51
|
Pandey AK, Mishra AK, Kumar R, Berwal S, Devadas R, Huete A, Kumar K. CO variability and its association with household cooking fuels consumption over the Indo-Gangetic Plains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:83-93. [PMID: 28069367 DOI: 10.1016/j.envpol.2016.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/14/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
This study examines the spatio-temporal trends obtained from decade long (Jan 2003-Dec 2014) satellite observational data of Atmospheric Infrared Sounder (AIRS) and Measurements of Pollution in the Troposphere (MOPITT) on carbon monoxide (CO) concentration over the Indo-Gangetic Plains (IGP) region. The time sequence plots of columnar CO levels over the western, central and eastern IGP regions reveal marked seasonal behaviour, with lowest CO levels occurring during the monsoon months and the highest CO levels occurring during the pre-monsoon period. A negative correlation between CO levels and rainfall is observed. CO vertical profiles show relatively high values in the upper troposphere at ∼200 hPa level during the monsoon months, thus suggesting the role of convective transport and advection in addition to washout behind the decreased CO levels during this period. MOPITT and AIRS observations show a decreasing trend of 9.6 × 1015 and 1.5 × 1016 molecules cm-2 yr-1, respectively, in columnar CO levels over the IGP region. The results show the existence of a spatial gradient in CO from the eastern (higher levels) to western IGP region (lower levels). Data from the Census of India on the number of households using various cooking fuels in the IGP region shows the prevalence of biomass-fuel (i.e. firewood, crop residue, cowdung etc.) use over the eastern and central IGP regions and that of liquefied petroleum gas over the western IGP region. CO emission estimates from cooking activity over the three IGP regions are found to be in the order east > central > west, which support the existence of the spatial gradient in CO from eastern to the western IGP region. Our results support the intervention of present Indian government on limiting the use of biomass-fuels in domestic cooking to achieve the benefits in terms of the better air quality, household health and regional/global climate change mitigation.
Collapse
Affiliation(s)
- Alok Kumar Pandey
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amit Kumar Mishra
- Environmental and Biomedical Metrology Division, National Physical Laboratory, New Delhi, India
| | - Ritesh Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shivesh Berwal
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakhesh Devadas
- Climate Change Cluster, University of Technology-Sydney, Sydney, Australia
| | - Alfredo Huete
- Climate Change Cluster, University of Technology-Sydney, Sydney, Australia
| | - Krishan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
52
|
Singhai A, Habib G, Raman RS, Gupta T. Chemical characterization of PM 1.0 aerosol in Delhi and source apportionment using positive matrix factorization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:445-462. [PMID: 27726085 DOI: 10.1007/s11356-016-7708-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/13/2016] [Indexed: 05/28/2023]
Abstract
Fine aerosol fraction (particulate matter with aerodynamic diameter <= 1.0 μm (PM)1.0) over the Indian Institute of Technology Delhi campus was monitored day and night (10 h each) at 30 m height from November 2009 to March 2010. The samples were analyzed for 5 ions (NH4+, NO3-, SO42-, F-, and Cl-) and 12 trace elements (Na, K, Mg, Ca, Pb, Zn, Fe, Mn, Cu, Cd, Cr, and Ni). Importantly, secondary aerosol (sulfate and nitrate) formation was observed during dense foggy events, supporting the fog-smog-fog cycle. A total of 76 samples were used for source apportionment of PM mass. Six factors were resolved by PMF analyses and were identified as secondary aerosol, secondary chloride, biomass burning, soil dust, iron-rich source, and vehicular emission. The geographical location of the sources and/or preferred transport pathways was identified by conditional probability function (for local sources) and potential source contribution function (for regional sources) analyses. Medium- and small-scale metal processing (e.g. steel sheet rolling) industries in Haryana and National Capital Region (NCR) Delhi, coke and petroleum refining in Punjab, and thermal power plants in Pakistan, Punjab, and NCR Delhi were likely contributors to secondary sulfate, nitrate, and secondary chloride at the receptor site. The agricultural residue burning after harvesting season (Sept-Dec and Feb-Apr) in Punjab, and Haryana contributed to potassium at receptor site during November-December and March 2010. The soil dust from North and East Pakistan, and Rajasthan, North-East Punjab, and Haryana along with the local dust contributed to soil dust at the receptor site, during February and March 2010. A combination of temporal behavior and air parcel trajectory ensemble analyses indicated that the iron-rich source was most likely a local source attributed to emissions from metal processing facilities. Further, as expected, the vehicular emissions source did not show any seasonality and was local in origin.
Collapse
Affiliation(s)
- Amrita Singhai
- Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Gazala Habib
- Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, India.
| | - Ramya Sunder Raman
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
53
|
Ng NL, Brown SS, Archibald AT, Atlas E, Cohen RC, Crowley JN, Day DA, Donahue NM, Fry JL, Fuchs H, Griffin RJ, Guzman MI, Herrmann H, Hodzic A, Iinuma Y, Jimenez JL, Kiendler-Scharr A, Lee BH, Luecken DJ, Mao J, McLaren R, Mutzel A, Osthoff HD, Ouyang B, Picquet-Varrault B, Platt U, Pye HOT, Rudich Y, Schwantes RH, Shiraiwa M, Stutz J, Thornton JA, Tilgner A, Williams BJ, Zaveri RA. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. ATMOSPHERIC CHEMISTRY AND PHYSICS 2017; 17:2103-2162. [PMID: 30147712 PMCID: PMC6104845 DOI: 10.5194/acp-17-2103-2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.
Collapse
Affiliation(s)
- Nga Lee Ng
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Steven S. Brown
- NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | | | - Elliot Atlas
- Department of Atmospheric Sciences, RSMAS, University of Miami, Miami, FL, USA
| | - Ronald C. Cohen
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
| | - John N. Crowley
- Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Mainz, Germany
| | - Douglas A. Day
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Neil M. Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Juliane L. Fry
- Department of Chemistry, Reed College, Portland, OR, USA
| | - Hendrik Fuchs
- Institut für Energie und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich, Jülich, Germany
| | - Robert J. Griffin
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | | | - Hartmut Herrmann
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Alma Hodzic
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
| | - Yoshiteru Iinuma
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - José L. Jimenez
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Astrid Kiendler-Scharr
- Institut für Energie und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich, Jülich, Germany
| | - Ben H. Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Deborah J. Luecken
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jingqiu Mao
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
- Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| | - Robert McLaren
- Centre for Atmospheric Chemistry, York University, Toronto, Ontario, Canada
| | - Anke Mutzel
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Hans D. Osthoff
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Bin Ouyang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Benedicte Picquet-Varrault
- Laboratoire Interuniversitaire des Systemes Atmospheriques (LISA), CNRS, Universities of Paris-Est Créteil and ì Paris Diderot, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Ulrich Platt
- Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
| | - Havala O. T. Pye
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot, Israel
| | - Rebecca H. Schwantes
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA
| | - Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Andreas Tilgner
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Brent J. Williams
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rahul A. Zaveri
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
54
|
Bisht DS, Tiwari S, Dumka UC, Srivastava AK, Safai PD, Ghude SD, Chate DM, Rao PSP, Ali K, Prabhakaran T, Panickar AS, Soni VK, Attri SD, Tunved P, Chakrabarty RK, Hopke PK. Tethered balloon-born and ground-based measurements of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:894-905. [PMID: 27599053 DOI: 10.1016/j.scitotenv.2016.08.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/26/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
The ground and vertical profiles of particulate matter (PM) were mapped as part of a pilot study using a Tethered balloon within the lower troposphere (1000m) during the foggy episodes in the winter season of 2015-16 in New Delhi, India. Measurements of black carbon (BC) aerosol and PM <2.5 and 10μm (PM2.5 & PM10 respectively) concentrations and their associated particulate optical properties along with meteorological parameters were made. The mean concentrations of PM2.5, PM10, BC370nm, and BC880nm were observed to be 146.8±42.1, 245.4±65.4, 30.3±12.2, and 24.1±10.3μgm-3, respectively. The mean value of PM2.5 was ~12 times higher than the annual US-EPA air quality standard. The fraction of BC in PM2.5 that contributed to absorption in the shorter visible wavelengths (BC370nm) was ~21%. Compared to clear days, the ground level mass concentrations of PM2.5 and BC370nm particles were substantially increased (59% and 24%, respectively) during the foggy episode. The aerosol light extinction coefficient (σext) value was much higher (mean: 610Mm-1) during the lower visibility (foggy) condition. Higher concentrations of PM2.5 (89μgm-3) and longer visible wavelength absorbing BC880nm (25.7μgm-3) particles were observed up to 200m. The BC880nm and PM2.5 aerosol concentrations near boundary layer (1km) were significantly higher (~1.9 and 12μgm-3), respectively. The BC (i.e BCtot) aerosol direct radiative forcing (DRF) values were estimated at the top of the atmosphere (TOA), surface (SFC), and atmosphere (ATM) and its resultant forcing were - 75.5Wm-2 at SFC indicating the cooling effect at the surface. A positive value (20.9Wm-2) of BC aerosol DRF at TOA indicated the warming effect at the top of the atmosphere over the study region. The net DRF value due to BC aerosol was positive (96.4Wm-2) indicating a net warming effect in the atmosphere. The contribution of fossil and biomass fuels to the observed BC aerosol DRF values was ~78% and ~22%, respectively. The higher mean atmospheric heating rate (2.71Kday-1) by BC aerosol in the winter season would probably strengthen the temperature inversion leading to poor dispersion and affecting the formation of clouds. Serious detrimental impacts on regional climate due to the high concentrations of BC and PM (especially PM2.5) aerosol are likely based on this study and suggest the need for immediate, stringent measures to improve the regional air quality in the northern India.
Collapse
Affiliation(s)
- D S Bisht
- Indian Institute of Tropical Meteorology, New Delhi Branch, New Delhi 110060, India
| | - S Tiwari
- Indian Institute of Tropical Meteorology, New Delhi Branch, New Delhi 110060, India.
| | - U C Dumka
- Aryabhatta Research Institute of Observational Sciences, Nainital 263001, India
| | - A K Srivastava
- Indian Institute of Tropical Meteorology, New Delhi Branch, New Delhi 110060, India
| | - P D Safai
- Indian Institute of Tropical Meteorology, Pune 411008, India
| | - S D Ghude
- Indian Institute of Tropical Meteorology, Pune 411008, India
| | - D M Chate
- Indian Institute of Tropical Meteorology, Pune 411008, India
| | - P S P Rao
- Indian Institute of Tropical Meteorology, Pune 411008, India
| | - K Ali
- Indian Institute of Tropical Meteorology, Pune 411008, India
| | - T Prabhakaran
- Indian Institute of Tropical Meteorology, Pune 411008, India
| | - A S Panickar
- Indian Institute of Tropical Meteorology, Pune 411008, India
| | - V K Soni
- Indian Metrological Department, Lodhi Road, New Delhi, India
| | - S D Attri
- Indian Metrological Department, Lodhi Road, New Delhi, India
| | - P Tunved
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | | | - P K Hopke
- Clarkson University, Box 5708, Potsdam, NY 13699-5708, USA
| |
Collapse
|
55
|
Kang M, Fu P, Aggarwal SG, Kumar S, Zhao Y, Sun Y, Wang Z. Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:957-966. [PMID: 27751634 DOI: 10.1016/j.envpol.2016.09.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/25/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C19C33), n-fatty acids (C12C30) and n-alcohols (C16C32) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7-1.1 μm and 4.7-5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8-68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi.
Collapse
Affiliation(s)
- Mingjie Kang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | | | | | - Ye Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
56
|
Dumka UC, Saheb SD, Kaskaoutis DG, Kant Y, Mitra D. Columnar aerosol characteristics and radiative forcing over the Doon Valley in the Shivalik range of northwestern Himalayas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25467-25484. [PMID: 27704378 DOI: 10.1007/s11356-016-7766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/22/2016] [Indexed: 05/05/2023]
Abstract
Spectral aerosol optical depth (AOD) measurements obtained from multi-wavelength radiometer under cloudless conditions over Doon Valley, in the foothills of the western Himalayas, are analysed during the period January 2007 to December 2012. High AOD values of 0.46 ± 0.08 and 0.52 ± 0.1 at 500 nm, along with low values of Ångström exponent (0.49 ± 0.01 and 0.44 ± 0.03) during spring (March-May) and summer (June-August), respectively, suggest a flat AOD spectrum indicative of coarse-mode aerosol abundance compared with winter (December-February) and autumn (September-November), which are mostly dominated by fine aerosols from urban/industrial emissions and biomass burning. The columnar size distributions (CSD) retrieved from the King's inversion of spectral AOD exhibit bimodal size patterns during spring and autumn, while combinations of the power-law and unimodal distributions better simulate the retrieved CSDs during winter and summer. High values of extinction coefficient near the surface (∼0.8-1.0 km-1 at 532 nm) and a steep decreasing gradient above are observed via CALIPSO profiles in autumn and winter, while spring and summer exhibit elevated aerosol layers between ∼1.5 and 3.5 km due to the presence of dust. The particle depolarisation ratio shows a slight increasing trend with altitude, with higher values in spring and summer indicative of non-spherical particles of dust origin. The aerosol-climate implications are evaluated via the aerosol radiative forcing (ARF), which is estimated via the synergy of OPAC and SBDART models. On the monthly basis, the ARF values range from ∼ -30 to -90 W m-2 at the surface, while aerosols cause an overall cooling effect at the top of atmosphere (approx. -5 to -15 W m-2). The atmospheric heating via aerosol absorption results in heating rates of 1.2-1.6 K day-1 during March-June, which may contribute to changes in monsoon circulation over northern India and the Himalayas.
Collapse
Affiliation(s)
- U C Dumka
- Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, Uttarakhand, 263 001, India.
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200 433, China.
| | - Shaik Darga Saheb
- Department of Space, Indian Institute of Remote Sensing, ISRO, Dehradun, Uttarakhand, 248 001, India
| | - D G Kaskaoutis
- Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Athens, 11810, Greece
| | - Yogesh Kant
- Department of Space, Indian Institute of Remote Sensing, ISRO, Dehradun, Uttarakhand, 248 001, India
| | - D Mitra
- Department of Space, Indian Institute of Remote Sensing, ISRO, Dehradun, Uttarakhand, 248 001, India
| |
Collapse
|
57
|
Lin P, Aiona PK, Li Y, Shiraiwa M, Laskin J, Nizkorodov SA, Laskin A. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11815-11824. [PMID: 27704802 DOI: 10.1021/acs.est.6b03024] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly emitted biomass burning organic aerosol (BBOA) samples collected during test burns of sawgrass, peat, ponderosa pine, and black spruce. We demonstrate that both the BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as source-specific markers of BrC. On average, ∼50% of the light absorption in the solvent-extractable fraction of BBOA can be attributed to a limited number of strong BrC chromophores. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of ∼16 h. A "molecular corridor" analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low saturation mass concentration (<1 μg m-3) and will be retained in the particle phase under atmospherically relevant conditions.
Collapse
Affiliation(s)
- Peng Lin
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Paige K Aiona
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Ying Li
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz, 55128, Germany
- National Institute for Environmental Studies, Tsukuba-City, Ibaraki 305-8506 Japan
| | - Manabu Shiraiwa
- Department of Chemistry, University of California , Irvine, California 92697, United States
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz, 55128, Germany
| | - Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Alexander Laskin
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
58
|
Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer. Proc Natl Acad Sci U S A 2016; 113:11794-11799. [PMID: 27702889 DOI: 10.1073/pnas.1525746113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.
Collapse
|
59
|
Li C, Bosch C, Kang S, Andersson A, Chen P, Zhang Q, Cong Z, Chen B, Qin D, Gustafsson Ö. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nat Commun 2016; 7:12574. [PMID: 27552223 PMCID: PMC4996979 DOI: 10.1038/ncomms12574] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 07/14/2016] [Indexed: 11/09/2022] Open
Abstract
Combustion-derived black carbon (BC) aerosols accelerate glacier melting in the Himalayas and in Tibet (the Third Pole (TP)), thereby limiting the sustainable freshwater supplies for billions of people. However, the sources of BC reaching the TP remain uncertain, hindering both process understanding and efficient mitigation. Here we present the source-diagnostic Δ14C/δ13C compositions of BC isolated from aerosol and snowpit samples in the TP. For the Himalayas, we found equal contributions from fossil fuel (46±11%) and biomass (54±11%) combustion, consistent with BC source fingerprints from the Indo-Gangetic Plain, whereas BC in the remote northern TP predominantly derives from fossil fuel combustion (66±16%), consistent with Chinese sources. The fossil fuel contributions to BC in the snowpits of the inner TP are lower (30±10%), implying contributions from internal Tibetan sources (for example, yak dung combustion). Constraints on BC sources facilitate improved modelling of climatic patterns, hydrological effects and provide guidance for effective mitigation actions. Black carbon accelerates melting of glaciers in the Himalayas and Tibet, yet the source of these aerosols remains enigmatic. Here, the authors use isotope fingerprinting techniques to determine the origin of black carbon preserved in glacier ice cores recovered from the Himalayas and Tibetan Plateau.
Collapse
Affiliation(s)
- Chaoliu Li
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
| | - Carme Bosch
- Department of Environmental Science and Analytical Chemistry; The Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden
| | - Shichang Kang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China.,State Key Laboratory of Cryosphere Science, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China
| | - August Andersson
- Department of Environmental Science and Analytical Chemistry; The Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden
| | - Pengfei Chen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China.,University of CAS, Beijing 100049, China
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
| | - Bing Chen
- Environmental Research Institute, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Dahe Qin
- State Key Laboratory of Cryosphere Science, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China
| | - Örjan Gustafsson
- Department of Environmental Science and Analytical Chemistry; The Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
60
|
Hawkins LN, Lemire AN, Galloway MM, Corrigan AL, Turley JJ, Espelien BM, De Haan DO. Maillard Chemistry in Clouds and Aqueous Aerosol As a Source of Atmospheric Humic-Like Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7443-7452. [PMID: 27227348 DOI: 10.1021/acs.est.6b00909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The reported optical, physical, and chemical properties of aqueous Maillard reaction mixtures of small aldehydes (glyoxal, methylglyoxal, and glycolaldehyde) with ammonium sulfate and amines are compared with those of aqueous extracts of ambient aerosol (water-soluble organic carbon, WSOC) and the humic-like substances (HULIS) fraction of WSOC. Using a combination of new and previously published measurements, we examine fluorescence, X-ray absorbance, UV/vis, and IR spectra, complex refractive indices, (1)H and (13)C NMR spectra, thermograms, aerosol and electrospray ionization mass spectra, surface activity, and hygroscopicity. Atmospheric WSOC and HULIS encompass a range of properties, but in almost every case aqueous aldehyde-amine reaction mixtures are squarely within this range. Notable exceptions are the higher UV/visible absorbance wavelength dependence (Angström coefficients) observed for methylglyoxal reaction mixtures, the lack of surface activity of glyoxal reaction mixtures, and the higher N/C ratios of aldehyde-amine reaction products relative to atmospheric WSOC and HULIS extracts. The overall optical, physical, and chemical similarities are consistent with, but not demonstrative of, Maillard chemistry being a significant secondary source of atmospheric HULIS. However, the higher N/C ratios of aldehyde-amine reaction products limits the source strength to ≤50% of atmospheric HULIS, assuming that other sources of HULIS incorporate only negligible quantities of nitrogen.
Collapse
Affiliation(s)
- Lelia N Hawkins
- Department of Chemistry, Harvey Mudd College , 301 Platt Boulevard, Claremont, California 91711, United States
| | - Amanda N Lemire
- Department of Chemistry, Harvey Mudd College , 301 Platt Boulevard, Claremont, California 91711, United States
| | - Melissa M Galloway
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego California 92110, United States
| | - Ashley L Corrigan
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego California 92110, United States
| | - Jacob J Turley
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego California 92110, United States
| | - Brenna M Espelien
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego California 92110, United States
| | - David O De Haan
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego California 92110, United States
| |
Collapse
|
61
|
Comparative Analysis of Atmospheric Glyoxal Column Densities Retrieved from MAX-DOAS Observations in Pakistan and during MAD-CAT Field Campaign in Mainz, Germany. ATMOSPHERE 2016. [DOI: 10.3390/atmos7050068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
62
|
Lin P, Laskin J, Nizkorodov SA, Laskin A. Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14257-66. [PMID: 26505092 DOI: 10.1021/acs.est.5b03608] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Atmospheric brown carbon (BrC) is an important contributor to light absorption and climate forcing by aerosols. Reactions between small water-soluble carbonyls and ammonia or amines have been identified as one of the potential pathways of BrC formation. However, detailed chemical characterization of BrC chromophores has been challenging and their formation mechanisms are still poorly understood. Understanding BrC formation is impeded by the lack of suitable methods which can unravel the variability and complexity of BrC mixtures. This study applies high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detector and high resolution mass spectrometry (HRMS) to investigate optical properties and chemical composition of individual BrC components produced through reactions of methylglyoxal (MG) and ammonium sulfate (AS), both of which are abundant in the atmospheric environment. A direct relationship between optical properties and chemical composition of 30 major BrC chromophores is established. Nearly all of these chromophores are nitrogen-containing compounds that account for >70% of the overall light absorption by the MG+AS system in the 300-500 nm range. These results suggest that reduced-nitrogen organic compounds formed in reactions between atmospheric carbonyls and ammonia/amines are important BrC chromophores. It is also demonstrated that improved separation of BrC chromophores by HPLC will significantly advance understanding of BrC chemistry.
Collapse
Affiliation(s)
- Peng Lin
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Alexander Laskin
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| |
Collapse
|
63
|
Zhang F, Wang ZW, Cheng HR, Lv XP, Gong W, Wang XM, Zhang G. Seasonal variations and chemical characteristics of PM(2.5) in Wuhan, central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:97-105. [PMID: 25747369 DOI: 10.1016/j.scitotenv.2015.02.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/19/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
PM2.5 samples were collected at an urban site (WD) and a suburban site (TH) in Wuhan from August 2012 to July 2013. The mass concentrations of water-soluble inorganic ions, carbonaceous species and elements of PM2.5 were measured. The annual mean concentrations of PM2.5 were 106.5 μg/m(3) and 114.9 μg/m(3) at WD and TH, respectively. The chemical compositions of PM2.5 at WD were similar to those at TH and the fractions of the major components of PM2.5 in Wuhan were in the following order of trace elements<chloride<EC (elemental carbon)<ammonium<nitrate<soil dust<sulfate<OM (organic matter). As the secondary ionic aerosols (SIA) and dominant ions, SO4(2-), NO3(-) and NH4(+) all exhibited strong seasonal distributions, consistently with the lowest values in summer and the highest in winter. OM was the most abundant component in PM2.5, the lowest concentrations of which were observed in summer at both sites, while the highest concentrations of OC (organic carbon) appeared in winter at WD and autumn at TH, respectively. The highest OC concentration observed in autumn was tightly related to the biomass burning near the suburban site. The crustal elements (Mg, K, Ca and Fe) dominated the 20 detected elements in PM2.5, with the highest concentrations in spring in Wuhan, which might be due to frequent sandstorm from north carrying abundant soil dusts in spring in China. Ten trace elements (Cu, Ga, Ag, Tl, Ca, As, Zn, Pb, Se and Cd) were enriched in PM2.5 and the higher EF for Ag, Pb, Se and Cd in PM2.5 indicated that the air pollution from vehicle exhaust emission and coal burning in Wuhan was serious and noteworthy.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Environmental Engineering, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Zu-wu Wang
- Department of Environmental Engineering, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Hai-rong Cheng
- Department of Environmental Engineering, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| | - Xiao-pu Lv
- Department of Environmental Engineering, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Wei Gong
- State Key Laboratory for Information Engineering in Surveying, Mapping & Remote Sensing, Wuhan University, Wuhan 430079, China
| | - Xin-ming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
64
|
Zhang R, Wang G, Guo S, Zamora ML, Ying Q, Lin Y, Wang W, Hu M, Wang Y. Formation of urban fine particulate matter. Chem Rev 2015; 115:3803-55. [PMID: 25942499 DOI: 10.1021/acs.chemrev.5b00067] [Citation(s) in RCA: 514] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Renyi Zhang
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | - Song Guo
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | - Min Hu
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Wang
- #Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
65
|
Lee K, Kim YJ, Kang CH, Kim JS, Chang LS, Park K. Chemical characteristics of long-range-transported fine particulate matter at Gosan, Jeju Island, in the spring and fall of 2008, 2009, 2011, and 2012. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2015; 65:445-454. [PMID: 25947214 DOI: 10.1080/10962247.2014.1001883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED Carbonaceous species (organic carbon [OC] and elemental carbon [EC]) and inorganic ions of particulate matter less than 2.5 μm (PM2.5) were measured to investigate the chemical characteristics of long-range-transported (LTP) PM2.5 at Gosan, Jeju Island, in Korea in the spring and fall of 2008-2012 (excluding 2010). On average, the non-sea-salt (nss) sulfate (4.2 µg/m3) was the most dominant species in the spring, followed by OC (2.6 µg/m3), nitrate (2.1 µg/m3), ammonium (1.7 µg/m3), and EC (0.6 µg/m3). In the fall, the nss-sulfate (4.7 µg/m3) was also the most dominant species, followed by OC (4.0 µg/m3), ammonium (1.7 µg/m3), nitrate (1.1 µg/m3), and EC (0.7 µg/m3). Both sulfate and OC were higher in the fall than in the spring, possibly due to more common northwest air masses (i.e., coming from China and Korea polluted areas) and more frequent biomass burnings in the fall. There was no clear difference in the EC between the spring and fall. The correlation between OC and EC was not strong; thus, the OC measured at Gosan was likely transported across a long distance and was not necessarily produced in a manner similar to the EC. Distinct types of LTP events (i.e., sulfate-dominant LTP versus OC-dominant LTP) were observed. In the sulfate-dominant LTP events, air masses directly arrived at Gosan without passing over the Korean Peninsula from the industrial area of China within 48 hr. During these events, the aerosol optical depth (AOD) increased to 1.63. Ionic balance data suggest that the long-range transported aerosols are acidic. In the OC-dominant LTP event, a higher residence time of air masses in Korea was observed (the air masses departing from the mainland of China arrived at the sampling site after passing Korea within 60-80 hr). IMPLICATIONS In Northeast Asia, various natural and anthropogenic sources contribute to the complex chemical components and affect local/regional air quality and climate change. Chemical characteristics of long-range-transported (LTP) PM2.5 were investigated during spring and fall of 2008, 2009, 2011, and 2012. Based on air mass types, sulfate-dominant LTP and OC-dominant LTP were observed. A long-term variation and chemical characteristics of PM2.5 along with air mass and satellite data are required to better understand long-range-transported aerosols.
Collapse
Affiliation(s)
- KwangYul Lee
- a National Leading Research Laboratory (Aerosol Technology and Monitoring Laboratory), School of Environmental Science and Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju , Republic of Korea
| | | | | | | | | | | |
Collapse
|
66
|
Affiliation(s)
| | | | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
67
|
Ram K, Sarin MM. Atmospheric carbonaceous aerosols from Indo-Gangetic Plain and Central Himalaya: impact of anthropogenic sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 148:153-163. [PMID: 25199599 DOI: 10.1016/j.jenvman.2014.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/03/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
In the present-day scenario of growing anthropogenic activities, carbonaceous aerosols contribute significantly (∼20-70%) to the total atmospheric particulate matter mass and, thus, have immense potential to influence the Earth's radiation budget and climate on a regional to global scale. In addition, formation of secondary organic aerosols is being increasingly recognized as an important process in contributing to the air-pollution and poor visibility over urban regions. It is, thus, essential to study atmospheric concentrations of carbonaceous species (EC, OC and WSOC), their mixing state and absorption properties on a regional scale. This paper presents the comprehensive data on emission sources, chemical characteristics and optical properties of carbonaceous aerosols from selected urban sites in the Indo-Gangetic Plain (IGP) and from a high-altitude location in the central Himalaya. The mass concentrations of OC, EC and WSOC exhibit large spatio-temporal variability in the IGP. This is attributed to seasonally varying emissions from post-harvest agricultural-waste burning, their source strength, boundary layer dynamics and secondary aerosol formation. The high concentrations of OC and SO4(2-), and their characteristic high mass scattering efficiency, contribute significantly to the aerosol optical depth and scattering coefficient. This has implications to the assessment of single scattering albedo and aerosol radiative forcing on a regional scale.
Collapse
Affiliation(s)
- Kirpa Ram
- Physical Research Laboratory, Ahmedabad 380009, India; Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221 005, India.
| | - M M Sarin
- Physical Research Laboratory, Ahmedabad 380009, India.
| |
Collapse
|
68
|
Lin P, Liu J, Shilling JE, Kathmann SM, Laskin J, Laskin A. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys Chem Chem Phys 2015; 17:23312-25. [DOI: 10.1039/c5cp02563j] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BrC chromophores of toluene SOA have been identified using the HPLC–UV/Vis–ESI/HRMS platform.
Collapse
Affiliation(s)
- Peng Lin
- Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Jiumeng Liu
- Atmospheric Sciences & Global Change Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - John E. Shilling
- Atmospheric Sciences & Global Change Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Shawn M. Kathmann
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Julia Laskin
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Alexander Laskin
- Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
| |
Collapse
|
69
|
Lin NH, Sayer AM, Wang SH, Loftus AM, Hsiao TC, Sheu GR, Hsu NC, Tsay SC, Chantara S. Interactions between biomass-burning aerosols and clouds over Southeast Asia: current status, challenges, and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 195:292-307. [PMID: 25085565 DOI: 10.1016/j.envpol.2014.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/08/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
The interactions between aerosols, clouds, and precipitation remain among the largest sources of uncertainty in the Earth's energy budget. Biomass-burning aerosols are a key feature of the global aerosol system, with significant annually-repeating fires in several parts of the world, including Southeast Asia (SEA). SEA in particular provides a "natural laboratory" for these studies, as smoke travels from source regions downwind in which it is coupled to persistent stratocumulus decks. However, SEA has been under-exploited for these studies. This review summarizes previous related field campaigns in SEA, with a focus on the ongoing Seven South East Asian Studies (7-SEAS) and results from the most recent BASELInE deployment. Progress from remote sensing and modeling studies, along with the challenges faced for these studies, are also discussed. We suggest that improvements to our knowledge of these aerosol/cloud effects require the synergistic use of field measurements with remote sensing and modeling tools.
Collapse
Affiliation(s)
- Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan; Chemistry Department and Environmental Science Program, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Andrew M Sayer
- Goddard Space Flight Center, NASA, Greenbelt, MD, USA; Universities Space Research Association, Columbia, MD, USA
| | - Sheng-Hsiang Wang
- Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan
| | - Adrian M Loftus
- Goddard Space Flight Center, NASA, Greenbelt, MD, USA; Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Central University, Chung-Li, Taiwan
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan
| | | | - Si-Chee Tsay
- Goddard Space Flight Center, NASA, Greenbelt, MD, USA
| | - Somporn Chantara
- Chemistry Department and Environmental Science Program, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
70
|
Laskin J, Laskin A, Nizkorodov SA, Roach P, Eckert P, Gilles MK, Wang B, Lee HJJ, Hu Q. Molecular selectivity of brown carbon chromophores. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12047-12055. [PMID: 25233355 DOI: 10.1021/es503432r] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Complementary methods of high-resolution mass spectrometry and microspectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene SOA (LSOA) and α-pinene SOA (PSOA). The LSOA compounds readily formed adducts with Na(+) under electrospray ionization conditions, with only a small fraction of compounds detected in the protonated form. In contrast, a significant fraction of PSOA compounds appeared in the protonated form because of their increased molecular rigidity. Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas was detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl-imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the α-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.
Collapse
Affiliation(s)
- Julia Laskin
- Physical Sciences Division and ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Li J, Wang G, Aggarwal SG, Huang Y, Ren Y, Zhou B, Singh K, Gupta PK, Cao J, Zhang R. Comparison of abundances, compositions and sources of elements, inorganic ions and organic compounds in atmospheric aerosols from Xi'an and New Delhi, two megacities in China and India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:485-95. [PMID: 24496022 DOI: 10.1016/j.scitotenv.2014.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/01/2014] [Accepted: 01/05/2014] [Indexed: 05/12/2023]
Abstract
Wintertime TSP samples collected in the two megacities of Xi'an, China and New Delhi, India were analyzed for elements, inorganic ions, carbonaceous species and organic compounds to investigate the differences in chemical compositions and sources of organic aerosols. The current work is the first time comparing the composition of urban organic aerosols from China and India and discussing their sources in a single study. Our results showed that the concentrations of Ca, Fe, Ti, inorganic ions, EC, PAHs and hopanes in Xi'an are 1.3-2.9 times of those in New Delhi, which is ascribed to the higher emissions of dust and coal burning in Xi'an. In contrast, Cl(-), levoglucosan, n-alkanes, fatty alcohols, fatty acids, phthalates and bisphenol A are 0.4-3.0 times higher in New Delhi than in Xi'an, which is attributed to strong emissions from biomass burning and solid waste incineration. PAHs are carcinogenic while phthalates and bisphenol A are endocrine disrupting. Thus, the significant difference in chemical compositions of the above TSP samples may suggest that residents in Xi'an and New Delhi are exposed to environmental hazards that pose different health risks. Lower mass ratios of octadecenoic acid/octadecanoic acid (C18:1/C18:0) and benzo(a)pyrene/benzo(e)pyrene (BaP/BeP) demonstrate that aerosol particles in New Delhi are photochemically more aged. Mass closure reconstructions of the wintertime TSP indicate that crustal material is the most abundant component of ambient particles in Xi'an and New Delhi, accounting for 52% and 48% of the particle masses, respectively, followed by organic matter (24% and 23% in Xi'an and New Delhi, respectively) and secondary inorganic ions (sulfate, nitrate plus ammonium, 16% and 12% in Xi'an and New Delhi, respectively).
Collapse
Affiliation(s)
- Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Gehui Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China.
| | - Shankar G Aggarwal
- Analytical Chemistry Section, Council of Scientific and Industrial Research-National Physical Laboratory, New Delhi 110012, India
| | - Yao Huang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Yanqin Ren
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Bianhong Zhou
- Department of Geographical Science and Environmental Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Khem Singh
- Analytical Chemistry Section, Council of Scientific and Industrial Research-National Physical Laboratory, New Delhi 110012, India
| | - Prabhat K Gupta
- Analytical Chemistry Section, Council of Scientific and Industrial Research-National Physical Laboratory, New Delhi 110012, India
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Rong Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| |
Collapse
|
72
|
Verma S, Bhanja SN, Pani SK, Misra A. Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:4977-4994. [PMID: 24363049 DOI: 10.1007/s11356-013-2383-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68-1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34-0.5 μm) compared to that (0.28-0.37) at long-wavelength (LW) channels (0.87-1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68-0.82 and 1.14-1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23-3 μm) which was 60-70 % of aerosol 10- μm (size 0.23-10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in relative distribution of fine and coarse mode of MODIS AOD was also inferred.
Collapse
Affiliation(s)
- S Verma
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India,
| | | | | | | |
Collapse
|
73
|
Rastogi N, Singh A, Singh D, Sarin MM. Chemical characteristics of PM(2.5) at a source region of biomass burning emissions: evidence for secondary aerosol formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:563-569. [PMID: 24184378 DOI: 10.1016/j.envpol.2013.09.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
A systematic study on the chemical characteristics of ambient PM2.5, collected during October-2011 to March-2012 from a source region (Patiala: 30.2°N, 76.3°E; 250 m amsl) of biomass burning emissions in the Indo-Gangetic Plain (IGP), exhibit pronounced diurnal variability in mass concentrations of PM2.5, NO3(-), NH4(+), K(+), OC, and EC with ~30-300% higher concentrations in the nighttime samples. The average WSOC/OC and SO4(2-)/PM2.5 ratios for the daytime (~0.65, and 0.18, respectively) and nighttime (0.45, and 0.12, respectively) samples provide evidence for secondary organic and SO4(2-) aerosol formation during the daytime. Formation of secondary NO3(-) is also evident from higher NH4NO3 concentrations associated with lower temperature and higher relative humidity conditions. The scattering species (SO4(2-) + NO3(-) + OC) contribute ~50% to PM2.5 mass during October-March whereas absorbing species (EC) contribute only ~4% in October-February and subsequently increases to ~10% in March, indicating significance of these species in regional radiative forcing.
Collapse
Affiliation(s)
- N Rastogi
- Geosciences Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India.
| | | | | | | |
Collapse
|
74
|
Mathison C, Wiltshire A, Dimri AP, Falloon P, Jacob D, Kumar P, Moors E, Ridley J, Siderius C, Stoffel M, Yasunari T. Regional projections of North Indian climate for adaptation studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 468-469 Suppl:S4-S17. [PMID: 22633462 DOI: 10.1016/j.scitotenv.2012.04.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 06/01/2023]
Abstract
Adaptation is increasingly important for regions around the world where large changes in climate could have an impact on populations and industry. The Brahmaputra-Ganges catchments have a large population, a main industry of agriculture and a growing hydro-power industry, making the region susceptible to changes in the Indian Summer Monsoon, annually the main water source. The HighNoon project has completed four regional climate model simulations for India and the Himalaya at high resolution (25km) from 1960 to 2100 to provide an ensemble of simulations for the region. In this paper we have assessed the ensemble for these catchments, comparing the simulations with observations, to give credence that the simulations provide a realistic representation of atmospheric processes and therefore future climate. We have illustrated how these simulations could be used to provide information on potential future climate impacts and therefore aid decision-making using climatology and threshold analysis. The ensemble analysis shows an increase in temperature between the baseline (1970-2000) and the 2050s (2040-2070) of between 2 and 4°C and an increase in the number of days with maximum temperatures above 28°C and 35°C. There is less certainty for precipitation and runoff which show considerable variability, even in this relatively small ensemble, spanning zero. The HighNoon ensemble is the most complete data for the region providing useful information on a wide range of variables for the regional climate of the Brahmaputra-Ganges region, however there are processes not yet included in the models that could have an impact on the simulations of future climate. We have discussed these processes and show that the range from the HighNoon ensemble is similar in magnitude to potential changes in projections where these processes are included. Therefore strategies for adaptation must be robust and flexible allowing for advances in the science and natural environmental changes.
Collapse
Affiliation(s)
| | | | - A P Dimri
- Hydrospheric Atmospheric Research Center, Nagoya University, Furo-ch, Chikusa-ku, Nagoya,464-8601, Japan
| | - Pete Falloon
- Met Office, FitzRoy Road, Exeter, Devon, EX1 3PB, UK
| | - Daniela Jacob
- Max-Planck-Institute für Meteorologie, Bundesstrasse 53, 20146 Hamburg, Germany
| | - Pankaj Kumar
- Max-Planck-Institute für Meteorologie, Bundesstrasse 53, 20146 Hamburg, Germany
| | - Eddy Moors
- ESS-CC, Alterra Wageningen UR, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Jeff Ridley
- Met Office, FitzRoy Road, Exeter, Devon, EX1 3PB, UK
| | - Christian Siderius
- ESS-CC, Alterra Wageningen UR, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Markus Stoffel
- Institute for Environmental Sciences, University of Geneva, 7, Route de Drize, 1227 Carouge, Geneva, Switzerland; Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
| | - T Yasunari
- Hydrospheric Atmospheric Research Center, Nagoya University, Furo-ch, Chikusa-ku, Nagoya,464-8601, Japan
| |
Collapse
|
75
|
Affiliation(s)
- Peter J. Adams
- Dept. of Chemical Engineering; Carnegie Mellon University; Pittsburgh; PA; 15217
| | - Neil M. Donahue
- Dept. of Chemical Engineering; Carnegie Mellon University; Pittsburgh; PA; 15217
| | - Spyros N. Pandis
- Dept. of Chemical Engineering; Carnegie Mellon University; Pittsburgh; PA; 15217
| |
Collapse
|
76
|
Verma S, Payra S, Gautam R, Prakash D, Soni M, Holben B, Bell S. Dust events and their influence on aerosol optical properties over Jaipur in Northwestern India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:7327-42. [PMID: 23397540 DOI: 10.1007/s10661-013-3103-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 01/16/2013] [Indexed: 05/04/2023]
Abstract
In this study, we systematically document the link between dust episodes and local scale regional aerosol optical properties over Jaipur located in the vicinity of Thar Desert in the northwestern state of Rajasthan. The seasonal variation of AOT(500 nm) (aerosol optical thickness) shows high values (0.51 ± 0.18) during pre-monsoon (dust dominant) season while low values (0.36 ± 0.14) are exhibited during winter. The Ångström wavelength exponent has been found to exhibit low value (<0.25) indicating relative dominance of coarse-mode particles during pre-monsoon season. The AOT increased from 0.36 (Aprilmean) to 0.575 (May-June(mean)). Consequently, volume concentration range increases from April through May-June followed by a sharp decline in July during the first active phase of the monsoon. Significantly high dust storms were observed over Jaipur as indicated by high values of single scattering albedo (SSA(440 nm) = 0.89, SSA(675 nm) = 0.95, SSA870 nm = 0.97, SSA(1,020 nm) = 0.976) than the previously reported values over IGP region sites. The larger SSA values (more scattering aerosol), especially at longer wavelengths, is due to the abundant dust loading, and is attributed to the measurement site's proximity to the Thar Desert. The mean and standard deviation in SSA and asymmetry parameter during pre-monsoon season over Jaipur is 0.938 ± 0.023 and 0.712 ± 0.017 at 675 nm wavelength, respectively. Back-trajectory air mass simulations suggest Thar Desert in northwestern India as the primary source of high aerosols dust loading over Jaipur region as well as contribution by long-range transport from the Arabian Peninsula and Middle East gulf regions, during pre-monsoon season.
Collapse
Affiliation(s)
- Sunita Verma
- Centre of Excellence in Climatology, Birla Institute of Technology Mesra, Extension Centre Jaipur, Jaipur, 302017 Rajasthan, India.
| | | | | | | | | | | | | |
Collapse
|
77
|
Panwar TS, Hooda RK, Lihavainen H, Hyvarinen AP, Sharma VP, Viisanen Y. Atmospheric aerosols at a regional background Himalayan site--Mukteshwar, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:4753-4764. [PMID: 23160718 DOI: 10.1007/s10661-012-2902-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 09/24/2012] [Indexed: 06/01/2023]
Abstract
Continuous aerosol measurements were made at a regional background station (Mukteshwar) located in a rural Himalayan mountain terrain from December 2005 to December 2008 for a period of 3 years. The average concentrations of particulate matter less than or equal to 10 μm (PM₁₀), particulate matter less than or equal to 2.5 μm (PM₂.₅) and black carbon (BC) are 46.0, 26.6 and 0.85 μg/m(3) during the study period. Majority of the PM₁₀ values lie below 100 μg/m(3) while majority of the PM₂.₅ values lie below 30 μg/m(3). It is further seen that during the monsoon months, especially July and August, the average values are comparatively low. It is also noted that the PM₂.₅/PM₁₀ ratios between 0.50 and 0.75 have the maximum frequency distribution in the data set. Furthermore, the monthly mean ratio of BC to PM₂.₅ mass lies between 3.0 and 7.5 % during the study period. Though the average PM₁₀ and PM₂.₅ concentrations during the study period are less than the respective Indian ambient air quality standards, however, they are still above the WHO guidelines and would have adverse health impacts. This shows that even in rural/background regions that are far away from major pollution sources or urban areas, the aerosol concentrations are significant and require long-term monitoring, source quantification and aerosol model simulations.
Collapse
Affiliation(s)
- T S Panwar
- The Energy and Resources Institute, IHC, Lodi Road, New Delhi 110003, India.
| | | | | | | | | | | |
Collapse
|
78
|
von Glasow R, Jickells TD, Baklanov A, Carmichael GR, Church TM, Gallardo L, Hughes C, Kanakidou M, Liss PS, Mee L, Raine R, Ramachandran P, Ramesh R, Sundseth K, Tsunogai U, Uematsu M, Zhu T. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems. AMBIO 2013; 42:13-28. [PMID: 23076973 PMCID: PMC3547459 DOI: 10.1007/s13280-012-0343-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/29/2012] [Accepted: 08/16/2012] [Indexed: 05/25/2023]
Abstract
Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.
Collapse
Affiliation(s)
- Roland von Glasow
- />School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Tim D. Jickells
- />School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | | | - Gregory R. Carmichael
- />Department of Chemical & Biochemical Engineering, The University of Iowa, Iowa City, IA 52242 USA
| | - Tom M. Church
- />School of Marine Science and Policy, University of Delaware, Newark, DE 19716-3501 USA
| | - Laura Gallardo
- />Departamento de Geofísica & Centro de Modelamiento Matemático, Universidad de Chile, Blanco Encalada 2002, Piso 4, Santiago, Chile
| | - Claire Hughes
- />Environment Department, University of York, Heslington, York, YO10 5DD UK
| | - Maria Kanakidou
- />Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece
| | - Peter S. Liss
- />School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Laurence Mee
- />Scottish Marine Institute, Scottish Association for Marine Science (SAMS), Oban, Argyll, PA37 1QA UK
| | - Robin Raine
- />The Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, Ireland
| | | | - R. Ramesh
- />Institute for Ocean Management, Anna University, Chennai, 600 025 India
| | - Kyrre Sundseth
- />Center for Ecology and Economics (CEE), NILU-Norwegian Institute for Air Research, Instituttveien 18, P.O. Box 100, 2007 Kjeller, Norway
| | - Urumu Tsunogai
- />Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Mitsuo Uematsu
- />Center for International Collaboration, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564 Japan
| | - Tong Zhu
- />State Key Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
79
|
Lin P, Yu JZ, Engling G, Kalberer M. Organosulfates in humic-like substance fraction isolated from aerosols at seven locations in East Asia: a study by ultra-high-resolution mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:13118-13127. [PMID: 23153227 DOI: 10.1021/es303570v] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Humic-like substances (HULIS) in ambient aerosols collected at seven locations in East Asia were analyzed using electrospray ionization (ESI) coupled with an ultra-high-resolution mass spectrometer (UHRMS). Locations included a 3 km high mountaintop site in Taiwan, rural, suburban, and urban locations in the Pearl River Delta (PRD), South China, and in Taiwan. Organosulfates (OS) in the HULIS fraction were tentatively identified through accurate mass measurements and MS/MS spectra interpretation. In the two mountaintop samples collected in regional background atmosphere, little OS were detected, while a few hundred OS formulas were identified in the six samples taken in Taiwan and PRD. Many of the OS ions were among the most intense peaks in the negative ESI-UHRMS spectra, and their elemental formulas were identical to OS derived from biogenic volatile organic compounds (BVOCs) (e.g., monoterpenes) that have been identified in chamber studies. With OS having less than 6 carbon atoms too hydrophilic to be effectively retained in the HULIS fraction, OS containing 10 carbon atoms were the most abundant, indicating monoterpenes as important precursors of OS in the HULIS fraction. Clear spatial variation in abundance of OS was found among different atmospheric environments, with enhanced coupling of BVOCs with anthropogenic acidic aerosols observed in the PRD samples over the Taiwan samples. The double bond equivalent (DBE) values indicate the majority of OS (>90%) in the HULIS fraction are aliphatic. The elemental compositions of OS compounds containing N atoms (defined as CHONS) indicate that they are probably nitrooxy OS. Some insights into OS formation mechanisms are also gained through examining the presence/absence of perceived reactant-product formula pairs in the mass spectra. The results suggest the dominant epoxide intermediate pathway for formation of OS compounds without N atoms (defined as CHOS) and confirm the more readily hydrolyzed characteristics of the --ONO₂ group than the --OSO₃ group. There is a lack of evidence for the epoxide pathway to account for the formation of OS in the CHONS subgroup.
Collapse
Affiliation(s)
- Peng Lin
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
80
|
Sahu LK, Kondo Y, Moteki N, Takegawa N, Zhao Y, Cubison MJ, Jimenez JL, Vay S, Diskin GS, Wisthaler A, Mikoviny T, Huey LG, Weinheimer AJ, Knapp DJ. Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS-CARB 2008. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017401] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
81
|
Li W, Shi Z, Zhang D, Zhang X, Li P, Feng Q, Yuan Q, Wang W. Haze particles over a coal-burning region in the China Loess Plateau in winter: Three flight missions in December 2010. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017720] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
82
|
Tao M, Chen L, Su L, Tao J. Satellite observation of regional haze pollution over the North China Plain. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017915] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
83
|
Lewis JJ, Pattanayak SK. Who adopts improved fuels and cookstoves? A systematic review. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:637-45. [PMID: 22296719 PMCID: PMC3346782 DOI: 10.1289/ehp.1104194] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 02/01/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND The global focus on improved cookstoves (ICSs) and clean fuels has increased because of their potential for delivering triple dividends: household health, local environmental quality, and regional climate benefits. However, ICS and clean fuel dissemination programs have met with low rates of adoption. OBJECTIVES We reviewed empirical studies on ICSs and fuel choice to describe the literature, examine determinants of fuel and stove choice, and identify knowledge gaps. METHODS We conducted a systematic review of the literature on the adoption of ICSs or cleaner fuels by households in developing countries. Results are synthesized through a simple vote-counting meta-analysis. RESULTS We identified 32 research studies that reported 146 separate regression analyses of ICS adoption (11 analyses) or fuel choice (135 analyses) from Asia (60%), Africa (27%), and Latin America (19%). Most studies apply multivariate regression methods to consider 7-13 determinants of choice. Income, education, and urban location were positively associated with adoption in most but not all studies. However, the influence of fuel availability and prices, household size and composition, and sex is unclear. Potentially important drivers such as credit, supply-chain strengthening, and social marketing have been ignored. CONCLUSIONS Adoption studies of ICSs or clean energy are scarce, scattered, and of differential quality, even though global distribution programs are quickly expanding. Future research should examine an expanded set of contextual variables to improve implementation of stove programs that can realize the "win-win-win" of health, local environmental quality, and climate associated with these technologies.
Collapse
Affiliation(s)
- Jessica J Lewis
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708-0312, USA
| | | |
Collapse
|
84
|
Zhao R, Lee AKY, Abbatt JPD. Investigation of aqueous-phase photooxidation of glyoxal and methylglyoxal by aerosol chemical ionization mass spectrometry: observation of hydroxyhydroperoxide formation. J Phys Chem A 2012; 116:6253-63. [PMID: 22296207 DOI: 10.1021/jp211528d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Aqueous-phase processing of glyoxal (GLY) and methylglyoxal (MG) produces highly oxygenated, less volatile organic acids that can contribute to SOA formation and aging. In this study, aerosol chemical ionization mass spectrometry (aerosol CIMS) is employed to monitor aqueous-phase photooxidation of GLY and MG. Using iodide (I(-)) as the reagent ion, aerosol CIMS can simultaneously detect important species involved in the reactions: organic acids, peroxides, and aldehydes, so that the reconstructed total organic carbon (TOC) concentrations from aerosol CIMS data agree well with offline TOC analysis. This study also reports the first direct detection of hydroxyhydroperoxide (HHP) formation from the reaction of H(2)O(2) with GLY or MG. The formation of HHPs is observed to be reversible and an estimate of their equilibrium constants is made to be between 40 and 200 M(-1). Results of this study suggest that HHPs can form additional formic acid and acetic acid via photooxidation and regenerate GLY or MG during photooxidation, compensating their loss. HHP formation needs to be further studied for inclusion in aqueous-phase chemical models given that it may affect the aqueous partitioning of carbonyls in the atmosphere.
Collapse
Affiliation(s)
- R Zhao
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
85
|
de Laat ATJ, Stein Zweers DC, Boers R, Tuinder ONE. A solar escalator: Observational evidence of the self-lifting of smoke and aerosols by absorption of solar radiation in the February 2009 Australian Black Saturday plume. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
86
|
Babu SS, Chaubey JP, Krishna Moorthy K, Gogoi MM, Kompalli SK, Sreekanth V, Bagare SP, Bhatt BC, Gaur VK, Prabhu TP, Singh NS. High altitude (∼4520 m amsl) measurements of black carbon aerosols over western trans-Himalayas: Seasonal heterogeneity and source apportionment. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016722] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
87
|
Sciare J, d'Argouges O, Sarda-Estève R, Gaimoz C, Dolgorouky C, Bonnaire N, Favez O, Bonsang B, Gros V. Large contribution of water-insoluble secondary organic aerosols in the region of Paris (France) during wintertime. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015756] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jean Sciare
- Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ; Gif-sur-Yvette France
| | - Odile d'Argouges
- Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ; Gif-sur-Yvette France
| | - Roland Sarda-Estève
- Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ; Gif-sur-Yvette France
| | - Cécile Gaimoz
- Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ; Gif-sur-Yvette France
| | - Cristina Dolgorouky
- Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ; Gif-sur-Yvette France
| | - Nicolas Bonnaire
- Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ; Gif-sur-Yvette France
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques; Verneuil-en-Halatte France
| | - Bernard Bonsang
- Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ; Gif-sur-Yvette France
| | - Valérie Gros
- Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ; Gif-sur-Yvette France
| |
Collapse
|
88
|
|
89
|
Yasunari TJ, Koster RD, Lau KM, Aoki T, Sud YC, Yamazaki T, Motoyoshi H, Kodama Y. Influence of dust and black carbon on the snow albedo in the NASA Goddard Earth Observing System version 5 land surface model. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014861] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
90
|
Byčenkienė S, Ulevicius V, Kecorius S. Characteristics of black carbon aerosol mass concentration over the East Baltic region from two-year measurements. ACTA ACUST UNITED AC 2011; 13:1027-38. [DOI: 10.1039/c0em00480d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
91
|
Zhang G, Li J, Li XD, Xu Y, Guo LL, Tang JH, Lee CSL, Liu X, Chen YJ. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3392-3400. [PMID: 20801562 DOI: 10.1016/j.envpol.2010.07.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/18/2010] [Accepted: 07/24/2010] [Indexed: 05/29/2023]
Abstract
Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC=8.7±4.5μg/m(3), EC=2.5±1.9μg/m(3)) among the three sites, and Jianfeng Mountains in Hainan Island (OC=5.8±2.6μg/m(3), EC=0.8±0.4μg/m(3)) and Tengchong mountain over the east edge of the Tibetan Plateau (OC=4.8±4.0μg/m(3), EC=0.5±0.4μg/m(3)) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region.
Collapse
Affiliation(s)
- Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Li Z, Lee KH, Wang Y, Xin J, Hao WM. First observation-based estimates of cloud-free aerosol radiative forcing across China. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013306] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
93
|
Granat L, Engström JE, Praveen S, Rodhe H. Light absorbing material (soot) in rainwater and in aerosol particles in the Maldives. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013768] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
94
|
Chatterjee A, Adak A, Singh AK, Srivastava MK, Ghosh SK, Tiwari S, Devara PCS, Raha S. Aerosol chemistry over a high altitude station at northeastern Himalayas, India. PLoS One 2010; 5:e11122. [PMID: 20585397 PMCID: PMC2886841 DOI: 10.1371/journal.pone.0011122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/05/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. METHODOLOGY/PRINCIPAL FINDINGS An extensive aerosol sampling program was conducted in Darjeeling (altitude approximately 2200 meter above sea level (masl), latitude 27 degrees 01'N and longitude 88 degrees 15'E), a high altitude station in northeastern Himalayas, during January-December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5+/-20.8 microg m(-3) and 19.6+/-11.1 microg m(-3) respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH(4)NO(3) in fine mode aerosol during winter and as NaNO(3) in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO(2) during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO(4)(2-) in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. CONCLUSIONS/SIGNIFICANCE The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over northeastern Himalayas, and should be useful to policy makers in making control strategies.
Collapse
Affiliation(s)
| | - Anandamay Adak
- Environmental Sciences Section, Bose Institute, Kolkata, India
| | - Ajay K. Singh
- Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata and Darjeeling, India
| | | | - Sanjay K. Ghosh
- Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata and Darjeeling, India
- Department of Physics, Bose Institute, Kolkata, India
| | - Suresh Tiwari
- Indian Institute of Tropical Meteorology, New Delhi, India
| | | | - Sibaji Raha
- Environmental Sciences Section, Bose Institute, Kolkata, India
- Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata and Darjeeling, India
- Department of Physics, Bose Institute, Kolkata, India
| |
Collapse
|
95
|
Stone EA, Schauer JJ, Pradhan BB, Dangol PM, Habib G, Venkataraman C, Ramanathan V. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd011881] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
96
|
Grimmond C, Roth M, Oke T, Au Y, Best M, Betts R, Carmichael G, Cleugh H, Dabberdt W, Emmanuel R, Freitas E, Fortuniak K, Hanna S, Klein P, Kalkstein L, Liu C, Nickson A, Pearlmutter D, Sailor D, Voogt J. Climate and More Sustainable Cities: Climate Information for Improved Planning and Management of Cities (Producers/Capabilities Perspective). ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.proenv.2010.09.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
97
|
Miyazaki Y, Aggarwal SG, Singh K, Gupta PK, Kawamura K. Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011790] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
98
|
Xu BQ, Wang M, Joswiak DR, Cao JJ, Yao TD, Wu GJ, Yang W, Zhao HB. Deposition of anthropogenic aerosols in a southeastern Tibetan glacier. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011510] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
99
|
Stanhill G, Cohen S. Is solar dimming global or urban? Evidence from measurements in Israel between 1954 and 2007. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011976] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
100
|
Komppula M, Lihavainen H, Hyvärinen AP, Kerminen VM, Panwar TS, Sharma VP, Viisanen Y. Physical properties of aerosol particles at a Himalayan background site in India. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|