flow fraction in combination with multiangle light scattering reveal that two to six polymers bind to the enzyme. Binding either trehalose or sucrose close to the enzyme surface has very little effect on the thermal stability of the enzyme. By contrast, encapsulation of the enzyme within a cross-linked polymer shell significantly enhances its thermal stability and increases the unfolding temperature from 70.3 °C to 84.8 °C. Further improvements (up to 92.8 °C) can be seen when trehalose is built into this shell. Our data indicate that the structural confinement of the enzyme is a far more important driver in its thermal stability than the location of any sugar.
Collapse
Affiliation(s)
- Yiping Wang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Malgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry, and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice 44 100, Poland
| | - Henry Foster
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| |
Collapse
|
66
|
Tian D, Zhang X, Shi H, Liang L, Xue N, Wang JH, Yang H. Pickering-Droplet-Derived MOF Microreactors for Continuous-Flow Biocatalysis with Size Selectivity. J Am Chem Soc 2021; 143:16641-16652. [PMID: 34606264 DOI: 10.1021/jacs.1c07482] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Enzymatic microarchitectures with spatially controlled reactivity, engineered molecular sieving ability, favorable interior environment, and industrial productivity show great potential in synthetic protocellular systems and practical biotechnology, but their construction remains a significant challenge. Here, we proposed a Pickering emulsion interface-directed synthesis method to fabricate such a microreactor, in which a robust and defect-free MOF layer was grown around silica emulsifier stabilized droplet surfaces. The compartmentalized interior droplets can provide a biomimetic microenvironment to host free enzymes, while the outer MOF layer secludes active species from the surroundings and endows the microreactor with size-selective permeability. Impressively, the thus-designed enzymatic microreactor exhibited excellent size selectivity and long-term stability, as demonstrated by a 1000 h continuous-flow reaction, while affording completely equal enantioselectivities to the free enzyme counterpart. Moreover, the catalytic efficiency of such enzymatic microreactors was conveniently regulated through engineering of the type or thickness of the outer MOF layer or interior environments for the enzymes, highlighting their superior customized specialties. This study provides new opportunities in designing MOF-based artificial cellular microreactors for practical applications.
Collapse
Affiliation(s)
- Danping Tian
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Xiaoming Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Linfeng Liang
- Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Nan Xue
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Jun-Hao Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
67
|
|
68
|
Jiang H, Hu X, Li Y, Yang C, Ngai T. Engineering proteinaceous colloidosomes as enzyme carriers for efficient and recyclable Pickering interfacial biocatalysis. Chem Sci 2021; 12:12463-12467. [PMID: 34603677 PMCID: PMC8480340 DOI: 10.1039/d1sc03693a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Despite Pickering interfacial biocatalysis being a popular topic in biphasic biocatalysis, the development of water-in-oil (w/o) emulsion systems stabilized by single particles remains a challenge. For the first time, hydrophobized proteinaceous colloidosomes with magnetic-responsiveness are developed to function as both an enzyme carrier and emulsifier, achieving a breakthrough in protein-based w/o Pickering bioconversion. Enzyme-loaded protein colloidosomes are synthesized by a facile and mild method via emulsion templating. This system exhibits superior catalytic activity to other systems at the oil–water interface. Besides, feasible enzyme recovery and reusability ensure that this novel system can be employed as an efficient and eco-friendly recyclable platform. Engineering proteinaceous colloidosomes with magnetic-responsiveness are designed as both enzyme carrier and emulsifier, achieving a breakthrough in protein-based w/o Pickering interfacial biocatalysis.![]()
Collapse
Affiliation(s)
- Hang Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Xiaofeng Hu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Yunxing Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Cheng Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - To Ngai
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China .,Department of Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong P. R. China
| |
Collapse
|
69
|
Sun M, Peng S, Nie L, Zou Y, Yang L, Gao L, Dou X, Zhao C, Feng C. Three-Dimensional Chiral Supramolecular Microenvironment Strategy for Enhanced Biocatalysis. ACS NANO 2021; 15:14972-14984. [PMID: 34491712 DOI: 10.1021/acsnano.1c05212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
How the three-dimensional (3D) chiral environment affects the biocatalysis remains an important issue, thereby inspiring the development of a microenvironment that highly mimics the natural features of enzyme to guarantee enhanced biocatalysis. In this study, two gelators bearing d/l-phenylalanine as chiral centers are designed to construct the 3D chiral catalytic microenvironment for enhancing the biocatalysis of lipase. Such a microenvironment is programmed through chiral transmission of chirality from molecular chirality to achiral polymers. It shows that the chirality of the microenvironment evidently influences the catalytic efficiency of immobilized lipase inside the system, and the 3D microenvironment constructed by right-handed helical nanostructures can enhance the catalytic activity of lipase inside as high as 10-fold for catalyzing 4-nitrophenyl palmitate (NPP) to 4-nitrophenol (NP) and 1.4-fold for catalyzing lipids to triglycerides (TGs) in 3T3-L1 cells than that of the achiral microenvironment. Moreover, the 3D chiral microenvironment has the merits of good catalytic efficiency, high storage stability, and efficient recyclability. This strategy of designing a 3D chiral microenvironment suitable for biocatalysis will overcome the present limitations of enzymatic immobilization in traditional materials and enhance the understanding of biocatalysis.
Collapse
Affiliation(s)
- Meng Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Shiqiao Peng
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yunqing Zou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laiben Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
70
|
Modulating the biofunctionality of enzyme-MOF nanobiocatalyst through structure-switching aptamer for continuous degradation of BPA. Colloids Surf B Biointerfaces 2021; 208:112099. [PMID: 34536675 DOI: 10.1016/j.colsurfb.2021.112099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 11/22/2022]
Abstract
Encapsulating enzyme within MOF (enzyme-MOF) gives rise to new opportunity to improve the fragility of enzyme, but practical application of enzyme-MOF composite is far from being realized. The development of a novel enzyme-MOF composite system should simultaneously guarantee the enhanced activity and controllably complete recycling, and only in this way can we efficiently and economically utilize the enzyme-MOF composite. Herein, we addressed all these fundamental limitations of current enzyme-MOF composite by establishing aptamer-functionalized enzyme-MOF composite (HRP-ZIF-8@P1). HRP-ZIF-8@P1 relied on automatic structure switch of aptamer-target binding and aptamer-cDNA (complementary DNA) hybridization, achieving effectiveness in self-enriching substrate around HRP-ZIF-8@P1 to boost enzymatic activity first, subsequently hybridizing spontaneously with magnetically controllable cDNA sequence (Fe3O4@P3) to completely recover the HRP-ZIF-8@P1, where preferentially capturing substrate could further induce the release of the hybridized HRP-ZIF-8@P1 for automatically starting the cyclic enzyme catalysis. A 5.6-fold enhancement in the catalytic efficiency for BPA degradation was endowed, and 94.7% catalytic activity was retained for 8 consecutive degradations of BPA, both of which were even more significant than HRP-ZIF-8. Additionally, remarkable stability of HRP-ZIF-8@P1 was afforded by dual-layer protection of ZIF-8 and P1 in denaturing conditions. Taking the possibility of discovering an aptamer for any target into account, the aptamer-functionalized enzyme-MOF composites provide a generic and simple guide for simultaneously boosting enzymatic activity and controllably full recycling the enzyme-MOF systems, accelerating their commercial utilizations.
Collapse
|
71
|
Macdougall LJ, Wechsler ME, Culver HR, Benke EH, Broerman A, Bowman CN, Anseth KS. Charged Poly( N-isopropylacrylamide) Nanogels for the Stabilization of High Isoelectric Point Proteins. ACS Biomater Sci Eng 2021; 7:4282-4292. [PMID: 33560107 DOI: 10.1021/acsbiomaterials.0c01690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Storage and transportation of protein therapeutics using refrigeration is a costly process; a reliable electrical supply is vital, expensive equipment is needed, and unique transportation is required. Reducing the reliance on the cold chain would enable low-cost transportation and storage of biologics, ultimately improving accessibility of this class of therapeutics to patients in remote locations. Herein, we report on the synthesis of charged poly(N-isopropylacrylamide) nanogels that efficiently adsorb a range of different proteins of varying isoelectric points and molecular weights (e.g., adsorption capacity (Q) = 4.7 ± 0.2 mg/mg at 6 mg/mL initial IgG concentration), provide protection from external environmental factors (i.e., temperature), and subsequently release the proteins in an efficient manner (e.g., 100 ± 1% at 2 mg/mL initial IgG concentration). Both cationic and anionic nanogels were synthesized and selectively chosen based on the ability to form electrostatic interactions with adsorbed proteins (e.g., cationic nanogels adsorb low isoelectric point proteins whereas anionic nanogels adsorb high isoelectric point proteins). The nanogel-protein complex formed upon adsorption increases the stabilization of the protein's tertiary structure, providing protection against denaturation at elevated temperatures (e.g., 84 ± 4% of the protected IgG was stabilized when exposed to 65 °C). The addition of a high molar salt solution (e.g., 40 mM CaCl2 solution) to protein-laden nanogels disrupts the electrostatic interactions and collapses the nanogel, ultimately releasing the protein. The versatile materials utilized, in addition to the protein loading and release mechanisms described, provide a simple and efficient strategy to protect fragile biologics for their transport to remote areas without necessitating costly storage equipment.
Collapse
|
72
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
73
|
Liu Y, Tao F, Miao S, Yang P. Controlling the Structure and Function of Protein Thin Films through Amyloid-like Aggregation. Acc Chem Res 2021; 54:3016-3027. [PMID: 34282883 DOI: 10.1021/acs.accounts.1c00231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein thin films (PTFs) with tunable structure and function can offer multiple opportunities in various fields such as surface modification, biomaterials, packaging, optics, electronics, separation, energy, and environmental science. Although nature may offer a variety of examples of high-level control of structure and function, e.g., the S layer of cells, synthetic alternatives for large-area protein-based thin films with fine control over both biological function and material structure are a key challenge, especially when aiming for facile, low-cost, green, and large-scale preparation as well as a further extension of function, such as the encapsulation and release of functional building blocks.Therefore, regarding the structure and function of PTFs, we will first briefly comment on the problems associated with PTF fabrication, and then, regarding the basis of our long-term research on protein-based thin films, we will summarize the new strategies that we have developed in recent years to explore and control the structure and function of PTFs for frontier research and practical applications.Inspired by naturally occurring protein amyloid fibrillization, we proposed the amyloid-like protein aggregation strategy to assemble proteins into supramolecular 2D films with extremely large sizes and enduring interfacial adhesion stability. This approach opened a new window for PTF fabrication in which the spontaneous interfacial 2D aggregation of protein oligomers instead of traditional 1D protofibril elongation directs the assembly of proteins. As a result, the film morphology, thickness, porosity, and function can be tailored by simply tuning the interfacial aggregation pathways.We further modified amyloid-like protein aggregation to develop chemoselective reaction-induced protein aggregation (CRIPA). It is well known that chemoselective reactions have been employed for protein modification. However, the application of such reactions in PTF fabrication has been overlooked. We initiated this new strategy by employing thiol-disulfide exchange reactions. These reactions are chemoselective toward proteins containing specific disulfide bonds with high redox potentials, resulting in amyloid-like aggregation and thin film formation. Functional proteins with immunity to such reactions can be encapsulated in thin films and released on demand without a loss of activity, opening a new avenue for the development of functional PTFs and coatings.Finally, the resultant amyloid-inspired PTFs, as a new type of biomimetic materials, provide a good platform for integration with various biomedical functions. Here, the creation of bioactive surfaces on virtually arbitrary substrates by amyloid-like PTFs will be discussed, highlighting antimicrobial, antifouling, molecular separation, and interfacial biomineralization activities that exceed those of their native protein precursors and synthetic alternatives.
Collapse
Affiliation(s)
- Yongchun Liu
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Fei Tao
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shuting Miao
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Peng Yang
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
74
|
Li M, Blum NT, Wu J, Lin J, Huang P. Weaving Enzymes with Polymeric Shells for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008438. [PMID: 34197008 DOI: 10.1002/adma.202008438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Indexed: 06/13/2023]
Abstract
Enzyme therapeutics have received increasing attention due to their high biological specificity, outstanding catalytic efficiency, and impressive therapeutic outcomes. Protecting and delivering enzymes into target cells while retaining enzyme catalytic efficiency is a big challenge. Wrapping of enzymes with rational designed polymer shells, rather than trapping them into large nanoparticles such as liposomes, have been widely explored because they can protect the folded state of the enzyme and make post-functionalization easier. In this review, the methods for wrapping up enzymes with protective polymer shells are mainly focused on. It is aimed to provide a toolbox for the rational design of polymeric enzymes by introducing methods for the preparation of polymeric enzymes including physical adsorption and chemical conjugation with specific examples of these conjugates/hybrid applications. Finally, a conclusion is drawn and key points are emphasized.
Collapse
Affiliation(s)
- Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
75
|
Rmili F, Hadrich B, Chamkha M, Sayari A, Fendri A. Optimization of an organic solvent-tolerant lipase production by Staphylococcus capitis SH6. Immobilization for biodiesel production and biodegradation of waste greases. Prep Biochem Biotechnol 2021; 52:108-122. [PMID: 34289774 DOI: 10.1080/10826068.2021.1920034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Using the statistical approach, this work seeks to optimize the process parameters to boost the generation of an organic solvent-tolerant lipase by Staphylococcus capitis SH6. The main parameters influencing the enzyme production were identified by using Plackett-Burman's screening design. Among the test variables, only tryptone (25 g/L), malt extract (2.5 g/L), NaCl (10 g/L) and pH (7.0) contributed positively to enzyme production. Then, the crude lipase was immobilized by adsorption on CaCO3 at pH 10. A maximum immobilization efficiency of 82% was obtained by incubating 280 mg of enzyme with CaCO3 (1 g) during 30 min. The immobilized lipase was more stable toward organic solvents than the free enzyme. It retained about 90% of its original activity in the presence of ethanol and methanol. After that, the immobilized enzyme was used for biodiesel production by transesterification process between waste oil and methanol or ethanol during 24 h at 30 °C. Our results show that the lipase can be utilized efficiently in biodiesel industry. Likewise, we have demonstrated that the immobilized enzyme may be implicated in the biodegradability of waste grease; the maximum conversion yield into fatty acids obtained after 12 h at 30 °C, was 57%.
Collapse
Affiliation(s)
- Fatma Rmili
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Bilel Hadrich
- Laboratory of Enzyme Engineering and Microbiology, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Adel Sayari
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
76
|
Stevens CA, Kaur K, Klok HA. Self-assembly of protein-polymer conjugates for drug delivery. Adv Drug Deliv Rev 2021; 174:447-460. [PMID: 33984408 DOI: 10.1016/j.addr.2021.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Protein-polymer conjugates are a class of molecules that combine the stability of polymers with the diversity, specificity, and functionality of biomolecules. These bioconjugates can result in hybrid materials that display properties not found in their individual components and can be particularly relevant for drug delivery applications. Engineering amphiphilicity into these bioconjugate materials can lead to phase separation and the assembly of high-order structures. The assembly, termed self-assembly, of these hierarchical structures entails multiple levels of organization: at each level, new properties emerge, which are, in turn, influenced by lower levels. Here, we provide a critical review of protein-polymer conjugate self-assembly and how these materials can be used for therapeutic applications and drug delivery. In addition, we discuss central bioconjugate design questions and propose future perspectives for the field of protein-polymer conjugate self-assembly.
Collapse
Affiliation(s)
- Corey A Stevens
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
| | - Kuljeet Kaur
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
77
|
Kukkar P, Kukkar D, Younis SA, Singh G, Singh P, Basu S, Kim KH. Colorimetric biosensing of organophosphate pesticides using enzymatic nanoreactor built on zeolitic imdiazolate-8. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
78
|
Abstract
The concepts hybrid and hybridization are common in many scientific fields, as in the taxonomic parts of botany and zoology, in modern genetic, and in the quantum–mechanical theory of atomic–molecular orbitals, which are of foremost relevance in most aspects of modern chemistry. Years later, scientists applied the concept hybrid to colloids, if the particles’ domains are endowed with functionalities differing each from the other in nature and/or composition. For such denomination to be fully valid, the domains belonging to a given hybrid must be recognizable each from another in terms of some intrinsic features. Thus, the concept applies to particles where a given domain has its own physical state, functionality, or composition. Literature examples in this regard are many. Different domains that are present in hybrid colloids self-organize, self-sustain, and self-help, according to the constraints dictated by kinetic and/or thermodynamic stability rules. Covalent, or non-covalent, bonds ensure the formation of such entities, retaining the properties of a given family, in addition to those of the other, and, sometimes, new ones. The real meaning of this behavior is the same as in zoology; mules are pertinent examples, since they retain some features of their own parents (i.e., horses and donkeys) but also exhibit completely new ones, such as the loss of fertility. In colloid sciences, the concept hybrid refers to composites with cores of a given chemical type and surfaces covered by moieties differing in nature, or physical state. This is the result of a mimicry resembling the ones met in a lot of biological systems and foods, too. Many combinations may occur. Silica nanoparticles on which polymers/biopolymers are surface-bound (irrespective of whether binding is covalent or not) are pertinent examples. Here, efforts are made to render clear the concept, which is at the basis of many applications in the biomedical field, and not only. After a historical background and on some features of the species taking part to the formation of hybrids, we report on selected cases met in modern formulations of mixed, and sometimes multifunctional, colloid entities.
Collapse
|
79
|
Hua M, Wang S, Gong Y, Wei J, Yang Z, Sun J. Hierarchically Porous Organic Cages. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mingming Hua
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Shuping Wang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Yanjun Gong
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Jian‐Ke Sun
- MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing P. R. China
| |
Collapse
|
80
|
Hua M, Wang S, Gong Y, Wei J, Yang Z, Sun JK. Hierarchically Porous Organic Cages. Angew Chem Int Ed Engl 2021; 60:12490-12497. [PMID: 33694301 DOI: 10.1002/anie.202100849] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Indexed: 11/09/2022]
Abstract
Imparting mesopores to organic cages of an intrinsic microporous nature to build up hierarchically porous cage soft materials is a grand challenge and will reshape the property and application scope of traditional organic cage molecules. Herein, we discovered how to engineer mesopores into microporous organic cages via their host-guest interactions with long chain ionic surfactants. Equally important, the ionic head of surfactants equips the supramolecularly assembled porous structures with charge-selective uptake and release function in solution. Interestingly, such hierarchically porous organic cage can serve as a nanoreactor once trapping enzymes within the cavity, which show 5-fold enhanced activity of enzymatic catalysis when compared with the free enzymes.
Collapse
Affiliation(s)
- Mingming Hua
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Shuping Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Yanjun Gong
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|
81
|
Ouyang Y, Wang P, Huang B, Yang G, Tian J, Zhang W. Zeolitic Imidazolate Framework Platform for Combinational Starvation Therapy and Oxygen Self-Sufficient Photodynamic Therapy against a Hypoxia Tumor. ACS APPLIED BIO MATERIALS 2021; 4:4413-4421. [PMID: 35006853 DOI: 10.1021/acsabm.1c00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The antitumor efficacy of photodynamic therapy (PDT) is greatly impeded by the nonspecific targeting of photosensitizers and limited oxygen supply in hypoxic tumors. Aiming to overcome the problem, a dual-locked porphyrin/enzyme-loading zeolitic imidazolate framework (ZIF) nanoplatform was constructed for starvation therapy and O2 self-sufficient PDT. The fluorescence recovery and PDT of photosensitizers could be cooperatively triggered by dual pathological parameters, the low pH and overexpressed GSH in tumor tissues, which makes the PDT process conduct precisely in a tumor microenvironment. The cascade catalysis of glucose oxidase and catalase promotes the nanoplatform dissociation, inhibits the energy supply of tumors (starvation therapy), and provides enough O2 to ameliorate the hypoxia and enhance PDT efficacy. In vitro and in vivo studies were performed to confirm the high antitumor efficacy of the porphyrin/enzyme-loading ZIF nanoplatform. Thus, this work offers a path for precise and efficient PDT-based combination therapy against a hypoxia tumor.
Collapse
Affiliation(s)
- Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
82
|
Abstract
Bioelectrocatalysis using redox enzymes appears as a sustainable way for biosensing, electricity production, or biosynthesis of fine products. Despite advances in the knowledge of parameters that drive the efficiency of enzymatic electrocatalysis, the weak stability of bioelectrodes prevents large scale development of bioelectrocatalysis. In this review, starting from the understanding of the parameters that drive protein instability, we will discuss the main strategies available to improve all enzyme stability, including use of chemicals, protein engineering and immobilization. Considering in a second step the additional requirements for use of redox enzymes, we will evaluate how far these general strategies can be applied to bioelectrocatalysis.
Collapse
|
83
|
Shen H, Zhou Z, He W, Chao H, Su P, Song J, Yang Y. Oligonucleotide-Functionalized Enzymes Chemisorbing on Magnetic Layered Double Hydroxides: A Multimodal Catalytic Platform with Boosted Activity for Ultrasensitive Glucose Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14995-15007. [PMID: 33769803 DOI: 10.1021/acsami.1c01350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A reasonable design of multifarious chemo- and biocatalytic functions within individual nano/microunits is urgently desired for high-performance cascade reactions but has heretofore remained elusive. Herein, glucose oxidase was functionalized with oligonucleotides and steadily chemisorbed on magnetic layered double hydroxides (mLDHs) to construct a multimodal catalytic platform for realizing divergent reactions with heterogeneous and biocatalytic steps. The flowerlike mLDHs served both as an enzyme support and a peroxidase mimic cooperating with enzymes for tandem catalysis. Oligo-DNA connected the enzymes to mLDHs like a bridge, and a stepwise ligand-exchange-assisted coordination mechanism was proposed to explain the robust interaction between DNA and mLDHs. More importantly, DNA significantly improved the bioactivity of the whole system. The acceleration mechanism was attributed to the diffusion tunnels for the substrate/product and enhanced substrates binding on mLDHs. The multimodal catalytic platform was applied for colorimetric and electrochemical sensing of glucose with a low limit of detection and high selectivity. The practical analysis capability of the ultrasensitive sensor was evaluated by detecting glucose in human serum and sweat, showing reliable results, satisfactory recovery, and excellent stability. The strategy of combining mLDHs and enzymes for cascade catalysis provides a universal approach to prepare chemo-enzyme hybrids with high performance, which holds great promise for applications in biosensors and industrial catalysis.
Collapse
Affiliation(s)
- Hao Shen
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zixin Zhou
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenting He
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hao Chao
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
84
|
Sun K, Li S, Si Y, Huang Q. Advances in laccase-triggered anabolism for biotechnology applications. Crit Rev Biotechnol 2021; 41:969-993. [PMID: 33818232 DOI: 10.1080/07388551.2021.1895053] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This is the first comprehensive overview of laccase-triggered anabolism from fundamental theory to biotechnology applications. Laccase is a typical biological oxidordeuctase that induces the one-electronic transfer of diverse substrates for engendering four phenoxy radicals with concomitant reduction of O2 into 2H2O. In vivo, laccase can participate in anabolic processes to create multifarious functional biopolymers such as fungal pigments, plant lignins, and insect cuticles, using mono/polyphenols and their derivatives as enzymatic substrates, and is thus conducive to biological tissue morphogenesis and global carbon storage. Exhilaratingly, fungal laccase has high redox potential (E° = 500-800 mV) and thermodynamic efficiency, making it a remarkable candidate for utilization as a versatile catalyst in the green and circular economy. This review elaborates the anabolic mechanisms of laccase in initiating the polymerization of natural phenolic compounds and their derivatives in vivo via radical-based self/cross-coupling. Information is also presented on laccase immobilization engineering that expands the practical application ranges of laccase in biotechnology by improving the enzymatic catalytic activity, stability, and reuse rate. Particularly, advances in biotechnology applications in vitro through fungal laccase-triggered macromolecular biosynthesis may provide a key research direction beneficial to the rational design of green chemistry.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, USA
| |
Collapse
|
85
|
Kasza G, Stumphauser T, Bisztrán M, Szarka G, Hegedüs I, Nagy E, Iván B. Thermoresponsive Poly( N, N-diethylacrylamide- co-glycidyl methacrylate) Copolymers and Its Catalytically Active α-Chymotrypsin Bioconjugate with Enhanced Enzyme Stability. Polymers (Basel) 2021; 13:987. [PMID: 33806995 PMCID: PMC8004754 DOI: 10.3390/polym13060987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Responsive (smart, intelligent, adaptive) polymers have been widely explored for a variety of advanced applications in recent years. The thermoresponsive poly(N,N-diethylacrylamide) (PDEAAm), which has a better biocompatibility than the widely investigated poly(N,N-isopropylacrylamide), has gained increased interest in recent years. In this paper, the successful synthesis, characterization, and bioconjugation of a novel thermoresponsive copolymer, poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)), obtained by free radical copolymerization with various comonomer contents and monomer/initiator ratios are reported. It was found that all the investigated copolymers possess LCST-type thermoresponsive behavior with small extent of hysteresis, and the critical solution temperatures (CST), i.e., the cloud and clearing points, decrease linearly with increasing GMA content of these copolymers. The P(DEAAm-co-GMA) copolymer with pendant epoxy groups was found to conjugate efficiently with α-chymotrypsin in a direct, one-step reaction, leading to enzyme-polymer nanoparticle (EPNP) with average size of 56.9 nm. This EPNP also shows reversible thermoresponsive behavior with somewhat higher critical solution temperature than that of the unreacted P(DEAAm-co-GMA). Although the catalytic activity of the enzyme-polymer nanoconjugate is lower than that of the native enzyme, the results of the enzyme activity investigations prove that the pH and thermal stability of the enzyme is significantly enhanced by conjugation the with P(DEAAm-co-GMA) copolymer.
Collapse
Affiliation(s)
- György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Tímea Stumphauser
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Márk Bisztrán
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Györgyi Szarka
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Imre Hegedüs
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37–47, H-1094 Budapest, Hungary
| | - Endre Nagy
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| |
Collapse
|
86
|
Zheng Y, Pokorski JK. Hot melt extrusion: An emerging manufacturing method for slow and sustained protein delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1712. [PMID: 33691347 DOI: 10.1002/wnan.1712] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
Abstract
With the rapid development of the biopharmaceutical industry, an increasing number of new therapeutic protein products (TPPs) have been approved by the FDA and many others are under pre-clinical and clinical evaluation. A major limitation of biopharmaceuticals is their limited half-life when administered systemically. A one-time, implantable, sustained protein delivery device would be advantageous in order to improve the quality of life of patients. Hot melt extrusion (HME) is a mature technology that has been extensively used for a broad spectrum of applications in the polymer and pharmaceutical industry and has achieved success as evidenced by a variety of FDA-approved commercial products. These commercial products are mostly for sustained delivery of small molecule therapeutics, leaving a significant gap for HME formulation of therapeutic proteins. With the increasing need of sustained TPP delivery, HME shows promise as a downstream processing method due to its high efficiency and economic value. Several challenges remain for the application of HME in protein delivery. Progress of HME for protein delivery, challenges encountered, and potential solutions will be detailed in this review article. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Yi Zheng
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
87
|
Schirò G, Fichou Y, Brogan APS, Sessions R, Lohstroh W, Zamponi M, Schneider GJ, Gallat FX, Paciaroni A, Tobias DJ, Perriman A, Weik M. Diffusivelike Motions in a Solvent-Free Protein-Polymer Hybrid. PHYSICAL REVIEW LETTERS 2021; 126:088102. [PMID: 33709739 DOI: 10.1103/physrevlett.126.088102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/11/2021] [Indexed: 05/16/2023]
Abstract
The interaction between proteins and hydration water stabilizes protein structure and promotes functional dynamics, with water translational motions enabling protein flexibility. Engineered solvent-free protein-polymer hybrids have been shown to preserve protein structure, function, and dynamics. Here, we used neutron scattering, protein and polymer perdeuteration, and molecular dynamics simulations to explore how a polymer dynamically replaces water. Even though relaxation rates and vibrational properties are strongly modified in polymer coated compared to hydrated proteins, liquidlike polymer dynamics appear to plasticize the conjugated protein in a qualitatively similar way as do hydration-water translational motions.
Collapse
Affiliation(s)
- Giorgio Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Yann Fichou
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN) UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600 Pessac, France
| | - Alex P S Brogan
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Richard Sessions
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, United Kingdom
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum, Technische Universität München, Garching, Germany
| | - Michaela Zamponi
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Garching, Germany
| | - Gerald J Schneider
- Department of Chemistry and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - François-Xavier Gallat
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California, CA 92697, USA
| | - Adam Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000 Grenoble, France
| |
Collapse
|
88
|
Atkins DL, Magana JR, Sproncken CCM, van Hest JCM, Voets IK. Single Enzyme Nanoparticles with Improved Biocatalytic Activity through Protein Entrapment in a Surfactant Shell. Biomacromolecules 2021; 22:1159-1166. [PMID: 33630590 PMCID: PMC7944482 DOI: 10.1021/acs.biomac.0c01663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A polymeric corona
consisting of an alkyl-glycolic acid ethoxylate
(CXEOY) surfactant
offers a promising approach toward endowing proteins with thermotropic
phase behavior and hyperthermal activity. Typically, preparation of
protein–surfactant biohybrids is performed via chemical modification of acidic residues followed by electrostatic
conjugation of an anionic surfactant to encapsulate single proteins.
While this procedure has been applied to a broad range of proteins,
modification of acidic residues may be detrimental to function for
specific enzymes. Herein, we report on the one-pot preparation of
biohybrids via covalent conjugation of surfactants
to accessible lysine residues. We entrap the model enzyme hen egg-white
lysozyme (HEWL) in a shell of carboxyl-functionalized C12EO10 or C12EO22 surfactants. With
fewer surfactants, our covalent biohybrids display similar thermotropic
phase behavior to their electrostatically conjugated analogues. Through
a combination of small-angle X-ray scattering and circular dichroism
spectroscopy, we find that both classes of biohybrids consist of a
folded single-protein core decorated by surfactants. Whilst traditional
biohybrids retain densely packed surfactant coronas, our biohybrids
display a less dense and heterogeneously distributed surfactant coverage
located opposite to the catalytic cleft of HEWL. In solution, this
surfactant coating permits 7- or 3.5-fold improvements in activity
retention for biohybrids containing C12EO10 or
C12EO22, respectively. The reported alternative
pathway for biohybrid preparation offers a new horizon to expand upon
the library of proteins for which functional biohybrid materials can
be prepared. We also expect that an improved understanding of the
distribution of tethered surfactants in the corona will be crucial
for future structure–function investigations.
Collapse
Affiliation(s)
- Dylan L Atkins
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - J Rodrigo Magana
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Christian C M Sproncken
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Laboratory of Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
89
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
90
|
Ramberg KO, Engilberge S, Skorek T, Crowley PB. Facile Fabrication of Protein-Macrocycle Frameworks. J Am Chem Soc 2021; 143:1896-1907. [PMID: 33470808 PMCID: PMC8154523 DOI: 10.1021/jacs.0c10697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Precisely defined protein aggregates,
as exemplified by crystals,
have applications in functional materials. Consequently, engineered
protein assembly is a rapidly growing field. Anionic calix[n]arenes
are useful scaffolds that can mold to cationic proteins and induce
oligomerization and assembly. Here, we describe protein-calixarene
composites obtained via cocrystallization of commercially available
sulfonato-calix[8]arene (sclx8) with the symmetric and “neutral” protein RSL. Cocrystallization
occurred across a wide range of conditions and protein charge states,
from pH 2.2–9.5, resulting in three crystal forms. Cationization
of the protein surface at pH ∼ 4 drives calixarene complexation
and yielded two types of porous frameworks with pore diameters >3
nm. Both types of framework provide evidence of protein encapsulation
by the calixarene. Calixarene-masked proteins act as nodes within
the frameworks, displaying octahedral-type coordination in one case.
The other framework formed millimeter-scale crystals within hours,
without the need for precipitants or specialized equipment. NMR experiments
revealed macrocycle-modulated side chain pKa values and suggested a mechanism for pH-triggered assembly.
The same low pH framework was generated at high pH with a permanently
cationic arginine-enriched RSL variant. Finally, in addition to protein
framework fabrication, sclx8 enables de novo structure determination.
Collapse
Affiliation(s)
- Kiefer O Ramberg
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Sylvain Engilberge
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.,Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Tomasz Skorek
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
91
|
Gul I, Le W, Jie Z, Ruiqin F, Bilal M, Tang L. Recent advances on engineered enzyme-conjugated biosensing modalities and devices for halogenated compounds. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
92
|
Guan W, Tang X, Wang W, Lin Y, Lu C. Hydrophobic Interface Cages in Microemulsions: Concept and Experiment Using Tetraphenylethylene-based Double-tailed Surfactant. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
93
|
Lopez S, Marchi-Delapierre C, Cavazza C, Ménage S. A Selective Sulfide Oxidation Catalyzed by Heterogeneous Artificial Metalloenzymes Iron@NikA. Chemistry 2020; 26:16633-16638. [PMID: 33079395 DOI: 10.1002/chem.202003746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Indexed: 12/20/2022]
Abstract
Performing a heterogeneous catalysis with proteins is still a challenge. Herein, we demonstrate the importance of cross-linked crystals for sulfoxide oxidation by an artificial enzyme. The biohybrid consists of the insertion of an iron complex into a NikA protein crystal. The heterogeneous catalysts displays a better efficiency-with higher reaction kinetics, a better stability and expand the substrate scope compared to its solution counterpart. Designing crystalline artificial enzymes represents a good alternative to soluble or supported enzymes for the future of synthetic biology.
Collapse
Affiliation(s)
- Sarah Lopez
- CEA, CNRS, IRIG, CBM, Univ. Grenoble Alpes, 38000, Grenoble, France.,Univ. Grenoble-Alpes, DCM-SeRCO, 38000, Grenoble, France
| | | | | | - Stéphane Ménage
- CEA, CNRS, IRIG, CBM, Univ. Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
94
|
de Lima CSA, Varca JPRO, Nogueira KM, Fazolin GN, de Freitas LF, de Souza EW, Lugão AB, Varca GHC. Semi-Solid Pharmaceutical Formulations for the Delivery of Papain Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12121170. [PMID: 33271859 PMCID: PMC7761214 DOI: 10.3390/pharmaceutics12121170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Papain is a therapeutic enzyme with restricted applications due to associated allergenic reactions. Papain nanoparticles have shown to be safe for biomedical use, although a method for proper drug loading and release remains to be developed. Thus, the objective of this work was to develop and assess the stability of papain nanoparticles in a prototype semi-solid formulation suitable for dermatological or topical administrations. Papain nanoparticles of 7.0 ± 0.1 nm were synthesized and loaded into carboxymethylcellulose- and poly(vinyl alcohol)-based gels. The formulations were then assayed for preliminary stability, enzyme activity, cytotoxicity studies, and characterized according to their microstructures and protein distribution. The formulations were suitable for papain nanoparticle loading and provided a stable environment for the nanoparticles. The enzyme distribution along the gel matrix was homogeneous for all the formulations, and the proteolytic activity was preserved after the gel preparation. Both gels presented a slow release of the papain nanoparticles for four days. Cell viability assays revealed no potential cytotoxicity, and the presence of the nanoparticles did not alter the microstructure of the gel. The developed systems presented a potential for biomedical applications, either as drug delivery systems for papain nanoparticles and/or its complexes.
Collapse
Affiliation(s)
- Caroline S. A. de Lima
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
- Correspondence: (C.S.A.d.L.); (G.H.C.V.)
| | - Justine P. R. O. Varca
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
| | - Kamila M. Nogueira
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
| | - Gabriela N. Fazolin
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
| | - Lucas F. de Freitas
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
| | - Eliseu W. de Souza
- Department of Polymers, Technology College (Fatec), São Paulo 03694-000, Brazil;
| | - Ademar B. Lugão
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
| | - Gustavo. H. C. Varca
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
- Correspondence: (C.S.A.d.L.); (G.H.C.V.)
| |
Collapse
|
95
|
Kovaliov M, Zhang B, Konkolewicz D, Szcześniak K, Jurga S, Averick S. Polymer grafting from a metallo‐centered enzyme improves activity in non‐native environments. POLYM INT 2020. [DOI: 10.1002/pi.6127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marina Kovaliov
- Neuroscience Disruptive Research Lab Allegheny Health Network Research Institute, Allegheny General Hospital Pittsburgh PA USA
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA USA
| | - Borui Zhang
- Neuroscience Disruptive Research Lab Allegheny Health Network Research Institute, Allegheny General Hospital Pittsburgh PA USA
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA USA
| | | | | | - Stefa Jurga
- NanoBioMedical Centre, Adam Mickiewicz University Poznań Poland
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab Allegheny Health Network Research Institute, Allegheny General Hospital Pittsburgh PA USA
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA USA
| |
Collapse
|
96
|
Rapson TD, Gregg CM, Allen RS, Ju H, Doherty CM, Mulet X, Giddey S, Wood CC. Insights into Nitrogenase Bioelectrocatalysis for Green Ammonia Production. CHEMSUSCHEM 2020; 13:4856-4865. [PMID: 32696610 DOI: 10.1002/cssc.202001433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/20/2020] [Indexed: 05/26/2023]
Abstract
There is a growing interest in using ammonia as a liquid carrier of hydrogen for energy applications. Currently, ammonia is produced industrially by the Haber-Bosch process, which requires high temperature and high pressure. In contrast, bacteria have naturally evolved an enzyme known as nitrogenase, that is capable of producing ammonia and hydrogen at ambient temperature and pressure. Therefore, nitrogenases are attractive as a potentially more efficient means to produce ammonia via harnessing the unique properties of this enzyme. In recent years, exciting progress has been made in bioelectrocatalysis using nitrogenases to produce ammonia. Here, the prospects for developing biological ammonia production are outlined, key advances in bioelectrocatalysis by nitrogenases are highlighted, and possible solutions to the obstacles faced in realising this goal are discussed.
Collapse
Affiliation(s)
- Trevor D Rapson
- CSIRO Agriculture and Food, Black Mountain, ACT, 2601, Australia
| | | | - Robert S Allen
- CSIRO Agriculture and Food, Black Mountain, ACT, 2601, Australia
| | - HyungKuk Ju
- CSIRO Energy, Private Bag 10, Clayton South, 3169, Victoria, Australia
| | - Cara M Doherty
- CSIRO Manufacturing, Private Bag 10, Clayton South, 3169, Victoria, Australia
| | - Xavier Mulet
- CSIRO Manufacturing, Private Bag 10, Clayton South, 3169, Victoria, Australia
| | - Sarbjit Giddey
- CSIRO Energy, Private Bag 10, Clayton South, 3169, Victoria, Australia
| | - Craig C Wood
- CSIRO Agriculture and Food, Black Mountain, ACT, 2601, Australia
| |
Collapse
|
97
|
Li Q, Pan Y, Li H, Alhalhooly L, Li Y, Chen B, Choi Y, Yang Z. Size-Tunable Metal-Organic Framework-Coated Magnetic Nanoparticles for Enzyme Encapsulation and Large-Substrate Biocatalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41794-41801. [PMID: 32830486 PMCID: PMC7501215 DOI: 10.1021/acsami.0c13148] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Immobilizing enzymes on nanoparticles (NPs) enhances the cost-efficiency of biocatalysis; however, when the substrates are large, it becomes difficult to separate the enzyme@NP from the products while avoiding leaching or damage of enzymes in the reaction medium. Metal-organic framework (MOF)-coated magnetic NPs (MNPs) offer efficient magnetic separation and enhanced enzyme protection; however, the involved enzymes/substrates have to be smaller than the MOF apertures. A potential solution to these challenges is coprecipitating metal/ligand with enzymes on the MNP surface, which can partially bury (protect) the enzyme below the composite surface while exposing the rest of the enzyme to the reaction medium for catalysis of larger substrates. Here, to prove this concept, we show that using Ca2+ and terephthalic acid (BDC), large-substrate enzymes can be encapsulated in CaBDC-MOF layers coated on MNPs via an enzyme-friendly, aqueous-phase one-pot synthesis. Interestingly, we found that using MNPs as the nuclei of crystallization, the composite size can be tuned so that nanoscale composites were formed under low Ca2+/BDC concentrations, while microscale composites were formed under high Ca2+/BDC concentrations. While the microscale composites showed significantly enhanced reusability against a non-structured large substrate, the nanoscale composites displayed enhanced catalytic efficiency against a rigid, crystalline-like large substrate, starch, likely due to the improved diffusivity of the nanoscale composites. To our best knowledge, this is the first report on aqueous-phase one-pot synthesis of size-tunable enzyme@MOF/MNP composites for large-substrate biocatalysis. Our platform can be applied to immobilize other large-substrate enzymes with enhanced reusability and tunable sizes.
Collapse
Affiliation(s)
- Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Lina Alhalhooly
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yue Li
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
98
|
Chen SY, Lo WS, Huang YD, Si X, Liao FS, Lin SW, Williams BP, Sun TQ, Lin HW, An Y, Sun T, Ma Y, Yang HC, Chou LY, Shieh FK, Tsung CK. Probing Interactions between Metal-Organic Frameworks and Freestanding Enzymes in a Hollow Structure. NANO LETTERS 2020; 20:6630-6635. [PMID: 32786948 DOI: 10.1021/acs.nanolett.0c02265] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
It has been reported that the biological functions of enzymes could be altered when they are encapsulated in metal-organic frameworks (MOFs) due to the interactions between them. Herein, we probed the interactions of catalase in solid and hollow ZIF-8 microcrystals. The solid sample with confined catalase is prepared through a reported method, and the hollow sample is generated by hollowing the MOF crystals, sealing freestanding enzymes in the central cavities of hollow ZIF-8. During the hollowing process, the samples were monitored by small-angle X-ray scattering (SAXS) spectroscopy, electron microscopy, powder X-ray diffraction (PXRD), and nitrogen sorption. The interfacial interactions of the two samples were studied by infrared (IR) and fluorescence spectroscopy. IR study shows that freestanding catalase has less chemical interaction with ZIF-8 than confined catalase, and a fluorescence study indicates that the freestanding catalase has lower structural confinement. We have then carried out the hydrogen peroxide degradation activities of catalase at different stages and revealed that the freestanding catalase in hollow ZIF-8 has higher activity.
Collapse
Affiliation(s)
- Sheng-Yu Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yi-Da Huang
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Xiaomeng Si
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fu-Siang Liao
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Shang-Wei Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Benjamin P Williams
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Ting-Qian Sun
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Hao-Wei Lin
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yuanyuan An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tu Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fa-Kuen Shieh
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
99
|
|
100
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|