51
|
Non-coding RNA-mediated autophagy in cancer: A protumor or antitumor factor? Biochim Biophys Acta Rev Cancer 2021; 1876:188642. [PMID: 34715268 DOI: 10.1016/j.bbcan.2021.188642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022]
Abstract
Autophagy, usually referred to as macroautophagy, is a cytoprotective behavior that helps cells, especially cancer cells, escape crises. However, the role of autophagy in cancer remains controversial. The induction of autophagy is favorable for tumor growth, as it can degrade damaged cell components accumulated during nutrient deficiency, chemotherapy, or other stresses in a timely manner. Whereas the antitumor effect of autophagy might be closely related to its crosstalk with metabolism, immunomodulation, and other pathways. Recent studies have verified that lncRNAs and circRNAs modulate autophagy in carcinogenesis, cancer cells proliferation, apoptosis, metastasis, and chemoresistance via multiple mechanisms. A comprehensive understanding of the regulatory relationships between ncRNAs and autophagy in cancer might resolve chemoresistance and also offer intervention strategies for cancer therapy. This review systematically displays the regulatory effects of lncRNAs and circRNAs on autophagy in the contexts of cancer initiation, progression, and resistance to chemo- or radiotherapy and provides a novel insight into cancer therapy.
Collapse
|
52
|
Zhang K, Chen J, Li C, Yuan Y, Fang S, Liu W, Qian Y, Ma J, Chang L, Chen F, Yang Z, Gu W. Exosome-mediated transfer of SNHG7 enhances docetaxel resistance in lung adenocarcinoma. Cancer Lett 2021; 526:142-154. [PMID: 34715254 DOI: 10.1016/j.canlet.2021.10.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Long noncoding RNA (lncRNA) small nucleolar RNA host gene 7 (SNHG7) has been widely reported in various cancers, including lung adenocarcinoma (LUAD). However, it is largely unknown whether SNHG7 is involved in docetaxel resistance of LUAD. In the current study, we identified the high expression of SNHG7 in docetaxel-resistant cells. Through functional assays, we determined that silencing of SNHG7 decreased IC50 value of LUAD cells to docetaxel and suppressed proliferation and autophagy in LUAD cells, and reversed M2 polarization in macrophages. Mechanistically, we uncovered that SNHG7 promoted autophagy via recruiting human antigen R (HuR) to stabilize autophagy-related genes autophagy related 5 (ATG5) and autophagy related 12 (ATG12). Moreover, exosomal SNHG7 was transmitted from docetaxel-resistant LUAD cells to parental LUAD cells and thus facilitated docetaxel resistance. Additionally, exosomal SNHG7 activated the phosphatidylinositol 3-kinase (PI3K)/AKT pathway to promote M2 polarization in macrophages via recruiting cullin 4A (CUL4A) to induce ubiquitination and degradation of phosphatase and tensin homolog (PTEN). Taken together, we concluded that exosomal SNHG7 enhances docetaxel resistance of LUAD cells through inducing autophagy and macrophage M2 polarization. All findings in the study suggested that SNHG7 may be a promising target for relieving docetaxel resistance in LUAD.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Medicine& Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Chen Li
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Yuan Yuan
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Surong Fang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Wenfei Liu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yingying Qian
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Jiyong Ma
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Ligong Chang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Feifei Chen
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Zhenhua Yang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
53
|
Tan ZX, Dong F, Wu LY, Feng YS, Zhang F. The Beneficial Role of Exercise on Treating Alzheimer's Disease by Inhibiting β-Amyloid Peptide. Mol Neurobiol 2021; 58:5890-5906. [PMID: 34415486 DOI: 10.1007/s12035-021-02514-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is associated with a very large burden on global healthcare systems. Thus, it is imperative to find effective treatments of the disease. One feature of AD is the accumulation of neurotoxic β-amyloid peptide (Aβ). Aβ induces multiple pathological processes that are deleterious to nerve cells. Despite the development of medications that target the reduction of Aβ to treat AD, none has proven to be effective to date. Non-pharmacological interventions, such as physical exercise, are also being studied. The benefits of exercise on AD are widely recognized. Experimental and clinical studies have been performed to verify the role that exercise plays in reducing Aβ deposition to alleviate AD. This paper reviewed the various mechanisms involved in the exercise-induced reduction of Aβ, including the regulation of amyloid precursor protein cleaved proteases, the glymphatic system, brain-blood transport proteins, degrading enzymes and autophagy, which is beneficial to promote exercise therapy as a means of prevention and treatment of AD and indicates that exercise may provide new therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Lin-Yu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
54
|
Peng D, Li W, Zhang B, Liu X. Overexpression of lncRNA SLC26A4-AS1 inhibits papillary thyroid carcinoma progression through recruiting ETS1 to promote ITPR1-mediated autophagy. J Cell Mol Med 2021; 25:8148-8158. [PMID: 34378314 PMCID: PMC8419164 DOI: 10.1111/jcmm.16545] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Papillary thyroid carcinoma (PTC), accounting for approximately 85% cases of thyroid cancer, is a common endocrine tumour with a relatively low mortality but an alarmingly high rate of recurrence or persistence. Long non‐coding RNAs (lncRNAs) is emerging as a critical player modulating diverse cellular mechanisms correlated with the progression of various cancers, including PTC. Herein, we aimed to investigate the role of lncRNA SLC26A4‐AS1 in regulating autophagy and tumour growth during PTC progression. Initially, ITPR1 was identified by bioinformatics analysis as a differentially expressed gene. Then, Western blot and RT‐qPCR were conducted to determine the expression of ITPR1 and SLC26A4‐AS1 in PTC tissues and cells, both of which were found to be poorly expressed in PTC tissues and cells. Then, we constructed ITPR1‐overexpressing cells and revealed that ITPR1 overexpression could trigger the autophagy of PTC cells. Further, we performed a series of gain‐ and loss‐of function experiments. The results suggested that silencing of SLC26A4‐AS1 led to declined ITPR1 level, up‐regulation of ETS1 promoted ITPR1 expression, and either ETS1 knockdown or autophagy inhibitor Bafilomycin A1 could mitigate the promoting effects of SLC26A4‐AS1 overexpression on PTC cell autophagy. In vivo experiments also revealed that SLC26A4‐AS1 overexpression suppressed PTC tumour growth. In conclusion, our study elucidated that SLC26A4‐AS1 overexpression promoted ITPR1 expression through recruiting ETS1 and thereby promotes autophagy, alleviating PTC progression. These finding provides insight into novel target therapy for the clinical treatment of PTC.
Collapse
Affiliation(s)
- Dong Peng
- Department of Nuclear Medicine, Chongqing Rongchang People's Hospital, Chongqing, China
| | - Wenfa Li
- Department of Cardiac Macrovascular Surgery, Chongqing University, Three Gorges Hospital/Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Bojuan Zhang
- Department of Oncology, Chongqing University, Three Gorges Hospital/Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Xuefen Liu
- Department of Oncology, Chongqing Rongchang People's Hospital, Chongqing, China
| |
Collapse
|
55
|
LncRNA as a multifunctional regulator in cancer multi-drug resistance. Mol Biol Rep 2021; 48:1-15. [PMID: 34333735 DOI: 10.1007/s11033-021-06603-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Malignant tumors have become the most dangerous disease in recent years. Chemotherapy is the most effective treatment for this disease; however, the problem of drug resistance has become even more common, which leads to the poor prognosis of patients suffering from cancers. Thus, necessary measures should be taken to address these problems at the earliest. Many studies have demonstrated that drug resistance is closely related to the abnormal expressions of long non-coding RNAs (lncRNAs). METHODS AND RESULTS This review aimed to summarize the molecular mechanisms underlying the association of lncRNAs and the development of drug resistance and to find potential strategies for the clinical diagnosis and treatment of cancer drug resistance. Studies showed that lncRNAs can regulate the expression of genes through chromatin remodeling, transcriptional regulation, and post-transcriptional processing. Furthermore, lncRNAs have been reported to be closely related to the occurrence of malignant tumors. In summary, lncRNAs have gained attention in related fields during recent years. According to previous studies, lncRNAs have a vital role in several different types of cancers owing to their multiple mechanisms of action. Different mechanisms have different functions that could result in different consequences in the same disease. CONCLUSIONS LncRNAs closely participated in cancer drug resistance by regulating miRNA, signaling pathways, proteins, cancer stem cells, pro- and ant-apoptosis, and autophagy. lncRNAs can be used as biomarkers of the possible treatment target in chemotherapy, which could provide solutions to the problem of drug resistance in chemotherapy in the future.
Collapse
|
56
|
An Z, Ding W. Acinetobacter baumannii up-regulates LncRNA-GAS5 and promotes the degradation of STX17 by blocking the activation of YY1. Virulence 2021; 12:1965-1979. [PMID: 34304694 PMCID: PMC8312602 DOI: 10.1080/21505594.2021.1953851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Acinetobacter baumanniitriggers autophagy, affects the degradation of autophagy, and causes severe inflammatory injury. LncRNA growth arrest-specific transcript 5 (LncRNA-GAS5) and Yin and Yang 1 (YY1) are known to play an important role in the regulation of autophagy, however, the precise role of LncRNA-GAS5 and YY1 in the damage to autophagy caused by Acinetobacter baumanniiremains unclear. The aim of this study was to investigate the role of LncRNA-GAS5 and YY1 in the regulation of autophagy induced by Acinetobacter baumannii. We found that LncRNA-GAS5 was up-regulated following infection with Acinetobacter baumannii, thus resulting in the degradation of STX17, autophagy disorders, and the aggravated replication of Acinetobacter baumannii. We also analyzed the mechanism of interaction between LncRNA-GAS5 and YY1 and found that YY1 regulated its expression in a negative manner by binding to the promoter of LncRNA-GAS5. LncRNA-GAS5 and YY1 had opposite effects on the expression of STX17, this process maintained the stable expression of STX17. Following Acinetobacter baumannii infection, YY1 was down regulated and then separated from the binding region of LncRNA-GAS5, thus resulting in the activation of LncRNA-GAS5 transcription and reduction in STX17 protein expression. Finally, we infected LncRNA-GAS5 knockdown mice with Acinetobacter baumannii, the expression levels of IFN-β in the lungs increased significantly, this alleviated lung injury. In conclusion, our work demonstrated the mechanism by which Acinetobacter baumannii infection can cause the degradation of STX17. We also demonstrated that LncRNA-GAS5 may be a potential therapeutic target for the treatment of lung injury induced by Acinetobacter baumannii.
Collapse
Affiliation(s)
- Zhiyuan An
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wenyi Ding
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
57
|
Varier KM, Dhandapani H, Liu W, Song J, Wang C, Hu A, Ben-David Y, Shen X, Li Y, Gajendran B. An immunotherapeutic approach to decipher the role of long non-coding RNAs in cancer progression, resistance and epigenetic regulation of immune cells. J Exp Clin Cancer Res 2021; 40:242. [PMID: 34303380 PMCID: PMC8305593 DOI: 10.1186/s13046-021-01997-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Immunotherapeutic treatments are gaining attention due to their effective anti-tumor response. Particularly, the revolution of immune checkpoint inhibitors (ICIs) produces promising outcomes for various cancer types. However, the usage of immunotherapy is limited due to its low response rate, suggesting that tumor cells escape the immune surveillance. Rapid advances in transcriptomic profiling have led to recognize immune-related long non-coding RNAs (LncRNAs), as regulators of immune cell-specific gene expression that mediates immune stimulatory as well as suppression of immune response, indicating LncRNAs as targets to improve the efficacy of immunotherapy against tumours. Moreover, the immune-related LncRNAs acting as epigenetic modifiers are also under deep investigation. Thus, herein, is a summarised knowledge of LncRNAs and their regulation in the adaptive and innate immune system, considering their importance in autophagy and predicting putative immunotherapeutic responses.
Collapse
Affiliation(s)
- Krishnapriya M Varier
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Hemavathi Dhandapani
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600020, India
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Jialei Song
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou Province, People's Republic of China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.
| | - Xiangchun Shen
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou Province, People's Republic of China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, People's Republic of China.
| | - Yanmei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou Province, People's Republic of China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou Province, People's Republic of China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, People's Republic of China.
| |
Collapse
|
58
|
Yousefi L, Osquee HO, Ghotaslou R, Rezaee MA, Pirzadeh T, Sadeghi J, Hemmati F, Yousefi B, Moaddab SY, Yousefi M, Shirmohammadi M, Somi MH, Ganbarov K, Kafil HS. Dysregulation of lncRNA in Helicobacter pylori-Infected Gastric Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6911734. [PMID: 34337048 PMCID: PMC8286195 DOI: 10.1155/2021/6911734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori (H. pylori) infection is the most common cause of gastric cancer (GC). This microorganism is genetically diverse; GC is caused by several genetic deregulations in addition to environmental factors and bacterial virulence factors. lncRNAs (long noncoding RNAs) are significant biological macromolecules in GC, have specific functions in diseases, and could be therapeutic targets. Altered lncRNAs can lead to the abnormal expression of adjacent protein-coding genes, which may be important in cancer development. Their mechanisms have not been well understood, so we are going to investigate the risk of GC in a population with both high lncRNA and H. pylori infection.
Collapse
Affiliation(s)
- Leila Yousefi
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Owaysee Osquee
- Pharmaceutical Nanotechnology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Pharmaceutical Nanotechnology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tahereh Pirzadeh
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hemmati
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Shirmohammadi
- Liver and Gastrointestinal Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
59
|
Dong S, Fu Y, Yang K, Zhang X, Miao R, Long Y, Liu C. Linc01559 Served as a Potential Oncogene and Promoted Resistance of Hepatocellular Carcinoma to Oxaliplatin by Directly Sponging miR-6783-3p. Anticancer Agents Med Chem 2021; 21:278-286. [PMID: 32698745 DOI: 10.2174/1871520620666200721122317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/21/2020] [Accepted: 05/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Oxaliplatin (L-OHP)-based chemotherapy, such as FOLFOX4 (5-fluorouracil, leucovorin, and L-OHP), improves the prognosis of patients with late-stage Hepatocellular Carcinoma (HCC). However, the development of resistance to L-OHP leads to the failure of chemotherapy. The aim of this study was to investigate the role of linc01559 and miR-6783-3p in regulating resistance to L-OHP. METHODS Quantitative reverse transcription-polymerase chain reaction was used to determine the expression profile. The Cell Counting Kit-8 test and wound healing assay were also used. Dual-luciferase reporter gene assay, RNA pull-down assay, and RNA immunoprecipitation were used to evaluate the interaction between linc01559 and miR-6783-3p. RESULT linc01559 expression was associated with response to FOLFOX4, as well as miR-1343-3p and miR- 6783-3p expression in vivo. A nomogram, including linc01559 and miR-1343-3p, precisely and accurately predicted the overall survival of patients with HCC. Regarding the in vitro tests, linc01559 showed higher expression in L-OHP-resistant cell lines, whereas miR-6783-3p was downregulated. Knockdown of linc01559 led to decreased proliferation and migration ability, and increased expression of miR-6783-3p; however, it did not influence the expression of miR-1343-3p. We also found that linc01559 directly interacted with miR-6783-3p. Furthermore, linc01559 and miR-6783-3p regulated the viability of L-OHP-resistant cells following treatment with L-OHP. CONCLUSION linc01559 promoted the proliferation of HCC by sponging miR-6783-3p. This suggests that linc01559/miR-6783-3p may be key factors in regulating resistance and response to L-OHP. Moreover, they may be potential therapeutic targets for improving sensitivity to L-OHP in patients with HCC.
Collapse
Affiliation(s)
- Shunbin Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ying Fu
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China
| | - Kaibo Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Runchen Miao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yunxiang Long
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
60
|
A Novel Autophagy-Related lncRNA Gene Signature to Improve the Prognosis of Patients with Melanoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8848227. [PMID: 34250091 PMCID: PMC8238568 DOI: 10.1155/2021/8848227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
Objective Autophagy and long noncoding RNAs (lncRNAs) have been the focus of research on the pathogenesis of melanoma. However, the autophagy network of lncRNAs in melanoma has not been reported. The purpose of this study was to investigate the lncRNA prognostic markers related to melanoma autophagy and predict the prognosis of patients with melanoma. Methods We downloaded RNA sequencing data and clinical information of melanoma from the Cancer Genome Atlas. The coexpression of autophagy-related genes (ARGs) and lncRNAs was analyzed. The risk model of autophagy-related lncRNAs was established by univariate and multivariate Cox regression analyses, and the best prognostic index was evaluated combined with clinical data. Finally, gene set enrichment analysis was performed on patients in the high- and low-risk groups. Results According to the results of the univariate Cox analysis, only the overexpression of LINC00520 was associated with poor overall survival, unlike HLA-DQB1-AS1, USP30-AS1, AL645929, AL365361, LINC00324, and AC055822. The results of the multivariate Cox analysis showed that the overall survival of patients in the high-risk group was shorter than that recorded in the low-risk group (p < 0.001). Moreover, in the receiver operating characteristic curve of the risk model we constructed, the area under the curve (AUC) was 0.734, while the AUC of T and N was 0.707 and 0.658, respectively. The Gene Ontology was mainly enriched with the positive regulation of autophagy and the activation of the immune system. The results of the Kyoto Encyclopedia of Genes and Genomes enrichment were mostly related to autophagy, immunity, and melanin metabolism. Conclusion The positive regulation of autophagy may slow the transition from low-risk patients to high-risk patients in melanoma. Furthermore, compared with clinical information, the autophagy-related lncRNA risk model may better predict the prognosis of patients with melanoma and provide new treatment ideas.
Collapse
|
61
|
Tokgun O, Tokgun PE, Turel S, Inal B, Inci K, Tan S, Can Alvur O. Bryonia multiflora Extract Induces Autophagy via Regulating Long Non-coding RNAs in Breast Cancer Cells. Nutr Cancer 2021; 73:1792-1803. [PMID: 34024207 DOI: 10.1080/01635581.2021.1922717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bryonia multiflora, one of the species of Bryonia L. (Cucurbitaceae) genus, is a perennial, dioecious, herbaceous plant with rhizome-shaped roots. Bryonia species have anti-inflammatory, antimicrobial, cytotoxic, antioxidant, etc., activities and their components consume antitumoral effects. Purpose of the study to investigate the effect of Bryonia Multiflora extract (BMST) on breast cancer cells. Our results revealed that MCF-7 and MDA-MB-231 cells underwent significant morphological changes leading to cell rounding. No significant changes were observed in the cell viability by MTT. Acridine orange staining of our cells gave rise to think that BMST might lead our cells to autophagy. Therefore, possible molecular mechanisms underlying morphological changes such as autophagy (LC-3B, Beclin, AMBRA1) and apoptosis (Bcl-2) were evaluated on mRNA and protein levels. BMST treated MCF-7 and MDA-MB-231 cells had increased levels of autophagy markers whereas decreased levels of Bcl-2. p21 levels were also found to be increased in both cells. Analysis of lncRNA expressions has shown that BMST treatment led to changes in the expression levels of several lncRNAs playing roles in autophagy. The current study has shown that BMST induces autophagy in MCF-7 and MDA-MB-231 cells via regulating the lncRNAs revealing that BMST could be a promising therapeutic agent.
Collapse
Affiliation(s)
- Onur Tokgun
- Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey.,Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Pervin Elvan Tokgun
- Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Samet Turel
- Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Behcet Inal
- Faculty of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt, Turkey
| | - Kubilay Inci
- Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Secil Tan
- Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Ozge Can Alvur
- Medical Biology, Faculty of Medicine, Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
62
|
Jin L, Hong N, Ai X, Wang J, Li Z, Han Z, Zhang Q, Yu Y, Sun K. LncRNAs as Therapeutic Targets for Autophagy-involved Cardiovascular Diseases: A Review of Molecular Mechanism and T herapy Strategy. Curr Med Chem 2021; 28:1796-1814. [PMID: 32196441 DOI: 10.2174/0929867327666200320161835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. The concept of precision medicine in CVD therapy today requires the incorporation of individual genetic and environmental variability to achieve personalized disease prevention and tailored treatment. Autophagy, an evolutionarily conserved intracellular degradation process, has been demonstrated to be essential in the pathogenesis of various CVDs. Nonetheless, there have been no effective treatments for autophagy- involved CVDs. Long noncoding RNAs (lncRNAs) are noncoding RNA sequences that play versatile roles in autophagy regulation, but much needs to be explored about the relationship between lncRNAs and autophagy-involved CVDs. SUMMARY Increasing evidence has shown that lncRNAs contribute considerably to modulate autophagy in the context of CVDs. In this review, we first summarize the current knowledge of the role lncRNAs play in cardiovascular autophagy and autophagy-involved CVDs. Then, recent developments of antisense oligonucleotides (ASOs) designed to target lncRNAs to specifically modulate autophagy in diseased hearts and vessels are discussed, focusing primarily on structure-activity relationships of distinct chemical modifications and relevant clinical trials. PERSPECTIVE ASOs are promising in cardiovascular drug innovation. We hope that future studies of lncRNA-based therapies would overcome existing technical limitations and help people who suffer from autophagy-involved CVDs.
Collapse
Affiliation(s)
- Lihui Jin
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Nanchao Hong
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zhenyuan Han
- Department of Oral Pathology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Qi Zhang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
63
|
Guo B, Zhu X, Li X, Yuan CF. The Roles of LncRNAs in Osteogenesis, Adipogenesis and Osteoporosis. Curr Pharm Des 2021; 27:91-104. [PMID: 32634074 DOI: 10.2174/1381612826666200707130246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis (OP) is the most common bone disease, which is listed by the World Health Organization (WHO) as the third major threat to life and health among the elderly. The etiology of OP is multifactorial, and its potential regulatory mechanism remains unclear. Long non-coding RNAs (LncRNAs) are the non-coding RNAs that are over 200 bases in the chain length. Increasing evidence indicates that LncRNAs are the important regulators of osteogenic and adipogenic differentiation, and the occurrence of OP is greatly related to the dysregulation of the bone marrow mesenchymal stem cells (BMSCs) differentiation lineage. Meanwhile, LncRNAs affect the occurrence and development of OP by regulating OP-related biological processes. METHODS In the review, we summarized and analyzed the latest findings of LncRNAs in the pathogenesis, diagnosis and related biological processes of OP. Relevant studies published in the last five years were retrieved and selected from the PubMed database using the keywords of LncRNA and OP. RESULTS/CONCLUSION The present study aimed to examine the underlying mechanisms and biological roles of LncRNAs in OP, as well as osteogenic and adipogenic differentiation. Our results contributed to providing new clues for the epigenetic regulation of OP, making LncRNAs the new targets for OP therapy.
Collapse
Affiliation(s)
- Bo Guo
- China Three Gorges University, RenHe Hospital, Yichang, China
| | - Xiaokang Zhu
- China Three Gorges University, RenHe Hospital, Yichang, China
| | - Xinzhi Li
- China Three Gorges University, RenHe Hospital, Yichang, China
| | - C F Yuan
- Department of Biochemistry, China Three Gorges University, Yichang, China
| |
Collapse
|
64
|
Wu D, Yin Z, Ji Y, Li L, Li Y, Meng F, Ren X, Xu M. Identification of novel autophagy-related lncRNAs associated with a poor prognosis of colon adenocarcinoma through bioinformatics analysis. Sci Rep 2021; 11:8069. [PMID: 33850225 PMCID: PMC8044244 DOI: 10.1038/s41598-021-87540-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
LncRNAs play a pivotal role in tumorigenesis and development. However, the potential involvement of lncRNAs in colon adenocarcinoma (COAD) needs to be further explored. All the data used in this study were obtained from The Cancer Genome Atlas database, and all analyses were conducted using R software. Basing on the seven prognosis-related lncRNAs finally selected, we developed a prognosis-predicting model with powerful effectiveness (training cohort, 1 year: AUC = 0.70, 95% Cl = 0.57-0.78; 3 years: AUC = 0.71, 95% Cl = 0.6-0.8; 5 years: AUC = 0.76, 95% Cl = 0.66-0.87; validation cohort, 1 year: AUC = 0.70, 95% Cl = 0.58-0.8; 3 years: AUC = 0.73, 95% Cl = 0.63-0.82; 5 years: AUC = 0.68, 95% Cl = 0.5-0.85). The VEGF and Notch pathway were analyzed through GSEA analysis, and low immune and stromal scores were found in high-risk patients (immune score, cor = - 0.15, P < 0.001; stromal score, cor = - 0.18, P < 0.001) , which may partially explain the poor prognosis of patients in the high-risk group. We screened lncRNAs that are significantly associated with the survival of patients with COAD and possibly participate in autophagy regulation. This study may provide direction for future research.
Collapse
Affiliation(s)
- Dejun Wu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Zhenhua Yin
- Department of Digestive, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Yisheng Ji
- First Clinical Medical College, Nanjing Medical University, Nanjing, 210029, China
| | - Lin Li
- First Clinical Medical College, Nanjing Medical University, Nanjing, 210029, China
| | - Yunxin Li
- First Clinical Medical College, Nanjing Medical University, Nanjing, 210029, China
| | - Fanqiang Meng
- Xiangya Medical College of Central South University, Changsha, 410000, Hunan, China
| | - Xiaohan Ren
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ming Xu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China.
| |
Collapse
|
65
|
Long noncoding RNA H19 contributes to the proliferation and autophagy of glioma cells through mTOR/ULK1 pathway. Neuroreport 2021; 32:352-358. [PMID: 33661803 DOI: 10.1097/wnr.0000000000001602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long noncoding RNA (LncRNA) H19 has been proven to be involved in many kinds of cancers including glioma, and a previous study has shown an autophagy regulation of H19. The mammalian target of rapamycin (mTOR) signaling pathway plays a key role in autophagy and Unc-51 like autophagy activating kinase 1 (ULK1) is also thought to be involved in autophagy signaling. In our study, we investigated the role of mTOR/ULK1 autophagy signaling in the H19-mediated promotion of glioma proliferation. Human glioma cells U87 and U251 and normal human astrocytes HA1800 were used in the study. First, the expression of H19 was determined in U87, U251, and HA1800 cells. Then, the cell proliferation and migration of glioma cells were detected, while the protein levels of main molecules of the mTOR/ULK1 pathway and autophagy-related proteins were also examined. Rapamycin, an inhibitor of mTOR, was used to further study the role of H19 in autophagy. We observed that overexpressed H19 promoted the proliferation and migration in glioma cells. The autophagy of U87 cells was suppressed when H19 was overexpressed and enhanced when H19 was silenced. H19 overexpression inhibited mTOR phosphorylation and promoted ULK1 phosphorylation. H19 promoted proliferation, migration, and autophagy by regulating mTOR signaling. In conclusion, we validate that H19 contributes to the proliferation and autophagy of glioma cells through the mTOR/ULK1 pathway.
Collapse
|
66
|
Huang Y, Liu H, Guo R, Han Y, Yang Y, Zhao Y, Zheng Y, Jia L, Li W. Long Non-coding RNA FER1L4 Mediates the Autophagy of Periodontal Ligament Stem Cells Under Orthodontic Compressive Force via AKT/FOXO3 Pathway. Front Cell Dev Biol 2021; 9:631181. [PMID: 33604341 PMCID: PMC7884613 DOI: 10.3389/fcell.2021.631181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Orthodontic tooth movement is achieved by periodontal tissue remodeling triggered by mechanical force. It is essential to investigate the reaction of periodontal ligament stem cells (PDLSCs) for improving orthodontic therapeutic approaches. Autophagy is an endogenous defense mechanism to prevent mechanical damage of environmental change. Long non-coding RNAs (lncRNAs) are key regulators in gene regulation, but their roles are still largely uncharacterized in the reaction of PDLSCs during orthodontic tooth movement. In this study, we showed that autophagy was significantly induced in PDLSCs under compressive force, as revealed by the markers of autophagy, microtubule-associated protein light chain 3 (LC3) II/I and Beclin1, and the formation of autophagosomes. After the application of compressive force, lncRNA FER1L4 was strongly upregulated. Overexpression of FER1L4 increased the formation of autophagosome and autolysosomes in PDLSCs, while knockdown of FER1L4 reversed the autophagic activity induced by mechanical force. In mechanism, FER1L4 inhibited the phosphorylation of protein kinase B (AKT) and subsequently increased the nuclear translocation of forkhead box O3 (FOXO3) and thus mediated autophagic cascades under compressive strain. In mouse model, the expression of Lc3 as well as Fer1l4 was increased in the pressure side of periodontal ligament during tooth movement. These findings suggest a novel mechanism of autophagy regulation by lncRNA during periodontal tissue remodeling of orthodontic treatment.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Runzhi Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuhui Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
67
|
Wang X, Dai C, Ye M, Wang J, Lin W, Li R. Prognostic value of an autophagy-related long-noncoding-RNA signature for endometrial cancer. Aging (Albany NY) 2021; 13:5104-5119. [PMID: 33534780 PMCID: PMC7950257 DOI: 10.18632/aging.202431] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
This study retrieved the transcriptome profiling data of 552 endometrial cancer (EC) patients from the TCGA (The Cancer Genome Atlas) database, and identified 1297 lncRNAs (long noncoding RNAs) related to autophagy genes using Pearson correlation analysis. Univariate Cox regression analysis of the training data set revealed that 14 autophagy-related lncRNAs had significantly prognostic value for endometrial cancer (P < 0.01). Multivariate Cox regression analysis of these autophagy-related lncRNAs established the following autophagy-related lncRNA prognosis signature for endometrial cancer: PI = (0.255 × AC005229.4 expression) + (0.405 × BX322234.1 expression) + (0.169 × FIRRE expression value) + (-0.122 × RAB11B-AS1 expression) + (-0.338 × AC003102.1 expression). This signature was validated in both the testing data set and the entire data set. The areas under the receiver operating characteristics curves for the 1-, 3-, and 5-year overall survival rates in the entire data set were 0.772, 0.733, and 0.714, respectively. In addition, a gene set enrichment analysis confirmed that cancer-related and autophagy-related pathways were significantly up-regulated in the high-risk group. In summary, this study has demonstrated that a signature comprising five autophagy-related lncRNAs has potential as an independent prognostic indicator of endometrial cancer, and also that these lncRNAs may play a key role in the development of endometrial cancer.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Chenyang Dai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Minqing Ye
- Department of Obstetrics and Gynecology, Foshan Women and Children Hospital, Foshan 528000, China
| | - Jingyun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Weizhao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
68
|
Li C, Liu Y, Qin J, Liu Y, Ma L, Zhang S, Wang J, Wang S. Profiles of differentially expressed long noncoding RNAs and messenger RNAs in the myocardium of septic mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:199. [PMID: 33708826 PMCID: PMC7940873 DOI: 10.21037/atm-20-3830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Sepsis is the primary cause of mortality in the intensive care unit (ICU), mainly due to sepsis-induced dysfunction of essential organs such as the heart and lungs. This study investigated the myocardium's epigenetic characterization from septic mice to identify potential treatment targets for septic myocardial dysfunction. Methods Cecal ligation and puncture (CLP) was used to induce sepsis in male C57BL/6 mice. Hearts were collected 24 h after surgery to determine the expression profiles of long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) by microarray. To validate the reliability of microarray results, we randomly chose six differentially expressed lncRNAs for qRT-PCR. Functional mapping of differentially expressed mRNAs was annotated with gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses; lncRNA-mRNA co-expression network was constructed to reveal connections between lncRNAs and mRNAs. Results Microarray analysis indicated that 1,568 lncRNAs and 2,166 mRNAs were differentially expressed in the myocardium from septic mice, which was further confirmed by qRT-PCR. KEGG pathway analysis showed that numerous differentially expressed mRNAs were relevant to tumor necrosis factor (TNF) and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling pathways. Moreover, according to the lncRNA-mRNA co-expression network constructed by the above six lncRNAs and their interacting mRNAs, the co-expression network profiles had 57 network nodes and 134 connections, including 76 positive interactions and 58 negative interactions. Conclusions In mouse hearts, sepsis resulted in differential expression of lncRNAs and mRNAs related to TNF and PI3K-Akt signaling pathways, suggesting that lncRNAs and their interacting mRNAs may participate in the pathogenesis of septic myocardial dysfunction by regulating TNF and PI3K-Akt signaling pathways.
Collapse
Affiliation(s)
- Chengbao Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yongchao Liu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jing Qin
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuhao Liu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lijie Ma
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shouqin Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Junjie Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Sheng Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
69
|
Feng X, Huang E, Gao Y, Zhang Y, Zhou Y. The effects of NONRATT008453.2 on autophagy in genital tubercle fibroblasts of rats with hypospadias induced by dibutyl phthalate. Birth Defects Res 2021; 113:399-408. [PMID: 33452730 PMCID: PMC7986160 DOI: 10.1002/bdr2.1863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/26/2020] [Accepted: 12/20/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypospadias is a common birth defect that might be caused by inadequate fusion of the urethral folds in the process of male external genital development. We intended to discover the crucial long noncoding RNAs (lncRNAs) regulating autophagy from the gene expression profile of the genital tubercle (GT) of dibutyl phthalate (DBP) induced hypospadiac rats. METHODS Whole transcriptome resequencing was used to determine the expression of the total RNA in GTs and cultured fibroblasts obtained from GTs of DBP-induced hypospadiac male rat fetuses. Autophagosomes and autolysosomes were examined under a transmission electron microscope after overexpression of lncRNA NONRATT008453.2 in the fibroblasts by adenovirus transfection. Finally, the protein expression levels of Atg5, Beclin-1, Atg7, and the LC3A/B-II:LC3A/B-I ratio were detected in the fibroblasts by western blotting. RESULTS NONRATT008453.2 suppressed autophagy by promoting the expression of Atg7, but inhibited the expressions of Atg5, Beclin-1, and the LC3A/B-II:LC3A/B-I ratio in the GT fibroblasts. CONCLUSIONS NONRATT008453.2 may have an influence on autophagy in the fibroblasts of the GT in DBP-induced hypospadiac rats.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Clinical laboratory, Children's Hospital of Soochow University, Suzhou, P. R. China
| | - Enfu Huang
- Section of Pediatric Urology, Children's Hospital of Soochow University, Suzhou, P. R. China
| | - Yuanyuan Gao
- Department of Clinical laboratory, Children's Hospital of Soochow University, Suzhou, P. R. China
| | - Ya Zhang
- Central Laboratory of Pediatric Research Institute, Children's Hospital of Soochow University, Suzhou, P. R. China
| | - Yun Zhou
- Section of Pediatric Urology, Children's Hospital of Soochow University, Suzhou, P. R. China
| |
Collapse
|
70
|
Liu X, Zhang P, Li Y, Zhao N, Han H. The AMPK-mTOR axis requires increased MALAT1 expression for promoting granulosa cell proliferation in endometriosis. Exp Ther Med 2021; 21:21. [PMID: 33235630 PMCID: PMC7678598 DOI: 10.3892/etm.2020.9453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a common reproductive disorder in women, with a global prevalence of 10-15%. Long noncoding RNAs (lncRNAs) are critical to gene transcription, cell cycle modulation and immune response. The lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) reportedly mediates autophagy of endometrial stromal cells in endometriosis. The present study aimed to evaluate the role and mechanism of MALAT1 in granulosa cells (GCs) in endometriosis. Consequently, MALAT1 expression was upregulated in GCs obtained from patients with endometriosis and in the steroidogenic human granulosa-like tumor cell line KGN. However, MALAT1 knockdown consequently decreased the proliferation and viability of these cells, as determined by MTT and 5-ethynyl-2'-deoxyuridine staining assays. Both Annexin V-fluorescein isothiocyanate/propidium iodide flow cytometry and western blotting performed to detect proapoptotic factors indicated that MALAT1 depletion might promote KGN cell apoptosis. Furthermore, MALAT1 knockdown increased GC autophagy, as evidenced by microtubule-associated protein 1A/1B-light chain 3 (LC3) cleavage upregulation and p62 degradation. In addition, although 5'-AMP-activated protein kinase (AMPK) mRNA expression and protein levels decreased in GCs obtained from patients with endometriosis and KGN cells, MALAT1 knockdown restored AMPK levels. However, addition of BML-275 (MALAT1 inhibitor) to MALAT1-knockdown KGN cells recovered their viability and proliferative capacity and simultaneously reduced their apoptotic and autophagic capacity. Therefore, MALAT1 may regulate GC proliferation via AMPK-mTOR-mediated cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Xuejie Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ping Zhang
- Department of Obstetrics, Zhucheng People's Hospital, Zhucheng, Shandong 262200, P.R. China
| | - Yanmin Li
- Department of Obstetrics and Gynecology, Liaocheng Second People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Na Zhao
- Department of Obstetrics and Gynecology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Haiyan Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
71
|
Deng Z, Li X, Shi Y, Lu Y, Yao W, Wang J. A Novel Autophagy-Related IncRNAs Signature for Prognostic Prediction and Clinical Value in Patients With Pancreatic Cancer. Front Cell Dev Biol 2020; 8:606817. [PMID: 33384999 PMCID: PMC7769875 DOI: 10.3389/fcell.2020.606817] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/16/2020] [Indexed: 01/10/2023] Open
Abstract
Autophagy is an important bioprocess throughout the occurrence and development of cancer. However, the role of autophagy-related lncRNAs in pancreatic cancer (PC) remains obscure. In the study, we identified the autophagy-related lncRNAs (ARlncRNAs) and divided the PC patients from The Cancer Genome Atlas into training and validation set. Firstly, we constructed a signature in the training set by the least absolute shrinkage and selection operator penalized cox regression analysis and the multivariate cox regression analysis. Then, we validated the independent prognostic role of the risk signature in both training and validation set with survival analysis, receiver operating characteristic analysis, and Cox regression. The nomogram was established to demonstrate the predictive power of the signature. Moreover, high risk scores were significantly correlated to worse outcomes and severe clinical characteristics. The Pearson’s analysis between risk scores with immune cells infiltration, tumor mutation burden, and the expression level of chemotherapy target molecules indicated that the signature could predict efficacy of immunotherapy and targeted therapy. Next, we constructed an lncRNA–miRNA–mRNA regulatory network and identified several potential small molecule drugs in the Connectivity Map (CMap). What’s more, quantitative real-time PCR (qRT-PCR) analysis showed that serum LINC01559 could serve as a diagnostic biomarker. In vitro analysis showed inhibition of LINC01559 suppressed PC cell proliferation, migration, and invasion. Additionally, silencing LINC01559 suppressed gemcitabine-induced autophagy and promoted the sensitivity of PC cells to gemcitabine. In conclusion, we identified a novel ARlncRNAs signature with valuable clinical utility for reliable prognostic prediction and personalized treatment of PC patients. And inhibition of LINC01559 might be a novel strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Zhengdong Deng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanxin Shi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Affiliated Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
72
|
Liu Q, Dai SJ, Dong L, Li H. Long noncoding RNA RP11-909N17.2 promotes proliferation, invasion, and migration of hepatocellular carcinoma by regulating microRNA-767-3p. Biochem Cell Biol 2020; 98:709-718. [PMID: 33210543 DOI: 10.1139/bcb-2019-0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related deaths worldwide, especially in developing countries. Although advances in surgical procedures and targeted medicine have improved the overall survival of patients with HCC, the prognosis is poor. Hence, there is a need to identify novel therapeutic targets for HCC. Here, we report that the expression of RP11-909N17.2, a novel, long, noncoding RNA (lncRNA), is dysregulated in patients with HCC and cell lines. Additionally, this study demonstrated that RP11-909N17.2 facilitates the proliferation and invasion of HCC cells by binding to miRNA-767-3p, a tumor-suppressive microRNA (miRNA). Small integral membrane protein 7 (SMIM7) was identified as the downstream target of miRNA-767-3p. The expression of SMIM7 was upregulated in HCC clinical samples and cell lines. Moreover, SMIM7 was involved in the proliferation and invasion of HCC cells. Furthermore, SMIM7 inhibited the apoptosis of HCC cells, which indicated the oncogenic role of SMIM7 in HCC. The findings of this study suggest that the lncRNA-miRNA-mRNA regulatory axis, which regulates the pathogenesis of HCC, can be a potential novel diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Medical Imaging, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xinwu Road, Xi'an, 710004, People's Republic of China
| | - She-Jiao Dai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xinwu Road, Xi'an, 710004, People's Republic of China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xinwu Road, Xi'an, 710004, People's Republic of China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xinwu Road, Xi'an, 710004, People's Republic of China
| |
Collapse
|
73
|
Hongkuan Z, Karsoon T, Shengkang L, Hongyu M, Huaiping Z. The functional roles of the non-coding RNAs in molluscs. Gene 2020; 768:145300. [PMID: 33207256 DOI: 10.1016/j.gene.2020.145300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/10/2023]
Abstract
This review focus on the current knowledge of non-coding RNAs (ncRNAs) in molluscs. In this review, we provide an overview of long ncRNAs (lncRNA), microRNAs (miRNA) and piwi-interacting RNAs (piRNA), followed by evidence for the regulation of ncRNAs in variety of biological process in molluscs, including development, biomineralization and innate immune response. This review advances our understanding on the roles of ncRNAs in molluscs and suggest the future direction to fully understand the epigenetic regulatory network of molluscs.
Collapse
Affiliation(s)
- Zhang Hongkuan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Tan Karsoon
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Li Shengkang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Ma Hongyu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Zheng Huaiping
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
74
|
Aillaud M, Schulte LN. Emerging Roles of Long Noncoding RNAs in the Cytoplasmic Milieu. Noncoding RNA 2020; 6:ncrna6040044. [PMID: 33182489 PMCID: PMC7711603 DOI: 10.3390/ncrna6040044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
While the important functions of long noncoding RNAs (lncRNAs) in nuclear organization are well documented, their orchestrating and architectural roles in the cytoplasmic environment have long been underestimated. However, recently developed fractionation and proximity labelling approaches have shown that a considerable proportion of cellular lncRNAs is exported into the cytoplasm and associates nonrandomly with proteins in the cytosol and organelles. The functions of these lncRNAs range from the control of translation and mitochondrial metabolism to the anchoring of cellular components on the cytoskeleton and regulation of protein degradation at the proteasome. In the present review, we provide an overview of the functions of lncRNAs in cytoplasmic structures and machineries und discuss their emerging roles in the coordination of the dense intracellular milieu. It is becoming apparent that further research into the functions of these lncRNAs will lead to an improved understanding of the spatiotemporal organization of cytoplasmic processes during homeostasis and disease.
Collapse
Affiliation(s)
- Michelle Aillaud
- Institute for Lung Research, Philipps University Marburg, 35043 Marburg, Germany;
| | - Leon N Schulte
- Institute for Lung Research, Philipps University Marburg, 35043 Marburg, Germany;
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- Correspondence:
| |
Collapse
|
75
|
Alvarez-Meythaler JG, Garcia-Mayea Y, Mir C, Kondoh H, LLeonart ME. Autophagy Takes Center Stage as a Possible Cancer Hallmark. Front Oncol 2020; 10:586069. [PMID: 33194736 PMCID: PMC7643020 DOI: 10.3389/fonc.2020.586069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide, despite significant advances in cancer research and improvements in anticancer therapies. One of the major obstacles to curing cancer is the difficulty of achieving the complete annihilation of resistant cancer cells. The resistance of cancer cells may not only be due to intrinsic factors or factors acquired during the evolution of the tumor but may also be caused by chemotherapeutic treatment failure. Conversely, autophagy is a conserved cellular process in which intracellular components, such as damaged organelles, aggregated or misfolded proteins and macromolecules, are degraded or recycled to maintain cellular homeostasis. Importantly, autophagy is an essential mechanism that plays a key role in tumor initiation and progression. Depending on the cellular context and microenvironmental conditions, autophagy acts as a double-edged sword, playing a role in inducing apoptosis or promoting cell survival. In this review, we propose several scenarios in which autophagy could contribute to cell survival or cell death. Moreover, a special focus on novel promising targets and therapeutic strategies based on autophagic resistant cells is presented.
Collapse
Affiliation(s)
- Jose G. Alvarez-Meythaler
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Matilde E. LLeonart
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Spanish Biomedical Research Network Center in Oncology, CIBERONC, Barcelona, Spain
| |
Collapse
|
76
|
Four Autophagy-Related lncRNAs Predict the Prognosis of HCC through Coexpression and ceRNA Mechanism. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3801748. [PMID: 33102579 PMCID: PMC7568797 DOI: 10.1155/2020/3801748] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Abnormally expressed long noncoding RNAs (lncRNAs) have been reported to affect the occurrence and progression of hepatocellular carcinoma (HCC) by modulating the autophagy axis. However, none of studies has explored the clinical significance of these autophagy-related lncRNAs in HCC comprehensively. In this study, the RNA-seq, miRNA-seq, and clinical data of normal and HCC patients from the TCGA database and autophagy genes from the Human Autophagy Database were extracted. Subsequently, we screened out 78 differentially expressed autophagy-related lncRNAs, and four prognostic-related lncRNAs (LUCAT1, AC099850.3, ZFPM2-AS1, and AC009005.1) were eventually used to develop the prognostic model. This signature could be regarded as an independent prognostic signature for HCC patients and has the highest prediction efficiency than other clinicopathological factors for the 1-, 3-, and 5-year survival (AUC = 0.764, 0.738, and 0.717, respectively). Additionally, regardless of whether the clinical information is complete for HCC patients, the autophagy-related lncRNA model shows a good predictive power for the overall survival. Importantly, the coexpression network of 4 lncRNAs and 11 autophagy-related genes was constructed. Moreover, based on the bioinformatic analyses, our results found that LUCAT1 and ZFPM2-AS1 may affect the autophagic activity in HCC through the hsa-miR-495-3p/DLC1 and hsa-miR-515-5p/DAPK2 axis, respectively. In conclusion, we establish an effective prognostic model for HCC patients and shed new light on the autophagy-related regulatory mechanisms of the identified lncRNAs.
Collapse
|
77
|
Guo R, Huang Y, Liu H, Zheng Y, Jia L, Li W. Long Non-Coding RNA H19 Participates in Periodontal Inflammation via Activation of Autophagy. J Inflamm Res 2020; 13:635-646. [PMID: 33061528 PMCID: PMC7536258 DOI: 10.2147/jir.s276619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Periodontitis is the leading cause of tooth loss. The role of long non-coding RNA (lncRNA) in periodontal inflammation remains unclear. The aim of this study was to investigate the role of lncRNA H19 in periodontitis and its possible regulation of autophagy in periodontitis. Material and Methods Inflammation level was determined by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) in periodontal ligament cells (PDLCs). Western blotting, flow cytometric analysis, and immunofluorescence staining were used to detect the autophagy flux. Overexpression or knockdown of H19 was used to confirm its function. Ligature-induced periodontitis model in mice and periodontitis-affected human gingival tissue were used in vivo. RNA sequencing was performed to determine the differentially expressed genes. Results Autophagy was significantly increased in PDLCs after inflammatory stimulation as well as in a ligature-induced periodontitis model in mice and periodontitis-affected human gingival tissue. During the inflammatory process, H19 expression was also significantly upregulated. Further, the levels of autophagic markers were significantly upregulated after overexpressing H19 in PDLCs, and the increased autophagic activity induced by inflammatory stimulation was reversed by H19 knockdown. RNA sequencing showed that the expression profiles of mRNAs were significantly altered after H19 overexpression, and the differentially expressed genes were enriched in the PI3K/AKT signaling pathway, which was confirmed by the decreased p-AKT protein expression in the H19 overexpression group. Conclusion Periodontal inflammation activates autophagy flux, and H19 mediates the activation of autophagy via AKT pathway in periodontitis. This study expands our understanding of molecular regulation in periodontitis.
Collapse
Affiliation(s)
- Runzhi Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, People's Republic of China
| |
Collapse
|
78
|
Zhang C, Chu M, Fan Y, Wu L, Li Z, Ma X, Zhuang W. Long non-coding RNA T-cell factor 7 in multiple myeloma: A potential biomarker for deteriorated clinical features and poor prognosis. J Clin Lab Anal 2020; 34:e23400. [PMID: 32578294 PMCID: PMC7521284 DOI: 10.1002/jcla.23400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/15/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study aimed to investigate the correlation of long non-coding RNA T-cell factor 7 (lnc-TCF7) with clinical features and prognosis in patients with multiple myeloma (MM). METHODS Totally, 216 newly diagnosed symptomatic MM patients and 60 healthy controls (HCs) were enrolled. Bone marrow samples were collected from patients before treatment and from HCs on donation to detect lnc-TCF7 expression in plasma cells by reverse transcription quantitative polymerase chain reaction. Besides, clinical response, progression-free survival (PFS), and overall survival (OS) of patients were assessed. RESULTS Lnc-TCF7 expression was increased in patients with MM compared with HCs. Lnc-TCF7 expression was highest in international staging system (ISS) stage III patients, followed by ISS stage II patients, and then ISS stage I patients, while lnc-TCF7 expression was similar in patients with different immunoglobulin subtypes and Durie-Salmon stages. Regarding chromosomal abnormalities, lnc-TCF7 expression positively correlated with t(4; 14) and Del(17p), whereas no correlation of lnc-TCF7 expression with t(14; 16), 1q21 amplification, Del(13q), or hyperdiploid was observed in patients with MM. Furthermore, lnc-TCF7 expression positively correlated with serum creatinine, beta-2-microglobulin, and lactate dehydrogenase in patients. Besides, lnc-TCF7 was negatively associated with complete response but not overall response rate in patients. Additionally, patients with lnc-TCF7 high expression exhibited shorter PFS and OS compared to patients with lnc-TCF7 low expression. CONCLUSION Lnc-TCF7 might have clinical value in aiding disease management and prognosis prediction of MM.
Collapse
Affiliation(s)
- Cui Zhang
- Department of Medical LaboratoryShidong Hospital of Yangpu DistrictShanghaiChina
| | - Min Chu
- Department of Medical LaboratoryShidong Hospital of Yangpu DistrictShanghaiChina
| | - Yingchao Fan
- Department of Medical LaboratoryShidong Hospital of Yangpu DistrictShanghaiChina
| | - Liting Wu
- Department of Medical LaboratoryShidong Hospital of Yangpu DistrictShanghaiChina
| | - Zhumeng Li
- Department of Medical LaboratoryShidong Hospital of Yangpu DistrictShanghaiChina
| | - Xiaoyan Ma
- Department of Medical LaboratoryShidong Hospital of Yangpu DistrictShanghaiChina
| | - Wenfang Zhuang
- Department of Medical LaboratoryShidong Hospital of Yangpu DistrictShanghaiChina
| |
Collapse
|
79
|
Tan M, Zhang QB, Liu TH, Yang YY, Zheng JX, Zhou WJ, Xiong Q, Qing YF. Autophagy dysfunction may be involved in the pathogenesis of ankylosing spondylitis. Exp Ther Med 2020; 20:3578-3586. [PMID: 32855711 PMCID: PMC7444354 DOI: 10.3892/etm.2020.9116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the expression and significance of the mRNA of genes associated with autophagy and long non-coding RNA (lncRNA) GAS5 in peripheral blood mononuclear cells (PBMCs) of patients with ankylosing spondylitis (AS). The mRNA levels of microtubule-associated protein light chain 3 (LC3), Beclin1, autophagy-related gene (ATG)3, ATG5, ATG12, ATG 16 ligand 1 (ATG16L1) and lncRNA growth arrest-specific 5 (GAS5) in PBMCs from 60 patients with AS and 30 healthy controls (HC) were examined by reverse transcription-quantitative PCR. The correlations between the levels of LC3, Beclin1, ATG3, ATG5, ATG12 and ATG16L1 mRNA as well as lncRNA GAS5 levels with disease activity and laboratory parameters in patients with AS were determined by Spearman correlation analysis. In addition, the diagnostic value of lncRNA GAS5 for AS was explored through establishing a receiver operating characteristic (ROC) curve. The results indicated that, compared to the HCs, patients with AS had lower expression levels of LC3, ATG5, ATG12, ATG16L1 and lncRNA GAS5 in their PBMCs. Compared with those in patients with inactive AS, the levels of ATG5 and ATG12 were lower than those in patients with active AS. Of note, ATG5 and ATG12 mRNA levels were negatively correlated with disease activity indexes. lncRNA GAS5 was positively correlated with the expression of Beclin1, ATG3, ATG5, ATG12 and ATG16L1. The area under the ROC curve for the use of lncRNA GAS5 expression to diagnose AS was 0.808 with a 95% CI of 0.714-0.902. In conclusion, patients with AS had decreased expression of genes associated with autophagy and lncRNA GAS5. The extent of the reduction in ATG5 and ATG12 expression levels in patients with AS was correlated with the disease severity and activity. Furthermore, lncRNA GAS5 was a diagnostic indicator of AS.
Collapse
Affiliation(s)
- Min Tan
- Department of Geriatrics, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Quan-Bo Zhang
- Department of Geriatrics, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Tao-Hong Liu
- Department of Geriatrics, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yan-Yu Yang
- Department of Geriatrics, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jian-Xiong Zheng
- Department of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Wen-Jun Zhou
- Department of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qin Xiong
- Department of Geriatrics, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yu-Feng Qing
- Department of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
80
|
Talebian S, Daghagh H, Yousefi B, Ȍzkul Y, Ilkhani K, Seif F, Alivand MR. The role of epigenetics and non-coding RNAs in autophagy: A new perspective for thorough understanding. Mech Ageing Dev 2020; 190:111309. [PMID: 32634442 DOI: 10.1016/j.mad.2020.111309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Autophagy is a major self-degradative intracellular process required for the maintenance of homeostasis and promotion of survival in response to starvation. It plays critical roles in a large variety of physiological and pathological processes. On the other hand, aberrant regulation of autophagy can lead to various cancers and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Crohn's disease. Emerging evidence strongly supports that epigenetic signatures, related non-coding RNA profiles, and their cross-talking are significantly associated with the control of autophagic responses. Therefore, it may be helpful and promising to manage autophagic processes by finding valuable markers and therapeutic approaches. Although there is a great deal of information on the components of autophagy in the cytoplasm, the molecular basis of the epigenetic regulation of autophagy has not been completely elucidated. In this review, we highlight recent research on epigenetic changes through the expression of autophagy-related genes (ATGs), which regulate autophagy, DNA methylation, histone modifications as well as non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and their relationship with human diseases, that play key roles in causing autophagy-related diseases.
Collapse
Affiliation(s)
- Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Daghagh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Ȍzkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
81
|
Qu Y, Tan HY, Chan YT, Jiang H, Wang N, Wang D. The functional role of long noncoding RNA in resistance to anticancer treatment. Ther Adv Med Oncol 2020; 12:1758835920927850. [PMID: 32536982 PMCID: PMC7268113 DOI: 10.1177/1758835920927850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is one of the fundamental methods of cancer treatment. However, drug resistance remains the main cause of clinical treatment failure. We comprehensively review the newly identified roles of long noncoding RNAs (lncRNAs) in oncobiology that are associated with drug resistance. The expression of lncRNAs is tissue-specific and often dysregulated in human cancers. Accumulating evidence suggests that lncRNAs are involved in chemoresistance of cancer cells. The main lncRNA-driven mechanisms of chemoresistance include regulation of drug efflux, DNA damage repair, cell cycle, apoptosis, epithelial-mesenchymal transition (EMT), induction of signaling pathways, and angiogenesis. LncRNA-driven mechanisms of resistance to various antineoplastic agents have been studied extensively. There are unique mechanisms of resistance against different types of drugs, and each mechanism may have more than one contributing factor. We summarize the emerging strategies that can be used to overcome the technical challenges in studying and addressing lncRNA-mediated drug resistance.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Hongbo Jiang
- School of Life Sciences, Jilin University, Changchun, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
82
|
Jia Y, Jin H, Gao L, Yang X, Wang F, Ding H, Chen A, Tan S, Zhang F, Shao J, Wang S, Zheng S. A novel lncRNA PLK4 up-regulated by talazoparib represses hepatocellular carcinoma progression by promoting YAP-mediated cell senescence. J Cell Mol Med 2020; 24:5304-5316. [PMID: 32243714 PMCID: PMC7205816 DOI: 10.1111/jcmm.15186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
A growing number of studies recognize that long non‐coding RNAs (lncRNAs) are essential to mediate multiple tumorigenic processes, including hepatic tumorigenesis. However, the pathological mechanism of lncRNA‐regulated liver cancer cell growth remains poorly understood. In this study, we identified a novel function lncRNA, named polo‐like kinase 4 associated lncRNA (lncRNA PLK4, GenBank Accession No. RP11‐50D9.3), whose expression was dramatically down‐regulated in hepatocellular carcinoma (HCC) tissues and cells. Interestingly, talazoparib, a novel and highly potent poly‐ADP‐ribose polymerase 1/2 (PARP1/2) inhibitor, could increase lncRNA PLK4 expression in HepG2 cells. Importantly, we showed that talazoparib‐induced lncRNA PLK4 could function as a tumour suppressor gene by Yes‐associated protein (YAP) inactivation and induction of cellular senescence to inhibit liver cancer cell viability and growth. In summary, our findings reveal the molecular mechanism of talazoparib‐induced anti‐tumor effect, and suggest a potential clinical use of talazoparib‐targeted lncRNA PLK4/YAP‐dependent cellular senescence for the treatment of HCC.
Collapse
Affiliation(s)
- Yan Jia
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Liyuan Gao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Yang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai Ding
- Department of Surgery, Nanjing Second Hospital, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO, USA
| | - Shanzhong Tan
- Department of Hepatology, Integrated Traditional Chinese and Western Medicine, Nanjing Second Hospital, Nanjing, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Wang
- Shandong co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
83
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. Autophagy in aging and longevity. Hum Genet 2020; 139:277-290. [PMID: 31144030 PMCID: PMC6884674 DOI: 10.1007/s00439-019-02031-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of the process of autophagy and its role in health and diseases has grown remarkably in the last two decades. Early work established autophagy as a general bulk recycling process which involves the sequestration and transport of intracellular material to the lysosome for degradation. Currently, autophagy is viewed as a nexus of metabolic and proteostatic signalling that can determine key physiological decisions from cell fate to organismal lifespan. Here, we review the latest literature on the role of autophagy and lysosomes in stress response and longevity. We highlight the connections between autophagy and metabolic processes, the network associated with its regulation, and the links between autophagic dysfunction, neurodegenerative diseases, and aging.
Collapse
Affiliation(s)
- Shi Q Wong
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Anita V Kumar
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Joslyn Mills
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Louis R Lapierre
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
84
|
Ren ZH, Shang GP, Wu K, Hu CY, Ji T. WGCNA Co-Expression Network Analysis Reveals ILF3-AS1 Functions as a CeRNA to Regulate PTBP1 Expression by Sponging miR-29a in Gastric Cancer. Front Genet 2020; 11:39. [PMID: 32117452 PMCID: PMC7033569 DOI: 10.3389/fgene.2020.00039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is one of the most common types of human cancers worldwide. However, the detail mechanisms underlying GC progression remained to be investigated. The present study identified 2823 differently expressed mRNAs and 441 differently expressed lncRNAs in GC. WGCNA was conducted to identify highly correlated lncRNAs and mRNAs. Bioinformatics analysis observed that these dysregulated lncRNAs were significantly associated with the regulation of angiogenesis, cell division, cell-cell adhesion, blood vessel development, adaptive immune response, gastric acid secretion, immune response. Co-expression analysis identified ILF3-AS1 was a key lncRNA involved in regulating GC progression. Loss of function assays showed that knockdown of ILF3-AS1 significantly suppressed GC cell proliferation and metastasis. Mechanically, the results indicate that ILF3-AS1 could enhance PTBP3 expression as an miR-29a sponge, thereby promoting the proliferation and metastasis of GC cells. Our work suggests that the ILF3-AS1/miR-29a/PTBP3 axis may be a potential target for the clinical diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Zhen-Hu Ren
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gao-Pan Shang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Kun Wu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Yu Hu
- Stomatology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Ji
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
85
|
Cao Y, Tian T, Li W, Xu H, Zhan C, Wu X, Wang C, Wu X, Wu W, Zheng S, Xie K. Long non-coding RNA in bladder cancer. Clin Chim Acta 2020; 503:113-121. [PMID: 31940466 DOI: 10.1016/j.cca.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Bladder cancer (BC) is the ninth most common malignant disease and ranks fourteenth in cancer mortality worldwide. Moreover, among cancers, the incidence and mortality of BC in males increased to the 6th and 9th place, respectively. The overall survival (OS) declines dramatically as the cancer progresses, especially when urothelial cells transition from noninvasive to invasive. It is well known that epithelial cells can acquire invasive properties and a propensity to metastasize through the epithelial-to-mesenchymal transition (EMT) process in tumourigenesis and progression. However, the potential molecular mechanisms and key pathways are still unclear. As the sequencing technology advances, long non-coding RNAs (lncRNAs) have been proven to play an important role in regulating biological processes and cellular pathways. Here, we reviewed important lncRNAs, such as H19, UCA1 and MALAT1, that participate in the malignant phenotype of BC and regulate EMT signalling networks in the invasion-metastasis cascade during BC development. We further discuss MALAT1, PCAT-1 and SPRY4-IT1, and also urine and blood exosomal H19 and PTENP as potential noninvasive biomarkers. Moreover, antisense oligonucleotides (ASOs) and a double-stranded DNA plasmid (BC-819) have been designed for use in preclinical cancer models and clinical trials in patients. Therefore, the results of investigations have gradually prompted the utility of lncRNAs.
Collapse
Affiliation(s)
- Yuepeng Cao
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China; Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Tian
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weijian Li
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Hanzi Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Chuanfei Zhan
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xuhong Wu
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Chao Wang
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xiaoli Wu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Wanke Wu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Shuyun Zheng
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
86
|
Na L, Ding H, Xing E, Gao J, Liu B, Wang H, Yu J, Yu C. Lnc-MEG3 acts as a potential biomarker for predicting increased disease risk, systemic inflammation, disease severity, and poor prognosis of sepsis via interacting with miR-21. J Clin Lab Anal 2020; 34:e23123. [PMID: 31907972 PMCID: PMC7171338 DOI: 10.1002/jcla.23123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to investigate the correlations of long non-coding RNA maternally expressed gene 3 (lnc-MEG3), microRNA (miR)-21, and lnc-MEG3/miR-21 axis with disease risk, inflammation, disease severity, and 28-day mortality of sepsis. METHODS Totally, 219 sepsis patients and 219 health controls (HCs) were enrolled. Plasma samples were obtained from sepsis patients within 24 hours after admission and from HCs on enrollment to detect lnc-MEG3 and miR-21 expressions by real-time quantitative polymerase chain reaction. RESULTS The lnc-MEG3 expression and lnc-MEG3/miR-21 axis were increased, while miR-21 expression was decreased in sepsis patients compared with HCs. Lnc-MEG3 (area under the curve (AUC): 0.887, 95% confidence interval (CI): 0.856-0.917) and lnc-MEG3/miR-21 axis (AUC: 0.934, 95% CI: 0.909-0.958) had good values for predicting elevated sepsis risk, while miR-21 (AUC: 0.801, 95% CI: 0.758-0.844) presented a good predictive value for reduced sepsis risk. Furthermore, lnc-MEG3 expression and lnc-MEG3/miR-21 axis positively correlated with, whereas miR-21 expression negatively correlated with acute pathologic and chronic health evaluation II, sequential organ failure assessment score, serum creatinine, C-reactive protein, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-17 in sepsis patients. Additionally, lnc-MEG3 (AUC: 0.704, 95% CI: 0.626-0.783) and lnc-MEG3/miR-21 axis (AUC: 0.669, 95% CI: 0.589-0.750) exhibited acceptable values in predicting higher 28-day mortality risk, while miR-21 (AUC: 0.588, 95% CI: 0.505-0.672) presented a poor predictive value for lower 28-day mortality risk in sepsis patients. CONCLUSION Lnc-MEG3 might serve as a potential biomarker for the development, progression, and prognosis prediction of sepsis via interacting with miR-21.
Collapse
Affiliation(s)
- Lei Na
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Huajie Ding
- Ultrasonography Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Enhong Xing
- Clinical Laboratory, Southern District of Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Jun Gao
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Bin Liu
- Radiology Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Huarong Wang
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Jian Yu
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Changyu Yu
- Hand and Foot Surgery Department, Southern District of Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
87
|
lncRNA-Triggered Macrophage Inflammaging Deteriorates Age-Related Diseases. Mediators Inflamm 2019; 2019:4260309. [PMID: 31949425 PMCID: PMC6942909 DOI: 10.1155/2019/4260309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
Aging and age-related diseases (ARDs) share basic mechanisms largely involving inflammation. A chronic, low-grade, subclinical inflammation called inflammaging occurs during aging. Autophagy defects, oxidative stresses, senescence-associated secretory phenotypes (SASPs), and DNA damage generally contribute to inflammaging and are largely regulated by numerous lncRNA through two-level vicious cycles disrupting cellular homeostasis: (1) inflammaging and the cellular senescence cascade and (2) autophagy defects, oxidative stress, and the SASP cascade. SASPs and inflammasomes simultaneously cause inflammaging. This review discusses the involvement of macrophage inflammaging in various ARDs and its regulation via lncRNA. Among macrophages, this phenomenon potentially impairs its immunosurveillance and phagocytosis mechanisms, leading to decreased recognition and clearance of malignant and senescent cells. Moreover, SASPs extracellularly manifest to induce paracrine senescence. Macrophage senescence escalates to organ level malfunction, and the organism is more prone to ARDs. By targeting genes and proteins or functioning as competing endogenous RNA (ceRNA), lncRNA regulates different phenomena including inflammaging and ARDs. The detailed mechanism warrants further elucidation to obtain pathological evidence of ARDs and potential treatment approaches.
Collapse
|
88
|
Ebadi N, Ghafouri-Fard S, Taheri M, Arsang-Jang S, Parsa SA, Omrani MD. Dysregulation of autophagy-related lncRNAs in peripheral blood of coronary artery disease patients. Eur J Pharmacol 2019; 867:172852. [PMID: 31836534 DOI: 10.1016/j.ejphar.2019.172852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/26/2022]
Abstract
Coronary artery disease (CAD) as a major cause of death has been associated with dysregulation of several processes among them is autophagy. In the current study, we assessed expression of autophagy related gene 5 (ATG5) and three ATG5-associated long non-coding RNAs (lncRNAs Chast, HULC and DICER1-AS1) in the peripheral blood of patients with premature CAD and healthy subjects. Expression levels of ATG5, Chast, HULC and DICER1-AS1 were significantly lower in peripheral blood of CAD cases compared with healthy subjects. Receiver Operating Characteristic (ROC) curve analysis showed that HULC and DICER1-AS1 can properly differentiate CAD patients from healthy subjects (area under curve (AUC) values of 0.90 and 0.87, respectively). Expression levels of ATG5 and Chast were inversely correlated with FBS levels (r = -0.41, P < 0.0001 and r = -0.38, P < 0.0001 respectively) but no other biochemical factors. Expression of DICER1-AS1 was inversely correlated with FBS (r = -0.54, P < 0.0001), TG (r = -0.29, P < 0.0001) and TG/HDL ratio (r = -0.27, P < 0.0001). Expression of HULC was inversely correlated with age (r = -0.24, P < 0.0001), FBS (r = -0.62, P < 0.0001) and TG (r = -0.31, P < 0.0001). There were significant pairwise correlations between expression levels of all genes. The most robust correlations were detected ATG5 and Chast (r = 0.81, P < 0.0001) and between DICER1-AS1 and HULC (r = 0.75, P < 0.0001). The current study further verified associations between dysregulation of autophagy and CAD. Moreover, our results indicate appropriateness of two autophagy-related lncRNAs for differentiation of CAD status.
Collapse
Affiliation(s)
- Nader Ebadi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Cellular and Molecular Research Center, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Saeed Alipour Parsa
- Department of Cardiology, Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
89
|
Lin L, Xia L, Tang D, Dai Y, Chen W. Analysis of autophagy-related genes and associated noncoding RNAs and transcription factors in digestive system tumors. Future Oncol 2019; 15:4141-4154. [PMID: 31802711 DOI: 10.2217/fon-2019-0341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To investigate the autophagy-related gene (ATG) expression and the associated noncoding RNAs (ncRNA) and transcription factors (TF) in digestive system tumors (DST). Methods: We systematically investigated the ATG expression in DST by weighted gene correlation network analysis, crosstalk connection, functional analysis and Pivot analysis. Results: ATGs were clustered into six modules with co-expression in DST. Functional analysis revealed that six ATG-related modules were enriched in biological pathways involved in tumorigenesis. Pivot analysis identified key ncRNAs and TFs, which are essential for the pathogenesis, clinical diagnosis and treatment of DST. Conclusion: Our study highlights the crucial roles of ncRNA and TFs in the identification of potential biomarkers or therapeutic targets for DST.
Collapse
Affiliation(s)
- Liewen Lin
- Department of Gastrointestinal Surgery, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science & Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China
| | - Ligang Xia
- Department of Gastrointestinal Surgery, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science & Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China
| | - Donge Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science & Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science & Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China
| | - Wenbiao Chen
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science & Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China
| |
Collapse
|
90
|
Zhao Y, Wang Z, Zhang W, Zhang L. Non-coding RNAs regulate autophagy process via influencing the expression of associated protein. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 151:32-39. [PMID: 31786247 DOI: 10.1016/j.pbiomolbio.2019.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is a tightly-regulated multi-step process involving the lysosomal degradation of proteins and cytoplasmic organelles. Central to this process is the formation of the autophagosome, a double membrane-bound vesicle, which is fuse with lysosomes or endosomes, and then deliver its cytoplasmic cargo to the lysosomes. Here, we summarize the recent process of autophagy, focusing on protein molecules, their complexes, and its essential roles of autophagy in various phases. Emerging evidence has revealed that miRNAs, lncRNAs, and circRNAs play an indispensable role in autophagy regulation by modulating targeting gene expression. This review we will summarize the main features of ncRNAs and point to gaps in our current knowledge of the connection between ncRNAs and autophagy, as well as their potential utilization in various disease phenotypes. Also, we highlight recent advances in ncRNAs and autophagy-associated protein interaction and how they regulate the autophagy process.
Collapse
Affiliation(s)
- Yunyi Zhao
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Ze Wang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wenhui Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China.
| | - Linbo Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
91
|
Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. Int J Mol Sci 2019; 20:E5758. [PMID: 31744051 PMCID: PMC6888455 DOI: 10.3390/ijms20225758] [Citation(s) in RCA: 430] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has a high metastasis and reoccurrence rate. Long noncoding RNAs (lncRNAs) play an important role in CRC growth and metastasis. Recent studies revealed that lncRNAs participate in CRC progression by coordinating with microRNAs (miRNAs) and protein-coding mRNAs. LncRNAs function as competitive endogenous RNAs (ceRNAs) by competitively occupying the shared binding sequences of miRNAs, thus sequestering the miRNAs and changing the expression of their downstream target genes. Such ceRNA networks formed by lncRNA/miRNA/mRNA interactions have been found in a broad spectrum of biological processes in CRC, including liver metastasis, epithelial to mesenchymal transition (EMT), inflammation formation, and chemo-/radioresistance. In this review, we summarize typical paradigms of lncRNA-associated ceRNA networks, which are involved in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the competitive crosstalk among RNA transcripts and the novel targets for CRC prognosis and therapy.
Collapse
Affiliation(s)
- Liye Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX,77204, USA; (K.B.C.); (Y.L.); (G.T.); (Z.X.)
| | | | | | | | | | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX,77204, USA; (K.B.C.); (Y.L.); (G.T.); (Z.X.)
| |
Collapse
|
92
|
Bermúdez M, Aguilar-Medina M, Lizárraga-Verdugo E, Avendaño-Félix M, Silva-Benítez E, López-Camarillo C, Ramos-Payán R. LncRNAs as Regulators of Autophagy and Drug Resistance in Colorectal Cancer. Front Oncol 2019; 9:1008. [PMID: 31632922 PMCID: PMC6783611 DOI: 10.3389/fonc.2019.01008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with 1. 8 million cases in 2018. Autophagy helps to maintain an adequate cancer microenvironment in order to provide nutritional supplement under adverse conditions such as starvation and hypoxia. Additionally, most of the cases of CRC are unresponsive to chemotherapy, representing a significant challenge for cancer therapy. Recently, autophagy induced by therapy has been shown as a unique mechanism of resistance to anticancer drugs. In this regard, long non-coding RNAs (lncRNAs) analysis are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. With increasing development of quantitative detection techniques, lncRNAs derived from patients' non-invasive samples (i.e., blood, stools, and urine) has become into a novel approach in precision oncology. Tumorspecific GAS5, HOTAIR, H19, and MALAT are novels CRC related lncRNAs detected in patients. Nonetheless, the effect and mechanism of lncRNAs in cancer autophagy and chemoresistance have not been extensively characterized. Chemoresistance and autophagy are relevant for cancer treatment and lncRNAs play a pivotal role in resistance acquisition for several drugs. LncRNAs such as HAGLROS, KCNQ1OT1, and H19 are examples of lncRNAs related to chemoresistance leaded by autophagy. Finally, clinical implications of lncRNAs in CRC are relevant, since they have been associated with tumor differentiation, tumor size, histological grade, histological types, Dukes staging, degree of differentiation, lymph node metastasis, distant metastasis, recurrent free survival, and overall survival (OS).
Collapse
Affiliation(s)
- Mercedes Bermúdez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Erik Lizárraga-Verdugo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Mariana Avendaño-Félix
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | | | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| |
Collapse
|
93
|
Qian C, Ye Y, Mao H, Yao L, Sun X, Wang B, Zhang H, Xie L, Zhang H, Zhang Y, Zhang S, He X. Downregulated lncRNA-SNHG1 enhances autophagy and prevents cell death through the miR-221/222 /p27/mTOR pathway in Parkinson's disease. Exp Cell Res 2019; 384:111614. [PMID: 31499060 DOI: 10.1016/j.yexcr.2019.111614] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 01/14/2023]
Abstract
Autophagy has been shown to be critically associated with the central mechanisms underlying Parkinson's disease (PD), while the mechanisms contributing to the imbalance of autophagy remain unclear. Small nucleolar RNA host gene 1 (SNHG1), a well-studied long noncoding RNA, has been reported to be significantly increased in PD. The potential biological functions of SNHG1 in the regulation of neuronal autophagy and cell death in PD, however, have not yet been completely elucidated. In this study, we examined the existence of regulatory networks involving SNHG1, the miR-221/222 cluster and the cyclin-dependent kinase inhibitor 1B (CDKN1B/p27)/mammalian target of rapamycin (mTOR) signaling pathway in PD. We observed that SNHG1 expression was gradually upregulated in PD cellular and animal models. Furthermore, silencing SNHG1 promoted autophagy and prevented MPP+-induced cell death, similar to the overexpression of the miR-221/222 cluster. Mechanistically, SNHG1 competitively binds to the miR-221/222 cluster and indirectly regulates the expression of p27/mTOR. In conclusion, these results demonstrated that downregulation of SNHG1 attenuated MPP+-induced decreases in LC3-II (an autophagic marker) levels and cytotoxicity through the miR-221/222/p27/mTOR pathway, suggesting that SNHG1 may be a therapeutic target for neuroprotection and disease treatment in PD.
Collapse
Affiliation(s)
- Chen Qian
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyi Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengxu Mao
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Longping Yao
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Baoyan Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linghai Xie
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huan Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhou Zhang
- Tarbut V'torah Community Day School, Irvine, CA, 92603, USA
| | - Shizhong Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiaozheng He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
94
|
Li P, He J, Yang Z, Ge S, Zhang H, Zhong Q, Fan X. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression. Autophagy 2019; 16:1186-1199. [PMID: 31462126 DOI: 10.1080/15548627.2019.1659614] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are proved to be critical regulators in numerous cellular processes. However, the potential involvement of lncRNAs in macroautophagy/autophagy is largely unknown. Autophagy is a highly regulated cellular degradation system, and its dysregulation is involved in many human diseases, including cancers. Here, we show that the lncRNA ZNNT1 is induced by PP242 and MTORC1 selective inhibitor rapamycin in uveal melanoma (UM) cells. Overexpression of ZNNT1 promotes autophagy by upregulating ATG12 expression, whereas knockdown of ZNNT1 attenuates PP242-induced autophagy. Overexpression of ZNNT1 inhibits tumorigenesis and the migration of UM cells, and knockdown of ATG12 can partially rescue the ZNNT1-induced inhibition of UM tumorigenesis. In summary, our study reveals that ZNNT1 acts as a potential tumor suppressor in UM by inducing autophagy. ABBREVIATIONS ADCD: autophagy dependent cell death; ANXA2R: annexin A2 receptor; ATG12: autophagy- related 12; ATG5: autophagy -related 5; ceRNA: competing endogenous RNAs; CQ: chloroquine; iTRAQ: isobaric tags for relative and absolute quantitation; lncRNA: long noncoding RNA; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR cmplex 2; PP242: Torkinib; RACE: rapid amplification of cDNA ends; SQSTM1/p62: sequestosome 1; UM: uveal melanoma.
Collapse
Affiliation(s)
- Peng Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, China
| | - Jie He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, China
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University , Shanghai, China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, (SJTU-SM) , Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, China
| |
Collapse
|
95
|
Ma Z, Zhang J, Xu X, Qu Y, Dong H, Dang J, Huo Z, Xu G. LncRNA expression profile during autophagy and Malat1 function in macrophages. PLoS One 2019; 14:e0221104. [PMID: 31425535 PMCID: PMC6699732 DOI: 10.1371/journal.pone.0221104] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/30/2019] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of functional non-coding transcripts that are longer than 200 nt and regulate gene expression via diverse mechanisms in eukaryotes. In fact, they have emerged as critical epigenetic and transcriptional regulators of autophagy in mammals in response to various stressors. Autophagy not only plays a crucial role in maintaining cellular homeostasis, but it is also essential to immunity, targets intracellular pathogens for degradation, modulates inflammation, and participates in adaptive immune responses. However, the expression profile of lncRNA and its role in regulating autophagy in macrophages have been poorly defined. Here, we used transcriptomic and bioinformatics to analysis LncRNA expression profile during autophagy and functional studies to evaluate the function of the metastasis-associated lung adenocarcinoma transcript-1 (Malat1) lncRNA in macrophages. A total of 1112 putative lncRNAs (240 novel lncRNAs) were identified, including 831 large intergenic, 129 intronic, and 152 anti-sense lncRNA, of which 59 differentially expressed transcripts exhibited a greater than 1.5-fold change under different conditions. The interaction of Malat1 lncRNA with microRNA (mir)-23-3p and lysosomal-associated membrane protein 1 (Lamp1) was found, Malat1 releases inhibition of Lamp1 expression in macrophages through competitive adsorption of mir-23-3p. The results of this study provide a better understanding of lncRNA function in macrophages and a basis for further investigation into the roles and mechanisms of ncRNA in immunology, particularly the functions of Malat1 and mir-23-3p in the pathogenesis of macrophages.
Collapse
Affiliation(s)
- Zhanbing Ma
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Medical Genetic and Cell Biology, College of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan, China
| | - Jing Zhang
- Department of Medical Genetic and Cell Biology, College of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan, China
| | - Xiangrong Xu
- Department of Medical Laboratory, College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuliang Qu
- Department of Medical Laboratory, College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hui Dong
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan, China
| | - Jie Dang
- Department of Medical Genetic and Cell Biology, College of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan, China
| | - Zhenghao Huo
- Department of Medical Genetic and Cell Biology, College of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan, China
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Medical Laboratory, College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
96
|
Si Y, Yang Z, Ge Q, Yu L, Yao M, Sun X, Ren Z, Ding C. Long non-coding RNA Malat1 activated autophagy, hence promoting cell proliferation and inhibiting apoptosis by sponging miR-101 in colorectal cancer. Cell Mol Biol Lett 2019; 24:50. [PMID: 31372165 PMCID: PMC6660674 DOI: 10.1186/s11658-019-0175-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 01/17/2023] Open
Abstract
Background Long non-coding RNA Malat1 has been widely identified as an oncogene which shows a significant relationship with tumorigenesis in colorectal cancer (CRC). Nonetheless, whether Malat1 participates in the autophagy of colorectal cancer remains unclear. Materials and methods First, the expression level of Malat1 in 96 pairs of colorectal cancer tissues and four cell lines was detected by qRT-PCR. Subsequently, the autophagy activity in colorectal cancer tissues and cell lines was detected by western blot. Furthermore, the CCK-8 assay and flow cytometry (FCM) were performed to detect the role of autophagy activated by Malat1 in colorectal cancer cell lines. Results In this study, significantly increased Malat1 expression and autophagy activity were found in colorectal cancer tissues compared with the adjacent normal tissues. Also, the Malat1 level was positively correlated with the expression of LC3-II mRNA in vivo. Moreover, autophagy activation and cell proliferation were significantly facilitated by Malat1 in colorectal cancer cells, while apoptosis decreased. Above all, the inhibition of autophagy by 3-MA not only relieved the Malat1-induced cell proliferation but also promoted the Malat1-induced cell apoptosis. In addition, Malat1 was found to act as an endogenous sponge by directly binding to miR-101 to reduce miR-101. Furthermore, the suppressive effects of miR-101 on the autophagy, proliferation, and apoptosis of CRC were abolished by Malat1. Conclusion Long non-coding RNA Malat1 activated autophagy and promoted cell proliferation, yet inhibited apoptosis by sponging miR-101 in colorectal cancer cells.
Collapse
Affiliation(s)
- Yaoran Si
- 1Department of Gastroenterology, Huaihe Hospital, Henan University, Kaifeng, 475000 Henan China
| | - Zhaoguo Yang
- Department of General Surgery, Kaifeng Central Hospital, Kaifeng, Henan China
| | - Quanxing Ge
- 1Department of Gastroenterology, Huaihe Hospital, Henan University, Kaifeng, 475000 Henan China
| | - Lingbing Yu
- 1Department of Gastroenterology, Huaihe Hospital, Henan University, Kaifeng, 475000 Henan China
| | - Meiying Yao
- 1Department of Gastroenterology, Huaihe Hospital, Henan University, Kaifeng, 475000 Henan China
| | - Xinfang Sun
- 1Department of Gastroenterology, Huaihe Hospital, Henan University, Kaifeng, 475000 Henan China
| | - Zheng Ren
- 1Department of Gastroenterology, Huaihe Hospital, Henan University, Kaifeng, 475000 Henan China
| | - Chunsheng Ding
- 1Department of Gastroenterology, Huaihe Hospital, Henan University, Kaifeng, 475000 Henan China
| |
Collapse
|
97
|
Moosavi MA, Djavaheri-Mergny M. Autophagy: New Insights into Mechanisms of Action and Resistance of Treatment in Acute Promyelocytic leukemia. Int J Mol Sci 2019; 20:E3559. [PMID: 31330838 PMCID: PMC6678259 DOI: 10.3390/ijms20143559] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Autophagy is one of the main cellular catabolic pathways controlling a variety of physiological processes, including those involved in self-renewal, differentiation and death. While acute promyelocytic leukemia (APL) cells manifest low levels of expression of autophagy genes associated with reduced autophagy activity, the introduction of all-trans retinoid acid (ATRA)-a differentiating agent currently used in clinical settings-restores autophagy in these cells. ATRA-induced autophagy is involved in granulocytes differentiation through a mechanism that involves among others the degradation of the PML-RARα oncoprotein. Arsenic trioxide (ATO) is another anti-cancer agent that promotes autophagy-dependent clearance of promyelocytic leukemia retinoic acid receptor alpha gene (PML-RARα) in APL cells. Hence, enhancing autophagy may have therapeutic benefits in maturation-resistant APL cells. However, the role of autophagy in response to APL therapy is not so simple, because some autophagy proteins have been shown to play a pro-survival role upon ATRA and ATO treatment, and both agents can activate ETosis, a type of cell death mediated by the release of neutrophil extracellular traps (ETs). This review highlights recent findings on the impact of autophagy on the mechanisms of action of ATRA and ATO in APL cells. We also discuss the potential role of autophagy in the development of resistance to treatment, and of differentiation syndrome in APL.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Mojgan Djavaheri-Mergny
- Equipe labellisée par la Ligue contre le cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris 75006, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France.
| |
Collapse
|
98
|
Noncoding RNAs in Cardiac Autophagy following Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8438650. [PMID: 31341537 PMCID: PMC6589265 DOI: 10.1155/2019/8438650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
Abstract
Macroautophagy is an evolutionarily conserved process of the lysosome-dependent degradation of damaged proteins and organelles and plays an important role in cellular homeostasis. Macroautophagy is upregulated after myocardial infarction (MI) and seems to be detrimental during reperfusion and protective during left ventricle remodeling. Identifying new regulators of cardiac autophagy may help to maintain the activity of this process and protect the heart from MI effects. Recently, it was shown that noncoding RNAs (microRNAs and long noncoding RNAs) are involved in autophagy regulation in different cell types including cardiac cells. In this review, we summarized the role of macroautophagy in the heart following MI and we focused on the noncoding RNAs and their targeted genes reported to regulate autophagy in the heart under these pathological conditions.
Collapse
|
99
|
IGFBPrP1 accelerates autophagy and activation of hepatic stellate cells via mutual regulation between H19 and PI3K/AKT/mTOR pathway. Biomed Pharmacother 2019; 116:109034. [PMID: 31152924 DOI: 10.1016/j.biopha.2019.109034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/04/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Our previous study found that insulin-like growth factor binding protein-associated protein (IGFBPrP1) drives hepatic stellate cells (HSCs) activation, and IGFBPrP1 and transforming growth factor β1 (TGFβ1) likely interact with each other to promote HSCs activation. TGFβ1 reportedly promotes autophagy and contributes to HSCs activation; however, the mechanism between IGFBPrP1 and autophagy in liver fibrogenesis is yet unknown. Moreover, long noncoding RNA (lncRNA) H19 participates in autophagy regulation and plays a crucial function in liver fibrosis. AIMS To define the relationship between IGFBPrP1 and autophagy and the role of H19 in IGFBPrP1-induced hepatic fibrosis. METHODS IGFBPrP1 and autophagy were detected in bile duct ligation (BDL)-induced hepatic fibrosis. Adenovirus-mediated IGFBPrP1 was transfected into mouse liver and JS-1 cells with or without LY294002 or rapamycin to examine the effects of IGFBPrP1 on HSCs activation and autophagy as well as the PI3K/AKT/mTOR pathway. lncRNA H19 in liver fibrosis tissues and JS-1 cells induced by IGFBPrP1 were detected, then autophagy and HSCs activation level were detected in JS-1 cells by IGFBPrP1 with H19 overexpression or knowdown. RESULTS IGFBPrP1 expression and autophagy level were concomitantly increased in liver tissue with BDL-induced hepatic fibrosis. Furthermore, we found that IGFBPrP1 stimulated autophagy and HSCs activation in vivo and in vitro, and PI3K/AKT/mTOR signaling pathway was involved in the regulation of autophagy by IGFBPrP1. In addition, H19 promoted autophagy by interacting with the PI3K/AKT/mTOR pathway in IGFBPrP1-induced HSCs activation. CONCLUSIONS IGFBPrP1 promoted autophagy and contributed to HSCs activation via mutual regulation between H19 and the PI3K/AKT/mTOR pathway.
Collapse
|
100
|
Is there a role for autophagy in ascending aortopathy associated with tricuspid or bicuspid aortic valve? Clin Sci (Lond) 2019; 133:805-819. [PMID: 30991346 DOI: 10.1042/cs20181092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Autophagy is a conserved process by which cytoplasmatic elements are sequestered in vesicles and degraded after their fusion with lysosomes, thus recycling the precursor molecules. The autophagy-mediated removal of redundant/harmful/damaged organelles and biomolecules plays not only a replenishing function, but protects against stressful conditions through an adaptive mechanism. Autophagy, known to play a role in several pathological conditions, is now gaining increasing attention also in the perspective of the identification of the pathogenetic mechanisms at the basis of ascending thoracic aortic aneurysm (TAA), a localized or diffused dilatation of the aorta with an abnormal widening greater than 50 percent of the vessel's normal diameter. TAA is less frequent than abdominal aortic aneurysm (AAA), but is encountered with a higher percentage in patients with congenital heart disease or known genetic syndromes. Several biological aspects of TAA pathophysiology remain to be elucitated and therapeutic needs are still widely unmet. One of the most controversial and epidemiologically important forms of TAA is that associated with the congenital bicuspid malformation of the aortic valve (BAV). Dysregulated autophagy in response, for example, to wall shear stress alterations, has been demonstrated to affect the phenotype of vascular cells relevant to aortopathy, with potential consequences on signaling, remodeling, and angiogenesis. The most recent findings and hypotheses concerning the multiple aspects of autophagy and of its dysregulation are summarized, both in general and in the context of the different vascular cell types and of TAA progression, with particular reference to BAV-related aortopathy.
Collapse
|