51
|
Freeman BS, Taylor G, Gharabaghi B, Thé J. Forecasting air quality time series using deep learning. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2018; 68:866-886. [PMID: 29652217 DOI: 10.1080/10962247.2018.1459956] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
UNLABELLED This paper presents one of the first applications of deep learning (DL) techniques to predict air pollution time series. Air quality management relies extensively on time series data captured at air monitoring stations as the basis of identifying population exposure to airborne pollutants and determining compliance with local ambient air standards. In this paper, 8 hr averaged surface ozone (O3) concentrations were predicted using deep learning consisting of a recurrent neural network (RNN) with long short-term memory (LSTM). Hourly air quality and meteorological data were used to train and forecast values up to 72 hours with low error rates. The LSTM was able to forecast the duration of continuous O3 exceedances as well. Prior to training the network, the dataset was reviewed for missing data and outliers. Missing data were imputed using a novel technique that averaged gaps less than eight time steps with incremental steps based on first-order differences of neighboring time periods. Data were then used to train decision trees to evaluate input feature importance over different time prediction horizons. The number of features used to train the LSTM model was reduced from 25 features to 5 features, resulting in improved accuracy as measured by Mean Absolute Error (MAE). Parameter sensitivity analysis identified look-back nodes associated with the RNN proved to be a significant source of error if not aligned with the prediction horizon. Overall, MAE's less than 2 were calculated for predictions out to 72 hours. IMPLICATIONS Novel deep learning techniques were used to train an 8-hour averaged ozone forecast model. Missing data and outliers within the captured data set were replaced using a new imputation method that generated calculated values closer to the expected value based on the time and season. Decision trees were used to identify input variables with the greatest importance. The methods presented in this paper allow air managers to forecast long range air pollution concentration while only monitoring key parameters and without transforming the data set in its entirety, thus allowing real time inputs and continuous prediction.
Collapse
Affiliation(s)
- Brian S Freeman
- a School of Engineering , University of Guelph , Guelph , Ontario , Canada
| | - Graham Taylor
- a School of Engineering , University of Guelph , Guelph , Ontario , Canada
| | - Bahram Gharabaghi
- a School of Engineering , University of Guelph , Guelph , Ontario , Canada
| | - Jesse Thé
- a School of Engineering , University of Guelph , Guelph , Ontario , Canada
- b Lakes Environmental , Waterloo , Ontario , Canada
| |
Collapse
|
52
|
Kumari S, Verma N, Lakhani A, Tiwari S, Kandikonda MK. Tropospheric ozone enhancement during post-harvest crop-residue fires at two downwind sites of the Indo-Gangetic Plain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18879-18893. [PMID: 29717426 DOI: 10.1007/s11356-018-2034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
In the present study, surface ozone (O3), nitrogen oxides (NOx), and carbon monoxide (CO) levels were measured at two sites downwind of fire active region in the Indo-Gangetic Plain (IGP): Agra (27.16° N, 78.08° E) and Delhi (28.37° N, 77.12° E) to study the impact of post-harvest crop-residue fires. The study period was classified into two groups: Pre-harvest period and Post-harvest period. During the post-harvest period, an enhancement of 17.3 and 31.7 ppb in hourly averaged O3 mixing ratios was observed at Agra and Delhi, respectively, under similar meteorological conditions. The rate of change of O3 was also higher in the post-harvest period by 56.2% in Agra and 39.5% in Delhi. Relatively higher O3 episodic days were observed in the post-harvest period. Fire hotspots detected by Moderate Resolution Imaging Spectroradiometer (MODIS) along with backward air-mass trajectory analysis suggested that the enhanced O3 and CO levels at the study sites during the post-harvest period could be attributed to crop-residue burning over the North-West IGP (NW-IGP). Satellite observations of surface CO mixing ratios and tropospheric formaldehyde (HCHO) column also showed higher levels during the post-harvest period. Graphical abstract.
Collapse
Affiliation(s)
- Sonal Kumari
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282110, India
| | - Nidhi Verma
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282110, India
| | - Anita Lakhani
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282110, India
| | - Suresh Tiwari
- Indian Institute of Tropical Meteorology (Branch), Prof Ram NathVij Marg, New Delhi, 110060, India
| | - Maharaj Kumari Kandikonda
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282110, India.
| |
Collapse
|
53
|
Labuschagne C, Kuyper B, Brunke EG, Mokolo T, van der Spuy D, Martin L, Mbambalala E, Parker B, Khan MAH, Davies-Coleman MT, Shallcross DE, Joubert W. A review of four decades of atmospheric trace gas measurements at Cape Point, South Africa. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/0035919x.2018.1477854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Casper Labuschagne
- Global Atmospheric Watch, South African Weather Service, Stellenbosch, South Africa
| | - Brett Kuyper
- Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| | - Ernst-Günther Brunke
- Global Atmospheric Watch, South African Weather Service, Stellenbosch, South Africa
| | - Thumeka Mokolo
- Global Atmospheric Watch, South African Weather Service, Stellenbosch, South Africa
| | - Danie van der Spuy
- Global Atmospheric Watch, South African Weather Service, Stellenbosch, South Africa
| | - Lynwill Martin
- Global Atmospheric Watch, South African Weather Service, Stellenbosch, South Africa
| | - Ernst Mbambalala
- Global Atmospheric Watch, South African Weather Service, Stellenbosch, South Africa
| | - Bhawoodien Parker
- Global Atmospheric Watch, South African Weather Service, Stellenbosch, South Africa
- Department of Environmental Affairs and Development Planning, Western Cape Government, South Africa
| | - M. Anwar H. Khan
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, United Kingdom
| | | | - Dudley E. Shallcross
- Department of Chemistry, University of the Western Cape, Cape Town, South Africa
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, United Kingdom
| | - Warren Joubert
- Global Atmospheric Watch, South African Weather Service, Stellenbosch, South Africa
| |
Collapse
|
54
|
Jeon W, Choi Y, Souri AH, Roy A, Diao L, Pan S, Lee HW, Lee SH. Identification of chemical fingerprints in long-range transport of burning induced upper tropospheric ozone from Colorado to the North Atlantic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:820-828. [PMID: 28942315 DOI: 10.1016/j.scitotenv.2017.09.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 05/12/2023]
Abstract
This study investigates a significant biomass burning (BB) event occurred in Colorado of the United States in 2012 using the Community Multi-scale Air Quality (CMAQ) model. The simulation reasonably reproduced the significantly high upper tropospheric O3 concentrations (up to 145ppb) caused by BB emissions. We find the BB-induced O3 was primarily affected by chemical reactions and dispersion during its transport. In the early period of transport, high NOx and VOCs emissions caused O3 production due to reactions with the peroxide and hydroxyl radicals, HO2 and OH. Here, NOx played a key role in O3 formation in the BB plume. The results indicated that HO2 in the BB plume primarily came from formaldehyde (HCHO+hv=2HO2+CO), a secondary alkoxy radical (ROR=HO2). CO played an important role in the production of recycled HO2 (OH+CO=HO2) because of its abundance in the BB plume. The chemically produced HO2 was largely converted to OH by the reactions with NO (HO2+NO=OH+NO2) from BB emissions. This is in contrast to the surface, where HO2 and OH are strongly affected by VOC and HONO, respectively. In the late stages of transport, the O3 concentration was primarily controlled by dispersion. It stayed longer in the upper troposphere compared to the surface due to sustained depletion of NOx. Sensitivity analysis results support that O3 in the BB plume is significantly more sensitive to NOx than VOCs.
Collapse
Affiliation(s)
- Wonbae Jeon
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA; Institute of Environmental Studies, Pusan National University, Busan 46241, Republic of Korea
| | - Yunsoo Choi
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA.
| | - Amir Hossein Souri
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - Anirban Roy
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - Lijun Diao
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - Shuai Pan
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - Hwa Woon Lee
- Division of Earth Environmental System, Pusan National University, Busan 46241, Republic of Korea
| | - Soon-Hwan Lee
- Department of Earth Science Education, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
55
|
Kuang S, Newchurch MJ, Thompson AM, Stauffer RM, Johnson BJ, Wang L. Ozone Variability and Anomalies Observed during SENEX and SEAC 4RS Campaigns in 2013. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:11227-11241. [PMID: 30057866 PMCID: PMC6058320 DOI: 10.1002/2017jd027139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tropospheric ozone variability occurs because of multiple forcing factors including surface emission of ozone precursors, stratosphere-to-troposphere transport (STT), and meteorological conditions. Analyses of ozonesonde observations made in Huntsville, AL, during the peak ozone season (May to September) in 2013 indicate that ozone in the planetary boundary layer was significantly lower than the climatological average, especially in July and August when the Southeastern United States (SEUS) experienced unusually cool and wet weather. Because of a large influence of the lower stratosphere, however, upper-tropospheric ozone was mostly higher than climatology, especially from May to July. Tropospheric ozone anomalies were strongly anti-correlated (or correlated) with water vapor (or temperature) anomalies with a correlation coefficient mostly about 0.6 throughout the entire troposphere. The regression slopes between ozone and temperature anomalies for surface up to mid-troposphere are within 3.0-4.1 ppbv·K-1. The occurrence rates of tropospheric ozone laminae due to STT are ≥50% in May and June and about 30% in July, August and September suggesting that the stratospheric influence on free-tropospheric ozone could be significant during early summer. These STT laminae have a mean maximum ozone enhancement over the climatology of 52±33% (35±24 ppbv) with a mean minimum relative humidity of 2.3±1.7%.
Collapse
Affiliation(s)
- Shi Kuang
- Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| | - Michael J Newchurch
- Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| | - Anne M Thompson
- Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Ryan M Stauffer
- Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Bryan J Johnson
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO 80305, USA
| | - Lihua Wang
- Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| |
Collapse
|
56
|
Lu MC, Chang CT, Lin TC, Wang LJ, Wang CP, Hsu TC, Huang JC. Modeling the terrestrial N processes in a small mountain catchment through INCA-N: A case study in Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:319-329. [PMID: 28346905 DOI: 10.1016/j.scitotenv.2017.03.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 06/06/2023]
Abstract
Riverine dissolved inorganic nitrogen (DIN) is an important indicator of trophic status of aquatic ecosystems. High riverine DIN export in Taiwan, ~3800kg-Nkm-2yr-1, which is ~18 times higher than the global average, urges the need of thorough understanding of N cycling processes. We applied INCA-N (Integrated Nitrogen Catchment Model) to simulate riverine DIN export and infer terrestrial N processes using weekly rainwater and streamwater samples collected at the Fushan Experimental Forest (FEF) of northern Taiwan. Results showed that the modeled discharge and nitrate export are in good agreement with observations, suggesting the validity of our application. Based on our modeling, the three main N removal processes, in the order of descending importance, were plant uptake, riverine N transport and denitrification at FEF. The high plant uptake rate, 4920kg-Nkm-2yr-1, should have led to accumulation of large biomass but biomass at FEF was relatively small compared to other tropical forests, likely due to periodic typhoon disruptions. The low nitrate concentration but high DIN export highlights the importance of hydrological control over DIN export, particularly during typhoons. The denitrification rate, 750kg-Nkm-2yr-1, at FEF was also low compared to other tropical forest ecosystems, likely resulting from quick water drainage through the coarse-loamy top soils. The high DIN export to atmospheric deposition ratio, 0.45, suggests that FEF may be in advanced stages of N excess. This simulation provides useful insights for establishing monitoring programs and improves our understanding N cycling in subtropical watersheds.
Collapse
Affiliation(s)
- Meng-Chang Lu
- Department of Geography, National Taiwan University, Taipei, Taiwan
| | - Chung-Te Chang
- Department of Geography, National Taiwan University, Taipei, Taiwan
| | - Teng-Chiu Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Lih-Jih Wang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Chiao-Ping Wang
- Division of Silviculture, Taiwan Forestry Research Institute (TFRI), Taipei, Taiwan
| | - Ting-Chang Hsu
- Department of Geography, National Taiwan University, Taipei, Taiwan
| | - Jr-Chuan Huang
- Department of Geography, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
57
|
Solleiro-Villavicencio H, Rivas-Arancibia S. Systemic Th17/IL-17A response appears prior to hippocampal neurodegeneration in rats exposed to low doses of ozone. Neurologia 2017; 34:503-509. [PMID: 28587742 DOI: 10.1016/j.nrl.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Exposure to low doses of O3 leads to a state of oxidative stress. Some studies show that oxidative stress can modulate both the CNS and systemic inflammation, which are important factors in the development of Alzheimer disease (AD). OBJECTIVE This study aims to evaluate changes in the frequency of Th17-like cells (CD3+CD4+IL-17A+), the concentration of IL-17A in peripheral blood, and hippocampal immunoreactivity to IL-17A in rats exposed to low doses of O3. METHODS One hundred eight male Wistar rats were randomly assigned to 6 groups (n=18) receiving the following treatments: control (O3 free) or O3 exposure (0.25ppm, 4hours daily) over 7, 15, 30, 60, and 90 days. Twelve animals from each group were decapitated and a peripheral blood sample was taken to isolate plasma and mononuclear cells. Plasma IL-17A was quantified using LUMINEX, while Th17-like cells were counted using flow cytometry. The remaining 6 rats were deeply anaesthetised and underwent transcardial perfusion for immunohistological study of the hippocampus. RESULTS Results show that exposure to O3 over 7 days resulted in a significant increase in the frequency of Th17-like cells and levels of IL-17A in peripheral blood. However, levels of Th17/IL-17A in peripheral blood were lower at day 15 of exposure. We also observed increased IL-17A in the hippocampus beginning at 30 days of exposure. CONCLUSION These results indicate that O3 induces a short-term, systemic Th17-like/IL-17A effect and an increase of IL-17A in the hippocampal tissue during the chronic neurodegenerative process.
Collapse
Affiliation(s)
- H Solleiro-Villavicencio
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - S Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
58
|
Yadav R, Sahu LK, Beig G, Tripathi N, Jaaffrey SNA. Ambient particulate matter and carbon monoxide at an urban site of India: Influence of anthropogenic emissions and dust storms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:291-303. [PMID: 28347611 DOI: 10.1016/j.envpol.2017.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Continuous measurements of PM2.5, PM10 and CO were conducted at an urban site of Udaipur in India from April 2011 to March 2012. The annual mean concentrations of PM2.5, PM10 and CO were 42 ± 17 μg m-3, 114 ± 31 μg m-3 and 343 ± 136 ppbv, respectively. Concentrations of both particulate and CO showed high values during winter/pre-monsoon (dry) period and lowest in the monsoon season (wet). Local anthropogenic emission and long-range transport from open biomass burning sources along with favourable synoptic meteorology led to elevated levels of pollutants in the dry season. However, higher values of PM10/PM2.5 ratio during pre-monsoon season were caused by the episodes of dust storm. In the monsoon season, flow of cleaner air, rainfall and negligible emissions from biomass burning resulted in the lowest levels of pollutants. The concentrations of PM2.5, PM10 and CO showed highest values during morning and evening rush hours, while lowest in the afternoon hours. In winter season, reductions of PM2.5, CO and PM10 during weekends were highest of 15%, 13% and 9%, respectively. In each season, the highest PM2.5/PM10 ratio coincided with the highest concentrations of pollutants (CO and NOX) indicating predominant emissions from anthropogenic sources. Exceptionally high concentrations of PM10 during the episode of dust storm were due to transport from the Arabian Peninsula and Thar Desert. Up to ∼32% enhancements of PM10 were observed during strong dust storms. Relatively low levels of O3 and NOx during the storm periods indicate the role of heterogeneous removal.
Collapse
Affiliation(s)
- Ravi Yadav
- Physical Research Laboratory, Ahmedabad, 380009, India.
| | - L K Sahu
- Physical Research Laboratory, Ahmedabad, 380009, India
| | - G Beig
- Indian Institute of Tropical Meteorology, Pune, 411008, India
| | | | - S N A Jaaffrey
- Department of Physics, Mohanlal Sukhadia University, Udaipur, 313001, India
| |
Collapse
|
59
|
Ueda Y, Frindte K, Knief C, Ashrafuzzaman M, Frei M. Effects of Elevated Tropospheric Ozone Concentration on the Bacterial Community in the Phyllosphere and Rhizoplane of Rice. PLoS One 2016; 11:e0163178. [PMID: 27643794 PMCID: PMC5028031 DOI: 10.1371/journal.pone.0163178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Microbes constitute a vital part of the plant holobiont. They establish plant-microbe or microbe-microbe associations, forming a unique microbiota with each plant species and under different environmental conditions. These microbial communities have to adapt to diverse environmental conditions, such as geographical location, climate conditions and soil types, and are subjected to changes in their surrounding environment. Elevated ozone concentration is one of the most important aspects of global change, but its effect on microbial communities living on plant surfaces has barely been investigated. In the current study, we aimed at elucidating the potential effect of elevated ozone concentrations on the phyllosphere (aerial part of the plant) and rhizoplane (surface of the root) microbiota by adopting next-generation 16S rRNA amplicon sequencing. A standard japonica rice cultivar Nipponbare and an ozone-tolerant breeding line L81 (Nipponbare background) were pre-grown in a greenhouse for 10 weeks and then exposed to ozone at 85 ppb for 7 h daily for 30 days in open top chambers. Microbial cells were collected from the phyllosphere and rhizoplane separately. The treatment or different genotypes did not affect various diversity indices. On the other hand, the relative abundance of some bacterial taxa were significantly affected in the rhizoplane community of ozone-treated plants. A significant effect of ozone was detected by homogeneity of molecular variance analysis in the phyllosphere, meaning that the community from ozone-treated phyllosphere samples was more variable than those from control plants. In addition, a weak treatment effect was observed by clustering samples based on the Yue and Clayton and weighted UniFrac distance matrices among samples. We therefore conclude that the elevated ozone concentrations affected the bacterial community structure of the phyllosphere and the rhizosplane as a whole, even though this effect was rather weak and did not lead to changes of the function of the communities.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Institute of Crop Science and Resource Conservation (INRES) – Plant Nutrition, University of Bonn, Bonn, Germany
| | - Katharina Frindte
- Institute of Crop Science and Resource Conservation (INRES) – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation (INRES) – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Md Ashrafuzzaman
- Institute of Crop Science and Resource Conservation (INRES) – Plant Nutrition, University of Bonn, Bonn, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES) – Plant Nutrition, University of Bonn, Bonn, Germany
| |
Collapse
|
60
|
Myriokefalitakis S, Daskalakis N, Fanourgakis GS, Voulgarakis A, Krol MC, Aan de Brugh JMJ, Kanakidou M. Ozone and carbon monoxide budgets over the Eastern Mediterranean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:40-52. [PMID: 27135565 DOI: 10.1016/j.scitotenv.2016.04.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
The importance of the long-range transport (LRT) on O3 and CO budgets over the Eastern Mediterranean has been investigated using the state-of-the-art 3-dimensional global chemistry-transport model TM4-ECPL. A 3-D budget analysis has been performed separating the Eastern from the Western basins and the boundary layer (BL) from the free troposphere (FT). The FT of the Eastern Mediterranean is shown to be a strong receptor of polluted air masses from the Western Mediterranean, and the most important source of polluted air masses for the Eastern Mediterranean BL, with about 40% of O3 and of CO in the BL to be transported from the FT aloft. Regional anthropogenic sources are found to have relatively small impact on regional air quality in the area, contributing by about 8% and 18% to surface levels of O3 and CO, respectively. Projections using anthropogenic emissions for the year 2050 but neglecting climate change calculate a surface O3 decrease of about 11% together with a surface CO increase of roughly 10% in the Eastern Mediterranean.
Collapse
Affiliation(s)
- S Myriokefalitakis
- Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, P.O. Box 2208, 70013 Heraklion, Greece.
| | - N Daskalakis
- Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, P.O. Box 2208, 70013 Heraklion, Greece; Institute of Chemical Engineering, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - G S Fanourgakis
- Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, P.O. Box 2208, 70013 Heraklion, Greece
| | - A Voulgarakis
- Department of Physics, Imperial College London, London, UK
| | - M C Krol
- Meteorology and Air Quality Section, Wageningen University, Wageningen, The Netherlands; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands; SRON Netherlands Institute for Space Research, Utrecht, The Netherlands
| | | | - M Kanakidou
- Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, P.O. Box 2208, 70013 Heraklion, Greece.
| |
Collapse
|
61
|
Huang JC, Lee TY, Lin TC, Hein T, Lee LC, Shih YT, Kao SJ, Shiah FK, Lin NH. Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan. ACTA ACUST UNITED AC 2016; 13:1787-1800. [PMID: 27212969 DOI: 10.5194/bg-13-1787-2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities have substantially altered the N cycle, both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind of the most rapidly industrializing eastern coast of China, can be a demonstration site for extremely high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds with similar climatic and landscape settings but classified into low, moderate, and highly disturbed categories based on population density to illustrate their differences in nitrogen inputs (through atmospheric N deposition, synthetic fertilizers, and human emission) and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ~ 3800 kg N km-2 yr-1, approximately 18 times the global average. The average riverine DIN export ratios are 0.30-0.51, which are much higher than the averages of 0.20-0.25 of large rivers around the world, indicating excessive N input relative to ecosystem demand or retention capacity. The low disturbed watersheds have a high N retention capacity and DIN export ratios of 0.06-0.18 in spite of the high N input (~ 4900 kg N km-2 yr-1). The high retention capacity is likely due to effective uptake by secondary forests in the watersheds. The moderately disturbed watersheds show a linear increase in DIN export with increases in total N inputs and mean DIN export ratios of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watersheds is the greater proportion of agricultural land cover in the moderately disturbed watersheds. Thus, their greater DIN export could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have a lower proportional N retention capacity and that reforestation could be an effective land management practice to reduce riverine DIN export. The export ratios of the highly disturbed watersheds are very high, 0.42-0.53, suggesting that much of the N input is transported downstream directly, and urges the need to increase the proportion of households connected to a sewage system and improve the effectiveness of wastewater treatment systems. The increases in the riverine DIN export ratio along the gradient of human disturbance also suggest a gradient in N saturation in subtropical Taiwan. Our results help to improve our understanding of factors controlling riverine DIN export and provide empirical evidence that calls for sound N emission/pollution control measures.
Collapse
Affiliation(s)
- Jr-Chuan Huang
- Department of Geography, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yu Lee
- Department of Geography, National Taiwan Normal University, Taipei, Taiwan
| | - Teng-Chiu Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Thomas Hein
- Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria; WasserCluster Lunz, Dr. Kupelwieser-Prom. 5, 3293 Lunz am See, Austria
| | - Li-Chin Lee
- Department of Geography, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Shih
- Department of Geography, National Taiwan University, Taipei, Taiwan
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Fuh-Kwo Shiah
- Research Centre of Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
62
|
Liu J, Rodriguez JM, Thompson AM, Logan JA, Douglass AR, Olsen MA, Steenrod SD, Posny F. Origins of tropospheric ozone interannual variation (IAV) over Réunion: A model investigation. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:521-537. [PMID: 29657911 PMCID: PMC5896576 DOI: 10.1002/2015jd023981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Observations from long-term ozonesonde measurements show robust variations and trends in the evolution of ozone in the middle and upper troposphere over Réunion Island (21.1°S, 55.5°E) in June-August. Here we examine possible causes of the observed ozone variation at Réunion Island using hindcast simulations by the stratosphere-troposphere Global Modeling Initiative chemical transport model (GMI-CTM) for 1992-2014, driven by assimilated Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields. Réunion Island is at the edge of the subtropical jet, a region of strong stratospheric-tropospheric exchange (STE). Our analysis implies that the large interannual variation (IAV) of upper tropospheric ozone over Réunion is driven by the large IAV of the stratospheric influence. The IAV of the large-scale, quasi-horizontal wind patterns also contributes to the IAV of ozone in the upper troposphere. Comparison to a simulation with constant emissions indicates that increasing emissions do not lead to the maximum trend in the middle and upper troposphere over Réunion during austral winter implied by the sonde data. The effects of increasing emission over southern Africa are limited to the lower troposphere near the surface in August - September.
Collapse
Affiliation(s)
- Junhua Liu
- Universities Space Research Association (USRA), GESTAR, Columbia, MD, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | | | | - Jennifer A. Logan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Mark A. Olsen
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Morgan State University, Baltimore, MD, USA
| | - Stephen D. Steenrod
- Universities Space Research Association (USRA), GESTAR, Columbia, MD, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Francoise Posny
- Laboratoire de l’Atmosphère et des Cyclones (LACy), Université de La Réunion/CNRS, La Réunion, France
| |
Collapse
|
63
|
Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M. Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:293-306. [PMID: 25371505 PMCID: PMC4265164 DOI: 10.1093/jxb/eru419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tropospheric ozone causes various negative effects on plants and affects the yield and quality of agricultural crops. Here, we report a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with ozone tolerance. A diversity panel consisting of 328 accessions representing all subgroups of O. sativa was exposed to ozone stress at 60 nl l(-1) for 7h every day throughout the growth season, or to control conditions. Averaged over all genotypes, ozone significantly affected biomass-related traits (plant height -1.0%, shoot dry weight -15.9%, tiller number -8.3%, grain weight -9.3%, total panicle weight -19.7%, single panicle weight -5.5%) and biochemical/physiological traits (symptom formation, SPAD value -4.4%, foliar lignin content +3.4%). A wide range of genotypic variance in response to ozone stress were observed in all phenotypes. Association mapping based on more than 30 000 single-nucleotide polymorphism (SNP) markers yielded 16 significant markers throughout the genome by applying a significance threshold of P<0.0001. Furthermore, by determining linkage disequilibrium blocks associated with significant SNPs, we gained a total of 195 candidate genes for these traits. The following sequence analysis revealed a number of novel polymorphisms in two candidate genes for the formation of visible leaf symptoms, a RING and an EREBP gene, both of which are involved in cell death and stress defence reactions. This study demonstrated substantial natural variation of responses to ozone in rice and the possibility of using GWAS in elucidating the genetic factors underlying ozone tolerance.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Felix Frimpong
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Yitao Qi
- Key Laboratory of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Elsa Matthus
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Linbo Wu
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Stefanie Höller
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Thorsten Kraska
- Campus Klein-Altendorf, University of Bonn, Klein-Altendorf 2, 53359 Rheinbach, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| |
Collapse
|
64
|
Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat Commun 2014; 5:4799. [PMID: 25185641 DOI: 10.1038/ncomms5799] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/25/2014] [Indexed: 11/08/2022] Open
Abstract
Higher aridity and more extreme rainfall events in drylands are predicted due to climate change. Yet, it is unclear how changing precipitation regimes may affect nitrogen (N) cycling, especially in areas with extremely high aridity. Here we investigate soil N isotopic values (δ(15)N) along a 3,200 km aridity gradient and reveal a hump-shaped relationship between soil δ(15)N and aridity index (AI) with a threshold at AI=0.32. Variations of foliar δ(15)N, the abundance of nitrification and denitrification genes, and metabolic quotient along the gradient provide further evidence for the existence of this threshold. Data support the hypothesis that the increase of gaseous N loss is higher than the increase of net plant N accumulation with increasing AI below AI=0.32, while the opposite is favoured above this threshold. Our results highlight the importance of N-cycling microbes in extremely dry areas and suggest different controlling factors of N-cycling on either side of the threshold.
Collapse
|
65
|
Bencardino MM, Pirrone NN, Sprovieri FF. Aerosol and ozone observations during six cruise campaigns across the Mediterranean basin: temporal, spatial, and seasonal variability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:4044-4062. [PMID: 24151024 DOI: 10.1007/s11356-013-2196-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
The Mediterranean basin, because of its semi-enclosed configuration, is one of the areas heavily affected by air pollutants. Despite implications on both human health and radiative budget involving an increasing interest, monitoring databases measuring air pollution directly over this area are yet relatively limited. Owing to this context, concentrations of fine (PM2.5) and coarse (PM2.5-10) particles along with other ancillary data, such as ozone levels and meteorological parameters, were measured during six cruise campaigns covering almost the whole Mediterranean basin. Elemental composition of both PM2.5 and PM2.5-10 was also determined to identify specific tracers for different classes of particles that can be found in the Mediterranean atmosphere. Outcomes resulting from the integration of a preliminary qualitative examination with a more quantitative analysis, based on receptor modelling, suggested that European continental influence, Saharan dust outbreaks, wildfire events, sea spray and fossil fuel combustion were the leading causes of the aerosol-ozone variations within the Mediterranean basin. Shipping emissions, consisting in both local harbours and maritime traffic across the basin, were also tested using the marker ratio of V/Ni. Peak values observed for coarse fraction have shown to be driven by the occurrence of African dust events. Considering the major influence of Continental pollution and wildfire events, the spatial variability resulted in larger fine particle concentrations and higher ozone levels over the Eastern Mediterranean side in comparison to the Western one.
Collapse
|
66
|
HUANG FX, LIU NQ, ZHAO MX. Solar Cycle Signal of Tropospheric Ozone over the Tibetan Plateau. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/cjg2.1416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
67
|
Isotopic composition of atmospheric nitrate in a tropical marine boundary layer. Proc Natl Acad Sci U S A 2013; 110:17668-73. [PMID: 23431201 DOI: 10.1073/pnas.1216639110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.
Collapse
|
68
|
Lang C, Waugh DW, Olsen MA, Douglass AR, Liang Q, Nielsen JE, Oman LD, Pawson S, Stolarski RS. The impact of greenhouse gases on past changes in tropospheric ozone. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
69
|
Lin M, Fiore AM, Cooper OR, Horowitz LW, Langford AO, Levy H, Johnson BJ, Naik V, Oltmans SJ, Senff CJ. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018151] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
70
|
Yuan T, Remer LA, Bian H, Ziemke JR, Albrecht R, Pickering KE, Oreopoulos L, Goodman SJ, Yu H, Allen DJ. Aerosol indirect effect on tropospheric ozone via lightning. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
71
|
Kuang S, Newchurch MJ, Burris J, Wang L, Knupp K, Huang G. Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017695] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
72
|
Zhang Y, Wang X, Blake DR, Li L, Zhang Z, Wang S, Guo H, Lee FSC, Gao B, Chan L, Wu D, Rowland FS. Aromatic hydrocarbons as ozone precursors before and after outbreak of the 2008 financial crisis in the Pearl River Delta region, south China. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017356] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
73
|
Zhang Y, Liu H, Crawford JH, Considine DB, Chan C, Oltmans SJ, Thouret V. Distribution, variability and sources of tropospheric ozone over south China in spring: Intensive ozonesonde measurements at five locations and modeling analysis. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
74
|
Grünhage L, Pleijel H, Mills G, Bender J, Danielsson H, Lehmann Y, Castell JF, Bethenod O. Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 165:147-157. [PMID: 22445923 DOI: 10.1016/j.envpol.2012.02.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 02/21/2012] [Accepted: 02/25/2012] [Indexed: 05/31/2023]
Abstract
Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s.
Collapse
Affiliation(s)
- Ludger Grünhage
- Department of Plant Ecology, Justus-Liebig University, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, Gardner WS. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. WATER RESEARCH 2011; 45:1973-83. [PMID: 20934736 DOI: 10.1016/j.watres.2010.09.018] [Citation(s) in RCA: 484] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 08/26/2010] [Accepted: 09/14/2010] [Indexed: 05/03/2023]
Abstract
Harmful cyanobacterial blooms, reflecting advanced eutrophication, are spreading globally and threaten the sustainability of freshwater ecosystems. Increasingly, non-nitrogen (N(2))-fixing cyanobacteria (e.g., Microcystis) dominate such blooms, indicating that both excessive nitrogen (N) and phosphorus (P) loads may be responsible for their proliferation. Traditionally, watershed nutrient management efforts to control these blooms have focused on reducing P inputs. However, N loading has increased dramatically in many watersheds, promoting blooms of non-N(2) fixers, and altering lake nutrient budgets and cycling characteristics. We examined this proliferating water quality problem in Lake Taihu, China's 3rd largest freshwater lake. This shallow, hyper-eutrophic lake has changed from bloom-free to bloom-plagued conditions over the past 3 decades. Toxic Microcystis spp. blooms threaten the use of the lake for drinking water, fisheries and recreational purposes. Nutrient addition bioassays indicated that the lake shifts from P limitation in winter-spring to N limitation in cyanobacteria-dominated summer and fall months. Combined N and P additions led to maximum stimulation of growth. Despite summer N limitation and P availability, non-N(2) fixing blooms prevailed. Nitrogen cycling studies, combined with N input estimates, indicate that Microcystis thrives on both newly supplied and previously-loaded N sources to maintain its dominance. Denitrification did not relieve the lake of excessive N inputs. Results point to the need to reduce both N and P inputs for long-term eutrophication and cyanobacterial bloom control in this hyper-eutrophic system.
Collapse
Affiliation(s)
- Hans W Paerl
- University of North Carolina at Chapel Hill, Institute of Marine Sciences, 3431 Arendell Street, Morehead City, NC 28557, USA.
| | | | | | | | | | | | | |
Collapse
|
76
|
Kunasek SA, Alexander B, Steig EJ, Sofen ED, Jackson TL, Thiemens MH, McConnell JR, Gleason DJ, Amos HM. Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd013846] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
77
|
|
78
|
Kuykendall JR, Shaw SL, Paustenbach D, Fehling K, Kacew S, Kabay V. Chemicals present in automobile traffic tunnels and the possible community health hazards: a review of the literature. Inhal Toxicol 2009; 21:747-92. [PMID: 19555229 DOI: 10.1080/08958370802524357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dozens of volatile and semivolatile organic compounds can be detected in vehicle exhaust, along with numerous metals and oxides of sulfur, nitrogen, and carbon. While the adverse effects of these chemicals have been extensively studied surrounding open roadways, the hazards to local residents and commuters resulting from the presence of tunnel emission chemicals are less well known. Commuters and workers within tunnels are also exposed to tunnel atmospheres, and the risks have only been evaluated to a limited extent. Approximately 50 studies conducted at more than 35 different international traffic tunnels were reviewed in order to characterize the potential health impact on individuals residing near these tunnels. One objective of this article is to identify those chemicals that deserve further study in order to understand the hazards to humans who work in these tunnels, as well as the risks to those in the surrounding community. The second objective is to present the available information regarding the hazards to those living near these tunnels. The published information, for the most part, indicates that the concentration of most toxicants detected in communities exposed to tunnel emissions are below those concentrations that are generally considered to pose either a significant acute or chronic health hazard. However, there have been no comprehensive studies that have evaluated the concentration of all of the relevant toxicants on a real-time basis or using repetitive time-weighted average sampling. Based on our analysis of the existing information appearing in peer-reviewed literature and government reports, additional information on the variation of concentrations of various chemicals over time near the tunnel exits would be helpful. Optimally, these would be better if evaluated in conjunction with traffic magnitude and vehicle type. It would also be useful to further characterize acute exposures to commuters or tunnel workers during times of heavy volume or slow-moving traffic due to accidents within the tunnel structure, when tunnel pollutant levels would be expected to be substantially elevated. A recent review by the Australia's National Health and Medical Research Council also discusses tunnel and air quality in detail (2008). Nearly 300 references are cited.
Collapse
|
79
|
Chan E. Regional ground-level ozone trends in the context of meteorological influences across Canada and the eastern United States from 1997 to 2006. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010090] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
80
|
Kunasek SA, Alexander B, Steig EJ, Hastings MG, Gleason DJ, Jarvis JC. Measurements and modeling of Δ17O of nitrate in snowpits from Summit, Greenland. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd010103] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
81
|
Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 2008; 96:173-94. [DOI: 10.1007/s00114-008-0468-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/29/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
|
82
|
Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia 2008; 159:1-13. [DOI: 10.1007/s00442-008-1188-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
|
83
|
Koumoutsaris S, Bey I, Generoso S, Thouret V. Influence of El Niño–Southern Oscillation on the interannual variability of tropospheric ozone in the northern midlatitudes. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009753] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
84
|
Wu S, Mickley LJ, Jacob DJ, Rind D, Streets DG. Effects of 2000–2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant background surface ozone in the United States. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009639] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
85
|
Terao Y, Logan JA, Douglass AR, Stolarski RS. Contribution of stratospheric ozone to the interannual variability of tropospheric ozone in the northern extratropics. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd009854] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
86
|
Cape JN. Surface ozone concentrations and ecosystem health: past trends and a guide to future projections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 400:257-69. [PMID: 18639315 DOI: 10.1016/j.scitotenv.2008.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 05/12/2023]
Abstract
This paper reviews current understanding of the sources and sinks of ozone in the troposphere, recent studies of long-term trends, and the factors which have to be taken into consideration when constructing and interpreting future models of ozone concentration. The factors controlling surface O(3) concentrations are discussed initially to provide a basis for the ensuing discussion, followed by a summary of the evidence for recent trends in ground-level ozone concentrations, i.e. over the past 3 decades, which have shown a significant increase in the annual average in 'background' air typical of the unpolluted northern hemisphere. Closer to precursor sources, although urban winter concentrations have increased, rural peak spring and summer concentrations during ozone 'episodes' have decreased markedly in response to emissions reductions. In order to determine whether such trends are meaningful, the statistical techniques for determining temporal trends are reviewed. The possible causes of long-term trends in ozone are then discussed, with particular reference to the use of chemistry-transport models to interpret past trends. Such models are also used to make predictions of future trends in surface ozone concentrations, but few are comprehensive in integrating future climate changes with changes in land use and in emissions of ozone precursors. Guidance is given on the likely effects of climate/precursor/chemistry interactions so that model predictions can be judged.
Collapse
Affiliation(s)
- J N Cape
- Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK.
| |
Collapse
|
87
|
Wai KM, Lin NH, Wang SH, Dokiya Y. Rainwater chemistry at a high-altitude station, Mt. Lulin, Taiwan: Comparison with a background station, Mt. Fuji. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2006jd008248] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
88
|
Shen M, Kroeze C. Future trends in emissions of pollutants from the Yangtze River basin, China. ACTA ACUST UNITED AC 2007. [DOI: 10.1080/15693430701751843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
89
|
Hocking WK, Carey-Smith T, Tarasick DW, Argall PS, Strong K, Rochon Y, Zawadzki I, Taylor PA. Detection of stratospheric ozone intrusions by windprofiler radars. Nature 2007; 450:281-4. [DOI: 10.1038/nature06312] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 09/24/2007] [Indexed: 11/09/2022]
|
90
|
Tarasick DW, Moran MD, Thompson AM, Carey-Smith T, Rochon Y, Bouchet VS, Gong W, Makar PA, Stroud C, Ménard S, Crevier LP, Cousineau S, Pudykiewicz JA, Kallaur A, Moffet R, Ménard R, Robichaud A, Cooper OR, Oltmans SJ, Witte JC, Forbes G, Johnson BJ, Merrill J, Moody JL, Morris G, Newchurch MJ, Schmidlin FJ, Joseph E. Comparison of Canadian air quality forecast models with tropospheric ozone profile measurements above midlatitude North America during the IONS/ICARTT campaign: Evidence for stratospheric input. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007782] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
91
|
Wu S, Mickley LJ, Jacob DJ, Logan JA, Yantosca RM, Rind D. Why are there large differences between models in global budgets of tropospheric ozone? ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007801] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
92
|
Wilson SR, Solomon KR, Tang X. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change. Photochem Photobiol Sci 2007; 6:301-10. [PMID: 17344964 DOI: 10.1039/b700022g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is well-understood that reductions in air quality play a significant role in both environmental and human health. Interactions between ozone depletion and global climate change will significantly alter atmospheric chemistry which, in turn, will cause changes in concentrations of natural and human-made gases and aerosols. Models predict that tropospheric ozone near the surface will increase globally by up to 10 to 30 ppbv (33 to 100% increase) during the period 2000 to 2100. With the increase in the amount of the stratospheric ozone, increased transport from the stratosphere to the troposphere will result in different responses in polluted and unpolluted areas. In contrast, global changes in tropospheric hydroxyl radical (OH) are not predicted to be large, except where influenced by the presence of oxidizable organic matter, such as from large-scale forest fires. Recent measurements in a relatively clean location over 5 years showed that OH concentrations can be predicted by the intensity of solar ultraviolet radiation. If this relationship is confirmed by further observations, this approach could be used to simplify assessments of air quality. Analysis of surface-level ozone observations in Antarctica suggests that there has been a significant change in the chemistry of the boundary layer of the atmosphere in this region as a result of stratospheric ozone depletion. The oxidation potential of the Antarctic boundary layer is estimated to be greater now than before the development of the ozone hole. Recent modeling studies have suggested that iodine and iodine-containing substances from natural sources, such as the ocean, may increase stratospheric ozone depletion significantly in polar regions during spring. Given the uncertainty of the fate of iodine in the stratosphere, the results may also be relevant for stratospheric ozone depletion and measurements of the influence of these substances on ozone depletion should be considered in the future. In agreement with known usage and atmospheric loss processes, tropospheric concentrations of HFC-134a, the main human-made source of trifluoroacetic acid (TFA), is increasing rapidly. As HFC-134a is a potent greenhouse gas, this increasing concentration has implications for climate change. However, the risks to humans and the environment from substances, such as TFA, produced by atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are considered minimal. Perfluoropolyethers, commonly used as industrial heat transfer fluids and proposed as chlorohydrofluorocarbon (CHFC) substitutes, show great stability to chemical degradation in the atmosphere. These substances have been suggested as substitutes for CHFCs but, as they are very persistent in the atmosphere, they may be important contributors to global warming. It is not known whether these substances will contribute significantly to global warming and its interaction with ozone depletion but they should be considered for further evaluation.
Collapse
Affiliation(s)
- S R Wilson
- Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
93
|
Wang PH, Cunnold DM, Trepte CR, Wang HJ, Jing P, Fishman J, Brackett VG, Zawodney JM, Bodeker GE. Ozone variability in the midlatitude upper troposphere and lower stratosphere diagnosed from a monthly SAGE II climatology relative to the tropopause. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
94
|
Ziemke JR, Chandra S, Duncan BN, Froidevaux L, Bhartia PK, Levelt PF, Waters JW. Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007089] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
95
|
Bloomfield JP, Williams RJ, Gooddy DC, Cape JN, Guha P. Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater--A UK perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 369:163-77. [PMID: 16914182 DOI: 10.1016/j.scitotenv.2006.05.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/18/2006] [Accepted: 05/25/2006] [Indexed: 05/11/2023]
Abstract
Over the last two decades significant effort has been dedicated to understanding the fate and transport of pesticides in surface water and groundwater and to use this understanding in the development of environmental policy and regulation. However, there have been few studies that have investigated the relationships between pesticides and climate change, and where this work has been undertaken it has principally been in relation to the impacts of climate change on agricultural production rather than in the context of environmental protection. This study addresses that gap by reviewing how climate change may impact the fate and transport of pesticides in surface and groundwaters as a pre-cursor to quantitative studies. In order to structure the review, we have adopted a source-pathway-receptor approach where climate sensitivities of pesticide source terms, environmental pathways and receptors are reviewed. The main climate drivers for changing pesticide fate and behaviour are thought to be changes in rainfall seasonality and intensity and increased temperatures, but the effect of climate change on pesticide fate and transport is likely to be very variable and difficult to predict. In the long-term, indirect impacts, such as land-use change driven by changes in climate, may have a more significant effect on pesticides in surface and groundwaters than the direct impacts of climate change on pesticide fate and transport. The review focuses on climate change scenarios and case studies from the UK; however, the general conclusions can be applied more widely.
Collapse
Affiliation(s)
- J P Bloomfield
- Maclean Building, British Geological Survey, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK.
| | | | | | | | | |
Collapse
|
96
|
West JJ, Fiore AM, Horowitz LW, Mauzerall DL. Global health benefits of mitigating ozone pollution with methane emission controls. Proc Natl Acad Sci U S A 2006; 103:3988-93. [PMID: 16537473 PMCID: PMC1449633 DOI: 10.1073/pnas.0600201103] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.
Collapse
Affiliation(s)
- J. Jason West
- *Department of Geosciences and Atmospheric and Oceanic Sciences Program, Princeton University, Sayre Hall, Princeton, NJ 08544
- Woodrow Wilson School of Public and International Affairs, Princeton University, Robertson Hall, Princeton, NJ 08544; and
- To whom correspondence may be addressed at:
Atmospheric and Oceanic Sciences Program and Woodrow Wilson School of Public and International Affairs, Princeton University, 409 Robertson Hall, Princeton, NJ 08544. E-mail:
| | - Arlene M. Fiore
- Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, 201 Forrestal Road, Princeton, NJ 08542
| | - Larry W. Horowitz
- Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, 201 Forrestal Road, Princeton, NJ 08542
| | - Denise L. Mauzerall
- *Department of Geosciences and Atmospheric and Oceanic Sciences Program, Princeton University, Sayre Hall, Princeton, NJ 08544
- Woodrow Wilson School of Public and International Affairs, Princeton University, Robertson Hall, Princeton, NJ 08544; and
- To whom correspondence may be addressed at:
Woodrow Wilson School of Public and International Affairs, Princeton University, 406 Robertson Hall, Princeton, NJ 08544. E-mail:
| |
Collapse
|
97
|
Stevenson DS, Dentener FJ, Schultz MG, Ellingsen K, van Noije TPC, Wild O, Zeng G, Amann M, Atherton CS, Bell N, Bergmann DJ, Bey I, Butler T, Cofala J, Collins WJ, Derwent RG, Doherty RM, Drevet J, Eskes HJ, Fiore AM, Gauss M, Hauglustaine DA, Horowitz LW, Isaksen ISA, Krol MC, Lamarque JF, Lawrence MG, Montanaro V, Müller JF, Pitari G, Prather MJ, Pyle JA, Rast S, Rodriguez JM, Sanderson MG, Savage NH, Shindell DT, Strahan SE, Sudo K, Szopa S. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006338] [Citation(s) in RCA: 632] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
98
|
Forkel R, Knoche R. Regional climate change and its impact on photooxidant concentrations in southern Germany: Simulations with a coupled regional climate-chemistry model. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006748] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
99
|
Jiménez P, Lelieveld J, Baldasano JM. Multiscale modeling of air pollutants dynamics in the northwestern Mediterranean basin during a typical summertime episode. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006516] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
100
|
|