51
|
Shi J, Chi Y, Wang X, Zhang Y, Tian L, Chen Y, Chen C, Dong Y, Sang H, Chen M, Liu L, Zhao N, Kang C, Hu X, Wang X, Liu Q, Li X, Zhu S, Nie M, Wang H, Yang L, Liu J, Wang H, Lu J, Hu J. MiR-124 Regulates IQGAP1 and Participates in the Relationship Between Morphine Dependence Susceptibility and Cognition. Front Psychiatry 2022; 13:845357. [PMID: 35401251 PMCID: PMC8983956 DOI: 10.3389/fpsyt.2022.845357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/28/2022] [Indexed: 01/23/2023] Open
Abstract
Background Long-term excessive use of morphine leads to addictive diseases and affects cognitive function. Cognitive performance is associated with genetic characteristics.MiR-124 plays a critical regulatory role in neurogenesis, synaptic development, brain plasticity, and the use of addictive substances. As a scaffold protein, IQGAP1 affects learning and memory dose-dependent. However, the role of miR-124 and its target protein as potential addiction biomarkers and the impact on cognitive function have not been fully explored. Method A total of 40 patients with morphine dependence and 40 cases of healthy people were recruited. We collected basic and clinical information about the two groups. The Generalized Anxiety Disorder Scale (GAD-7), Patient Health Questionnaire-9(PHQ-9), Montreal Cognition Assessment Scale (MoCA), Pittsburgh Sleep Quality Index (PSQI) were used to assess the severity of depression, anxiety, depressive symptoms, cognitive dysfunction, and sleep quality. Results Compared to the control group, the morphine-dependent group had higher GAD-7, PHQ-9, PSQI scores, and more elevated miR-124 levels but lower MOCA scores and IQGAP1 levels. MiR-124, IQGAP1, the average intake last year were related to OASI scores.MiR-124, IQGAP1, PHQ-9 were associated with MOCA scores. In the multiple regression model, the levels of miR-124 and IQGAP1 were independent factors influencing the severity of morphine dependence. The level of miR-124 was an independent factor influencing the severity of cognitive impairment in patients with morphine dependence. In addition, the luciferase report confirmed that IQGAP1 mRNA is the direct target of miR-124. Conclusion MiR-124 and its target protein IQGAP1 are involved in the regulation of addiction and cognitive function in patients with morphine dependence.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Chi
- The National Clinical Research Center for Mental Disorders, Capital Medical University & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingjie Zhang
- The National Clinical Research Center for Mental Disorders, Capital Medical University & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lu Tian
- The National Clinical Research Center for Mental Disorders, Capital Medical University & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yao Chen
- Shenyang Mental Health Center, Shenyang, China
| | - Chunwu Chen
- Shenyang Mental Health Center, Shenyang, China
| | - Yong Dong
- Shenyang Mental Health Center, Shenyang, China
| | - Hong Sang
- Changchun Sixth Hospital, Changchun, China
| | - Ming Chen
- Changchun Sixth Hospital, Changchun, China
| | - Lei Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Na Zhao
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanyi Kang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaorui Hu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Wang
- Harbin University of Science and Technology, Harbin, China
| | - Qingxia Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuemin Li
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Zhu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingxuan Nie
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Honghui Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liying Yang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiacheng Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huaizhi Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Lu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Hu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
52
|
Deng M, Zhang Z, Xing M, Liang X, Li Z, Wu J, Jiang S, Weng Y, Guo Q, Zou W. LncRNA MRAK159688 facilitates morphine tolerance by promoting REST-mediated inhibition of mu opioid receptor in rats. Neuropharmacology 2022; 206:108938. [PMID: 34982972 DOI: 10.1016/j.neuropharm.2021.108938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Morphine tolerance (MT) caused by the long-term use of morphine is a major medical problem. The molecular mechanism of morphine tolerance remains elusive. Here, we established a morphine tolerance model in rats and verified whether the long noncoding RNA (lncRNA) MRAK159688 is involved in morphine tolerance and its specific molecular mechanism. We show the significant upregulation of MRAK159688 expression in the spinal cord of morphine-tolerant rats. Overexpression of MRAK159688 by a lentivirus reduces the analgesic efficacy of morphine and induces pain behavior. Downregulation of MRAK159688 using a small interfering RNA (siRNA) attenuates the formation of morphine tolerance, partially reverses the development of morphine tolerance and alleviates morphine-induced hyperalgesia. MRAK159688 is located in the nucleus and cytoplasm of neurons, and it colocalizes with repressor element-1 silencing transcription factor (REST) in the nucleus. MRAK159688 potentiates the expression and function of REST, thereby inhibiting the expression of mu opioid receptor (MOR) and subsequently inducing morphine tolerance. Moreover, REST overexpression blocks the effects of MRAK159688 siRNA on relieving morphine tolerance. In general, chronic morphine administration-mediated upregulation of MRAK159688 in the spinal cord contributes to morphine tolerance and hyperalgesia by promoting REST-mediated inhibition of MOR. MRAK159688 downregulation may represent a novel RNA-based therapy for morphine tolerance.
Collapse
Affiliation(s)
- Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zengli Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300000, China
| | - Manyu Xing
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xia Liang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zhengyiqi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Wu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shasha Jiang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
53
|
Sierra S, Muchhala KH, Jessup DK, Contreras KM, Shah UH, Stevens DL, Jimenez J, Cuno Lavilla XK, de la Fuente Revenga M, Lippold KM, Shen S, Poklis JL, Qiao LY, Dewey WL, Akbarali HI, Damaj MI, González-Maeso J. Sex-specific role for serotonin 5-HT 2A receptor in modulation of opioid-induced antinociception and reward in mice. Neuropharmacology 2022; 209:108988. [PMID: 35183539 PMCID: PMC8934299 DOI: 10.1016/j.neuropharm.2022.108988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
Opioids are among the most effective analgesics and the mainstay of pain management. However, concerns about safety and abuse liability have challenged their widespread use by the medical community. Opioid-sparing therapies include drugs that in combination with opioids have the ability to enhance analgesia while decreasing opioid requirement as well as their side effects. Sex differences in antinociceptive responses to opioids have received increasing attention in recent years. However, the molecular mechanisms underlying sex differences related to opioid-sparing adjuncts remain largely unexplored. Using warm water tail-withdrawal as a mouse model of acute thermal nociception, our data suggest that adjunctive administration of the serotonin 5-HT2A receptor (5-HT2AR) antagonist volinanserin dose-dependently enhanced potency of the opioid analgesic oxycodone in male, but not female, mice. This antinociceptive-like response induced by oxycodone was also augmented in 5-HT2AR knockout (5-HT2AR-/-) male, but not female mice; an effect that was reversed by Cre-loxP-mediated selective expression of 5-HT2AR in dorsal root ganglion (DRG) neurons of 5-HT2AR-/- littermates. Pharmacological inhibition with volinanserin or genetic deletion in 5-HT2AR-/- animals potentiated the ability of oxycodone to reduce DRG excitability in male mice. Adjunctive volinanserin did not affect oxycodone-induced conditioned place preference (CPP), whereas it reduced oxycodone-induced locomotor sensitization in male and female mice. Together, these results suggest that adjunctive volinanserin augments opioid-induced antinociception, but not abuse-related behavior, through a sex-specific signaling crosstalk mechanism that requires 5-HT2AR expression in mouse DRG neurons. Ultimately, our results may pave the way for the clinical evaluation of volinanserin as a potential sex-specific opioid adjuvant.
Collapse
Affiliation(s)
- Salvador Sierra
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Karan H Muchhala
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Donald K Jessup
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Katherine M Contreras
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Urjita H Shah
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - David L Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Jennifer Jimenez
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Xiomara K Cuno Lavilla
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Mario de la Fuente Revenga
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA; Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kumiko M Lippold
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Liya Y Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Hamid I Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
54
|
Stojanovic T, Velarde Gamez D, Schuld GJ, Bormann D, Cabatic M, Uhrin P, Lubec G, Monje FJ. Age-Dependent and Pathway-Specific Bimodal Action of Nicotine on Synaptic Plasticity in the Hippocampus of Mice Lacking the miR-132/212 Genes. Cells 2022; 11:261. [PMID: 35053378 PMCID: PMC8774101 DOI: 10.3390/cells11020261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/19/2022] Open
Abstract
Nicotine addiction develops predominantly during human adolescence through smoking. Self-administration experiments in rodents verify this biological preponderance to adolescence, suggesting evolutionary-conserved and age-defined mechanisms which influence the susceptibility to nicotine addiction. The hippocampus, a brain region linked to drug-related memory storage, undergoes major morpho-functional restructuring during adolescence and is strongly affected by nicotine stimulation. However, the signaling mechanisms shaping the effects of nicotine in young vs. adult brains remain unclear. MicroRNAs (miRNAs) emerged recently as modulators of brain neuroplasticity, learning and memory, and addiction. Nevertheless, the age-dependent interplay between miRNAs regulation and hippocampal nicotinergic signaling remains poorly explored. We here combined biophysical and pharmacological methods to examine the impact of miRNA-132/212 gene-deletion (miRNA-132/212-/-) and nicotine stimulation on synaptic functions in adolescent and mature adult mice at two hippocampal synaptic circuits: the medial perforant pathway (MPP) to dentate yrus (DG) synapses (MPP-DG) and CA3 Schaffer collaterals to CA1 synapses (CA3-CA1). Basal synaptic transmission and short-term (paired-pulse-induced) synaptic plasticity was unaltered in adolescent and adult miRNA-132/212-/- mice hippocampi, compared with wild-type controls. However, nicotine stimulation promoted CA3-CA1 synaptic potentiation in mature adult (not adolescent) wild-type and suppressed MPP-DG synaptic potentiation in miRNA-132/212-/- mice. Altered levels of CREB, Phospho-CREB, and acetylcholinesterase (AChE) expression were further detected in adult miRNA-132/212-/- mice hippocampi. These observations propose miRNAs as age-sensitive bimodal regulators of hippocampal nicotinergic signaling and, given the relevance of the hippocampus for drug-related memory storage, encourage further research on the influence of miRNAs 132 and 212 in nicotine addiction in the young and the adult brain.
Collapse
Affiliation(s)
- Tamara Stojanovic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
| | - David Velarde Gamez
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
| | - Gabor Jorrid Schuld
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
| | - Daniel Bormann
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
- Laboratory for Cardiac and Thoracic Diagnosis, Department of Surgery, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Maureen Cabatic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
| |
Collapse
|
55
|
Li X, Xiong J, Zhang B, Zhangsun D, Luo S. α-Conotoxin TxIB Inhibits Development of Morphine-Induced Conditioned Place Preference in Mice via Blocking α6β2* Nicotinic Acetylcholine Receptors. Front Pharmacol 2021; 12:772990. [PMID: 34925031 PMCID: PMC8681874 DOI: 10.3389/fphar.2021.772990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
Morphine, the main component of opium, is a commonly used analgesic in clinical practice, but its abuse potential limits its clinical application. Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic circuitry play an important role in the rewarding effects of abused drugs. Previous studies have showed that α6β2* (* designated other subunits) nAChRs are mainly distributed in dopaminergic neurons in the midbrain area, which regulates the release of dopamine. So α6β2* nAChRs are regarded as a new target to treat drug abuse. α-Conotoxin TxIB was discovered in our lab, which is the most selective ligand to inhibit α6β2* nAChRs only. Antagonists of α6β2* nAChRs decreased nicotine, cocaine, and ethanol rewarding effects previously. However, their role in morphine addiction has not been reported so far. Thus, it is worth evaluating the effect of α-conotoxin TxIB on the morphine-induced conditioned place preference (CPP) and its behavioral changes in mice. Our results showed that TxIB inhibited expression and acquisition of morphine-induced CPP and did not produce a rewarding effect by itself. Moreover, repeated injections of TxIB have no effect on learning, memory, locomotor activity, and anxiety-like behavior. Therefore, blocking α6/α3β2β3 nAChRs inhibits the development of morphine-induced CPP. α-Conotoxin TxIB may be a potentially useful compound to mitigate the acquisition and/or retention of drug-context associations.
Collapse
Affiliation(s)
- Xiaodan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jian Xiong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Baojian Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.,Medical School, Guangxi University, Nanning, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.,Medical School, Guangxi University, Nanning, China
| |
Collapse
|
56
|
Tolomeo S, Steele JD, Ekhtiari H, Baldacchino A. Chronic heroin use disorder and the brain: Current evidence and future implications. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110148. [PMID: 33169674 DOI: 10.1016/j.pnpbp.2020.110148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/10/2020] [Accepted: 10/17/2020] [Indexed: 11/18/2022]
Abstract
The incidence of chronic heroin use disorder, including overdose deaths, has reached epidemic proportions. Here we summarise and evaluate our knowledge of the relationship between chronic heroin use disorder and the brain through a narrative review. A broad range of areas was considered including causal mechanisms, cognitive and neurological consequences of chronic heroin use and novel neuroscience-based clinical interventions. Chronic heroin use is associated with limited or very limited evidence of impairments in memory, cognitive impulsivity, non-planning impulsivity, compulsivity and decision-making. Additionally, there is some evidence for certain neurological disorders being caused by chronic heroin use, including toxic leukoencephalopathy and neurodegeneration. However, there is insufficient evidence on whether these impairments and disorders recover after abstinence. Whilst there is a high prevalence of comorbid psychiatric disorders, there is no clear evidence that chronic heroin use per se causes depression, bipolar disorder, PTSD and/or psychosis. Despite the growing burden on society from heroin use, knowledge of the long-term effects of chronic heroin use disorder on the brain remains limited. Nevertheless, there is evidence for progress in neuroscience-based interventions being made in two areas: assessment (cognitive assessment and neuroimaging) and interventions (cognitive training/remediation and neuromodulation). Longitudinal studies are needed to unravel addiction and neurotoxic mechanisms and clarify the role of pre-existing psychiatric symptoms and cognitive impairments.
Collapse
Affiliation(s)
- Serenella Tolomeo
- Department of Psychology, National University of Singapore (NUS), Singapore.
| | - J Douglas Steele
- School of Medicine, University of Dundee and Department of Neurology, NHS Tayside, Ninewells Hospital and Medical School, UK
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| | - Alex Baldacchino
- Division of Population and Behavioural Sciences, University of St Andrews, Fife, Scotland, United Kingdom
| |
Collapse
|
57
|
Trofimova IN, Gaykalova AA. Emotionality vs. Other Biobehavioural Traits: A Look at Neurochemical Biomarkers for Their Differentiation. Front Psychol 2021; 12:781631. [PMID: 34987450 PMCID: PMC8720768 DOI: 10.3389/fpsyg.2021.781631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the differential contributions of multiple neurochemical systems to temperament traits related and those that are unrelated to emotionality, even though these systems have a significant overlap. The difference in neurochemical biomarkers of these traits is analysed from the perspective of the neurochemical model, Functional Ensemble of Temperament (FET) that uses multi-marker and constructivism principles. Special attention is given to a differential contribution of hypothalamic-pituitary hormones and opioid neuropeptides implicated in both emotional and non-emotional regulation. The review highlights the role of the mu-opioid receptor system in dispositional emotional valence and the role of the kappa-opioid system in dispositional perceptual and behavioural alertness. These opioid receptor (OR) systems, microbiota and cytokines are produced in three neuroanatomically distinct complexes in the brain and the body, which all together integrate dispositional emotionality. In contrast, hormones could be seen as neurochemical biomarkers of non-emotional aspects of behavioural regulation related to the construction of behaviour in fast-changing and current situations. As examples of the role of hormones, the review summarised their contribution to temperament traits of Sensation Seeking (SS) and Empathy (EMP), which FET considers as non-emotionality traits related to behavioural orientation. SS is presented here as based on (higher) testosterone (fluctuating), adrenaline and (low) cortisol systems, and EMP, as based on (higher) oxytocin, reciprocally coupled with vasopressin and (lower) testosterone. Due to the involvement of gonadal hormones, there are sex and age differences in these traits that could be explained by evolutionary theory. There are, therefore, specific neurochemical biomarkers differentiating (OR-based) dispositional emotionality and (hormones-based) body's regulation in fast-changing events. Here we propose to consider dispositional emotionality associated with OR systems as emotionality in a true sense, whereas to consider hormonal ensembles regulating SS and EMP as systems of behavioural orientation and not emotionality.
Collapse
Affiliation(s)
- Irina N. Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
58
|
Zvereva N, Zvereva M, Pyatnitskaya L. Temperament Profiles of Children and Adolescents with Psychotic and Mood Disorders. Neuropsychobiology 2021; 80:176-184. [PMID: 33130675 DOI: 10.1159/000511108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/20/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Psychiatric disorders are often linked to dysfunctions within neurotransmitter systems, and the same systems play a role in healthy temperaments. Development of a common bio-behavioural taxonomy based on functionality of neurotransmitter systems suggests examining temperament profiles in patients with various psychiatric disorders. OBJECTIVE (1) To investigate temperament profiles in two age groups of children with delusional disorders; (2) to investigate temperament profiles in adolescents with mood disorders; (3) to investigate temperament profiles in in vitro fertilisation (IVF) children. METHODS Sample: in total 171 participants (M/F = 91/80), healthy children and teenagers (volunteers); two age groups of children with psychotic disorders; teens with mood disorders (clients of the Federal Mental Health Center) and healthy IVF. Parents of participants completed a test based on the neurochemical model Functional Ensemble of Temperament (FET). RESULTS AND CONCLUSIONS (1) Both age groups of children with psychotic disorders had significantly lower scores on the scales of physical endurance, tempo, plasticity, and self-satisfaction, in comparison to healthy controls; the psychotic group aged 5-11 had also lower scores on the impulsivity scale, whereas the psychotic group 12-17 had lower scores on the social endurance and social tempo scales and higher neuroticism. (2) Teens with mood disorders had lower scores on the self-confidence-satisfaction scale and higher scores on the impulsivity scale, in comparison to controls. (3) No difference between IVF and naturally conceived children were found. The results show the benefits of using the FET framework for structuring the correspondence between psychiatric disorders and temperament as it differentiates between social versus physical aspects of behaviour and orientational versus executive aspects.
Collapse
Affiliation(s)
- Natalia Zvereva
- Federal State Budgetary Scientific Institution, Mental Health Research Center, Moscow, Russian Federation, .,Federal State Budgetary Institution of Higher Education, Moscow State University of Psychology and Education, Moscow, Russian Federation,
| | - Mariia Zvereva
- Federal State Budgetary Scientific Institution, Mental Health Research Center, Moscow, Russian Federation
| | - Luydmila Pyatnitskaya
- Federal State Budgetary Scientific Institution, Mental Health Research Center, Moscow, Russian Federation
| |
Collapse
|
59
|
Trofimova I. Contingent Tunes of Neurochemical Ensembles in the Norm and Pathology: Can We See the Patterns? Neuropsychobiology 2021; 80:101-133. [PMID: 33721867 DOI: 10.1159/000513688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Progress in the development of DSM/ICD taxonomies has revealed limitations of both label-based and dimensionality approaches. These approaches fail to address the contingent, nonlinear, context-dependent, and transient nature of those biomarkers linked to specific symptoms of psychopathology or to specific biobehavioural traits of healthy people (temperament). The present review aims to highlight the benefits of a functional constructivism approach in the analysis of neurochemical biomarkers underlying temperament and psychopathology. METHOD A review was performed. RESULTS Eight systems are identified, and 7 neurochemical ensembles are described in detail. None of these systems is represented by a single neurotransmitter; all of them work in ensembles with each other. The functionality and relationships of these systems are presented here in association with their roles in action construction, with brief examples of psychopathology. The review introduces formal symbols for these systems to facilitate their more compact analysis in the future. CONCLUSION This analysis demonstrates the possibility of constructivism-based unifying taxonomies of temperament (in the framework of the neurochemical model functional ensemble of temperament) and classifications of psychiatric disorders. Such taxonomies would present the biobehavioural individual differences as consistent behavioural patterns generated within a formally structured space of parameters related to the generation of behaviour.
Collapse
Affiliation(s)
- Irina Trofimova
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada,
| |
Collapse
|
60
|
Trofimova I. Functional Constructivism Approach to Multilevel Nature of Bio-Behavioral Diversity. Front Psychiatry 2021; 12:641286. [PMID: 34777031 PMCID: PMC8578849 DOI: 10.3389/fpsyt.2021.641286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Attempts to revise the existing classifications of psychiatric disorders (DSM and ICD) continue and highlight a crucial need for the identification of biomarkers underlying symptoms of psychopathology. The present review highlights the benefits of using a Functional Constructivism approach in the analysis of the functionality of the main neurotransmitters. This approach explores the idea that behavior is neither reactive nor pro-active, but constructive and generative, being a transient selection of multiple degrees of freedom in perception and actions. This review briefly describes main consensus points in neuroscience related to the functionality of eight neurochemical ensembles, summarized as a part of the neurochemical model Functional Ensemble of Temperament (FET). None of the FET components is represented by a single neurotransmitter; all neurochemical teams have specific functionality in selection of behavioral degrees of freedom and stages of action construction. The review demonstrates the possibility of unifying taxonomies of temperament and classifications of psychiatric disorders and presenting these taxonomies formally and systematically. The paper also highlights the multi-level nature of regulation of consistent bio-behavioral individual differences, in line with the concepts of diagonal evolution (proposed earlier) and Specialized Extended Phenotype.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
61
|
Mansour A, Nagi K, Dallaire P, Lukasheva V, Le Gouill C, Bouvier M, Pineyro G. Comprehensive Signaling Profiles Reveal Unsuspected Functional Selectivity of δ-Opioid Receptor Agonists and Allow the Identification of Ligands with the Greatest Potential for Inducing Cyclase Superactivation. ACS Pharmacol Transl Sci 2021; 4:1483-1498. [PMID: 34661070 PMCID: PMC8506601 DOI: 10.1021/acsptsci.1c00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/29/2022]
Abstract
![]()
Prolonged exposure
to opioid receptor agonists triggers adaptations
in the adenylyl cyclase (AC) pathway that lead to enhanced production
of cyclic adenosine monophosphate (cAMP) upon withdrawal. This cellular
phenomenon contributes to withdrawal symptoms, hyperalgesia and analgesic
tolerance that interfere with clinical management of chronic pain
syndromes. Since δ-opioid receptors (DOPrs) are a promising
target for chronic pain management, we were interested in finding
out if cell-based signaling profiles as generated for drug discovery
purposes could inform us of the ligand potential to induce sensitization
of the cyclase path. For this purpose, signaling of DOPr agonists
was monitored at multiple effectors. The resulting signaling profiles
revealed marked functional selectivity, particularly for Met-enkephalin
(Met-ENK) whose signaling bias profile differed from those of synthetic
ligands like SNC-80 and ARM390. Signaling diversity among ligands
was systematized by clustering agonists according to similarities
in Emax and Log(τ) values for the
different responses. The classification process revealed that the
similarity in Gα/Gβγ, but not in β-arrestin
(βarr), responses was correlated with the potential of Met-ENK,
deltorphin II, (d-penicillamine2,5)-enkephalin (DPDPE), ARM390,
and SNC-80 to enhance cAMP production, all of which required Ca2+ mobilization to produce this response. Moreover, superactivation
by Met-ENK, which was the most-effective Ca2+ mobilizing
agonist, required Gαi/o activation, availability of Gβγ
subunits at the membrane, and activation of Ca2+ effectors
such as calmodulin and protein kinase C (PKC). In contrast, superactivation by (N-(l-tyrosyl)-(3S)-1,2,3,4-tetrahydroisoquinoline-3-carbonyl)-l-phenylalanyl-l-phenylalanine (TIPP), which was set
in a distinct category through clustering, required activation of
Gαi/o subunits but was independent of the Gβγ dimer
and Ca2+ mobilization, relying instead on Src and Raf-1
to induce this cellular adaptation.
Collapse
Affiliation(s)
- Ahmed Mansour
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| | - Karim Nagi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Paul Dallaire
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| | - Viktoriya Lukasheva
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Graciela Pineyro
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| |
Collapse
|
62
|
Glanville JRW, Jalali P, Flint JD, Patel AA, Maini AA, Wallace JL, Hosin AA, Gilroy DW. Potent anti-inflammatory effects of an H 2 S-releasing naproxen (ATB-346) in a human model of inflammation. FASEB J 2021; 35:e21913. [PMID: 34555204 DOI: 10.1096/fj.201902918rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
ATB-346 is a hydrogen sulfide-releasing non-steroidal anti-inflammatory drug (H2 S-NSAID) derived from naproxen, which in preclinical studies has been shown to have markedly reduced gastrointestinal adverse effects. However, its anti-inflammatory properties in humans compared to naproxen are yet to be confirmed. To test this, we used a dermal model of acute inflammation in healthy, human volunteers, triggered by ultraviolet-killed Escherichia coli. This robust model allows quantification of the cardinal signs of inflammation along with cellular and humoral factors accumulating within the inflamed skin. ATB-346 was non-inferior to naproxen in terms of its inhibition of cyclooxygenase activity as well as pain and tenderness. ATB-346 significantly inhibited neutrophil infiltration at the site of inflammation at 4 h, compared to untreated controls. Subjects treated with ATB-346 also experienced significantly reduced pain and tenderness compared to healthy controls. Furthermore, both classical and intermediate monocyte subsets infiltrating the site of inflammation at 48 h expressed significantly lower levels of CD14 compared to untreated controls, demonstrating a shift toward an anti-inflammatory phenotype. Collectively, we have shown for the first time in humans that ATB-346 is potently anti-inflammatory and propose that ATB-346 represents the next generation of H2 S-NSAIDs, as a viable alternative to conventional NSAIDs, with reduced adverse effects profile.
Collapse
Affiliation(s)
- James R W Glanville
- Division of Medicine, Centre for Clinical Pharmacology and Therapeutics, University College London, London, UK
| | - Parinaaz Jalali
- Division of Medicine, Centre for Clinical Pharmacology and Therapeutics, University College London, London, UK
| | - Julia D Flint
- Division of Medicine, Centre for Clinical Pharmacology and Therapeutics, University College London, London, UK
| | - Amit A Patel
- Division of Medicine, Centre for Clinical Pharmacology and Therapeutics, University College London, London, UK
| | - Alexander A Maini
- Division of Medicine, Centre for Clinical Pharmacology and Therapeutics, University College London, London, UK
| | | | - Ali A Hosin
- Division of Medicine, Centre for Clinical Pharmacology and Therapeutics, University College London, London, UK
| | - Derek W Gilroy
- Division of Medicine, Centre for Clinical Pharmacology and Therapeutics, University College London, London, UK
| |
Collapse
|
63
|
Wolińska R, Kleczkowska P, de Cordé-Skurska A, Poznański P, Sacharczuk M, Mika J, Bujalska-Zadrożny M. Nitric oxide modulates tapentadol antinociceptive tolerance and physical dependence. Eur J Pharmacol 2021; 907:174245. [PMID: 34126091 DOI: 10.1016/j.ejphar.2021.174245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Tapentadol, an analgesic with a dual mechanism of action, involving both μ-opioid receptor agonism and noradrenaline reuptake inhibition (MOP-NRI), was designed for the treatment of moderate to severe pain. However, the widely acknowledged risk of analgesic tolerance and development of physical dependence following sustained opioid use may hinder their effectiveness. One of the possible mechanisms behind these phenomena are alterations in nitric oxide synthase (NOS) system activity. The aim of the study was to investigate the tolerance and dependence potential of tapentadol in rodent models and to evaluate the possible role of nitric oxide (NO) in these processes. Our study showed that chronic tapentadol treatment resulted in tolerance to its antinociceptive effects to an extent similar to tramadol, but much less than morphine. A single injection of a non-selective NOS inhibitor, NG-nitro-L-arginine (L-NOArg), reversed the tapentadol tolerance. In dependence studies, repeated administration of L-NOArg attenuated naloxone-precipitated withdrawal in tapentadol-treated mice, whereas a single injection of L-NOArg was ineffective. Biochemical analysis revealed that tapentadol decreased nNOS protein levels in the dorsal root ganglia of rats following 31 days of treatment, while no significant changes were found in iNOS and eNOS protein expression. Moreover, pre-treatment with L-NOArg augmented tapentadol antinociception in an opioid- and α2-adrenoceptor-dependent manner. In conclusion, our data suggest that the NOS system plays an important role in the attenuation of tapentadol-induced tolerance and withdrawal. Thus, inhibition of NOS activity can serve as a promising treatment option for long-term tapentadol use by extending its effectiveness and improving the side-effects profile.
Collapse
Affiliation(s)
- Renata Wolińska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1b Banacha Street, 01-793 Warsaw, Poland.
| | - Patrycja Kleczkowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1b Banacha Street, 01-793 Warsaw, Poland; Military Institute of Hygiene and Epidemiology, 4 Kozielska Street, 01-163 Warsaw, Poland
| | - Anna de Cordé-Skurska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1b Banacha Street, 01-793 Warsaw, Poland
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences in Jastrzebiec, Postepu 36A Street, 05-552 Magdalenka, Poland
| | - Mariusz Sacharczuk
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1b Banacha Street, 01-793 Warsaw, Poland; Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences in Jastrzebiec, Postepu 36A Street, 05-552 Magdalenka, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1b Banacha Street, 01-793 Warsaw, Poland
| |
Collapse
|
64
|
Hu XM, Yang W, Zhang MT, Du LX, Tian JH, Zhu JY, Chen Y, Hai F, Liu SB, Mao-Ying QL, Chu YX, Zhou H, Wang YQ, Mi WL. Glial IL-33 signaling through an ST2-to-CXCL12 pathway in the spinal cord contributes to morphine-induced hyperalgesia and tolerance. Sci Signal 2021; 14:eabe3773. [PMID: 34516755 DOI: 10.1126/scisignal.abe3773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xue-Ming Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meng-Ting Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Encephalopathy, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang 321017, China
| | - Li-Xia Du
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia-He Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian-Yu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng Hai
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shen-Bin Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Hong Zhou
- Department of Immunology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| |
Collapse
|
65
|
Kim YS, Chang HW, Kim H, Park JS, Won YJ. Comparison of the effects of dexmedetomidine and remifentanil on perioperative hemodynamics and recovery profile of patients undergoing laryngeal microsurgery: A prospective randomized double-blinded study. Medicine (Baltimore) 2021; 100:e27045. [PMID: 34449490 PMCID: PMC8389956 DOI: 10.1097/md.0000000000027045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Laryngeal microsurgery (LMS) causes hemodynamic instability and postoperative agitation, cough, pain, nausea, and vomiting. Moreover, because of a short operation time, it is associated with challenging anesthetic management. The aim of this study was to compare the usefulness of continuous administration of dexmedetomidine and remifentanil in inducing general anesthesia in patients undergoing LMS. METHODS This is a prospective randomized control design. Continuous intravenous infusion of dexmedetomidine (group D) or remifentanil (group R) was administered from 10 minutes before the induction of anesthesia to the end of surgery. In both groups, 1.5 mg/kg propofol and 0.5 mg/kg rocuronium were administered for the induction of anesthesia, and desflurane were titrated during the measurement of the bispectral index. We recorded hemodynamic data, recovery time, grade of cough, pain score, and analgesic requirements during the perioperative period. RESULTS 61 patients were finally analyzed (30 for group D, 31 for group R). The incidence of moderate to severe postoperative sore throat was higher in group R than in group D (42% vs 10%, P = .008), and the quantity of rescue fentanyl used in post-anesthesia care unit was significantly higher in group R than in group D (23.2 ± 24.7 mg vs 3.3 ± 8.6 mg; P < .001); however, the time required for eye opening was significantly longer in group D than in group R (599.4 ± 177.9 seconds vs 493.5 ± 103.6 seconds; P = .006). The proportion of patients with no cough or single cough during extubation was comparable between the 2 groups (group D vs group R: 73% vs 70%) as was the incidence of hemodynamic instability. CONCLUSION Although there was a transient delay in emergence time, dexmedetomidine reduced postoperative opioid use and the incidence of sore throat. Dexmedetomidine may be used as an alternative agent to opioids in patients undergoing LMS.
Collapse
Affiliation(s)
- Young Sung Kim
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hae Wone Chang
- Department of Anesthesiology and Pain Medicine, Eulji University Hospital, Seoul, Republic of Korea
| | - Heezoo Kim
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jong Sun Park
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young Ju Won
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
66
|
O'Brien JB, Roman DL. Novel treatments for chronic pain: moving beyond opioids. Transl Res 2021; 234:1-19. [PMID: 33727192 DOI: 10.1016/j.trsl.2021.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
It is essential that safe and effective treatment options be available to patients suffering from chronic pain. The emergence of an opioid epidemic has shaped public opinions and created stigmas surrounding the use of opioids for the management of pain. This reality, coupled with high risk of adverse effects from chronic opioid use, has led chronic pain patients and their healthcare providers to utilize nonopioid treatment approaches. In this review, we will explore a number of cellular reorganizations that are associated with the development and progression of chronic pain. We will also discuss the safety and efficacy of opioid and nonopioid treatment options for chronic pain. Finally, we will review the evidence for adenylyl cyclase type 1 (AC1) as a novel target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Joseph B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa; Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
67
|
Shi Z, Jagannathan K, Padley JH, Wang A, Fairchild VP, O'Brien CP, Childress AR, Langleben DD. The role of withdrawal in mesocorticolimbic drug cue reactivity in opioid use disorder. Addict Biol 2021; 26:e12977. [PMID: 33098179 DOI: 10.1111/adb.12977] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 01/08/2023]
Abstract
Opioid use disorder (OUD) is characterized by heightened cognitive, physiological, and neural responses to opioid-related cues that are mediated by mesocorticolimbic brain pathways. Craving and withdrawal are key symptoms of addiction that persist during physiological abstinence. The present study evaluated the relationship between the brain response to drug cues in OUD and baseline levels of craving and withdrawal. We used functional magnetic resonance imaging (fMRI) to examine brain responses to opioid-related pictures and control pictures in 29 OUD patients. Baseline measures of drug use severity, opioid craving, and withdrawal symptoms were assessed prior to cue exposure and correlated with subsequent brain responses to drug cues. Mediation analysis was conducted to test the indirect effect of drug use severity on brain cue reactivity through craving and withdrawal symptoms. We found that baseline drug use severity and opioid withdrawal symptoms, but not craving, were positively associated with the neural response to drug cues in the nucleus accumbens, orbitofrontal cortex, and amygdala. Withdrawal, but not craving, mediated the effect of drug use severity on the nucleus accumbens' response to drug cues. We did not find similar effects for the neural responses to stimuli unrelated to drugs. Our findings emphasize the central role of withdrawal symptoms as the mediator between the clinical severity of OUD and the brain correlates of sensitization to opioid-related cues. They suggest that in OUD, baseline withdrawal symptoms signal a high vulnerability to drug cues.
Collapse
Affiliation(s)
- Zhenhao Shi
- Center for Studies of Addiction, Department of Psychiatry University of Pennsylvania Perelman School of Medicine Philadelphia Pennsylvania USA
| | - Kanchana Jagannathan
- Center for Studies of Addiction, Department of Psychiatry University of Pennsylvania Perelman School of Medicine Philadelphia Pennsylvania USA
| | - James H. Padley
- Center for Studies of Addiction, Department of Psychiatry University of Pennsylvania Perelman School of Medicine Philadelphia Pennsylvania USA
| | - An‐Li Wang
- Department of Psychiatry Icahn School of Medicine at Mount Sinai New York New York USA
| | - Victoria P. Fairchild
- Department of Psychology, Queens College The City University of New York New York New York USA
| | - Charles P. O'Brien
- Center for Studies of Addiction, Department of Psychiatry University of Pennsylvania Perelman School of Medicine Philadelphia Pennsylvania USA
| | - Anna Rose Childress
- Center for Studies of Addiction, Department of Psychiatry University of Pennsylvania Perelman School of Medicine Philadelphia Pennsylvania USA
| | - Daniel D. Langleben
- Center for Studies of Addiction, Department of Psychiatry University of Pennsylvania Perelman School of Medicine Philadelphia Pennsylvania USA
- Annenberg Public Policy Center University of Pennsylvania Philadelphia Pennsylvania USA
- Behavioral Health Service Corporal Michael J. Crescenz Veterans Administration Medical Center Philadelphia Pennsylvania USA
| |
Collapse
|
68
|
Jia X, Zhang A, Li Z, Peng X, Tian X, Gao F. Activation of spinal PDGFRβ in microglia promotes neuronal autophagy via p38 MAPK pathway in morphine-tolerant rats. J Neurochem 2021; 158:373-390. [PMID: 33950542 DOI: 10.1111/jnc.15383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022]
Abstract
The adverse side effects of opioids, especially antinociceptive tolerance, limit their clinical application. A recent study reported that platelet-derived growth factor receptor β (PDGFRβ) blockage selectively inhibited morphine tolerance. Autophagy has been reported to contribute to the cellular and behavioral responses to morphine. However, little is known about the relationship between PDGFRβ and autophagy in the mechanisms of morphine tolerance. In this study, rats were intrathecally administered with morphine twice daily for 7 days to induce antinociceptive tolerance, which was evaluated using a tail-flick latency test. By administration autophagy inhibitor 3-Methyladenine, PDGFRβ inhibitor imatinib, p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 hydrochloride and minocycline hydrochloride, western blot, immunofluorescence, and transmission electron microscopy techniques were used to elucidate the roles of PDGFRβ, autophagy, and related signaling pathways in morphine tolerance. This study demonstrated for the first time that spinal PDGFRβ in microglia promotes autophagy in gamma-aminobutyric acid (GABA) interneurons through activating p38 MAPK pathway during the development of morphine tolerance, which suggest a potential strategy for preventing the development of morphine tolerance clinically, thereby improving the use of opioids in pain management.
Collapse
Affiliation(s)
- Xiaoqian Jia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anqi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoling Peng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
69
|
Marks WD, Paris JJ, Barbour AJ, Moon J, Carpenter VJ, McLane VD, Lark ARS, Nass SR, Zhang J, Yarotskyy V, McQuiston AR, Knapp PE, Hauser KF. HIV-1 Tat and Morphine Differentially Disrupt Pyramidal Cell Structure and Function and Spatial Learning in Hippocampal Area CA1: Continuous versus Interrupted Morphine Exposure. eNeuro 2021; 8:ENEURO.0547-20.2021. [PMID: 33782102 PMCID: PMC8146490 DOI: 10.1523/eneuro.0547-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
About half the people infected with human immunodeficiency virus (HIV) have neurocognitive deficits that often include memory impairment and hippocampal deficits, which can be exacerbated by opioid abuse. To explore the effects of opioids and HIV on hippocampal CA1 pyramidal neuron structure and function, we induced HIV-1 transactivator of transcription (Tat) expression in transgenic mice for 14 d and co-administered time-release morphine or vehicle subcutaneous implants during the final 5 d (days 9-14) to establish steady-state morphine levels. Morphine was withheld from some ex vivo slices during recordings to begin to assess the initial pharmacokinetic consequences of opioid withdrawal. Tat expression reduced hippocampal CA1 pyramidal neuronal excitability at lower stimulating currents. Pyramidal cell firing rates were unaffected by continuous morphine exposure. Behaviorally, exposure to Tat or high dosages of morphine impaired spatial memory Exposure to Tat and steady-state levels of morphine appeared to have largely independent effects on pyramidal neuron structure and function, a response that is distinct from other vulnerable brain regions such as the striatum. By contrast, acutely withholding morphine (from morphine-tolerant ex vivo slices) revealed unique and selective neuroadaptive shifts in CA1 pyramidal neuronal excitability and dendritic plasticity, including some interactions with Tat. Collectively, the results show that opioid-HIV interactions in hippocampal area CA1 are more nuanced than previously assumed, and appear to vary depending on the outcome assessed and on the pharmacokinetics of morphine exposure.
Collapse
Affiliation(s)
- William D Marks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Jason J Paris
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848
| | - Aaron J Barbour
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Jean Moon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Valerie J Carpenter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Arianna R S Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Sara R Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Jingli Zhang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0709
| |
Collapse
|
70
|
Baser T, Ozdemir E, Filiz AK, Taskiran AS, Gursoy S. Ghrelin receptor agonist hexarelin attenuates antinociceptive tolerance to morphine in rats. Can J Physiol Pharmacol 2021; 99:461-467. [PMID: 32893668 DOI: 10.1139/cjpp-2020-0218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ghrelin, a peptide hormone released from the gastric endocrine glands, shows analgesic activity apart from its various physiological effects. Nevertheless, the effects of ghrelin receptor (GHS-R) agonists on morphine analgesia and tolerance have not yet been elucidated. The purpose of this study was to evaluate the effects of the ghrelin receptor agonist hexarelin and antagonist [d-Lys3]-GHRP-6 on morphine antinociception and tolerance in rats. A total of 104 Wistar albino male adult rats (weighing approximately 220-240 g) were used in the experiments. To induce morphine tolerance, a three-day cumulative dose regimen was used in the rats. Then, randomly selected rats were evaluated for morphine tolerance on day 4. The analgesic effects of hexarelin (0.2 mg·kg-1), [d-Lys3]-GHRP-6 (10 mg·kg-1), and morphine (5 mg·kg-1) were measured at 30-min intervals (0, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests. The findings suggest that hexarelin in combination with morphine attenuates analgesic tolerance to morphine. On the other hand, ghrelin receptor antagonist [d-Lys3]-GHRP-6 has no significant analgesic activity on the morphine tolerance in analgesia tests. Furthermore, co-administration of hexarelin and morphine increases the analgesic effect. In conclusion, these data indicate that administration of GHS-R agonist hexarelin with morphine enhances the antinociception and attenuates morphine tolerance.
Collapse
Affiliation(s)
- Tayfun Baser
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ercan Ozdemir
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ahmet Kemal Filiz
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ahmet Sevki Taskiran
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Sinan Gursoy
- Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| |
Collapse
|
71
|
Siste K, Wiguna T, Bardasono S, Sekartini R, Pandelaki J, Sarasvita R, Suwartono C, Murtani BJ, Damayanti R, Christian H, Sen LT, Nasrun MW. Internet addiction in adolescents: Development and validation of Internet Addiction Diagnostic Questionnaire (KDAI). Psychiatry Res 2021; 298:113829. [PMID: 33662841 DOI: 10.1016/j.psychres.2021.113829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Internet addiction (IA) is an emerging behavioral problem that constitutes a major health threat to vulnerable populations, including adolescents. However, there is a paucity of IA screening tools specifically designed for adolescents, especially in Indonesia. Therefore, the current study developed and validated the IA Diagnostic Questionnaire (KDAI) in adolescents while acknowledging local cultural influences. The KDAI was conceived through extensive literature reviews, expert discussions based on Delphi methods, a face validity study, focus group discussion (N = 31) for initial reliability testing, and a recruited pilot study (N = 385) and main study (N = 643) for exploratory and confirmatory factor analyses, respectively. The multi-sample analyses demonstrated that the KDAI model with the best fit and reliability comprised a seven-factor structure, including withdrawal, loss of control, increase of priority, negative consequences, mood modification, salience, and impairment. These factors were scrutinized against domains of IA Test, and concurrent validity was ascertained. Subsequently, a receiver operating characteristic curve and area under the curve determined a cutoff score of 108 to discern adolescents with IA. Taken together, the KDAI displayed excellent psychometric indices and sensitivity as a screening tool for IA in adolescents.
Collapse
Affiliation(s)
- Kristiana Siste
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia- dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Tjhin Wiguna
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia- dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Saptawati Bardasono
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia- dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Rini Sekartini
- Department of Child Health, Faculty of Medicine, Universitas Indonesia- dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Jacub Pandelaki
- Department of Radiology, Faculty of Medicine, Universitas Indonesia- dr. Cipto Mangunkusumo General Hospital, Jakarta Indonesia
| | - Riza Sarasvita
- Indonesia National Narcotics Board, Jakarta, Indonesia; Department of Psychology, Soegijapranata Catholic University, Semarang, Central Java, Indonesia
| | - Christiany Suwartono
- Faculty of Psychology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Belinda Julivia Murtani
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia- dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Reza Damayanti
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia- dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Hans Christian
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia- dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Lee Thung Sen
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia- dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Martina Wiwie Nasrun
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia- dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia.
| |
Collapse
|
72
|
Co-administration of nalbuphine attenuates the morphine-induced anxiety and dopaminergic alterations in morphine-withdrawn rats. Psychopharmacology (Berl) 2021; 238:1193-1211. [PMID: 33655408 DOI: 10.1007/s00213-021-05765-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The classical effects of exogenous opioids, such as morphine, are predominantly mediated through μ-opioid receptors. The chronic use of morphine induces anxiety-like behavior causing functional changes in the mesolimbic dopaminergic system. The mixed μ/κ-agonist, nalbuphine, used either as an analgesic or as an adjuvant with morphine, produces different and opposite effects. However, whether nalbuphine can be used to antagonize morphine-induced anxiety and dopaminergic alterations is not fully known. OBJECTIVE This study aimed to compare acute and chronic effects of nalbuphine on morphine-induced anxiety and dopaminergic alterations in rats. METHODS Male adult Wistar albino rats were made opioid-dependent by administering increasing doses of morphine (5-25 mg/kg; i.p.; b.i.d.). Withdrawal was induced by naloxone (1 mg/kg, i.p.), 4 h after the last morphine injection. Anxiety-like behavior was measured using Activity Monitor (Coulbourn Instruments, Inc. USA). Thereafter, the animals were sacrificed and the brain dissected out and the level of cAMP and the transcriptional and translational expression of TH was measured. Nalbuphine was co-administered with morphine, acutely and chronically, at various doses (0.1, 0.3, 1.0, 3.0 mg/kg, i.p.). RESULTS Morphine-dependent rats showed a significant higher anxiety and cAMP levels and a significant decrease in the expression of TH. Co-administration of chronic doses of nalbuphine attenuates the higher anxiety, cAMP levels, and upregulates the TH expressions; however, the acute nalbuphine treatment does not attenuate the morphine-induced side effects. CONCLUSION Therefore, nalbuphine might have an important role in attenuating the anxiety and the effects of the dopaminergic pathway and may have potential in the treatment of opioid addiction.
Collapse
|
73
|
Ahmadi-Soleimani SM, Azizi H, Abbasi-Mazar A. Intermittent REM sleep deprivation attenuates the development of morphine tolerance and dependence in male rats. Neurosci Lett 2021; 748:135735. [PMID: 33592307 DOI: 10.1016/j.neulet.2021.135735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/04/2023]
Abstract
Opioid agonists are used in clinic for pain management, however this application is challenged by development of tolerance and dependence following prolonged exposure. Various approaches have been suggested to address this concern, however, there is still no consensus among the researchers. Neural processing of sleep and nociception are co-regulated through shared brain regions having bidirectional interplays. Thus, we aimed to investigate whether application of REM sleep deprivation (REM-SD) could affect morphine analgesic tolerance and dependence. To this end, adult male rats underwent sleep deprivation during light and dark phases (LSD and DSD, respectively) using the inverted flower pot method and then tolerance and dependence was induced by repeated injection of morphine for 7 days (10 mg/kg, daily, i.p.). Results indicated that REM-SD delays the development of tolerance to morphine during both phases; however this effect was more potent following LSD. Moreover, LSD decreased the baseline thermal threshold and total withdrawal score. One possible hypothesis for our observations is REM-SD-induced attenuation of orexin system which is still controversial among the researchers. Other stronger possibilities might be down-regulation of opioid receptors in response to sleep loss experience. Finally, it seems that modification of sleep periods may assist to decrease the severity of opioid tolerance and dependence.
Collapse
Affiliation(s)
- S Mohammad Ahmadi-Soleimani
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Abbasi-Mazar
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
74
|
Stojanovic T, Benes H, Awad A, Bormann D, Monje FJ. Nicotine abolishes memory-related synaptic strengthening and promotes synaptic depression in the neurogenic dentate gyrus of miR-132/212 knockout mice. Addict Biol 2021; 26:e12905. [PMID: 32293776 PMCID: PMC7988623 DOI: 10.1111/adb.12905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022]
Abstract
Micro-RNAs (miRNAs) are highly evolutionarily conserved short-length/noncoding RNA molecules that modulate a wide range of cellular functions in many cell types by regulating the expression of a variety of targeted genes. miRNAs have also recently emerged as key regulators of neuronal genes mediating the effects of psychostimulant drugs and memory-related neuroplasticity processes. Smoking is a predominant addictive behaviour associated with millions of deaths worldwide, and nicotine is a potent natural psychoactive agonist of cholinergic receptors, highly abundant in cigarettes. The influence of miRNAs modulation on cholinergic signalling in the nervous system remains however poorly explored. Using miRNA knockout mice and biochemical, electrophysiological and pharmacological approaches, we examined the effects of miR-132/212 gene disruption on the levels of hippocampal nicotinic acetylcholine receptors, total ERK and phosphorylated ERK (pERK) and MeCP2 protein levels, and studied the impact of nicotine stimulation on hippocampal synaptic transmission and synaptic depression and strengthening. miR-132/212 deletion significantly altered α7-nAChR and pERK protein levels, but not total ERK or MeCP2, and resulted in both exacerbated synaptic depression and virtually abolished memory-related synaptic strengthening upon nicotine stimulation. These observations reveal a functional miRNAs/nicotinergic signalling interplay critical for nicotinic-receptor expression and neuroplasticity in brain structures relevant for drug addiction and learning and memory functions.
Collapse
Affiliation(s)
- Tamara Stojanovic
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Hannah Benes
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Amena Awad
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Daniel Bormann
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
75
|
A Conantokin Peptide Con-T[M8Q] Inhibits Morphine Dependence with High Potency and Low Side Effects. Mar Drugs 2021; 19:md19010044. [PMID: 33478061 PMCID: PMC7835912 DOI: 10.3390/md19010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) antagonists have been found to be effective to inhibit morphine dependence. However, the discovery of the selective antagonist for NMDAR GluN2B with low side-effects still remains challenging. In the present study, we report a selective NMDAR GluN2B antagonist con-T[M8Q](a conantokin-T variant) that potently inhibits the naloxone-induced jumping and conditioned place preference of morphine-dependent mice at nmol/kg level, 100-fold higher than ifenprodil, a classical NMDAR NR2B antagonist. Con-T[M8Q] displays no significant impacts on coordinated locomotion function, spontaneous locomotor activity, and spatial memory mice motor function at the dose used. Further molecular mechanism experiments demonstrate that con-T[M8Q] effectively inhibited the transcription and expression levels of signaling molecules related to NMDAR NR2B subunit in hippocampus, including NR2B, p-NR2B, CaMKII-α, CaMKII-β, CaMKIV, pERK, and c-fos. The high efficacy and low side effects of con-T[M8Q] make it a good lead compound for the treatment of opiate dependence and for the reduction of morphine usage.
Collapse
|
76
|
McGregor R, Thannickal TC, Siegel JM. Pleasure, addiction, and hypocretin (orexin). HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:359-374. [PMID: 34225941 DOI: 10.1016/b978-0-12-820107-7.00022-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypocretins/orexins were discovered in 1998. Within 2 years, this led to the discovery of the cause of human narcolepsy, a 90% loss of hypothalamic neurons containing these peptides. Further work demonstrated that these neurons were not simply linked to waking. Rather these neurons were active during pleasurable behaviors in waking and were silenced by aversive stimulation. This was seen in wild-type mice, rats, cats, and dogs. It was also evident in humans, with increased Hcrt release during pleasurable activities and decreased release, to the levels seen in sleep, during pain. We found that human heroin addicts have, on average, an increase of 54% in the number of detectable Hcrt neurons compared to "control" human brains and that these Hcrt neurons are substantially smaller than those in control brains. We found that in mice, chronic morphine administration induced the same changes in Hcrt neuron number and size. Our studies in the mouse allowed us to determine the specificity, dose response relations, time course of the change in the number of Hcrt neurons, and that the increased number of Hcrt neurons after opiates was not due to neurogenesis. Furthermore, we found that it took a month or longer for these anatomical changes in the mouse brain to return to baseline. Human narcoleptics, despite their prescribed use of several commonly addictive drugs, do not show significant evidence of dose escalation or substance use disorder. Similarly, mice in which the peptide has been eliminated are resistant to addiction. These findings are consistent with the concept that an increased number of Hcrt neurons may underlie and maintain opioid or cocaine use disorders.
Collapse
Affiliation(s)
- Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Thomas C Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Jerome M Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
77
|
Volkow ND, Blanco C. The changing opioid crisis: development, challenges and opportunities. Mol Psychiatry 2021; 26:218-233. [PMID: 32020048 PMCID: PMC7398847 DOI: 10.1038/s41380-020-0661-4] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/02/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
The current opioid epidemic is one of the most severe public health crisis in US history. Responding to it has been difficult due to its rapidly changing nature and the severity of its associated outcomes. This review examines the origin and evolution of the crisis, the pharmacological properties of opioids, the neurobiology of opioid use and opioid use disorder (OUD), medications for opioid use disorder (MOUD), and existing and promising approaches to prevention. The results of the review indicate that the opioid epidemic is a complex, evolving phenomenon that involves neurobiological vulnerabilities and social determinants of health. Successfully addressing the epidemic will require advances in basic science, development of more acceptable and effective treatments, and implementation of public health approaches, including prevention. The advances achieved in addressing the current crisis should also serve to advance the science and treatment of other substance use disorders.
Collapse
Affiliation(s)
| | - Carlos Blanco
- National Institute on Drug Abuse, Bethesda, MD, 20892, USA.
| |
Collapse
|
78
|
Zhao X, Wang M, Wen Z, Lu Z, Cui L, Fu C, Xue H, Liu Y, Zhang Y. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front Endocrinol (Lausanne) 2021; 12:721135. [PMID: 34497589 PMCID: PMC8419463 DOI: 10.3389/fendo.2021.721135] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Glucagon like peptide-1 (GLP-1) is an incretin secretory molecule. GLP-1 receptor agonists (GLP-1RAs) are widely used in the treatment of type 2 diabetes (T2DM) due to their attributes such as body weight loss, protection of islet β cells, promotion of islet β cell proliferation and minimal side effects. Studies have found that GLP-1R is widely distributed on pancreatic and other tissues and has multiple biological effects, such as reducing neuroinflammation, promoting nerve growth, improving heart function, suppressing appetite, delaying gastric emptying, regulating blood lipid metabolism and reducing fat deposition. Moreover, GLP-1RAs have neuroprotective, anti-infectious, cardiovascular protective, and metabolic regulatory effects, exhibiting good application prospects. Growing attention has been paid to the relationship between GLP-1RAs and tumorigenesis, development and prognosis in patient with T2DM. Here, we reviewed the therapeutic effects and possible mechanisms of action of GLP-1RAs in the nervous, cardiovascular, and endocrine systems and their correlation with metabolism, tumours and other diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Minghe Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhitong Wen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Chao Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| |
Collapse
|
79
|
Wang M, Thyagarajan B. Pain pathways and potential new targets for pain relief. Biotechnol Appl Biochem 2020; 69:110-123. [PMID: 33316085 DOI: 10.1002/bab.2086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Pain is an unpleasant sensory and emotional experience that affects a sizable percentage of people on a daily basis. Sensory neurons known as nociceptors built specifically to detect damaging stimuli can be found throughout the body. They transmit information about noxious stimuli from mechanical, thermal, and chemical sources to the central nervous system and higher brain centers via electrical signals. Nociceptors express various channels and receptors such as voltage-gated sodium and calcium channels, transient receptor potential channels, and opioid receptors that allow them to respond in a highly specific manner to noxious stimuli. Attenuating the pain response can be achieved by inhibiting or altering the expression of these pain targets. Achieving a deeper understanding of how these receptors can be affected at the molecular level can lead to the development of novel pain therapies. This review will discuss the mechanisms of pain, introduce the various receptors that are responsible for detecting pain, and future directions in pharmacological therapies.
Collapse
Affiliation(s)
- Menglan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Baskaran Thyagarajan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
80
|
Kathiresan P, Rao R, Joshi T, Bhad R, Bhatnagar S, Deb KS, Chadda RK. Chronic Noncancer Pain and Opioid Addiction: Diagnostic and Management Challenges. Indian J Palliat Care 2020; 26:544-547. [PMID: 33623322 PMCID: PMC7888418 DOI: 10.4103/ijpc.ijpc_232_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 12/31/2019] [Indexed: 11/25/2022] Open
Abstract
Chronic pain is associated with higher rates of psychiatric comorbidity, including substance use disorders. Patients with chronic pain often require opioids for their pain relief. Often, clinicians are reluctant to prescribe opioids to patients with chronic pain due to fear of patients becoming dependent on opioids. Diagnosing opioid addiction in chronic pain with comorbid prescription opioid use is challenging, as some of the symptoms of addiction overlap with those of physical dependence. A 28-year-old female presented with a history of recurrent abdominal pain beginning at the age of 16 years. The patient was diagnosed with chronic pancreatitis and was prescribed tramadol orally or injections for pain. The patient started experiencing craving with repeated administration of tramadol. She started using it daily and increased her dose to about 6–7 ampoules per day. She also developed complications due to injections. She was not able to work due to her pain, as well as injection use. She would go to multiple chemist shops for getting herself injected with tramadol injections. She also developed depressive symptoms in this period. Due to abdominal pain, the patient was admitted in the gastroenterology ward, from where she was shifted to the psychiatry ward for the management of opioid misuse and depressive symptoms. The patient was diagnosed to be suffering from opioid dependence syndrome with depressive episodes, for which she was provided tablet buprenorphine 14 mg/day dose along with tablet sertraline 150 mg/day. The case demonstrates several challenges in the diagnosis and management of opioid dependence and chronic pain when they occur simultaneously.
Collapse
Affiliation(s)
- Preethy Kathiresan
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Ravindra Rao
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Tanmay Joshi
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Roshan Bhad
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Sushma Bhatnagar
- Department of Onco-Anaesthesis, Pain and Palliative Care, IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Koushik Sinha Deb
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar Chadda
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
81
|
Abstract
The management of pain, particularly chronic pain, is still an area of medical need. In this context, opioids remain a gold standard for the treatment of pain. However, significant side effects, mainly of central origin, limit their clinical use. Here, we review recent progress to improve the therapeutic and safety profiles of opioids for pain management. Characterization of peripheral opioid-mediated pain mechanisms have been a key component of this process. Several studies identified peripheral µ, δ, and κ opioid receptors (MOR, DOR, and KOR, respectively) and nociceptin/orphanin FQ (NOP) receptors as significant players of opioid-mediated antinociception, able to achieve clinically significant effects independently of any central action. Following this, particularly from a medicinal chemistry point of view, main efforts have been directed towards the peripheralization of opioid receptor agonists with the objective of optimizing receptor activity and minimizing central exposure and the associated undesired effects. These activities have allowed the characterization of a great variety of compounds and investigational drugs that show low central nervous system (CNS) penetration (and therefore a reduced side effect profile) yet maintaining the desired opioid-related peripheral antinociceptive activity. These include highly hydrophilic/amphiphilic and massive molecules unable to easily cross lipid membranes, substrates of glycoprotein P (a extrusion pump that avoids CNS penetration), nanocarriers that release the analgesic agent at the site of inflammation and pain, and pH-sensitive opioid agonists that selectively activate at those sites (and represent a new pharmacodynamic paradigm). Hopefully, patients with pain will benefit soon from the incorporation of these new entities.
Collapse
|
82
|
Shen M, Chen M, Liang T, Wang S, Xue Y, Bertz R, Xie XQ, Feng Z. Pain Chemogenomics Knowledgebase (Pain-CKB) for Systems Pharmacology Target Mapping and Physiologically Based Pharmacokinetic Modeling Investigation of Opioid Drug-Drug Interactions. ACS Chem Neurosci 2020; 11:3245-3258. [PMID: 32966035 DOI: 10.1021/acschemneuro.0c00372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
More than 50 million adults in America suffer from chronic pain. Opioids are commonly prescribed for their effectiveness in relieving many types of pain. However, excessive prescribing of opioids can lead to abuse, addiction, and death. Non-steroidal anti-inflammatory drugs (NSAIDs), another major class of analgesic, also have many problematic side effects including headache, dizziness, vomiting, diarrhea, nausea, constipation, reduced appetite, and drowsiness. There is an urgent need for the understanding of molecular mechanisms that underlie drug abuse and addiction to aid in the design of new preventive or therapeutic agents for pain management. To facilitate pain related small-molecule signaling pathway studies and the prediction of potential therapeutic target(s) for the treatment of pain, we have constructed a comprehensive platform of a pain domain-specific chemogenomics knowledgebase (Pain-CKB) with integrated data mining computing tools. Our new computing platform describes the chemical molecules, genes, proteins, and signaling pathways involved in pain regulation. Pain-CKB is implemented with a friendly user interface for the prediction of the relevant protein targets and analysis and visualization of the outputs, including HTDocking, TargetHunter, BBB predictor, and Spider Plot. Combining these with other novel tools, we performed three case studies to systematically demonstrate how further studies can be conducted based on the data generated from Pain-CKB and its algorithms and tools. First, systems pharmacology target mapping was carried out for four FDA approved analgesics in order to identify the known target and predict off-target interactions. Subsequently, the target mapping outcomes were applied to build physiologically based pharmacokinetic (PBPK) models for acetaminophen and fentanyl to explore the drug-drug interaction (DDI) between this pair of drugs. Finally, pharmaco-analytics was conducted to explore the detailed interaction pattern of acetaminophen reactive metabolite and its hepatotoxicity target, thioredoxin reductase.
Collapse
Affiliation(s)
- Mingzhe Shen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Maozi Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Tianjian Liang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Siyi Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ying Xue
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Richard Bertz
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, and Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
83
|
Zhang P, Bu J, Wu X, Deng L, Chi M, Ma C, Shi X, Wang G. Upregulation of μ-Opioid Receptor in the Rat Spinal Cord Contributes to the α2-Adrenoceptor Agonist Dexmedetomidine-Induced Attenuation of Chronic Morphine Tolerance in Cancer Pain. J Pain Res 2020; 13:2617-2627. [PMID: 33116804 PMCID: PMC7573317 DOI: 10.2147/jpr.s274225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 11/23/2022] Open
Abstract
Background Sustained morphine treatment for cancer pain has been limited due to analgesic tolerance. Opioid receptor internalization and desensitization mediated by downregulation of mu-opioid receptor (MOR) expression have been confirmed as one of the mechanisms of chronic morphine tolerance. In addition to the opiate system, the α2-adrenergic system is involved in the development of morphine tolerance. Several studies reported that co-administration of α2-adrenoceptor agonist dexmedetomidine inhibits morphine tolerance in normal or neuropathic pain animals. However, the effect of dexmedetomidine on morphine tolerance has not been studied in cancer pain. Therefore, we investigated the effect of intrathecal injection of dexmedetomidine on the development of morphine tolerance in cancer pain and on the expression of MOR in the spinal cord of morphine-tolerant cancer pain rats. Methods The model was established using a rat’s right hind paw injection of Walker 256 cancer cells. Subcutaneous morphine (10mg/kg) was administrated twice daily for 7 days; meanwhile, the rats received intrathecal α2-adrenoceptor agonist dexmedetomidine (10μ/kg) or antagonist MK-467 (0.25mg/kg) in test groups. Rats receiving drug vehicle served as the control group. Antinociception was detected by von Frey filaments and hot-plate tests. The expression of MOR in the spinal cord was examined through real-time reverse transcription polymerase chain reaction and Western blotting. The data were analyzed via analysis of variance followed by Student t-test with Bonferroni correction. Results Seven-day chronic morphine administration elicited notable analgesic tolerance in the rats with cancer pain. Co-administration of α2-adrenoceptor agonist dexmedetomidine enhanced morphine analgesia and attenuated morphine tolerance, which could be blocked by α2-adrenoceptor antagonist MK-467. Furthermore, pre-treatment of dexmedetomidine significantly upregulated MOR protein expression without a notable change in MOR mRNA expression in the spinal cord. Conclusion Our findings suggest that intrathecal injection of dexmedetomidine enhanced morphine analgesia and attenuated morphine tolerance in cancer pain, potentially by upregulating MOR expression in the spinal cord. The α2-adrenoceptor agonist may provide a more versatile analgesia option for morphine treatment for cancer pain.
Collapse
Affiliation(s)
- Pinyi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Jianlong Bu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Xiaohong Wu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Lin Deng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Meng Chi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Chao Ma
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xiaoding Shi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
84
|
Abstract
BACKGROUND Both acute and chronic pain can disrupt reward processing. Moreover, prolonged prescription opioid use and depressed mood are common in chronic pain samples. Despite the prevalence of these risk factors for anhedonia, little is known about anhedonia in chronic pain populations. METHODS We conducted a large-scale, systematic study of anhedonia in chronic pain, focusing on its relationship with opioid use/misuse, pain severity, and depression. Chronic pain patients across four distinct samples (N = 488) completed the Snaith-Hamilton Pleasure Scale (SHAPS), measures of opioid use, pain severity and depression, as well as the Current Opioid Misuse Measure (COMM). We used a meta-analytic approach to determine reference levels of anhedonia in healthy samples spanning a variety of countries and diverse age groups, extracting SHAPS scores from 58 published studies totaling 2664 psychiatrically healthy participants. RESULTS Compared to healthy samples, chronic pain patients showed higher levels of anhedonia, with ~25% of patients scoring above the standard anhedonia cut-off. This difference was not primarily driven by depression levels, which explained less than 25% of variance in anhedonia scores. Neither opioid use duration, dose, nor pain severity alone was significantly associated with anhedonia. Yet, there was a clear effect of opioid misuse, with opioid misusers (COMM ⩾13) reporting greater anhedonia than non-misusers. Opioid misuse remained a significant predictor of anhedonia even after controlling for pain severity, depression and opioid dose. CONCLUSIONS Study results suggest that both chronic pain and opioid misuse contribute to anhedonia, which may, in turn, drive further pain and misuse.
Collapse
Affiliation(s)
- Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City, UT, USA
- College of Social Work, University of Utah, Salt Lake City, UT, USA
| | | | - Marie Eikemo
- Department of Psychology, University of Oslo, Norway
| | - Gernot Ernst
- Department of Psychology, University of Oslo, Norway
- Kongsberg Hospital, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo, Norway
| |
Collapse
|
85
|
Volkow ND, Blanco C. Medications for opioid use disorders: clinical and pharmacological considerations. J Clin Invest 2020; 130:10-13. [PMID: 31763992 DOI: 10.1172/jci134708] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
86
|
Yuan L, Luo L, Ma X, Wang W, Yu K, Shi H, Chen J, Chen D, Xu T. Chronic morphine induces cyclic adenosine monophosphate formation and hyperpolarization-activated cyclic nucleotide-gated channel expression in the spinal cord of mice. Neuropharmacology 2020; 176:108222. [PMID: 32659289 DOI: 10.1016/j.neuropharm.2020.108222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022]
Abstract
Chronic morphine exposure persistently activates Gαi/o protein-coupled receptors and enhances adenylyl cyclase (AC) activity, which can increase cyclic adenosine monophosphate (cAMP) production. Direct binding of cAMP to the cytoplasmic site on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels increases the probability of channel opening. HCN channels play a prominent role in chronic pain the disease that shares some common mechanisms with opioid tolerance. This compensatory AC activation may be responsible for the induction of morphine-induced analgesic tolerance. We investigated spinal cAMP formation and expression of HCN2 in the spinal cord, and observed the effect of AC inhibition on the induction of morphine analgesic tolerance. We found that chronic morphine-induced antinociceptive tolerance increased spinal cAMP formation and the expression of spinal HCN2. Inhibition of spinal AC partially blocked chronic morphine-induced cAMP formation and prevented the induction of morphine-induced analgesic tolerance. Inhibition of HCN2 also showed a partial preventive effect on morphine-induced tolerance, hypothermia tolerance and also the right-shift of the dose-response curve. We conclude that repeated morphine treatment increases AC activity and cAMP formation, and also spinal HCN2 expression, blockade of AC or HCN2 can prevent the development of morphine-induced analgesic tolerance.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Limin Luo
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Xiaqing Ma
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Wenying Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Kangkang Yu
- Department of Pathology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Jian Chen
- Department of Orthopaedics, Tongzhou People's Hospital, Nantong, 226300, China.
| | - Dake Chen
- Department of Oncology, Tongzhou People's Hospital, Nantong, 226300, China.
| | - Tao Xu
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong, 226300, China; Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
87
|
Sala E, Ferrari F, Lanza M, Milia C, Sabatini C, Bonazzi A, Comi E, Borsi Franchini M, Caselli G, Rovati LC. Improved efficacy, tolerance, safety, and abuse liability profile of the combination of CR4056 and morphine over morphine alone in rodent models. Br J Pharmacol 2020; 177:3291-3308. [PMID: 32154915 PMCID: PMC7312436 DOI: 10.1111/bph.15049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Prolonged use of opioids causes analgesic tolerance and adverse effects including constipation and dependence. Compounds targeting imidazoline I2 receptors are known to potentiate opioid analgesia in rodents. We investigated whether combination with the I2 receptor ligand CR4056 could improve efficacy and safety of morphine and explored the mechanisms of the CR4056-opioid interaction. EXPERIMENTAL APPROACH We used the complete Freund's adjuvant (CFA) model in rats to study the effects of treatments on hyperalgesia, morphine tolerance and microglia activation as measured by immunofluorescence. Opioid-induced adverse effects were assessed in rodent models of morphine-induced constipation, sedation (open field, sedation rating scale, and rotarod), physical dependence (naloxone-induced withdrawal), and abuse (conditioned place preference-associated reward). Chemiluminescence assays tested CR4056 as allosteric modulator of μ-opioid receptors. KEY RESULTS CR4056 (ED50 = 4.88 mg·kg-1 ) and morphine (ED50 = 2.07 mg·kg-1 ) synergized in reducing CFA-induced hyperalgesia (ED50 = 0.52 mg·kg-1 ; 1:1 combination). Consistently, low doses of CR4056 (1 mg·kg-1 ) spared one third of the cumulative morphine dose administered during 4 days and prevented/reversed the development of tolerance to morphine anti-hyperalgesia. These opioid-sparing effects were associated with decreased activation of microglia, independent of CR4056 interactions on μ-opioid receptors. Importantly, the low doses of CR4056 and morphine that synergize in analgesia did not induce constipation, sedation, physical dependence, or place preference. CONCLUSION AND IMPLICATIONS We showed selective synergism between CR4056 and morphine as analgesics. Their combination showed an improved safety and abuse liability profile over morphine alone. CR4056 could be developed as an opioid-sparing drug in multimodal analgesia.
Collapse
Affiliation(s)
- Emanuele Sala
- Rottapharm BiotechMonzaItaly
- PhD program in NeuroscienceUniversity of Milano‐BicoccaMonzaItaly
| | | | | | - Chiara Milia
- School of Medicine and SurgeryUniversity of Milano ‐ BicoccaMonzaItaly
| | - Chiara Sabatini
- Rottapharm BiotechMonzaItaly
- PhD program in NeuroscienceUniversity of Milano‐BicoccaMonzaItaly
| | | | | | | | | | | |
Collapse
|
88
|
Bakhtazad A, Vousooghi N, Nasehi M, Sanadgol N, Garmabi B, Zarrindast MR. The effect of microinjection of CART 55-102 into the nucleus accumbens shell on morphine-induced conditioned place preference in rats: Involvement of the NMDA receptor. Peptides 2020; 129:170319. [PMID: 32335205 DOI: 10.1016/j.peptides.2020.170319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/31/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
The addictive properties of opioids may be mediated to some extent by cocaine-and amphetamine-regulated transcript (CART) in the reward pathway. Moreover, some claims CART interacts with the glutamate system. Here, we evaluated whether intra-nucleus accumbens (NAc) shell infusions of CART induces Conditioned Place Preference (CPP) or Conditioned Place Aversion (CPA) and affects morphine reward. We also measured NR1 subunit expressions of the N-methyl-d-aspartate (NMDA) receptor in various parts of the reward pathway (NAc, prefrontal cortex and hippocampus) after conditioning tests. Animals with bilateral intra-NAc shell cannulas were place-conditioned with several doses of subcutaneous morphine prior to intra-NAc shell infusions of artificial cerebrospinal fluid (aCSF). Immunohistochemistry (IHC) showed a dose-dependent increase in the NR1 expression in all examined parts. When rats were conditioned with intra-NAc shell infusions of CART, CPP and CPA induced with 2.5 and 5 μg/side respectively and IHC showed NR1elevation with 2.5 and reduction with 5 μg/side in all areas. Sub-rewarding dose of CART administration (1.25 μg/side) prior to sub-rewarding dose of morphine (2.5 mg/kg) induced CPP and NR1 increased in all examined tissues in IHC. However, infusion of an aversive dose of CART (5 μg/side) prior to the rewarding dose of morphine (5 mg/kg) produced neither CPP nor CPA and NR1 in the NAc and hippocampus decreased significantly. It seems that the rewarding or aversive effects of intra-NAc shell CART and its facilitating or inhibiting effects on morphine reward are dose-dependent. Additionally, NMDA may be closely involved in the affective properties of opioids and CART in the reward pathway.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Behzad Garmabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
| |
Collapse
|
89
|
Derakhshan P, Imani F, Seyed-Siamdoust SA, Garousi S, Nouri N. Cerebrospinal Fluid and Spinal Anesthesia Parameters in Healthy Individuals versus Opium-addict Patients during Lower Limb Surgery. ADDICTION & HEALTH 2020; 12:11-17. [PMID: 32582410 PMCID: PMC7291896 DOI: 10.22122/ahj.v12i1.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Studies have reported lower pain threshold, spinal anesthesia duration, and level of sensory block in addicts compared to non-addict patients undergoing spinal anesthesia for surgery. Moreover, blood gas and cerebrospinal fluid (CSF) were likely to be affected as well. The aim in the present study is to evaluate CSF and spinal parameters in addict versus non-addict patients during lower limb surgery. Methods In this case-control study, 22 opium addicts and 22 sex- and age- matched non-addicts undergoing lower limb surgery under spinal anesthesia were included. The CSF parameters, venous blood gas (VBG), and sensory and motor block findings were compared between the groups. Findings The addict and non-addict patients were similar regarding CSF and blood gas parameters except higher pH in VBG (7.39 ± 0.06 vs. 7.33 ± 0.11, P = 0.030) and CSF (7.39 ± 0.06 vs. 7.33 ± 0.11, P = 0.030) for addict patients. The addict patients had significantly later onset of sensory block (5.72 ± 1.57 vs. 3.16 ± 0.93 minutes, P < 0.001) and shorter motor block duration (137.72 ± 11.51 vs. 149.09 ± 14.44 minutes, P = 0.006), with no significant difference in the sensory block duration and motor block onset. Conclusion Addict patients have delayed onset of sensory block with shorter duration of motor block and lower sensory block level. Among the blood gas and CSF markers, only pH was significantly higher in addict patients, needing further evaluations; however, it seems that addiction has no significant effect on these parameters.
Collapse
Affiliation(s)
- Pooya Derakhshan
- Pain Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farnad Imani
- Pain Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sorour Garousi
- Pain Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Nouri
- Pain Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
90
|
Habib AM, Nagi K, Thillaiappan NB, Sukumaran V, Akhtar S. Vitamin D and Its Potential Interplay With Pain Signaling Pathways. Front Immunol 2020; 11:820. [PMID: 32547536 PMCID: PMC7270292 DOI: 10.3389/fimmu.2020.00820] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
About 50 million of the U.S. adult population suffer from chronic pain. It is a complex disease in its own right for which currently available analgesics have been deemed woefully inadequate since ~20% of the sufferers derive no benefit. Vitamin D, known for its role in calcium homeostasis and bone metabolism, is thought to be of clinical benefit in treating chronic pain without the side-effects of currently available analgesics. A strong correlation between hypovitaminosis D and incidence of bone pain is known. However, the potential underlying mechanisms by which vitamin D might exert its analgesic effects are poorly understood. In this review, we discuss pathways involved in pain sensing and processing primarily at the level of dorsal root ganglion (DRG) neurons and the potential interplay between vitamin D, its receptor (VDR) and known specific pain signaling pathways including nerve growth factor (NGF), glial-derived neurotrophic factor (GDNF), epidermal growth factor receptor (EGFR), and opioid receptors. We also discuss how vitamin D/VDR might influence immune cells and pain sensitization as well as review the increasingly important topic of vitamin D toxicity. Further in vitro and in vivo experimental studies will be required to study these potential interactions specifically in pain models. Such studies could highlight the potential usefulness of vitamin D either alone or in combination with existing analgesics to better treat chronic pain.
Collapse
Affiliation(s)
| | | | | | | | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
91
|
Ozdemir E. The Role of the Cannabinoid System in Opioid Analgesia and Tolerance. Mini Rev Med Chem 2020; 20:875-885. [DOI: 10.2174/1389557520666200313120835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/29/2019] [Accepted: 02/01/2020] [Indexed: 11/22/2022]
Abstract
Opioid receptor agonist drugs, such as morphine, are very effective for treating chronic and severe pain; but, tolerance can develop with long-term use. Although there is a lot of information about the pathophysiological mechanisms of opioid tolerance, it is still not fully clarified. Suggested mechanisms for opioid tolerance include opioid receptor desensitisation, reduction of sensitivity G-proteins, activation of Mitogen-Activated Protein Kinase (MAPK), altered intracellular signaling pathway including nitric oxide, and activation of mammalian Target of Rapamycin (mTOR). One way to reduce opioid tolerance and increase the analgesic potential is to use low doses. Combination of cannabinoids with opioids has been shown to manifest the reduction of the opioid dose. Experimental studies revealed an interaction of the endocannabinoid system and opioid antinociception. Cannabinoid and opioid receptor systems use common pathways in the formation of analgesic effect and demonstrate their activity via G Protein Coupled Receptors (GPCR). Cannabinoid drugs modulate opioid analgesic activity at a number of distinct levels within the cell, ranging from direct receptor associations to post-receptor interactions through shared signal transduction pathways. This review summarizes the data indicating that with combining cannabinoids and opioids drugs may be able to produce long-term analgesic effects, while preventing the opioid analgesic tolerance.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, School of Medicine, Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
92
|
Pergolizzi JV, Raffa RB, Rosenblatt MH. Opioid withdrawal symptoms, a consequence of chronic opioid use and opioid use disorder: Current understanding and approaches to management. J Clin Pharm Ther 2020; 45:892-903. [PMID: 31986228 DOI: 10.1111/jcpt.13114] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Accepted: 01/05/2020] [Indexed: 01/07/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Opioid use in the United States has reached unprecedented-some would even say crisis-levels. Although many individuals use opioid drugs as part of legitimate pain management plans, a significant number misuse prescription or illicit opioids. With regular opioid use, individuals develop tolerance and physical dependence; both are predictable, physiologic responses to repeated opioid exposure. However, a substantial number of individuals who misuse opioids will develop opioid use disorder (OUD), a complex, primary, chronic, neurobiological disease rooted in genetic, environmental and psychosocial factors. This article discusses OUD, opioid receptor physiology, and opioid withdrawal symptomatology and pathophysiology, as well as current treatment options available to reduce opioid withdrawal symptoms in individuals with physical dependence and/or OUD. METHODS The research articles regarding OUD and its management have been reviewed thoroughly based on a PubMed literature search using keywords related to opioid dependence, its pathophysiology and current treatment strategies. RESULTS AND DISCUSSION Tolerance/physical dependence and the behavioural characteristics associated with OUD reflect complex neurobiologic adaptations in several major systems of the brain, including the locus ceruleus and mesolimbic systems. Physical dependence is responsible for the distressing withdrawal symptoms individuals experience upon abrupt cessation or rapid dose reduction of exogenous opioids. Opioid withdrawal symptoms are a key driver behind continued opioid use, and a barrier to opioid discontinuation. Several opioid-based medications are available to treat patients with OUD; these treatments can diminish opioid withdrawal symptoms and cravings as well as block opioid effects in the event of relapse. Additionally, non-opioid drugs may be used during acute detoxification to help alleviate opioid withdrawal symptoms. WHAT IS NEW AND CONCLUSION The opioid crisis has produced many challenges for physicians, one being the need to determine which patients would benefit most from maintenance therapy and which may be candidates for opioid discontinuation. In addition to summarizing current understanding of OUD, we provide a new algorithm for determining the need for continued opioid use as well as examples of situations where management of opioid withdrawal symptoms is indicated.
Collapse
Affiliation(s)
| | - Robert B Raffa
- Neumentum, Palo Alto, California.,University of Arizona College of Pharmacy, Tucson, Arizona.,Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | | |
Collapse
|
93
|
Brewer R, Blum K, Bowirrat A, Modestino EJ, Baron D, Badgaiyan RD, Moran M, Boyett B, Gold MS. Transmodulation of Dopaminergic Signaling to Mitigate Hypodopminergia and Pharmaceutical Opioid-Induced Hyperalgesia. CURRENT PSYCHOPHARMACOLOGY 2020; 9:164-184. [PMID: 37361136 PMCID: PMC10288629 DOI: 10.2174/2211556009999200628093231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 06/28/2023]
Abstract
Neuroscientists and psychiatrists working in the areas of "pain and addiction" are asked in this perspective article to reconsider the current use of dopaminergic blockade (like chronic opioid agonist therapy), and instead to consider induction of dopamine homeostasis by putative pro-dopamine regulation. Pro-dopamine regulation could help pharmaceutical opioid analgesic agents to mitigate hypodopaminergia-induced hyperalgesia by inducing transmodulation of dopaminergic signaling. An optimistic view is that early predisposition to diagnosis based on genetic testing, (pharmacogenetic/pharmacogenomic monitoring), combined with appropriate urine drug screening, and treatment with pro-dopamine regulators, could conceivably reduce stress, craving, and relapse, enhance well-being and attenuate unwanted hyperalgesia. These concepts require intensive investigation. However, based on the rationale provided herein, there is a good chance that combining opioid analgesics with genetically directed pro-dopamine-regulation using KB220 (supported by 43 clinical studies). This may become a front-line technology with the potential to overcome, in part, the current heightened rates of chronic opioid-induced hyperalgesia and concomitant Reward Deficiency Syndrome (RDS) behaviors. Current research does support the hypothesis that low or hypodopaminergic function in the brain may predispose individuals to low pain tolerance or hyperalgesia.
Collapse
Affiliation(s)
- Raymond Brewer
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
| | - Kenneth Blum
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
- Western University Health Sciences, Pomona, CA., USA
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
- Eotvos Loránd University, Institute of Psychology, Budapest, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, USA
- Department of Psychiatry, University of Vermont, Burlington, VT., USA
| | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, Interdisciplinary Center Herzliya, Israel
| | | | - David Baron
- Western University Health Sciences, Pomona, CA., USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, ICHAN School of Medicine, Mount Sinai, New York, NYC. & Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Mark Moran
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
| | - Brent Boyett
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
- Bradford Health Services, Madison, AL., USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo., USA
| |
Collapse
|
94
|
Pharmacological evidence for the involvement of the opioid system in the antidepressant-like effect of simvastatin in mice: Without tolerance and withdrawal syndrome. Neurosci Lett 2020; 714:134578. [DOI: 10.1016/j.neulet.2019.134578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/03/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022]
|
95
|
Abijo T, Blum K, Gondré-Lewis MC. Neuropharmacological and Neurogenetic Correlates of Opioid Use Disorder (OUD) As a Function of Ethnicity: Relevance to Precision Addiction Medicine. Curr Neuropharmacol 2020; 18:578-595. [PMID: 31744450 PMCID: PMC7457418 DOI: 10.2174/1570159x17666191118125702] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Over 100 people die daily from opioid overdose and $78.5B per year is spent on treatment efforts, however, the real societal cost is multifold greater. Alternative strategies to eradicate/manage drug misuse and addiction need consideration. The perception of opioid addiction as a social/criminal problem has evolved to evidence-based considerations of them as clinical disorders with a genetic basis. We present evaluations of the genetics of addiction with ancestryspecific risk profiles for consideration. OBJECTIVE Studies of gene variants associated with predisposition to substance use disorders (SUDs) are monolithic, and exclude many ethnic groups, especially Hispanics and African Americans. We evaluate gene polymorphisms that impact brain reward and predispose individuals to opioid addictions, with a focus on the disparity of research which includes individuals of African and Hispanic descent. METHODOLOGY PubMed and Google Scholar were searched for: Opioid Use Disorder (OUD), Genome- wide association studies (GWAS); genetic variants; polymorphisms, restriction fragment length polymorphisms (RFLP); genomics, epigenetics, race, ethnic group, ethnicity, ancestry, Caucasian/ White, African American/Black, Hispanic, Asian, addictive behaviors, reward deficiency syndrome (RDS), mutation, insertion/deletion, and promotor region. RESULTS Many studies exclude non-White individuals. Studies that include diverse populations report ethnicity-specific frequencies of risk genes, with certain polymorphisms specifically associated with Caucasian and not African-American or Hispanic susceptibility to OUD or SUDs, and vice versa. CONCLUSION To adapt precision medicine-based addiction management in a blended society, we propose that ethnicity/ancestry-informed genetic variations must be analyzed to provide real precision- guided therapeutics with the intent to attenuate this uncontrollable fatal epidemic.
Collapse
Affiliation(s)
| | | | - Marjorie C. Gondré-Lewis
- Address correspondence to this author at the Department of Anatomy, Howard University College of Medicine, 520 W St NW, Washington DC 20059 USA; Tel/Fax: +1-202-806-5274; E-mail:
| |
Collapse
|
96
|
Garland EL, Hanley AW, Riquino MR, Reese SE, Baker AK, Salas K, Yack BP, Bedford CE, Bryan MA, Atchley R, Nakamura Y, Froeliger B, Howard MO. Mindfulness-oriented recovery enhancement reduces opioid misuse risk via analgesic and positive psychological mechanisms: A randomized controlled trial. J Consult Clin Psychol 2019; 87:927-940. [PMID: 31556669 DOI: 10.1037/ccp0000390] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Despite the heightened urgency of the current prescription opioid crisis, few psychotherapies have been evaluated for chronic pain patients receiving long-term opioid analgesics. Current psychological pain treatments focus primarily on ameliorating negative affective processes, yet basic science suggests that risk for opioid misuse is linked with a dearth of positive affect. Interventions that modulate positive psychological processes may produce therapeutic benefits among patients with opioid-treated chronic pain. The aim of this study was to conduct a theory-driven mechanistic analysis of proximal outcome data from a Stage 2 randomized controlled trial of Mindfulness-Oriented Recovery Enhancement (MORE), an integrative intervention designed to promote positive psychological health. METHOD Patients with opioid-treated chronic pain (N = 95; age = 56.8 ± 11.7; 66% female) were randomized to 8 weeks of therapist-led MORE or support group (SG) interventions. A latent positive psychological health variable comprised of positive affect, meaning in life, and self-transcendence measures was examined as a mediator of the effect of MORE on changes in pain severity at posttreatment and opioid misuse risk by 3-month follow-up. RESULTS Participants in MORE reported significantly greater reductions in pain severity by posttreatment (p = .03) and opioid misuse risk by 3-month follow-up (p = .03) and significantly greater increases in positive psychological health (p < .001) than SG participants. Increases in positive psychological health mediated the effect of MORE on pain severity by posttreatment (p = .048), which in turn predicted decreases in opioid misuse risk by follow-up (p = .02). CONCLUSIONS Targeting positive psychological mechanisms via MORE and other psychological interventions may reduce opioid misuse risk among chronic pain patients receiving long-term opioid therapy. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Adam W Hanley
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Michael R Riquino
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Sarah E Reese
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Anne K Baker
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Karen Salas
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Brooke P Yack
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Carter E Bedford
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Myranda A Bryan
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Rachel Atchley
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Yoshio Nakamura
- Center on Mindfulness and Integrative Health Intervention Development and Department of Anesthesiology, University of Utah
| | - Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina
| | - Matthew O Howard
- School of Social Work, University of North Carolina at Chapel Hill
| |
Collapse
|
97
|
|
98
|
Zheng Y, Obeng S, Reinecke BA, Chen C, Phansalkar PS, Walentiny DM, Gerk PM, Liu-Chen LY, Selley DE, Beardsley PM, Zhang Y. Pharmacological characterization of 17-cyclopropylmethyl-3,14-dihydroxy-4,5-epoxy-6-[(3'-fluoro-4'-pyridyl)acetamido]morphinan (NFP) as a dual selective MOR/KOR ligand with potential applications in treating opioid use disorder. Eur J Pharmacol 2019; 865:172812. [PMID: 31743739 PMCID: PMC6914219 DOI: 10.1016/j.ejphar.2019.172812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 01/16/2023]
Abstract
For thousands of years opioids have been the first-line treatment option for pain management. However, the tolerance and addiction potential of opioids limit their applications in clinic. NFP, a MOR/KOR dual-selective opioid antagonist, was identified as a ligand that significantly antagonized the antinociceptive effects of morphine with lesser withdrawal effects than naloxone at similar doses. To validate the potential application of NFP in opioid addiction treatment, a series of in vitro and in vivo assays were conducted to further characterize its pharmacological profile. In calcium mobilization assays and MOR internalization studies, NFP showed the apparent capacity to antagonize DAMGO-induced calcium flux and etorphine-induced MOR internalization. In contrast to the opioid agonists DAMGO and morphine, cells pretreated with NFP did not show apparent desensitization and down regulation of the MOR. Though in vitro bidirectional transport studies showed that NFP might be a P-gp substrate, in warm-water tail-withdrawal assays it was able to antagonize the antinociceptive effects of morphine indicating its potential central nervous system activity. Overall these results suggest that NFP is a promising dual selective opioid antagonist that may have the potential to be used therapeutically in opioid use disorder treatment.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Biological Transport
- CHO Cells
- Caco-2 Cells
- Calcium/metabolism
- Cell Line, Tumor
- Cricetulus
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Humans
- Ligands
- Male
- Mice, Inbred C57BL
- Morphinans/pharmacology
- Narcotic Antagonists/pharmacology
- Opioid-Related Disorders/drug therapy
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Yi Zheng
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA, 23298, United States
| | - Samuel Obeng
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA, 23298, United States
| | - Bethany A Reinecke
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA, 23298, United States
| | - Chongguang Chen
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - Palak S Phansalkar
- Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA, 23298, United States
| | - David M Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA, 23298, United States
| | - Phillip M Gerk
- Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA, 23298, United States
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA, 23298, United States
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA, 23298, United States; Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA, 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA, 23298, United States.
| |
Collapse
|
99
|
Machine learning: assessing neurovascular signals in the prefrontal cortex with non-invasive bimodal electro-optical neuroimaging in opiate addiction. Sci Rep 2019; 9:18262. [PMID: 31797878 PMCID: PMC6892956 DOI: 10.1038/s41598-019-54316-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic and recurrent opiate use injuries brain tissue and cause serious pathophysiological changes in hemodynamic and subsequent inflammatory responses. Prefrontal cortex (PFC) has been implicated in drug addiction. However, the mechanism underlying systems-level neuroadaptations in PFC during abstinence has not been fully characterized. The objective of our study was to determine what neural oscillatory activity contributes to the chronic effect of opiate exposure and whether the activity could be coupled to neurovascular information in the PFC. We employed resting-state functional connectivity to explore alterations in 8 patients with heroin dependency who stayed abstinent (>3 months; HD) compared with 11 control subjects. A non-invasive neuroimaging strategy was applied to combine electrophysiological signals through electroencephalography (EEG) with hemodynamic signals through functional near-infrared spectroscopy (fNIRS). The electrophysiological signals indicate neural synchrony and the oscillatory activity, and the hemodynamic signals indicate blood oxygenation in small vessels in the PFC. A supervised machine learning method was used to obtain associations between EEG and fNIRS modalities to improve precision and localization. HD patients demonstrated desynchronized lower alpha rhythms and decreased connectivity in PFC networks. Asymmetric excitability and cerebrovascular injury were also observed. This pilot study suggests that cerebrovascular injury in PFC may result from chronic opiate intake.
Collapse
|
100
|
Grenier P, Mailhiot MC, Cahill CM, Olmstead MC. Blockade of dopamine D1 receptors in male rats disrupts morphine reward in pain naïve but not in chronic pain states. J Neurosci Res 2019; 100:297-308. [PMID: 31721270 DOI: 10.1002/jnr.24553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
The rewarding effect of opiates is mediated through dissociable neural systems in drug naïve and drug-dependent states. Neuroadaptations associated with chronic drug use are similar to those produced by chronic pain, suggesting that opiate reward could also involve distinct mechanisms in chronic pain and pain-naïve states. We tested this hypothesis by examining the effect of dopamine (DA) antagonism on morphine reward in a rat model of neuropathic pain.Neuropathic pain was induced in male Sprague-Dawley rats through chronic constriction (CCI) of the sciatic nerve; reward was assessed in the conditioned place preference (CPP) paradigm in separate groups at early (4-8 days post-surgery) and late (11-15 days post-surgery) phases of neuropathic pain. Minimal effective doses of morphine that produced a CPP in early and late phases of neuropathic pain were 6 mg/kg and 2 mg/kg respectively. The DA D1 receptor antagonist, SCH23390, blocked a morphine CPP in sham, but not CCI, rats at a higher dose (0.5 mg/kg), but had no effect at a lower dose (0.1 mg/kg). The DA D2 receptor antagonist, eticlopride (0.1 and 0.5 mg/kg), had no effect on a morphine CPP in sham or CCI rats, either in early or late phases of neuropathic pain. In the CPP paradigm, morphine reward involves DA D1 mechanisms in pain-naïve but not chronic pain states. This could reflect increased sensitivity to drug effects in pain versus no pain conditions and/or differential mediation of opiate reward in these two states.
Collapse
Affiliation(s)
- Patrick Grenier
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | | | - Catherine M Cahill
- Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Mary C Olmstead
- Department of Psychology, Queen's University, Kingston, ON, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|