51
|
Han T, Wang X, Wang D, Tang BZ. Functional Polymer Systems with Aggregation-Induced Emission and Stimuli Responses. Top Curr Chem (Cham) 2021; 379:7. [PMID: 33428022 PMCID: PMC7797498 DOI: 10.1007/s41061-020-00321-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Functional polymer systems with stimuli responses have attracted great attention over the years due to their diverse range of applications. Such polymers are capable of altering their chemical and/or physical properties, such as chemical structures, chain conformation, solubility, shape, morphologies, and optical properties, in response to single or multiple stimuli. Among various stimuli-responsive polymers, those with aggregation-induced emission (AIE) properties possess the advantages of high sensitivity, fast response, large contrast, excellent photostability, and low background noise. The changes in fluorescence signal can be conveniently detected and monitored using portable instruments. The integration of AIE and stimuli responses into one polymer system provides a feasible and effective strategy for the development of smart polymers with high sensitivity to environmental variations. Here, we review the recent advances in the design, preparation, performance, and applications of functional synthetic polymer systems with AIE and stimuli responses. Various AIE-based polymer systems with responsiveness toward single physical or chemical stimuli as well as multiple stimuli are summarized with specific examples. The current challenges and perspectives on the future development of this research area will also be discussed at the end of this review.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinnan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
52
|
Wu X, Li W, Hu R, Tang BZ. Catalyst-Free Four-Component Polymerization of Propiolic Acids, Benzylamines, Organoboronic Acids, and Formaldehyde toward Functional Poly(propargylamine)s. Macromol Rapid Commun 2020; 42:e2000633. [PMID: 33314555 DOI: 10.1002/marc.202000633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Indexed: 12/31/2022]
Abstract
Multicomponent polymerizations (MCPs) are a group of fascinating polymer synthesis approaches that are developed rapidly in the recent decade. As a popular alkyne-based MCP, the A3 -polycouplings of alkynes, aldehydes, and amines are developed for the synthesis of poly(propargylamine)s under the catalysis of metal catalysts. In this work, through the design of carboxylic acid group-activated alkyne monomers, a catalyst-free, four-component polymerization of propiolic acids, benzylamines, organoboronic acids, and formaldehyde is reported under mild condition at 45 °C in dichloroethane. This four-component polymerization is applicable to different monomer structures, which can afford seven poly(propargylamine)s with up to 94% yields and molecular weights of up to 13 900 g mol-1 . Moreover, the poly(propargylamine)s demonstrate good solubility and processibility, high thermal stability and light refractivity, unique photophysical property, and so on. The simple monomers, mild condition, low cost, high efficiency, and procedure simplicity of this catalyst-free four-component polymerization demonstrates an elegant example of functional polymer synthesis.
Collapse
Affiliation(s)
- Xiuying Wu
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Weizhang Li
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,AIE Institute, South China University of Technology (SCUT), Guangzhou, 510530, China
| |
Collapse
|
53
|
Su X, Gao Q, Wang D, Han T, Tang BZ. One-Step Multicomponent Polymerizations for the Synthesis of Multifunctional AIE Polymers. Macromol Rapid Commun 2020; 42:e2000471. [PMID: 33000896 DOI: 10.1002/marc.202000471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Indexed: 01/01/2023]
Abstract
As a new class of functional luminescent materials, polymers with aggregation-induced emission (AIE) feature attract much attention because of their advantages of efficient solid-state fluorescence, excellent processability, structural diversity, and multifunctionalities. Among all polymerization methods toward AIE polymers, multicomponent polymerizations (MCPs) exhibit the merits of simple operation, good atom economy, high polymerization efficiency, broad functional-group tolerance, etc. In this feature article, the recent progress on the development of one-step MCPs for the synthesis of AIE polymers is highlighted. The representative functionalities of the resulting AIE polymers are illustrated. Perspectives on the challenges and future development directions of this field are also discussed.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qingqing Gao
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,School of Materials Science and Engineering, Xiamen University of Technology, Ligong Road No. 600, Jimei District, Xiamen, 361024, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
54
|
Xiao F, Cao B, Wen L, Su Y, Zhan M, Lu L, Hu X. Photosensitizer conjugate-functionalized poly(hexamethylene guanidine) for potentiated broad-spectrum bacterial inhibition and enhanced biocompatibility. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
55
|
Rational collaborative ablation of bacterial biofilms ignited by physical cavitation and concurrent deep antibiotic release. Biomaterials 2020; 262:120341. [PMID: 32911255 DOI: 10.1016/j.biomaterials.2020.120341] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/10/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
Bacteria biofilm has extracellular polymeric substances to protect bacteria from external threats, which is a stubborn problem for human health. Herein, a kind of gasifiable nanodroplet is fabricated to ablate Staphylococcus aureus (S. aureus) biofilm. Upon NIR pulsed laser irradiation, the nanodroplets can gasify to generate destructive gas shockwave, which further potentiates initial acoustic cavitation effect, thus synergistically disrupting the protective biofilm and killing resident bacteria. More importantly, the gasification can further promote antibiotic release in deep biofilm for residual bacteria eradication. The nanodroplets not only exhibit deep biofilm penetration capacity and high potency to ablate biofilms, but also good biocompatibility without detectable side effects. In vivo mouse implant model indicates that the nanodroplets can accumulate at the S. aureus infected implant sites. Upon pulsed laser treatment, the nanodroplets efficiently eradicate bacteria biofilm in implanted catheter by synergistic contribution of gas shockwave-enhanced cavitation and deep antibiotic release. Current phase changeable nanodroplets with synergistic physical and chemical therapeutic modalities are promising to combat complex bacterial biofilms with drug resistance, which provides an alternative visual angle for biofilm inhibition in biomedicine.
Collapse
|
56
|
Tamil Selvan S, Padmanabhan P, Zoltán Gulyás B. Nanotechnology-Based Diagnostics and Therapy for Pathogen-Related Infections in the CNS. ACS Chem Neurosci 2020; 11:2371-2377. [PMID: 31726008 DOI: 10.1021/acschemneuro.9b00470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The central nervous system (CNS) encompasses the brain, spinal cord, and nerves, where both brain and spinal cord are safeguarded by the meninges. However, serious bacterial, viral, or fungal infection in the brain causes life-threatening diseases such as meningitis. Engineered nanostructures hold great promise for not only in the diagnosis but also for combating microbial drug resistance owing to their high surface area and innate antibacterial activity. We delineate several nanoparticle-based approaches to enhance the CNS delivery of drugs across the blood-brain barrier (BBB). While pathogens invade the CNS by phagocytosis or receptor (e.g., EphA2)-mediated transcytosis, most of the nanoparticles cross the BBB via receptor-mediated transcytosis (e.g., antibody, peptide, protein). We also provide our perspectives on the diagnostic pathways based on nanotechnology for the detection of pathogens in the brain, thereby opening up new therapeutic avenues.
Collapse
Affiliation(s)
- Subramanian Tamil Selvan
- Translational Neuroscience Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| | - Parasuraman Padmanabhan
- Translational Neuroscience Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| | - Balázs Zoltán Gulyás
- Translational Neuroscience Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
57
|
Liu X, Han T, Lam JWY, Tang BZ. Functional Heterochain Polymers Constructed by Alkyne Multicomponent Polymerizations. Macromol Rapid Commun 2020; 42:e2000386. [DOI: 10.1002/marc.202000386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/04/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Ting Han
- HKUST‐Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi‐tech Park Nanshan Shenzhen 518057 P. R. China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
- Center for Aggregation‐Induced Emission SCUT‐HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- AIE Institute Guangzhou Development District, Huangpu Guangzhou 510530 China
| |
Collapse
|
58
|
Guo X, Cao B, Wang C, Lu S, Hu X. In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. NANOSCALE 2020; 12:7651-7659. [PMID: 32207761 DOI: 10.1039/d0nr00181c] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infection has caused a serious threat to human public health. Methicillin-resistant Staphylococcus aureus (MRSA) is a representative drug-resistant bacterium, which is difficult to eradicate completely, resulting in high infection probability with severe mortality. Herein, pathogen-targeting phototheranostic nanoparticles, Van-OA@PPy, are developed for efficient elimination of MRSA infection. Van-OA@PPy nanoparticles are fabricated from the in situ templated formation of polypyrrole (PPy) in the presence of ferric ions (Fe3+) and a polymer template, hydrophilic poly(2-hydroxyethyl methacrylate-co-N,N-dimethyl acrylamide), P(HEMA-co-DMA). PPy nanoparticles are further coated with vancomycin conjugated oleic acid (Van-OA) to afford the resultant pathogen-targeting Van-OA@PPy. A high photothermal conversion efficiency of ∼49.4% is achieved. MRSA can be efficiently killed due to sufficient nanoparticle adhesion and fusion with MRSA, followed by photothermal therapy upon irradiation with an 808 nm laser. Remarkable membrane damage of MRSA is observed, which contributes greatly to the inhibition of MRSA infection. Furthermore, the nanoparticles have high stability and good biocompatibility without causing any detectable side effects. On the other hand, residual Fe3+ and PPy moieties in Van-OA@PPy endow the nanoparticles with magnetic resonance (MR) imaging and photoacoustic (PA) imaging potency, respectively. The current strategy has the potential to inspire further advances in precise diagnosis and efficient elimination of MRSA infection in biomedicine.
Collapse
Affiliation(s)
- Xujuan Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | | | | | | | | |
Collapse
|
59
|
Shu X, Liao J, Wang L, Shi Q, Xie X. Osteogenic, Angiogenic, and Antibacterial Bioactive Nano-Hydroxyapatite Co-Synthesized Using γ-Polyglutamic Acid and Copper. ACS Biomater Sci Eng 2020; 6:1920-1930. [PMID: 33455304 DOI: 10.1021/acsbiomaterials.0c00096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nano-antibacterial calcium phosphate (CaP) has attracted intense attention with regard to its wide variety of medical and biological applications. The γ-polyglutamic acid and copper cosynthesized hydroxyapatite (γ-PGA/CuxHAp) was synthesized using the wet method. Structural and chemical characterizations demonstrate that copper was quantitatively incorporated into the hydroxyapatite structure, and the degree of Cu substitution was up to 20 mol % in the synthesized nanocrystals. Morphology characterization showed that the size of the γ-PGA/CuxHAp nanoparticles decreases with the increased copper content. γ-PGA/CuxHAp exhibited a steady release of Cu ions. Two experimental protocols were applied to compare the antibacterial activity of the γ-PGA/CuxHAp samples. A positive correlation was observed between Cu content and the inhibition of bacterial growth. The study also showed that nanoparticles with smaller particle sizes exhibited higher antibacterial activities than the larger particles. Endothelial and osteoblast cells rapidly proliferated on γ-PGA/CuxHAp, whereas high concentrations (20 mol %) of Cu ions reduced cell proliferation. In the rat calvarial defect model, some γ-PGA/CuxHAp samples such as γ-PGA/CuxHAp (x = 8, 16) showed efficient bone regeneration capacities at 12 weeks post implantation. Thus, the multibiofunctional γ-PGA/CuxHAp nanocomposite exhibited degradative, angiogenic, bactericidal and bone regenerative properties, providing a potential means to address some of the critical challenges in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Xiulin Shu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture, Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, Guangdong 510070, China
| | - Junda Liao
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture, Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, Guangdong 510070, China
| | - Lingling Wang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture, Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, Guangdong 510070, China
| | - Qingshan Shi
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture, Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, Guangdong 510070, China
| | - Xiaobao Xie
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture, Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, Guangdong 510070, China
| |
Collapse
|
60
|
A flexible topo-optical sensing technology with ultra-high contrast. Nat Commun 2020; 11:1448. [PMID: 32193398 PMCID: PMC7081276 DOI: 10.1038/s41467-020-15288-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/25/2020] [Indexed: 01/17/2023] Open
Abstract
Elastic folding, a phenomenon widely existing in nature, has attracted great interests to understand the math and physical science behind the topological transition on surface, thus can be used to create frontier engineering solutions. Here, we propose a topo-optical sensing strategy with ultra-high contrast by programming surface folds on targeted area with a thin optical indicator layer. A robust and precise signal generation can be achieved under mechanical compressive strains (>0.4). This approach bridges the gap in current mechano-responsive luminescence mechanism, by utilizing the unwanted oxygen quenching effect of Iridium-III (Ir-III) fluorophores to enable an ultra-high contrast signal. Moreover, this technology hosts a rich set of attractive features such as high strain sensing, encoded logic function, direct visualisation and good adaptivity to the local curvature, from which we hope it will enable new opportunities for designing next generation flexible/wearable devices.
Collapse
|
61
|
Wang J, Wu X, Shen P, Wang J, Shen Y, Shen Y, Webster TJ, Deng J. Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment. Int J Nanomedicine 2020; 15:1903-1914. [PMID: 32256067 PMCID: PMC7094149 DOI: 10.2147/ijn.s239751] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/16/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cancer is one of the major causes of death and is difficult to cure using existing clinical therapies. Clinical cancer treatments [such as surgery, chemotherapy (CHT), radiotherapy (RT) and immunotherapy (IT)] are widely used but they have limited therapeutic effects and unavoidable side effects. Recently, the development of novel nanomaterials offers a platform for combinational therapy (meaning a combination of two or more therapeutic agents) which is a promising approach for cancer therapy. Recent studies have demonstrated several types of nanomaterials suitable for photothermal therapy (PTT) based on a near-infrared (NIR) light-responsive system. PTT possesses favorable properties such as being low in cost, and having high temporospatial control with minimal invasiveness. However, short NIR light penetration depth limits its functions. METHODS In this review, due to their promise, we focus on inorganic nanomaterials [such as hollow mesoporous silica nanoparticles (HMSNs), tungsten sulfide quantum dots (WS2QDs), and gold nanorods (AuNRs)] combining PTT with CHT, RT or IT in one treatment, aiming to provide a comprehensive understanding of PTT-based combinational cancer therapy. RESULTS This review found much evidence for the use of inorganic nanoparticles for PTT-based combinational cancer therapy. CONCLUSION Under synergistic effects, inorganic nanomaterial-based combinational treatments exhibit enhanced therapeutic effects compared to PTT, CHT, RT, IT or PDT alone and should be further investigated in the cancer field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xia Wu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Peng Shen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Jun Wang
- Department of General Surgery, The Fifth People’s Hospital of Wujiang, Suzhou, People’s Republic of China
| | - Yidan Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjie Deng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| |
Collapse
|
62
|
Ni J, Min T, Li Y, Zha M, Zhang P, Ho CL, Li K. Planar AIEgens with Enhanced Solid‐State Luminescence and ROS Generation for Multidrug‐Resistant Bacteria Treatment. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jen‐Shyang Ni
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
| | - Tianliang Min
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yaxi Li
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Menglei Zha
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Pengfei Zhang
- Guangdong Key Laboratory of NanomedicineCAS Key Laboratory of Health InformaticsShenzhen Bioactive Materials Engineering Lab for MedicineInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
| | - Chun Loong Ho
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Kai Li
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
| |
Collapse
|
63
|
Ni J, Min T, Li Y, Zha M, Zhang P, Ho CL, Li K. Planar AIEgens with Enhanced Solid‐State Luminescence and ROS Generation for Multidrug‐Resistant Bacteria Treatment. Angew Chem Int Ed Engl 2020; 59:10179-10185. [DOI: 10.1002/anie.202001103] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Jen‐Shyang Ni
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
| | - Tianliang Min
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yaxi Li
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Menglei Zha
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Pengfei Zhang
- Guangdong Key Laboratory of NanomedicineCAS Key Laboratory of Health InformaticsShenzhen Bioactive Materials Engineering Lab for MedicineInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
| | - Chun Loong Ho
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Kai Li
- Department of Biomedical EngineeringSUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology (SUSTech) Shenzhen 518055 China
| |
Collapse
|
64
|
Zhu T, Zhang J, Tang C. Metallo-Polyelectrolytes: Correlating Macromolecular Architectures with Properties and Applications. TRENDS IN CHEMISTRY 2020; 2:227-240. [PMID: 34337370 PMCID: PMC8323828 DOI: 10.1016/j.trechm.2019.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Since the middle of the 20th century, metallopolymers have represented a standalone subfield with a beneficial combination of functionality from inorganic metal centers and processability from the organic polymeric frameworks. Metallo-polyelectrolytes are a new class of soft materials that showcase fundamentally different properties from neutral polymers due to their intrinsically ionic behaviors. This review describes recent trends in metallo-polyelectrolytes and discusses emerging properties and challenges, as well as future directions from a perspective of macromolecular architectures. The correlations between macromolecular architectures and properties are discussed from copolymer self-assembly, metallo-enzymes for biomedical applications, metallo-peptides for catalysis, crosslinked networks, and metallogels.
Collapse
Affiliation(s)
- Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, 211189, Nanjing, PR China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
65
|
He X, Yang Y, Guo Y, Lu S, Du Y, Li JJ, Zhang X, Leung NLC, Zhao Z, Niu G, Yang S, Weng Z, Kwok RTK, Lam JWY, Xie G, Tang BZ. Phage-Guided Targeting, Discriminative Imaging, and Synergistic Killing of Bacteria by AIE Bioconjugates. J Am Chem Soc 2020; 142:3959-3969. [PMID: 31999445 DOI: 10.1021/jacs.9b12936] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New agents with particular specificity toward targeted bacteria and superefficacy in antibacterial activity are urgently needed in facing the crisis of worldwide antibiotic resistance. Herein, a novel strategy by equipping bacteriophage (PAP) with photodynamic inactivation (PDI)-active AIEgens (luminogens with aggregation-induced emission property) was presented to generate a type of AIE-PAP bioconjugate with superior capability for both targeted imaging and synergistic killing of certain species of bacteria. The targeting ability inherited from the bacteriophage enabled the bioconjugates to specifically recognize the host bacteria with preserved infection activity of phage itself. Meanwhile, the AIE characteristic empowered them a monitoring functionality, and the real-time tracking of their interactions with targets was therefore realized via convenient fluorescence imaging. More importantly, the PDI-active AIEgens could serve as powerful in situ photosensitizers producing high-efficiency reactive oxygen species (ROS) under white light irradiation. As a result, selective targeting and synergistic killing of both antibiotic-sensitive and multi-drug-resistant (MDR) bacteria were successfully achieved in in vitro and in vivo antibacterial tests with excellent biocompatibility. This novel AIE-phage integrated strategy would diversify the existing pool of antibacterial agents and inspire the development of promising drug candidates in the future.
Collapse
Affiliation(s)
- Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Yongcan Guo
- Clinical Laboratory , Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University , Luzhou 646000 , China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Science , Army Medical University , Chongqing 400038 , China
| | - Yao Du
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Jun-Jie Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Xuepeng Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Nelson L C Leung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Guangle Niu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Shuangshuang Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Zhi Weng
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China.,NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
66
|
Huang WT, Chan MH, Chen X, Hsiao M, Liu RS. Theranostic nanobubble encapsulating a plasmon-enhanced upconversion hybrid nanosystem for cancer therapy. Theranostics 2020; 10:782-796. [PMID: 31903150 PMCID: PMC6929987 DOI: 10.7150/thno.38684] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
Nanobubble (NB), which simultaneously enhances ultrasound (US) images and access therapeutic platforms, is required for future cancer treatment. Methods: We designed a theranostic agent for novel cancer treatment by using an NB-encapsulated hybrid nanosystem that can be monitored by US and fluorescent imaging and activated by near-infrared (NIR) light. The nanosystem was transported to the tumor through the enhanced permeability and retention effect. The hybrid nanosystem comprised upconversion nanoparticle (UCNP) and mesoporous silica-coated gold nanorod (AuNR@mS) with the photosensitizer merocyanine 540 to realize dual phototherapy. Results: With the NIR light-triggered, the luminous intensity of the UCNP was enhanced by doping holmium ion and emitted visible green and red lights at 540 and 660 nm. The high optical density state between the UCNP and AuNR@mS can induce plasmonic enhancement to improve the photothermal and photodynamic effects, resulting in cell death by apoptosis. The nanosystem showed excellent stability to avoid the aggregation of nanoparticles during the treatment. JC-1 dye was used as an indicator of mitochondrial membrane potential to identify the mechanism of cell death. The results of in vitro and in vivo analyses confirmed the curative effect of improved dual phototherapy. Conclusion: We developed and showed the therapeutic functions of a novel nanosystem with the combination of multiple theranostic nanoplatforms that can be triggered and activated by 808 nm NIR laser and US.
Collapse
Affiliation(s)
- Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106 Taiwan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115 Taiwan
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115 Taiwan
- Department of Biochemistry College of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106 Taiwan
- Genomics Research Center, Academia Sinica, Taipei 115 Taiwan
- Department of Mechanical Engineering and Graduate, Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106 Taiwan
| |
Collapse
|