51
|
Nagel AC, Auer JS, Schulz A, Pfannstiel J, Yuan Z, Collins CE, Kovall RA, Preiss A. Phosphorylation of Suppressor of Hairless impedes its DNA-binding activity. Sci Rep 2017; 7:11820. [PMID: 28928428 PMCID: PMC5605572 DOI: 10.1038/s41598-017-11952-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signalling activity governs cellular differentiation in higher metazoa, where Notch signals are transduced by the transcription factor CSL, called Suppressor of Hairless [Su(H)] in Drosophila. Su(H) operates as molecular switch on Notch target genes: within activator complexes, including intracellular Notch, or within repressor complexes, including the antagonist Hairless. Mass spectrometry identified phosphorylation on Serine 269 in Su(H), potentially serving as a point of cross-regulation by other signalling pathways. To address the biological significance, we generated phospho-deficient [Su(H)S269A] and phospho-mimetic [Su(H)S269D] variants: the latter displayed reduced transcriptional activity despite unaltered protein interactions with co-activators and -repressors. Based on the Su(H) structure, Ser269 phosphorylation may interfere with DNA-binding, which we confirmed by electro-mobility shift assay and isothermal titration calorimetry. Overexpression of Su(H)S269D during fly development demonstrated reduced transcriptional regulatory activity, similar to the previously reported DNA-binding defective mutant Su(H)R266H. As both are able to bind Hairless and Notch proteins, Su(H)S269D and Su(H)R266H provoked dominant negative effects upon overexpression. Our data imply that Ser269 phosphorylation impacts Notch signalling activity by inhibiting DNA-binding of Su(H), potentially affecting both activation and repression. Ser269 is highly conserved in vertebrate CSL homologues, opening the possibility of a general and novel mechanism of modulating Notch signalling activity.
Collapse
Affiliation(s)
- Anja C Nagel
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| | - Jasmin S Auer
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Adriana Schulz
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit University of Hohenheim, 70599, Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Courtney E Collins
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Anette Preiss
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| |
Collapse
|
52
|
Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O'Connor MB. TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022152. [PMID: 28130362 DOI: 10.1101/cshperspect.a022152] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
53
|
Al Khatib A, Siomava N, Iannini A, Posnien N, Casares F. Specific expression and function of the Six3 optix in Drosophila serially homologous organs. Biol Open 2017. [PMID: 28642242 PMCID: PMC5576073 DOI: 10.1242/bio.023606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Organ size and pattern results from the integration of two positional information systems. One global information system, encoded by the Hox genes, links organ type with position along the main body axis. Within specific organs, local information is conveyed by signaling molecules that regulate organ growth and pattern. The mesothoracic (T2) wing and the metathoracic (T3) haltere of Drosophila represent a paradigmatic example of this coordination. The Hox gene Ultrabithorax (Ubx), expressed in the developing T3, selects haltere identity by, among other processes, modulating the production and signaling efficiency of Dpp, a BMP2-like molecule that acts as a major regulator of size and pattern. However, the mechanisms of the Hox-signal integration in this well-studied system are incomplete. Here, we have investigated this issue by studying the expression and function of the Six3 transcription factor optix during Drosophila wing and haltere development. We find that in both organs, Dpp defines the expression domain of optix through repression, and that the specific position of this domain in wing and haltere seems to reflect the differential signaling profile among these organs. We show that optix expression in wing and haltere primordia is conserved beyond Drosophila in other higher diptera. In Drosophila, optix is necessary for the growth of wing and haltere. In the wing, optix is required for the growth of the most anterior/proximal region (the ‘marginal cell’) and for the correct formation of sensory structures along the proximal anterior wing margin; the halteres of optix mutants are also significantly reduced. In addition, in the haltere, optix is necessary for the suppression of sensory bristles. Summary: The position of the Six3 optix is regulated by the Dpp pathway during wing and haltere development, and controls the size of both serially homologous organs.
Collapse
Affiliation(s)
- Amer Al Khatib
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain.,Department of Biology, University of Florence, I-50019, Florence, Italy
| | - Natalia Siomava
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Goettingen Center for Molecular Biosciences (GZMB), Department of Developmental Biology, University of Goettingen, 37077 Goettingen, Germany
| | - Antonella Iannini
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain
| | - Nico Posnien
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Goettingen Center for Molecular Biosciences (GZMB), Department of Developmental Biology, University of Goettingen, 37077 Goettingen, Germany
| | - Fernando Casares
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain
| |
Collapse
|
54
|
Barrio L, Milán M. Boundary Dpp promotes growth of medial and lateral regions of the Drosophila wing. eLife 2017; 6:22013. [PMID: 28675372 PMCID: PMC5560857 DOI: 10.7554/elife.22013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 06/04/2017] [Indexed: 11/14/2022] Open
Abstract
The gradient of Decapentaplegic (Dpp) in the Drosophila wing has served as a paradigm to characterize the role of morphogens in regulating patterning. However, the role of this gradient in regulating tissue size is a topic of intense debate as proliferative growth is homogenous. Here, we combined the Gal4/UAS system and a temperature-sensitive Gal80 molecule to induce RNAi-mediated depletion of dpp and characterise the spatial and temporal requirement of Dpp in promoting growth. We show that Dpp emanating from the AP compartment boundary is required throughout development to promote growth by regulating cell proliferation and tissue size. Dpp regulates growth and proliferation rates equally in central and lateral regions of the developing wing appendage and reduced levels of Dpp affects similarly the width and length of the resulting wing. We also present evidence supporting the proposal that graded activity of Dpp is not an absolute requirement for wing growth. DOI:http://dx.doi.org/10.7554/eLife.22013.001 From the wings of a butterfly to the fingers of a human hand, living tissues often have complex and intricate patterns. Developmental biologists have long been fascinated by the signals – called morphogens – that guide how these kinds of pattern develop. Morphogens are substances that are produced by groups of cells and spread to the rest of the tissue to form a gradient. Depending on where they sit along this gradient, cells in the tissue activate different sets of genes, and the resulting pattern of gene activity ultimately defines the position of the different parts of the tissue. Decades worth of studies into how limbs develop in animals from mice to fruit flies have revealed common principles of morphogen gradients that regulate the development of tissue patterns. Morphogens have been shown to help regulate the growth of tissues in a number of different animals as well. However, how the morphogens regulate tissue size and what role their gradients play in this process remain topics of intense debate in the field of developmental biology. In the developing wing of a fruit fly, a morphogen called Dpp is expressed in a thin stripe located in the center and spreads to the rest of the tissue to form a gradient. Barrio and Milán have now characterized where and when the Dpp morphogen must be produced to regulate both the final size of the fly’s wing and the number of cells the wing eventually contains. The experiments involved preventing the production of Dpp in the developing wing in specific cells and at specific stages of development. This approach confirmed that Dpp must be produced in the central stripe for the wing to grow. Matsuda and Affolter and, independently, Bosch, Ziukaite, Alexandre et al. report the same findings in two related studies. Moreover, Barrio and Milán and Bosch et al. also conclude that the gradient of Dpp throughout the wing is not required for growth. Further work will be needed to explain how the Dpp signal regulates the growth of the wing. The answer to this question will contribute to a better understanding of the role of morphogens in regulating the size of human organs and how a failure to do so might cause developmental disorders. DOI:http://dx.doi.org/10.7554/eLife.22013.002
Collapse
Affiliation(s)
- Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.,The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
55
|
Bosch PS, Ziukaite R, Alexandre C, Basler K, Vincent JP. Dpp controls growth and patterning in Drosophila wing precursors through distinct modes of action. eLife 2017; 6:22546. [PMID: 28675374 PMCID: PMC5560859 DOI: 10.7554/elife.22546] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/04/2017] [Indexed: 11/13/2022] Open
Abstract
Dpp, a member of the BMP family, is a morphogen that specifies positional information in Drosophila wing precursors. In this tissue, Dpp expressed along the anterior-posterior boundary forms a concentration gradient that controls the expression domains of target genes, which in turn specify the position of wing veins. Dpp also promotes growth in this tissue. The relationship between the spatio-temporal profile of Dpp signalling and growth has been the subject of debate, which has intensified recently with the suggestion that the stripe of Dpp is dispensable for growth. With two independent conditional alleles of dpp, we find that the stripe of Dpp is essential for wing growth. We then show that this requirement, but not patterning, can be fulfilled by uniform, low level, Dpp expression. Thus, the stripe of Dpp ensures that signalling remains above a pro-growth threshold, while at the same time generating a gradient that patterns cell fates. DOI:http://dx.doi.org/10.7554/eLife.22546.001 From the wings of a butterfly to the fingers of a human hand, living tissues often have complex and intricate patterns. Developmental biologists have long been fascinated by the signals – called morphogens – that guide how these kinds of pattern develop. Morphogens are substances that are produced by groups of cells and spread to the rest of the tissue to form a gradient. Depending on where they sit along this gradient, cells in the tissue activate different sets of genes, and the resulting pattern of gene activity ultimately defines the position of the different parts of the tissue. Decades worth of studies into how limbs develop in animals from mice to fruit flies have revealed common principles of morphogen gradients that regulate the development of tissue patterns. Morphogens have been shown to help regulate the growth of tissues in a number of different animals as well. However, how the morphogens regulate tissue size and what role their gradients play in this process remain topics of intense debate in the field of developmental biology. In the developing wing of a fruit fly, a morphogen called Dpp is expressed in a thin stripe located in the centre and spreads to the rest of the tissue to form a gradient. Bosch, Ziukaite, Alexandre et al. have now characterised where and when the Dpp morphogen must be produced to regulate both the final size of the fly’s wing and the number of cells the wing eventually contains. The experiments involved preventing the production of Dpp in the developing wing in specific cells and at specific stages of development. This approach confirmed that Dpp must be produced in the central stripe for the wing to grow. Matsuda and Affolter and, independently, Barrio and Milán report the same findings in two related studies. Moreover, Bosch et al. and Barrio and Milán also conclude that the gradient of Dpp throughout the wing is not required for growth. Further work will be needed to explain how the Dpp signal regulates the growth of the wing. The answer to this question will contribute to a better understanding of the role of morphogens in regulating the size of human organs and how a failure to do so might cause developmental disorders. DOI:http://dx.doi.org/10.7554/eLife.22546.002
Collapse
Affiliation(s)
- Pablo Sanchez Bosch
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
56
|
Matsuda S, Affolter M. Dpp from the anterior stripe of cells is crucial for the growth of the Drosophila wing disc. eLife 2017; 6:22319. [PMID: 28675373 PMCID: PMC5560856 DOI: 10.7554/elife.22319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/04/2017] [Indexed: 11/28/2022] Open
Abstract
The Dpp morphogen gradient derived from the anterior stripe of cells is thought to control growth and patterning of the Drosophila wing disc. However, the spatial-temporal requirement of dpp for growth and patterning remained largely unknown. Recently, two studies re-addressed this question. By generating a conditional null allele, one study proposed that the dpp stripe is critical for patterning but not for growth (Akiyama and Gibson, 2015). In contrast, using a membrane-anchored nanobody to trap Dpp, the other study proposed that Dpp dispersal from the stripe is required for patterning and also for medial wing disc growth, at least in the posterior compartment (Harmansa et al., 2015). Thus, growth control by the Dpp morphogen gradient remains under debate. Here, by removing dpp from the stripe at different time points, we show that the dpp stripe source is indeed required for wing disc growth, also during third instar larval stages. DOI:http://dx.doi.org/10.7554/eLife.22319.001 From the wings of a butterfly to the fingers of a human hand, living tissues often have complex and intricate patterns. Developmental biologists have long been fascinated by the signals – called morphogens – that guide how these kinds of pattern develop. Morphogens are substances that are produced by groups of cells and spread to the rest of the tissue to form a gradient. Depending on where they sit along this gradient, cells in the tissue activate different sets of genes, and the resulting pattern of gene activity ultimately defines the position of the different parts of the tissue. Decades worth of studies into how limbs develop in animals from mice to fruit flies have revealed common principles of morphogen gradients that regulate the development of tissue patterns. Morphogens have been shown to help regulate the growth of tissues in a number of different animals as well. However, how the morphogens regulate tissue size and what role their gradients play in this process remain topics of intense debate in the field of developmental biology. In the developing wing of a fruit fly, a morphogen called Dpp is expressed in a thin stripe located in the center and spreads to the rest of the tissue to form a gradient. Matsuda and Affolter have now characterized where and when the Dpp morphogen must be produced to regulate both the final size of the fly’s wing and the number of cells the wing eventually contains. The experiments involved preventing the production of Dpp in the developing wing in specific cells and at specific stages of development. This approach confirmed that Dpp must be produced in the central stripe for the wing to grow. Bosch, Ziukaite, Alexandre et al. and, independently, Barrio and Milán report the same findings in two related studies, and also conclude that the gradient of Dpp throughout the wing is not required for growth. Further work will be needed to explain how the Dpp signal regulates the growth of the wing. The answer to this question will contribute to a better understanding of the role of morphogens in regulating the size of human organs and how a failure to do so might cause developmental disorders. DOI:http://dx.doi.org/10.7554/eLife.22319.002
Collapse
|
57
|
Wortman JC, Nahmad M, Zhang PC, Lander AD, Yu CC. Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium. PLoS Comput Biol 2017; 13:e1005610. [PMID: 28671940 PMCID: PMC5515495 DOI: 10.1371/journal.pcbi.1005610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 07/18/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj. In the tissues of a developing organism, specialized proteins can control cell growth and give cells a sense of direction, e.g., which way is the head or the tail, by having their concentration vary throughout the tissue. In cells of the developing fruit fly wing, a protein called Dachs localizes on the side of the cell closest to the center of the tissue, indicating a directionality. The localization of Dachs is determined by the spatial distribution, around the periphery of a cell, of intercellular bonds of the proteins Fat and Dachsous between adjacent cells. Here we asked how this cell directionality is affected when cells divide and when the concentration of Dachsous changes over time. We use a computational model to show that as the circular step-up region of the Dachsous concentration profile sweeps radially outward, like rings radiating outward from where a pebble was dropped in a pond, it leaves polarized cells in its wake. Our model also shows how cells can naturally recover their directionality after cell division.
Collapse
Affiliation(s)
- Juliana C. Wortman
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Marcos Nahmad
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Peng Cheng Zhang
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Arthur D. Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Clare C. Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
58
|
Vincent JP, Ziukaite R, Alexandre C. Developmental Biology: Decapentaplegic Controls Growth at a Distance. Curr Biol 2017; 26:R209-12. [PMID: 26954443 DOI: 10.1016/j.cub.2016.01.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Decapentaplegic has long been thought to be a morphogen that controls patterning and growth in Drosophila wings, but hard evidence for the requisite long-range action has only now come from two new studies.
Collapse
Affiliation(s)
- Jean-Paul Vincent
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK.
| | - Ruta Ziukaite
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Cyrille Alexandre
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| |
Collapse
|
59
|
Harmansa S, Alborelli I, Bieli D, Caussinus E, Affolter M. A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife 2017; 6. [PMID: 28395731 PMCID: PMC5388529 DOI: 10.7554/elife.22549] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/14/2017] [Indexed: 12/26/2022] Open
Abstract
The role of protein localization along the apical-basal axis of polarized cells is difficult to investigate in vivo, partially due to lack of suitable tools. Here, we present the GrabFP system, a collection of four nanobody-based GFP-traps that localize to defined positions along the apical-basal axis. We show that the localization preference of the GrabFP traps can impose a novel localization on GFP-tagged target proteins and results in their controlled mislocalization. These new tools were used to mislocalize transmembrane and cytoplasmic GFP fusion proteins in the Drosophila wing disc epithelium and to investigate the effect of protein mislocalization. Furthermore, we used the GrabFP system as a tool to study the extracellular dispersal of the Decapentaplegic (Dpp) protein and show that the Dpp gradient forming in the lateral plane of the Drosophila wing disc epithelium is essential for patterning of the wing imaginal disc.
Collapse
Affiliation(s)
- Stefan Harmansa
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Ilaria Alborelli
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Dimitri Bieli
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Emmanuel Caussinus
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland.,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
60
|
JAK/STAT controls organ size and fate specification by regulating morphogen production and signalling. Nat Commun 2017; 8:13815. [PMID: 28045022 PMCID: PMC5216089 DOI: 10.1038/ncomms13815] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/02/2017] [Indexed: 01/20/2023] Open
Abstract
A stable pool of morphogen-producing cells is critical for the development of any organ or tissue. Here we present evidence that JAK/STAT signalling in the Drosophila wing promotes the cycling and survival of Hedgehog-producing cells, thereby allowing the stable localization of the nearby BMP/Dpp-organizing centre in the developing wing appendage. We identify the inhibitor of apoptosis dIAP1 and Cyclin A as two critical genes regulated by JAK/STAT and contributing to the growth of the Hedgehog-expressing cell population. We also unravel an early role of JAK/STAT in guaranteeing Wingless-mediated appendage specification, and a later one in restricting the Dpp-organizing activity to the appendage itself. These results unveil a fundamental role of the conserved JAK/STAT pathway in limb specification and growth by regulating morphogen production and signalling, and a function of pro-survival cues and mitogenic signals in the regulation of the pool of morphogen-producing cells in a developing organ.
Collapse
|
61
|
Pflugfelder G, Eichinger F, Shen J. T-Box Genes in Drosophila Limb Development. Curr Top Dev Biol 2017; 122:313-354. [DOI: 10.1016/bs.ctdb.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye. Cell Death Dis 2016; 7:e2566. [PMID: 28032862 PMCID: PMC5261020 DOI: 10.1038/cddis.2016.338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022]
Abstract
In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell survival in the developing Drosophila eye.
Collapse
|
63
|
Abstract
Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.
Collapse
Affiliation(s)
- David J Jörg
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany. Center for Advancing Electronics Dresden cfAED, 01062 Dresden, Germany
| | | | | |
Collapse
|
64
|
Tang W, Wang D, Shen J. Asymmetric distribution of Spalt in Drosophila wing squamous and columnar epithelia ensures correct cell morphogenesis. Sci Rep 2016; 6:30236. [PMID: 27452716 PMCID: PMC4958983 DOI: 10.1038/srep30236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023] Open
Abstract
The Drosophila wing imaginal disc is a sac-like structure that is composed of two opposing cell layers: peripodial epithelium (PE, also known as squamous epithelia) and disc proper (DP, also known as pseudostratified columnar epithelia). The molecular mechanism of cell morphogenesis has been well studied in the DP but not in the PE. Although proper Dpp signalling activity is required for proper PE formation, the detailed regulation mechanism is poorly understood. Here, we found that the Dpp target gene sal is only expressed in DP cells, not in PE cells, although pMad is present in the PE. Increasing Dpp signalling activity cannot activate Sal in PE cells. The absence of Sal in the PE is essential for PE formation. The ectopic expression of sal in PE cells is sufficient to increase the PE cell height. Down-regulation of sal in the DP reduced DP cell height. We further demonstrated that the known PE cell height regulator Lines, which can convert PE into a DP cell fate, is mediated by sal mis-activation in PE because sal-RNAi and lines co-expression largely restores PE cell morphology. By revealing the microtubule distribution, we demonstrated that Lines- and Sal-heightened PE cells are morphologically similar to the intermediate cell with cuboidal morphology.
Collapse
Affiliation(s)
- Wenqian Tang
- Department of Entomology, China Agricultural University, 100193 Beijing, China
| | - Dan Wang
- Department of Entomology, China Agricultural University, 100193 Beijing, China
| | - Jie Shen
- Department of Entomology, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
65
|
McGuigan AP, Javaherian S. Tissue Patterning: Translating Design Principles from In Vivo to In Vitro. Annu Rev Biomed Eng 2016; 18:1-24. [DOI: 10.1146/annurev-bioeng-083115-032943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry and
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E5, Canada;
| | | |
Collapse
|
66
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
67
|
Abstract
The discovery of a handful of conserved signaling pathways that dictate most aspects of embryonic and post-embryonic development of multicellular organisms has generated a universal view of animal development (Perrimon, N., Pitsouli, C., and Shilo, B. Z. (2012)Cold Spring Harb. Perspect. Biol.4, a005975). Although we have at hand most of the "hardware" elements that mediate cell communication events that dictate cell fate choices, we are still far from a comprehensive mechanistic understanding of these processes. One of the next challenges entails an analysis of developmental signaling pathways from the cell biology perspective. Where in the cell does signaling take place, and how do general cellular machineries and structures contribute to the regulation of developmental signaling? Another challenge is to examine these signaling pathways from a quantitative perspective, rather than as crude on/off switches. This requires more precise measurements, and incorporation of the time element to generate a dynamic sequence instead of frozen snapshots of the process. The quantitative outlook also brings up the issue of precision, and the unknown mechanisms that buffer variability in signaling between embryos, to produce a robust and reproducible output. Although these issues are universal to all multicellular organisms, they can be effectively tackled in theDrosophilamodel, by a combination of genetic manipulations, biochemical analyses, and a variety of imaging techniques. This review will present some of the recent advances that were accomplished by utilizing the versatility of theDrosophilasystem.
Collapse
Affiliation(s)
- Ben-Zion Shilo
- From the Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
68
|
Li G, Zhao H, Wang H, Guo X, Guo X, Sun Q, Xu B. Characterization of a Decapentapletic Gene (AccDpp) from Apis cerana cerana and Its Possible Involvement in Development and Response to Oxidative Stress. PLoS One 2016; 11:e0149117. [PMID: 26881804 PMCID: PMC4755538 DOI: 10.1371/journal.pone.0149117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022] Open
Abstract
To tolerate many acute and chronic oxidative stress-producing agents that exist in the environment, organisms have evolved many classes of signal transduction pathways, including the transforming growth factor β (TGFβ) signal pathway. Decapentapletic gene (Dpp) belongs to the TGFβ superfamily, and studies on Dpp have mainly focused on its role in the regulation of development. No study has investigated the response of Dpp to oxidative pressure in any organism, including Apis cerana cerana (A. cerana cerana). In this study, we identified a Dpp gene from A. cerana cerana named AccDpp. The 5΄ flanking region of AccDpp had many transcription factor binding sites that relevant to development and stress response. AccDpp was expressed at all stages of A. cerana cerana, with its highest expression in 15-day worker bees. The mRNA level of AccDpp was higher in the poison gland and midgut than other tissues. Furthermore, the transcription of AccDpp could be repressed by 4°C and UV, but induced by other treatments, according to our qRT-PCR analysis. It is worth noting that the expression level of AccDpp protein was increased after a certain time when A. cerana cerana was subjected to all simulative oxidative stresses, a finding that was not completely consistent with the result from qRT-PCR. It is interesting that recombinant AccDpp restrained the growth of Escherichia coli, a function that might account for the role of the antimicrobial peptides of AccDpp. In conclusion, these results provide evidence that AccDpp might be implicated in the regulation of development and the response of oxidative pressure. The findings may lay a theoretical foundation for further genetic studies of Dpp.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Xulei Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- * E-mail: (QS); (BX)
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- * E-mail: (QS); (BX)
| |
Collapse
|
69
|
Jiang K, Liu Y, Fan J, Zhang J, Li XA, Evers BM, Zhu H, Jia J. PI(4)P Promotes Phosphorylation and Conformational Change of Smoothened through Interaction with Its C-terminal Tail. PLoS Biol 2016; 14:e1002375. [PMID: 26863604 PMCID: PMC4749301 DOI: 10.1371/journal.pbio.1002375] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/07/2016] [Indexed: 12/29/2022] Open
Abstract
In Hedgehog (Hh) signaling, binding of Hh to the Patched-Interference Hh (Ptc-Ihog) receptor complex relieves Ptc inhibition on Smoothened (Smo). A longstanding question is how Ptc inhibits Smo and how such inhibition is relieved by Hh stimulation. In this study, we found that Hh elevates production of phosphatidylinositol 4-phosphate (PI(4)P). Increased levels of PI(4)P promote, whereas decreased levels of PI(4)P inhibit, Hh signaling activity. We further found that PI(4)P directly binds Smo through an arginine motif, which then triggers Smo phosphorylation and activation. Moreover, we identified the pleckstrin homology (PH) domain of G protein-coupled receptor kinase 2 (Gprk2) as an essential component for enriching PI(4)P and facilitating Smo activation. PI(4)P also binds mouse Smo (mSmo) and promotes its phosphorylation and ciliary accumulation. Finally, Hh treatment increases the interaction between Smo and PI(4)P but decreases the interaction between Ptc and PI(4)P, indicating that, in addition to promoting PI(4)P production, Hh regulates the pool of PI(4)P associated with Ptc and Smo.
Collapse
Affiliation(s)
- Kai Jiang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Yajuan Liu
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Junkai Fan
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jie Zhang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jianhang Jia
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
70
|
BMP morphogen gradients in flies. Cytokine Growth Factor Rev 2016; 27:119-27. [DOI: 10.1016/j.cytogfr.2015.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022]
|
71
|
Richards DM, Saunders TE. Spatiotemporal analysis of different mechanisms for interpreting morphogen gradients. Biophys J 2016; 108:2061-73. [PMID: 25902445 DOI: 10.1016/j.bpj.2015.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022] Open
Abstract
During development, multicellular organisms must accurately control both temporal and spatial aspects of tissue patterning. This is often achieved using morphogens, signaling molecules that form spatially varying concentrations and so encode positional information. Typical analysis of morphogens assumes that spatial information is decoded in steady state by measuring the value of the morphogen concentration. However, recent experimental work suggests that both pre-steady-state readout and measurement of spatial and temporal derivatives of the morphogen concentration can play important roles in defining boundaries. Here, we undertake a detailed theoretical and numerical study of the accuracy of patterning-both in space and time-in models where readout is provided not by the morphogen concentration but by its spatial and temporal derivatives. In both cases we find that accurate patterning can be achieved, with sometimes even smaller errors than directly reading the morphogen concentration. We further demonstrate that such models provide other potential benefits to the system, such as the ability to switch on and off gene response with a high degree of spatiotemporal accuracy. Finally, we discuss how such derivatives might be calculated biologically and examine these models in relation to Sonic Hedgehog signaling in the vertebrate central nervous system. We show that, when coupled to a downstream transcriptional network, pre-steady-state measurement of the temporal change in the Shh morphogen is a plausible mechanism for determining precise gene boundaries in both space and time.
Collapse
Affiliation(s)
- David M Richards
- Department of Life Sciences, Imperial College, London, United Kingdom.
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore.
| |
Collapse
|
72
|
Chi and dLMO function antagonistically on Notch signaling through directly regulation of fng transcription. Sci Rep 2016; 6:18937. [PMID: 26738424 PMCID: PMC4704065 DOI: 10.1038/srep18937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/01/2015] [Indexed: 11/08/2022] Open
Abstract
Gene apterous (ap), chip (chi) and beadex (bx) play important roles in the dorsal-ventral compartmentalization in Drosophila wing discs. Meanwhile, Notch signaling is essential to the same process. It has been reported that Ap and Chi function as a tetramer to regulate Notch signaling. At the same time, dLMO (the protein product of gene bx) regulates the activity of Ap by competing its binding with Chi. However, the detailed functions of Chi and dLMO on Notch signaling and the relevant mechanisms remain largely unknown. Here, we report the detailed functions of Chi and dLMO on Notch signaling. Different Chi protein levels in adjacent cells could activate Notch signaling mainly in the cells with higher level of Chi. dLMO could induce antagonistical phenotypes on Notch signaling compared to that induced by Chi. These processes depend on their direct regulation of fringe (fng) transcription.
Collapse
|
73
|
|
74
|
Fried P, Iber D. Read-Out of Dynamic Morphogen Gradients on Growing Domains. PLoS One 2015; 10:e0143226. [PMID: 26599604 PMCID: PMC4657938 DOI: 10.1371/journal.pone.0143226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/05/2015] [Indexed: 01/12/2023] Open
Abstract
Quantitative data from the Drosophila wing imaginal disc reveals that the amplitude of the Decapentaplegic (Dpp) morphogen gradient increases continuously. It is an open question how cells can determine their relative position within a domain based on a continuously increasing gradient. Here we show that pre-steady state diffusion-based dispersal of morphogens results in a zone within the growing domain where the concentration remains constant over the patterning period. The position of the zone that is predicted based on quantitative data for the Dpp morphogen corresponds to where the Dpp-dependent gene expression boundaries of spalt (sal) and daughters against dpp (dad) emerge. The model also suggests that genes that are scaling and are expressed at lateral positions are either under the control of a different read-out mechanism or under the control of a different morphogen. The patterning mechanism explains the extraordinary robustness that is observed for variations in Dpp production, and offers an explanation for the dual role of Dpp in controlling patterning and growth. Pre-steady-state dynamics are pervasive in morphogen-controlled systems, thus making this a probable general mechanism for the scaled read-out of morphogen gradients in growing developmental systems.
Collapse
Affiliation(s)
- Patrick Fried
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail:
| |
Collapse
|
75
|
Svendsen PC, Ryu JR, Brook WJ. The expression of the T-box selector gene midline in the leg imaginal disc is controlled by both transcriptional regulation and cell lineage. Biol Open 2015; 4:1707-14. [PMID: 26581591 PMCID: PMC4736030 DOI: 10.1242/bio.013565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila Tbx20 homologs midline and H15 act as selector genes for ventral fate in Drosophila legs. midline and H15 expression defines the ventral domain of the leg and the two genes are necessary and sufficient for the development of ventral fate. Ventral-specific expression of midline and H15 is activated by Wingless (Wg) and repressed by Decapentaplegic (Dpp). Here we identify VLE, a 5 kb enhancer that drives ventral specific expression in the leg disc that is very similar to midline expression. Subdivision of VLE identifies two regions that mediate both activation and repression and third region that only mediates repression. Loss- and gain-of-function genetic mosaic analysis shows that the activating and repressing regions respond to Wg and Dpp signaling respectively. All three repression regions depend on the activity of Mothers-against-decapentaplegic, a Drosophila r-Smad that mediates Dpp signaling, and respond to ectopic expression of the Dpp target genes optomoter-blind and Dorsocross 3. However, only one repression region is responsive to loss of schnurri, a co-repressor required for direct repression by Dpp-signaling. Thus, Dpp signaling restricts midline expression through both direct repression and through the activation of downstream repressors. We also find that midline and H15 expression are both subject to cross-repression and feedback inhibition. Finally, a lineage analysis indicates that ventral midline-expressing cells and dorsal omb-expressing cells do not mix during development. Together this data indicates that the ventral-specific expression of midline results from both transcriptional regulation and from a lack of cell-mixing between dorsal and ventral cells.
Collapse
Affiliation(s)
- Pia C Svendsen
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| | - Jae-Ryeon Ryu
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| | - William J Brook
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| |
Collapse
|
76
|
Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila. Data Brief 2015; 5:852-63. [PMID: 26702412 PMCID: PMC4669530 DOI: 10.1016/j.dib.2015.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/15/2015] [Accepted: 11/01/2015] [Indexed: 11/25/2022] Open
Abstract
In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H)MAPK-ko and a phospho-mimetic Su(H)MAPK-ac isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vgBE-lacZ). In general, Su(H)MAPK-ko induced a stronger response than wild-type Su(H), whereas the response to Su(H)MAPK-ac was very weak. Notch target genes cut, wingless and vgBE-lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DERact) or the MAPK (rlSEM) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones.
Collapse
|
77
|
Decapentaplegic and growth control in the developing Drosophila wing. Nature 2015; 527:375-8. [DOI: 10.1038/nature15730] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/14/2015] [Indexed: 02/01/2023]
|
78
|
Dpp spreading is required for medial but not for lateral wing disc growth. Nature 2015; 527:317-22. [PMID: 26550827 DOI: 10.1038/nature15712] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 09/10/2015] [Indexed: 01/16/2023]
Abstract
Drosophila Decapentaplegic (Dpp) has served as a paradigm to study morphogen-dependent growth control. However, the role of a Dpp gradient in tissue growth remains highly controversial. Two fundamentally different models have been proposed: the 'temporal rule' model suggests that all cells of the wing imaginal disc divide upon a 50% increase in Dpp signalling, whereas the 'growth equalization model' suggests that Dpp is only essential for proliferation control of the central cells. Here, to discriminate between these two models, we generated and used morphotrap, a membrane-tethered anti-green fluorescent protein (GFP) nanobody, which enables immobilization of enhanced (e)GFP::Dpp on the cell surface, thereby abolishing Dpp gradient formation. We find that in the absence of Dpp spreading, wing disc patterning is lost; however, lateral cells still divide at normal rates. These data are consistent with the growth equalization model, but do not fit a global temporal rule model in the wing imaginal disc.
Collapse
|
79
|
Critical role for Fat/Hippo and IIS/Akt pathways downstream of Ultrabithorax during haltere specification in Drosophila. Mech Dev 2015; 138 Pt 2:198-209. [DOI: 10.1016/j.mod.2015.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022]
|
80
|
Establishment of a Developmental Compartment Requires Interactions between Three Synergistic Cis-regulatory Modules. PLoS Genet 2015; 11:e1005376. [PMID: 26468882 PMCID: PMC4607503 DOI: 10.1371/journal.pgen.1005376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/19/2015] [Indexed: 12/28/2022] Open
Abstract
The subdivision of cell populations in compartments is a key event during animal development. In Drosophila, the gene apterous (ap) divides the wing imaginal disc in dorsal vs ventral cell lineages and is required for wing formation. ap function as a dorsal selector gene has been extensively studied. However, the regulation of its expression during wing development is poorly understood. In this study, we analyzed ap transcriptional regulation at the endogenous locus and identified three cis-regulatory modules (CRMs) essential for wing development. Only when the three CRMs are combined, robust ap expression is obtained. In addition, we genetically and molecularly analyzed the trans-factors that regulate these CRMs. Our results propose a three-step mechanism for the cell lineage compartment expression of ap that includes initial activation, positive autoregulation and Trithorax-mediated maintenance through separable CRMs. The separation of cell populations into distinct functional units is essential for both vertebrate and invertebrate animal development. A classical paradigm for this phenomenon is the establishment of developmental compartments during Drosophila wing development. These compartments depend on the restricted expression of two selector genes, engrailed in the posterior compartment and apterous (ap) in the dorsal compartment. Yet, despite the central role these genes and their restricted expression patterns play in Drosophila development, we still do not understand how these patterns are established or maintained. Here, by dissecting the regulatory sequences required for ap expression, we solve this problem for this critical selector gene. We used a combination of experimental approaches to identify and functionally characterize the cis-regulatory modules (CRMs) that regulate ap expression during Drosophila wing development. For these analyses we implement a novel technique allowing us to study the function of these CRMs in vivo, at the native ap locus. We found three ap CRMs crucial for wing development: the Early (apE) and the D/V (apDV) enhancers and the ap PRE (apP). Only when all three regulatory elements are combined is a uniform and complete ap expression domain generated. In summary, our results indicate that ap is regulated in time and space by a three-step mechanism that generates a lineage compartment by integrating input from separate CRMs for the initiation, refinement and maintenance of its expression.
Collapse
|
81
|
Richard M, Hoch M. Drosophila eye size is determined by Innexin 2-dependent Decapentaplegic signalling. Dev Biol 2015; 408:26-40. [PMID: 26455410 DOI: 10.1016/j.ydbio.2015.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/23/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
Abstract
Organogenesis relies on specific genetic and molecular programmes, which orchestrate growth and cellular differentiation over developmental time. This is particularly important during Drosophila eye development in which cell-cell inductive events and long-range signalling have to be integrated to regulate proper cell proliferation, differentiation and morphogenesis. How these processes are coordinated is still not very well understood. Here we identify the gap junction protein Innexin2 (Inx2) as an important regulator of eye development. Depleting inx2 during eye development reduces eye size whereas elevating inx2 levels increases eye size. Loss- and gain-of-function experiments demonstrate that inx2 is required functionally in larval eye disc cells where it localises apico-laterally. inx2 regulates disc cell proliferation as well as morphogenetic furrow movement and as a result the amount of differentiated photoreceptors. inx2 interacts genetically with the Dpp pathway and we find that proper activation of the Dpp pathway transducer Mad at the furrow and expression of Dpp receptors Thickveins and Punt in the anterior disc compartment require inx2. We further show that inx2 is required for the transcriptional activation of dpp and punt in the eye disc. Our results highlight the crucial role of gap junction proteins in regulating morphogen-dependent organ size determination.
Collapse
Affiliation(s)
- Mélisande Richard
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Carl-Troll-Straße, 31, D-53115 Bonn, Germany.
| | - Michael Hoch
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Carl-Troll-Straße, 31, D-53115 Bonn, Germany.
| |
Collapse
|
82
|
Lo WC, Zhou S, Wan FYM, Lander AD, Nie Q. Robust and precise morphogen-mediated patterning: trade-offs, constraints and mechanisms. J R Soc Interface 2015; 12:20141041. [PMID: 25551154 DOI: 10.1098/rsif.2014.1041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The patterning of many developing tissues is organized by morphogens. Genetic and environmental perturbations of gene expression, protein synthesis and ligand binding are among the sources of unreliability that limit the accuracy and precision of morphogen-mediated patterning. While it has been found that the robustness of morphogen gradients to the perturbation of morphogen synthesis can be enhanced by particular mechanisms, how such mechanisms affect robustness to other perturbations, such as to receptor synthesis for the same morphogen, has been little explored. Here, we investigate the interplay between the robustness of patterning to the changes in receptor synthesis and morphogen synthesis and to the effects of cell-to-cell variability. Our analysis elucidates the trade-offs and constraints that arise as a result of achieving these three performance objectives simultaneously in the context of simple, steady-state morphogen gradients formed by diffusion and receptor-mediated uptake. Analysis of the interdependence between length scales of patterning and these performance objectives reveals several potential mechanisms for mitigating such trade-offs and constraints. One involves downregulation of receptor synthesis in the morphogen source, while another involves the presence of non-signalling cell-surface morphogen-binding molecules. Both of these mechanisms occur in Drosophila wing discs during their patterning. We computationally elucidate how these mechanisms improve the robustness and precision of morphogen-mediated patterning.
Collapse
|
83
|
Romanova-Michaelides M, Aguilar-Hidalgo D, Jülicher F, Gonzalez-Gaitan M. The wing and the eye: a parsimonious theory for scaling and growth control? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:591-608. [PMID: 26108346 DOI: 10.1002/wdev.195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 11/07/2022]
Abstract
How a developing organ grows and patterns to its final shape is an important question in developmental biology. Studies of growth and patterning in the Drosophila wing imaginal disc have identified a key player, the morphogen Decapentaplegic (Dpp). These studies provided insights into our understanding of growth control and scaling: expansion of the Dpp gradient correlated with the growth of the tissue. A recent report on growth of a Drosophila organ other than the wing, the eye imaginal disc, prompts a reconsideration of our models of growth control. Despite striking differences between the two, the Dpp gradient scales with the target tissues of both organs and the growth of both the wing and the eye is controlled by Dpp. The goal of this review is to discuss whether a parsimonious model of scaling and growth control can explain the relationship between the Dpp gradient and growth in these two different developmental systems.
Collapse
Affiliation(s)
| | - Daniel Aguilar-Hidalgo
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Frank Jülicher
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
84
|
Brockmann B, Mastel H, Oswald F, Maier D. Analysis of the interaction between human RITA and Drosophila Suppressor of Hairless. Hereditas 2015; 151:209-19. [PMID: 25588307 DOI: 10.1111/hrd2.00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022] Open
Abstract
Notch signalling mediates intercellular communication, which is effected by the transcription factor CSL, an acronym for vertebrate CBF1/RBP-J, Drosophila Suppressor of Hairless [Su(H)] and C. elegans Lag1. Nuclear import of CBF1/RBP-J depends on co-activators and co-repressors, whereas the export relies on RITA. RITA is a tubulin and CBF1/RBP-J binding protein acting as a negative regulator of Notch signalling in vertebrates. RITA protein is highly conserved in eumatazoa, but no Drosophila homologue was yet identified. In this work, the activity of human RITA in the fly was addressed. To this end, we generated transgenic flies that allow a tissue specific induction of human RITA, which was demonstrated by Western blotting and in fly tissues. Unexpectedly, overexpression of RITA during fly development had little phenotypic consequences, even when overexpressed simultaneously with either Su(H) or the Notch antagonist Hairless. We demonstrate the in vivo binding of human RITA to Su(H) and to tubulin by co-immune precipitation. Moreover, RITA and tubulin co-localized to some degree in several Drosophila tissues. Overall our data show that human RITA, albeit binding to Drosophila Su(H) and tubulin, cannot influence the Notch signalling pathway in the fly, suggesting that a nuclear export mechanism of Su(H), if existent in Drosophila, does not depend on RITA.
Collapse
Affiliation(s)
- Birgit Brockmann
- Institute of Genetics, University of Hohenheim, Stuttgart, Germany
| | | | | | | |
Collapse
|
85
|
Huang H, Kornberg TB. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium. eLife 2015; 4:e06114. [PMID: 25951303 PMCID: PMC4423120 DOI: 10.7554/elife.06114] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/16/2015] [Indexed: 12/17/2022] Open
Abstract
The flight muscles, dorsal air sacs, wing blades, and thoracic cuticle of the Drosophila adult function in concert, and their progenitor cells develop together in the wing imaginal disc. The wing disc orchestrates dorsal air sac development by producing decapentaplegic and fibroblast growth factor that travel via specific cytonemes in order to signal to the air sac primordium (ASP). Here, we report that cytonemes also link flight muscle progenitors (myoblasts) to disc cells and to the ASP, enabling myoblasts to relay signaling between the disc and the ASP. Frizzled (Fz)-containing myoblast cytonemes take up Wingless (Wg) from the disc, and Delta (Dl)-containing myoblast cytonemes contribute to Notch activation in the ASP. Wg signaling negatively regulates Dl expression in the myoblasts. These results reveal an essential role for cytonemes in Wg and Notch signaling and for a signal relay system in the myoblasts.
Collapse
Affiliation(s)
- Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
86
|
Zimmermann M, Kugler SJ, Schulz A, Nagel AC. Loss of putzig Activity Results in Apoptosis during Wing Imaginal Development in Drosophila. PLoS One 2015; 10:e0124652. [PMID: 25894556 PMCID: PMC4403878 DOI: 10.1371/journal.pone.0124652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/17/2015] [Indexed: 12/22/2022] Open
Abstract
The Drosophila gene putzig (pzg) encodes a nuclear protein that is an integral component of the Trf2/Dref complex involved in the transcription of proliferation-related genes. Moreover, Pzg is found in a complex together with the nucleosome remodeling factor NURF, where it promotes Notch target gene activation. Here we show that downregulation of pzg activity in the developing wing imaginal discs induces an apoptotic response, accompanied by the induction of the pro-apoptotic gene reaper, repression of Drosophila inhibitor of apoptosis protein accumulation and the activation of the caspases Drice, Caspase3 and Dcp1. As a further consequence ‘Apoptosis induced Proliferation’ (AiP) and ‘Apoptosis induced Apoptosis’ (AiA) are triggered. As expected, the activity of the stress kinase Jun N-terminal kinase (JNK), proposed to mediate both processes, is ectopically induced in response to pzg loss. In addition, the expression of the mitogen wingless (wg) but not of decapentaplegic (dpp) is observed. We present evidence that downregulation of Notch activates Dcp1 caspase and JNK signaling, however, neither induces ectopic wg nor dpp expression. In contrast, the consequences of Dref-RNAi were largely indistinguishable from pzg-RNAi with regard to apoptosis induction. Moreover, overexpression of Dref ameliorated the downregulation of pzg compatible with the notion that the two are required together to maintain cell and tissue homeostasis in Drosophila.
Collapse
Affiliation(s)
- Mirjam Zimmermann
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Sabrina J. Kugler
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Adriana Schulz
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
- * E-mail:
| |
Collapse
|
87
|
The transcription factor optomotor-blind antagonizes Drosophila haltere growth by repressing decapentaplegic and hedgehog targets. PLoS One 2015; 10:e0121239. [PMID: 25793870 PMCID: PMC4368094 DOI: 10.1371/journal.pone.0121239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/29/2015] [Indexed: 12/23/2022] Open
Abstract
In Drosophila, decapentaplegic, which codes for a secreted signaling molecule, is activated by the Hedgehog signaling pathway at the anteroposterior compartment border of the two dorsal primordia; the wing and the haltere imaginal discs. In the wing disc, Decapentaplegic and Hedgehog signaling targets are implicated in cell proliferation and cell survival. However, most of their known targets in the wing disc are not expressed in the haltere disc due to their repression by the Hox gene Ultrabithorax. The T-box gene optomotor-blind escapes this repression in the haltere disc, and therefore is expressed in both the haltere and wing discs. Optomotor-blind is a major player during wing development and its function has been intensely investigated in this tissue, however, its role in haltere development has not been reported so far. Here we show that Optomotor-blind function in the haltere disc differs from that in the wing disc. Unlike its role in the wing, Optomotor-blind does not prevent apoptosis in the haltere but rather limits growth by repressing several Decapentaplegic and Hedgehog targets involved both in wing proliferation and in modulating the spread of morphogens similar to Ultrabithorax function but without disturbing Ultrabithorax expression.
Collapse
|
88
|
Umetsu D, Dahmann C. Signals and mechanics shaping compartment boundaries in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:407-17. [PMID: 25755098 DOI: 10.1002/wdev.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/18/2014] [Accepted: 01/22/2015] [Indexed: 11/06/2022]
Abstract
During animal development groups of cells with similar fates and functions often stay together and separate from cells with different fates. An example for this cellular behavior is the formation of compartments, groups of cells with similar fates that are separated by sharp boundaries from neighboring groups of cells. Compartments play important roles during patterning by serving as units of growth and gene expression. Boundaries between compartments are associated with organizers that secrete signaling molecules instructing growth and differentiation throughout the tissue. The straight shape of the boundary between compartments is important for maintaining the position and shape of the organizer and thus for precise patterning. The straight shape of compartment boundaries, however, is challenged by cell divisions and cell intercalations that take place in many developing tissues. Early work established a role for selector genes and signaling pathways in setting up and keeping boundaries straight. Recent work in Drosophila has now begun to further unravel the physical and cellular mechanisms that maintain compartment boundaries. Key to the separation of compartments is a local increase of actomyosin-dependent mechanical tension at cell junctions along the boundary. Increased mechanical tension acts as a barrier to cell mixing during cell division and influences cell rearrangements during cell intercalations along the compartment boundary in a way that the straight shape of the boundary is maintained. An important question for the future is how the signaling pathways that maintain the straight shape of compartment boundaries control mechanical tension along these boundaries.
Collapse
Affiliation(s)
- Daiki Umetsu
- RIKEN Center for Developmental Biology, Kobe, Japan
| | - Christian Dahmann
- Technische Universität Dresden, Institute of Genetics, Dresden, Germany
| |
Collapse
|
89
|
Brigaud I, Duteyrat JL, Chlasta J, Le Bail S, Couderc JL, Grammont M. Transforming Growth Factor β/activin signalling induces epithelial cell flattening during Drosophila oogenesis. Biol Open 2015; 4:345-54. [PMID: 25681395 PMCID: PMC4359740 DOI: 10.1242/bio.201410785] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the regulation of epithelial morphogenesis is essential for the formation of tissues and organs in multicellular organisms, little is known about how signalling pathways control cell shape changes in space and time. In the Drosophila ovarian epithelium, the transition from a cuboidal to a squamous shape is accompanied by a wave of cell flattening and by the ordered remodelling of E-cadherin-based adherens junctions. We show that activation of the TGFβ pathway is crucial to determine the timing, the degree and the dynamic of cell flattening. Within these cells, TGFβ signalling controls cell-autonomously the formation of Actin filament and the localisation of activated Myosin II, indicating that internal forces are generated and used to remodel AJ and to promote cytoskeleton rearrangement. Our results also reveal that TGFβ signalling controls Notch activity and that its functions are partly executed through Notch. Thus, we demonstrate that the cells that undergo the cuboidal-to-squamous transition produce active cell-shaping mechanisms, rather than passively flattening in response to a global force generated by the growth of the underlying cells. Thus, our work on TGFβ signalling provides new insights into the mechanisms through which signal transduction cascades orchestrate cell shape changes to generate proper organ structure.
Collapse
Affiliation(s)
- Isabelle Brigaud
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France
| | - Jean-Luc Duteyrat
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France
| | - Julien Chlasta
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France Laboratoire Joliot Curie, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Sandrine Le Bail
- CNRS 6293, Clermont University, Inserm U1103, UMR GReD, UFR Médecine, Clermont-Ferrand F-63001, France
| | - Jean-Louis Couderc
- CNRS 6293, Clermont University, Inserm U1103, UMR GReD, UFR Médecine, Clermont-Ferrand F-63001, France
| | - Muriel Grammont
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France Laboratoire Joliot Curie, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
90
|
Akiyama T, Gibson MC. Morphogen transport: theoretical and experimental controversies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:99-112. [PMID: 25581550 DOI: 10.1002/wdev.167] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/13/2014] [Indexed: 01/09/2023]
Abstract
UNLABELLED According to morphogen gradient theory, extracellular ligands produced from a localized source convey positional information to receiving cells by signaling in a concentration-dependent manner. How do morphogens create concentration gradients to establish positional information in developing tissues? Surprisingly, the answer to this central question remains largely unknown. During development, a relatively small number of morphogens are reiteratively deployed to ensure normal embryogenesis and organogenesis. Thus, the intracellular processing and extracellular transport of morphogens are tightly regulated in a tissue-specific manner. Over the past few decades, diverse experimental and theoretical approaches have led to numerous conflicting models for gradient formation. In this review, we summarize the experimental evidence for each model and discuss potential future directions for studies of morphogen gradients. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Takuya Akiyama
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | |
Collapse
|
91
|
Jiang K, Jia J. Analysis of Smoothened Phosphorylation and Activation in Cultured Cells and Wing Discs of Drosophila. Methods Mol Biol 2015; 1322:45-60. [PMID: 26179038 DOI: 10.1007/978-1-4939-2772-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Smoothened (Smo) is essential for transduction of the Hedgehog (Hh) signal in both insects and vertebrates. Binding of Hh to Ptc-Ihog relieves the Patched (Ptc)-mediated inhibition of Smo, which allows Smo to activate the cubitus interruptus (Ci)/Gli family of zinc finger transcription factors and thereby induce the expression of Hh target genes, such as decapentaplegic (dpp), ptc, and engrailed (en). The activation of Smo appears to be one of the most important events in Hh signaling. Studies have shown that Hh induces cell surface/ciliary accumulation and phosphorylation of Smo by multiple kinases, including protein kinase A (PKA), casein kinase 1 (CK1), casein kinase 2 (CK2), G protein-coupled receptor kinase 2 (Gprk2), and atypical PKC (aPKC). Here, we describe the assays used to examine the activity of Smo in Hh signaling, including in vitro kinase, ptc-luciferase reporter assay, cell surface accumulation assay, fluorescence resonance energy transfer (FRET) assay, and wing disc immunostaining. These assays are powerful tools to study Smo phosphorylation and activation, which have provided mechanistic insight into a better understanding the mechanisms of Smo regulation.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, 741 S. Limestone, BBSRB 373, Lexington, KY, 40536-0509, USA
| | | |
Collapse
|
92
|
Mad linker phosphorylations control the intensity and range of the BMP-activity gradient in developing Drosophila tissues. Sci Rep 2014; 4:6927. [PMID: 25377173 PMCID: PMC4223678 DOI: 10.1038/srep06927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/17/2014] [Indexed: 01/06/2023] Open
Abstract
The BMP ligand Dpp, operates as a long range morphogen to control many important functions during Drosophila development from tissue patterning to growth. The BMP signal is transduced intracellularly via C-terminal phosphorylation of the BMP transcription factor Mad, which forms an activity gradient in developing embryonic tissues. Here we show that Cyclin dependent kinase 8 and Shaggy phosphorylate three Mad linker serines. We demonstrate that linker phosphorylations control the peak intensity and range of the BMP signal across rapidly developing embryonic tissues. Shaggy knockdown broadened the range of the BMP-activity gradient and increased high threshold target gene expression in the early embryo, while expression of a Mad linker mutant in the wing disc resulted in enhanced levels of C-terminally phosphorylated Mad, a 30% increase in wing tissue, and elevated BMP target genes. In conclusion, our results describe how Mad linker phosphorylations work to control the peak intensity and range of the BMP signal in rapidly developing Drosophila tissues.
Collapse
|
93
|
Buchmann A, Alber M, Zartman JJ. Sizing it up: The mechanical feedback hypothesis of organ growth regulation. Semin Cell Dev Biol 2014; 35:73-81. [DOI: 10.1016/j.semcdb.2014.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 11/28/2022]
|
94
|
Hedgehog-regulated atypical PKC promotes phosphorylation and activation of Smoothened and Cubitus interruptus in Drosophila. Proc Natl Acad Sci U S A 2014; 111:E4842-50. [PMID: 25349414 DOI: 10.1073/pnas.1417147111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Smoothened (Smo) is essential for transduction of the Hedgehog (Hh) signal in both insects and vertebrates. Cell surface/cilium accumulation of Smo is thought to play an important role in Hh signaling, but how the localization of Smo is controlled remains poorly understood. In this study, we demonstrate that atypical PKC (aPKC) regulates Smo phosphorylation and basolateral accumulation in Drosophila wings. Inactivation of aPKC by either RNAi or a mutation inhibits Smo basolateral accumulation and attenuates Hh target gene expression. In contrast, expression of constitutively active aPKC elevates basolateral accumulation of Smo and promotes Hh signaling. The aPKC-mediated phosphorylation of Smo at Ser680 promotes Ser683 phosphorylation by casein kinase 1 (CK1), and these phosphorylation events elevate Smo activity in vivo. Moreover, aPKC has an additional positive role in Hh signaling by regulating the activity of Cubitus interruptus (Ci) through phosphorylation of the Zn finger DNA-binding domain. Finally, the expression of aPKC is up-regulated by Hh signaling in a Ci-dependent manner. Our findings indicate a direct involvement of aPKC in Hh signaling beyond its role in cell polarity.
Collapse
|
95
|
Martorell Ò, Barriga FM, Merlos-Suárez A, Stephan-Otto Attolini C, Casanova J, Batlle E, Sancho E, Casali A. Iro/IRX transcription factors negatively regulate Dpp/TGF-β pathway activity during intestinal tumorigenesis. EMBO Rep 2014; 15:1210-8. [PMID: 25296644 DOI: 10.15252/embr.201438622] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Activating mutations in Wnt and EGFR/Ras signaling pathways are common in colorectal cancer (CRC). Remarkably, clonal co-activation of these pathways in the adult Drosophila midgut induces "tumor-like" overgrowths. Here, we show that, in these clones and in CRC cell lines, Dpp/TGF-β acts as a tumor suppressor. Moreover, we discover that the Iroquois/IRX-family-protein Mirror downregulates the transcription of core components of the Dpp pathway, reducing its tumor suppressor activity. We also show that this genetic interaction is conserved in human CRC cells, where the Iro/IRX proteins IRX3 and IRX5 diminish the response to TGF-β. IRX3 and IRX5 are upregulated in human adenomas, and their levels correlate inversely with the gene expression signature of response to TGF-β. In addition, Irx5 expression confers a growth advantage in the presence of TGF-β, but is selected against in its absence. Together, our results identify a set of Iro/IRX proteins as conserved negative regulators of Dpp/TGF-β activity. We propose that during the characteristic adenoma-to-carcinoma transition of human CRC, the activity of IRX proteins could reduce the sensitivity to the cytostatic effect of TGF-β, conferring a growth advantage to tumor cells prior to the acquisition of mutations in TGF-β pathway components.
Collapse
Affiliation(s)
- Òscar Martorell
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | | | | | - Jordi Casanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Andreu Casali
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| |
Collapse
|
96
|
Restrepo S, Zartman JJ, Basler K. Coordination of patterning and growth by the morphogen DPP. Curr Biol 2014; 24:R245-55. [PMID: 24650915 DOI: 10.1016/j.cub.2014.01.055] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The elegance of animal body plans derives from an intimate connection between function and form, which during organ formation is linked to patterning and growth. Yet, how patterning and growth are coordinated still remains largely a mystery. To study this question the Drosophila wing imaginal disc, an epithelial primordial organ that later forms the adult wing, has proven to be an invaluable and versatile model. Wing disc development is organized around a coordinate system provided by morphogens such as the TGF-β homolog Decapentaplegic (DPP). The function of DPP has been studied at multiple levels: ranging from the kinetics of gradient formation to the establishment and maintenance of target gene domains as well as DPP's role in growth control. Here, we focus on recent publications that both enrich our view of DPP signaling but also highlight outstanding questions of how DPP coordinates patterning and growth during development.
Collapse
Affiliation(s)
- Simon Restrepo
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 182 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
| |
Collapse
|
97
|
Hamaratoglu F, Affolter M, Pyrowolakis G. Dpp/BMP signaling in flies: from molecules to biology. Semin Cell Dev Biol 2014; 32:128-36. [PMID: 24813173 DOI: 10.1016/j.semcdb.2014.04.036] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/30/2014] [Indexed: 01/08/2023]
Abstract
Decapentaplegic (Dpp), the fly homolog of the secreted mammalian BMP2/4 signaling molecules, is involved in almost all aspects of fly development. Dpp has critical functions at all developmental stages, from patterning of the eggshell to the determination of adult intestinal stem cell identity. Here, we focus on recent findings regarding the transcriptional regulatory logic of the pathway, on a new feedback regulator, Pentagone, and on Dpp's roles in scaling and growth of the Drosophila wing.
Collapse
Affiliation(s)
- Fisun Hamaratoglu
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Basel, Switzerland
| | - George Pyrowolakis
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Centre for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
98
|
Rakshit A, Chatterjee RN. Molecular evolutionary analysis of decapentaplegic (dpp) gene in Drosophilidae. THE NUCLEUS 2014. [DOI: 10.1007/s13237-014-0104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
99
|
Abstract
The development of multicellular organisms relies on an intricate choreography of intercellular communication events that pattern the embryo and coordinate the formation of tissues and organs. It is therefore not surprising that developmental biology, especially using genetic model organisms, has contributed significantly to the discovery and functional dissection of the associated signal-transduction cascades. At the same time, biophysical, biochemical, and cell biological approaches have provided us with insights into the underlying cell biological machinery. Here we focus on how endocytic trafficking of signaling components (e.g., ligands or receptors) controls the generation, propagation, modulation, reception, and interpretation of developmental signals. A comprehensive enumeration of the links between endocytosis and signal transduction would exceed the limits of this review. We will instead use examples from different developmental pathways to conceptually illustrate the various functions provided by endocytic processes during key steps of intercellular signaling.
Collapse
Affiliation(s)
- Christian Bökel
- Center for Regenerative Therapies Dresden and Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | |
Collapse
|
100
|
Alexandre C, Baena-Lopez A, Vincent JP. Patterning and growth control by membrane-tethered Wingless. Nature 2014; 505:180-5. [PMID: 24390349 PMCID: PMC7611559 DOI: 10.1038/nature12879] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/12/2013] [Indexed: 01/20/2023]
Abstract
Wnts are evolutionarily conserved secreted signalling proteins that, in various developmental contexts, spread from their site of synthesis to form a gradient and activate target-gene expression at a distance. However, the requirement for Wnts to spread has never been directly tested. Here we used genome engineering to replace the endogenous wingless gene, which encodes the main Drosophila Wnt, with one that expresses a membrane-tethered form of the protein. Surprisingly, the resulting flies were viable and produced normally patterned appendages of nearly the right size, albeit with a delay. We show that, in the prospective wing, prolonged wingless transcription followed by memory of earlier signalling allows persistent expression of relevant target genes. We suggest therefore that the spread of Wingless is dispensable for patterning and growth even though it probably contributes to increasing cell proliferation.
Collapse
Affiliation(s)
- Cyrille Alexandre
- 1] MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK [2]
| | - Alberto Baena-Lopez
- 1] MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK [2]
| | - Jean-Paul Vincent
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|