51
|
Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults. Neuroimage 2016; 138:147-163. [PMID: 27177763 DOI: 10.1016/j.neuroimage.2016.05.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 11/23/2022] Open
Abstract
In conventional neuroimaging, cerebrovascular reactivity (CVR) is quantified primarily using the blood-oxygenation level-dependent (BOLD) functional MRI (fMRI) signal, specifically, as the BOLD response to intravascular carbon dioxide (CO2) modulations, in units of [%ΔBOLD/mmHg]. While this method has achieved wide appeal and clinical translation, the tolerability of CO2-related tasks amongst patients and the elderly remains a challenge in more routine and large-scale applications. In this work, we propose an improved method to quantify CVR by exploiting intrinsic fluctuations in CO2 and corresponding changes in the resting-state BOLD signal (rs-qCVR). Our rs-qCVR approach requires simultaneous monitoring of PETCO2, cardiac pulsation and respiratory volume. In 16 healthy adults, we compare our quantitative CVR estimation technique to the prospective CO2-targeting based CVR quantification approach (qCVR, the "standard"). We also compare our rs-CVR to non-quantitative alternatives including the resting-state fluctuation amplitude (RSFA), amplitude of low-frequency fluctuation (ALFF) and global-signal regression. When all subjects were pooled, only RSFA and ALFF were significantly associated with qCVR. However, for characterizing regional CVR variations within each subject, only the PETCO2-based rs-qCVR measure is strongly associated with standard qCVR in 100% of the subjects (p≤0.1). In contrast, for the more qualitative CVR measures, significant within-subject association with qCVR was only achieved in 50-70% of the subjects. Our work establishes the feasibility of extracting quantitative CVR maps using rs-fMRI, opening the possibility of mapping functional connectivity and qCVR simultaneously.
Collapse
|
52
|
Rodgers ZB, Leinwand SE, Keenan BT, Kini LG, Schwab RJ, Wehrli FW. Cerebral metabolic rate of oxygen in obstructive sleep apnea at rest and in response to breath-hold challenge. J Cereb Blood Flow Metab 2016; 36:755-67. [PMID: 26661146 PMCID: PMC4821016 DOI: 10.1177/0271678x15605855] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 01/06/2023]
Abstract
Obstructive sleep apnea (OSA) is associated with extensive neurologic comorbidities. It is hypothesized that the repeated nocturnal apneas experienced in patients with OSA may inhibit the normal apneic response, resulting in hypoxic brain injury and subsequent neurologic dysfunction. In this study, we applied the recently developedOxFlowMRI method for rapid quantification of cerebral metabolic rate of oxygen (CMRO2) during a volitional apnea paradigm. MRI data were analyzed in 11 OSA subjects and 10 controls (mean ± SD apnea-hypopnea index (AHI): 43.9 ± 18.1 vs. 2.9 ± 1.6 events/hour,P < 0.0001; age: 53.8 ± 8.2 vs. 45.3 ± 8.5 years,P = 0.027; BMI: 36.6 ± 4.4 vs. 31.9 ± 2.2 kg/m(2),P = 0.0064). Although total cerebral blood flow and arteriovenous oxygen difference were not significantly different between apneics and controls (P > 0.05), apneics displayed reduced baseline CMRO2(117.4 ± 37.5 vs. 151.6 ± 29.4 µmol/100 g/min,P = 0.013). In response to apnea, CMRO2decreased more in apneics than controls (-10.9 ± 8.8 % vs. -4.0 ± 6.7 %,P = 0.036). In contrast, group differences in flow-based cerebrovascular reactivity were not significant. Results should be interpreted with caution given the small sample size, and future studies with larger independent samples should examine the observed associations, including potential independent effects of age or BMI. Overall, these data suggest that dysregulation of the apneic response may be a mechanism for OSA-associated neuropathology.
Collapse
Affiliation(s)
- Zachary B Rodgers
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Sarah E Leinwand
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Brendan T Keenan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lohith G Kini
- Center for Neuroengineering and Therapeutics, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard J Schwab
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| |
Collapse
|
53
|
Golestani AM, Kwinta JB, Strother SC, Khatamian YB, Chen JJ. The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: The influence of basal carbon dioxide. Neuroimage 2016; 132:301-313. [PMID: 26908321 DOI: 10.1016/j.neuroimage.2016.02.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/23/2015] [Accepted: 02/15/2016] [Indexed: 12/28/2022] Open
Abstract
Although widely used in resting-state fMRI (fMRI) functional connectivity measurement (fcMRI), the BOLD signal is only an indirect measure of neuronal activity, and is inherently modulated by both neuronal activity and vascular physiology. For instance, cerebrovascular reactivity (CVR) varies widely across individuals irrespective of neuronal function, but the implications for fcMRI are currently unknown. This knowledge gap compromises our ability to correctly interpret fcMRI measurements. In this work, we investigate the relationship between CVR and resting fcMRI measurements in healthy young adults, in both the motor and the executive-control networks. We modulate CVR within each individual by subtly increasing and decreasing resting vascular tension through baseline end-tidal CO2 (PETCO2), and measure fcMRI during these hypercapnic, hypocapnic and normocapnic states. Furthermore, we assess the association between CVR and fcMRI within and across individuals. Within individuals, resting PETCO2 is found to significantly influence both CVR and resting fcMRI values. In addition, we find resting fcMRI to be significantly and positively associated with CVR across the group in both networks. This relationship is potentially mediated by concomitant alterations in BOLD signal fluctuation amplitude. This work clearly demonstrates and quantifies a major vascular modulator of resting fcMRI, one that is also subject and regional dependent. We suggest that individualized correction for CVR effects in fcMRI measurements is essential for fcMRI studies of healthy brains, and can be even more important in studying diseased brains.
Collapse
Affiliation(s)
| | - Jonathan B Kwinta
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Stephen C Strother
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | | | - J Jean Chen
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
54
|
Ghosh P, Stabley JN, Behnke BJ, Allen MR, Delp MD. Effects of spaceflight on the murine mandible: Possible factors mediating skeletal changes in non-weight bearing bones of the head. Bone 2016; 83:156-161. [PMID: 26545335 DOI: 10.1016/j.bone.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022]
Abstract
Spaceflight-induced remodeling of the skull is characterized by greater bone volume, mineral density, and mineral content. To further investigate the effects of spaceflight on other non-weight bearing bones of the head, as well as to gain insight into potential factors mediating the remodeling of the skull, the purpose of the present study was to determine the effects of spaceflight on mandibular bone properties. Female C57BL/6 mice were flown 15d on the STS-131 Space Shuttle mission (n=8) and 13d on the STS-135 mission (n=5) or remained as ground controls (GC). Upon landing, mandibles were collected and analyzed via micro-computed tomography for tissue mineralization, bone volume (BV/TV), and distance from the cemento-enamel junction to the alveolar crest (CEJ-AC). Mandibular mineralization was not different between spaceflight (SF) and GC mice for either the STS-131 or STS-135 missions. Mandibular BV/TV (combined cortical and trabecular bone) was lower in mandibles from SF mice on the STS-131 mission (80.7±0.8%) relative to that of GC (n=8) animals (84.2±1.2%), whereas BV/TV from STS-135 mice was not different from GC animals (n=7). The CEJ-AC distance was shorter in mandibles from STS-131 mice (0.217±0.004mm) compared to GC animals (0.283±0.009mm), indicating an anabolic (or anti-catabolic) effect of spaceflight, while CEJ-AC distance was similar between STS-135 and GC mice. These findings demonstrate that mandibular bones undergo skeletal changes during spaceflight and are susceptible to the effects of weightlessness. However, adaptation of the mandible to spaceflight is dissimilar to that of the cranium, at least in terms of changes in BV/TV.
Collapse
Affiliation(s)
- Payal Ghosh
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA
| | - John N Stabley
- Sanford-Burnham Medical Research Institute, Orlando, FL 3282, USA
| | - Bradley J Behnke
- Department of Kinesiology and Johnson Cancer Research Center, Kansas State University, Manhattan, KS 66506, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
55
|
Merola A, Murphy K, Stone AJ, Germuska MA, Griffeth VEM, Blockley NP, Buxton RB, Wise RG. Measurement of oxygen extraction fraction (OEF): An optimized BOLD signal model for use with hypercapnic and hyperoxic calibration. Neuroimage 2016; 129:159-174. [PMID: 26801605 DOI: 10.1016/j.neuroimage.2016.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 11/24/2022] Open
Abstract
Several techniques have been proposed to estimate relative changes in cerebral metabolic rate of oxygen consumption (CMRO2) by exploiting combined BOLD fMRI and cerebral blood flow data in conjunction with hypercapnic or hyperoxic respiratory challenges. More recently, methods based on respiratory challenges that include both hypercapnia and hyperoxia have been developed to assess absolute CMRO2, an important parameter for understanding brain energetics. In this paper, we empirically optimize a previously presented "original calibration model" relating BOLD and blood flow signals specifically for the estimation of oxygen extraction fraction (OEF) and absolute CMRO2. To do so, we have created a set of synthetic BOLD signals using a detailed BOLD signal model to reproduce experiments incorporating hypercapnic and hyperoxic respiratory challenges at 3T. A wide range of physiological conditions was simulated by varying input parameter values (baseline cerebral blood volume (CBV0), baseline cerebral blood flow (CBF0), baseline oxygen extraction fraction (OEF0) and hematocrit (Hct)). From the optimization of the calibration model for estimation of OEF and practical considerations of hypercapnic and hyperoxic respiratory challenges, a new "simplified calibration model" is established which reduces the complexity of the original calibration model by substituting the standard parameters α and β with a single parameter θ. The optimal value of θ is determined (θ=0.06) across a range of experimental respiratory challenges. The simplified calibration model gives estimates of OEF0 and absolute CMRO2 closer to the true values used to simulate the experimental data compared to those estimated using the original model incorporating literature values of α and β. Finally, an error propagation analysis demonstrates the susceptibility of the original and simplified calibration models to measurement errors and potential violations in the underlying assumptions of isometabolism. We conclude that using the simplified calibration model results in a reduced bias in OEF0 estimates across a wide range of potential respiratory challenge experimental designs.
Collapse
Affiliation(s)
- Alberto Merola
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Alan J Stone
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Michael A Germuska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Valerie E M Griffeth
- Department of Bioengineering and Medical Scientist Training Program, University of California San Diego, La Jolla, CA, United States
| | - Nicholas P Blockley
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Richard B Buxton
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, CA, United States; Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, United States
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
56
|
Whittaker JR, Driver ID, Bright MG, Murphy K. The absolute CBF response to activation is preserved during elevated perfusion: Implications for neurovascular coupling measures. Neuroimage 2016; 125:198-207. [PMID: 26477657 PMCID: PMC4692513 DOI: 10.1016/j.neuroimage.2015.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) techniques in which the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) response to a neural stimulus are measured, can be used to estimate the fractional increase in the cerebral metabolic rate of oxygen consumption (CMRO2) that accompanies evoked neural activity. A measure of neurovascular coupling is obtained from the ratio of fractional CBF and CMRO2 responses, defined as n, with the implicit assumption that relative rather than absolute changes in CBF and CMRO2 adequately characterise the flow-metabolism response to neural activity. The coupling parameter n is important in terms of its effect on the BOLD response, and as potential insight into the flow-metabolism relationship in both normal and pathological brain function. In 10 healthy human subjects, BOLD and CBF responses were measured to test the effect of baseline perfusion (modulated by a hypercapnia challenge) on the coupling parameter n during graded visual stimulation. A dual-echo pulsed arterial spin labelling (PASL) sequence provided absolute quantification of CBF in baseline and active states as well as relative BOLD signal changes, which were used to estimate CMRO2 responses to the graded visual stimulus. The absolute CBF response to the visual stimuli were constant across different baseline CBF levels, meaning the fractional CBF responses were reduced at the hyperperfused baseline state. For the graded visual stimuli, values of n were significantly reduced during hypercapnia induced hyperperfusion. Assuming the evoked neural responses to the visual stimuli are the same for both baseline CBF states, this result has implications for fMRI studies that aim to measure neurovascular coupling using relative changes in CBF. The coupling parameter n is sensitive to baseline CBF, which would confound its interpretation in fMRI studies where there may be significant differences in baseline perfusion between groups. The absolute change in CBF, as opposed to the change relative to baseline, may more closely match the underlying increase in neural activity in response to a stimulus.
Collapse
Affiliation(s)
- Joseph R Whittaker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK
| | - Ian D Driver
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK
| | - Molly G Bright
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK; Sir Peter Mansfield Imaging Centre, Clinical Neurology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK.
| |
Collapse
|
57
|
Liu Z, Li Y. Cortical Cerebral Blood Flow, Oxygen Extraction Fraction, and Metabolic Rate in Patients with Middle Cerebral Artery Stenosis or Acute Stroke. AJNR Am J Neuroradiol 2015; 37:607-14. [PMID: 26680459 DOI: 10.3174/ajnr.a4624] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/09/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE With the advances of magnetic resonance technology, the CBF, oxygen extraction fraction, and cerebral metabolic rate of oxygen can be measured in MRI. Our aim was to measure the CBF, oxygen extraction fraction, and cerebral metabolic rate of oxygen use in patients with different severities of middle cerebral artery stenosis or acute stroke by using the arterial spin-labeling and susceptibility-weighted imaging techniques. MATERIALS AND METHODS Fifty-seven patients with MCA stenosis or acute stroke were recruited and classified into 4 groups: mild MCA stenosis (group 1), severe MCA stenosis (group 2), occluded MCA (group 3), and acute stroke (group 4). Arterial spin-labeling and SWI sequences were used to acquire CBF, oxygen extraction fraction, and cerebral metabolic rate of oxygen. RESULTS The oxygen extraction fraction in hemispheres with mild MCA stenosis (group 1) was remarkably higher than that in the contralateral hemisphere. In addition, hemispheres with severe MCA stenosis (group 2) had significantly lower CBF and a significantly higher oxygen extraction fraction than the contralateral hemisphere. Hemispheres with occluded MCA (group 3) or acute stroke (group 4) had a significantly lower CBF and cerebral metabolic rate of oxygen and a significantly higher oxygen extraction fraction than the contralateral hemisphere. CONCLUSIONS The oxygen extraction fraction gradually increased in groups 1-3. When this offset a decrease in CBF, the cerebral metabolic rate of oxygen remained at a normal level. An occluded MCA led to reduction in both the CBF and cerebral metabolic rate of oxygen. Moreover, the oxygen extraction fraction and cerebral metabolic rate of oxygen significantly increased and decreased, respectively, in the occluded MCA region during acute stroke.
Collapse
Affiliation(s)
- Z Liu
- From the Department of Medical Imaging (Z.L.), First Hospital of Nanchang City, The Third Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Y Li
- Department of Preventive Medicine (Y.L.), Heze Medical College, HeZe, Shandong, China
| |
Collapse
|
58
|
Kämpe R, Lind E, Ståhlberg F, van Westen D, Knutsson L, Wirestam R. Quantification of normal cerebral oxygen extraction and oxygen metabolism by phase-based MRI susceptometry: evaluation of repeatability using two different imaging protocols. Clin Physiol Funct Imaging 2015; 37:211-220. [PMID: 26490359 DOI: 10.1111/cpf.12288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/29/2015] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Global oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) were quantified in a test-retest study. Cerebral blood flow (CBF) data, required for CMRO2 estimation, were obtained using dynamic susceptibility contrast MRI (DSC-MRI). OEF and CMRO2 were quantified using two separate data sets, that is, conventional high-resolution (HR) gradient echo (GRE) phase maps as well as echo planar imaging (EPI) phase maps taken from the baseline (precontrast) part of the DSC-MRI time series. The EPI phase data were included to elucidate whether an extra HR-GRE scan is needed to obtain information about OEF and CMRO2 , or if this information can be extracted from the DSC-MRI experiment only. METHODS Twenty healthy volunteers were scanned using 3 T MRI on two occasions. Oxygen saturation levels were obtained from phase data measured in the great cerebral vein of Galen, based on HR-GRE as well as EPI phase maps. In combination with DSC-MRI CBF, this allowed for calculation of OEF and CMRO2 . RESULTS High-resolution-gradient echo- and EPI-based phase images resulted in similar OEF spread and repeatability, with coefficients of variation/intraclass correlation coefficients of 0·26/0·95 and 0·23/0·81, respectively. Absolute OEF values (HR-GRE: 0·40 ± 0·11, EPI: 0·35 ± 0·08) were consistent with literature data. CMRO2 showed similar repeatability, somewhat increased spread and reasonable absolute values (HR-GRE: 3·23 ± 1·26 ml O2 /100 g min-1 , EPI: 2·79 ± 0·89 ml O2 /100 g min-1 ). DISCUSSION In general, the results obtained by HR-GRE and EPI showed comparable characteristics. The EPI methodology could potentially be improved using a slightly modified DSC-MRI protocol (e.g. with regard to spatial resolution and slice gap).
Collapse
Affiliation(s)
- Robin Kämpe
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Emelie Lind
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Danielle van Westen
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Imaging and Function, Skåne University Health Care, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
59
|
Marshall O, Uh J, Lurie D, Lu H, Milham MP, Ge Y. The influence of mild carbon dioxide on brain functional homotopy using resting-state fMRI. Hum Brain Mapp 2015; 36:3912-21. [PMID: 26138728 PMCID: PMC6320689 DOI: 10.1002/hbm.22886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 11/10/2022] Open
Abstract
Homotopy reflects the intrinsic functional architecture of the brain through synchronized spontaneous activity between corresponding bilateral regions, measured as voxel mirrored homotopic connectivity (VMHC). Hypercapnia is known to have clear impact on brain hemodynamics through vasodilation, but have unclear effect on neuronal activity. This study investigates the effect of hypercapnia on brain homotopy, achieved by breathing 5% carbon dioxide (CO2 ) gas mixture. A total of 14 healthy volunteers completed three resting state functional MRI (RS-fMRI) scans, the first and third under normocapnia and the second under hypercapnia. VMHC measures were calculated as the correlation between the BOLD signal of each voxel and its counterpart in the opposite hemisphere. Group analysis was performed between the hypercapnic and normocapnic VMHC maps. VMHC showed a diffused decrease in response to hypercapnia. Significant regional decreases in VMHC were observed in all anatomical lobes, except for the occipital lobe, in the following functional hierarchical subdivisions: the primary sensory-motor, unimodal, heteromodal, paralimbic, as well as in the following functional networks: ventral attention, somatomotor, default frontoparietal, and dorsal attention. Our observation that brain homotopy in RS-fMRI is affected by arterial CO2 levels suggests that caution should be used when comparing RS-fMRI data between healthy controls and patients with pulmonary diseases and unusual respiratory patterns such as sleep apnea or chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Olga Marshall
- Radiology/Center for Biomedical ImagingNew York University School of MedicineNew YorkNew York
| | - Jinsoo Uh
- Advanced Imaging Research CenterUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Daniel Lurie
- Center for the Developing Brain, Child Mind InstituteNew YorkNew York
| | - Hanzhang Lu
- Advanced Imaging Research CenterUniversity of Texas Southwestern Medical CenterDallasTexas
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Michael P. Milham
- Center for the Developing Brain, Child Mind InstituteNew YorkNew York
- Nathan S Kline Institute for Psychiatric ResearchNew York
| | - Yulin Ge
- Radiology/Center for Biomedical ImagingNew York University School of MedicineNew YorkNew York
| |
Collapse
|
60
|
Method for rapid MRI quantification of global cerebral metabolic rate of oxygen. J Cereb Blood Flow Metab 2015; 35:1616-22. [PMID: 25966941 PMCID: PMC4640312 DOI: 10.1038/jcbfm.2015.96] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 11/08/2022]
Abstract
A recently reported quantitative magnetic resonance imaging (MRI) method denoted OxFlow has been shown to be able to quantify whole-brain cerebral metabolic rate of oxygen (CMRO2) by simultaneously measuring oxygen saturation (SvO2) in the superior sagittal sinus and cerebral blood flow (CBF) in the arteries feeding the brain in 30 seconds, which is adequate for measurement at baseline but not necessarily in response to neuronal activation. Here, we present an accelerated version of the method (referred to as F-OxFlow) that quantifies CMRO2 in 8 seconds scan time under full retention of the parent method's capabilities and compared it with its predecessor at baseline in 10 healthy subjects. Results indicate excellent agreement between both sequences, with mean bias of 2.2% (P=0.18, two-tailed t-test), 3.4% (P=0.08, two-tailed t-test), and 2.0% (P=0.56, two-tailed t-test) for SvO2, CBF, and CMRO2, respectively. F-OxFlow's potential to monitor dynamic changes in SvO2, CBF, and CMRO2 is illustrated in a paradigm of volitional apnea applied to five of the study subjects. The sequence captured an average increase in SvO2, CBF, and CMRO2 of 10.1±2.5%, 43.2±9.2%, and 7.1±2.2%, respectively, in good agreement with literature values. The method may therefore be suited for monitoring alterations in CBF and SvO2 in response to neurovascular stimuli.
Collapse
|
61
|
Blockley NP, Griffeth VEM, Stone AJ, Hare HV, Bulte DP. Sources of systematic error in calibrated BOLD based mapping of baseline oxygen extraction fraction. Neuroimage 2015; 122:105-13. [PMID: 26254114 DOI: 10.1016/j.neuroimage.2015.07.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/16/2015] [Accepted: 07/20/2015] [Indexed: 11/27/2022] Open
Abstract
Recently a new class of calibrated blood oxygen level dependent (BOLD) functional magnetic resonance imaging (MRI) methods were introduced to quantitatively measure the baseline oxygen extraction fraction (OEF). These methods rely on two respiratory challenges and a mathematical model of the resultant changes in the BOLD functional MRI signal to estimate the OEF. However, this mathematical model does not include all of the effects that contribute to the BOLD signal, it relies on several physiological assumptions and it may be affected by intersubject physiological variability. The aim of this study was to investigate these sources of systematic error and their effect on estimating the OEF. This was achieved through simulation using a detailed model of the BOLD signal. Large ranges for intersubject variability in baseline physiological parameters such as haematocrit and cerebral blood volume were considered. Despite this the uncertainty in the relationship between the measured BOLD signals and the OEF was relatively low. Investigations of the physiological assumptions that underlie the mathematical model revealed that OEF measurements are likely to be overestimated if oxygen metabolism changes during hypercapnia or cerebral blood flow changes under hyperoxia. Hypoxic hypoxia was predicted to result in an underestimation of the OEF, whilst anaemic hypoxia was found to have only a minimal effect.
Collapse
Affiliation(s)
- Nicholas P Blockley
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Valerie E M Griffeth
- Department of Bioengineering and Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
| | - Alan J Stone
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hannah V Hare
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel P Bulte
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
62
|
Driver ID, Andoh J, Blockley NP, Francis ST, Gowland PA, Paus T. Hemispheric asymmetry in cerebrovascular reactivity of the human primary motor cortex: an in vivo study at 7 T. NMR IN BIOMEDICINE 2015; 28:538-545. [PMID: 25788020 DOI: 10.1002/nbm.3282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/23/2015] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
Current functional MRI (fMRI) approaches assess underlying neuronal activity through monitoring the related local variations in cerebral blood oxygenation, blood volume and blood flow. This vascular response is likely to vary across brain regions and across individuals, depending on the composition of the local vascular bed and on the vascular capacity to dilate. The most widely used technique uses the blood oxygen level dependent (BOLD) fMRI signal, which arises from a complex combination of all of these factors. The model of handedness provides a case where one brain region (dominant motor cortex) is known to have a stronger BOLD response over another (non-dominant motor cortex) during hand motor task performance. We predict that this is accompanied by a higher vascular reactivity in the dominant motor cortex, when compared with the non-dominant motor cortex. Precise measurement of end-tidal CO2 and a novel sinusoidal CO2 respiratory challenge were combined with the high sensitivity and finer spatial resolution available for fMRI at 7 T to measure BOLD cerebrovascular reactivity (CVR) in eight healthy male participants. BOLD CVR was compared between the left (dominant) and right (non-dominant) primary motor cortices of right-handed adults. Hemispheric asymmetry in vascular reactivity was predicted and observed in the primary motor cortex (left CVR = 0.60 ± 0.15%/mm Hg; right CVR = 0.47 ± 0.08%/mm Hg; left CVR > right CVR, P = 0.04), the first reported evidence of such a vascular difference. These findings demonstrate a cerebral vascular asymmetry between the left and right primary motor cortex. The origin of this asymmetry largely arises from the contribution of large draining veins. This work has implications for future motor laterality studies that use BOLD, and it is also suggestive of a vascular plasticity in the human primary motor cortex.
Collapse
Affiliation(s)
- Ian D Driver
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham, UK; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
63
|
Willie CK, MacLeod DB, Smith KJ, Lewis NC, Foster GE, Ikeda K, Hoiland RL, Ainslie PN. The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude. J Cereb Blood Flow Metab 2015; 35:873-81. [PMID: 25690474 PMCID: PMC4420871 DOI: 10.1038/jcbfm.2015.4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/16/2014] [Accepted: 12/25/2014] [Indexed: 11/09/2022]
Abstract
The effects of partial acclimatization to high altitude (HA; 5,050 m) on cerebral metabolism and cerebrovascular function have not been characterized. We hypothesized (1) increased cerebrovascular reactivity (CVR) at HA; and (2) that CO2 would affect cerebral metabolism more than hypoxia. PaO2 and PaCO2 were manipulated at sea level (SL) to simulate HA exposure, and at HA, SL blood gases were simulated; CVR was assessed at both altitudes. Arterial-jugular venous differences were measured to calculate cerebral metabolic rates and cerebral blood flow (CBF). We observed that (1) partial acclimatization yields a steeper CO2-H(+) relation in both arterial and jugular venous blood; yet (2) CVR did not change, despite (3) mean arterial pressure (MAP)-CO2 reactivity being doubled at HA, thus indicating effective cerebral autoregulation. (4) At SL hypoxia increased CBF, and restoration of oxygen at HA reduced CBF, but neither had any effect on cerebral metabolism. Acclimatization resets the cerebrovasculature to chronic hypocapnia.
Collapse
Affiliation(s)
- Christopher K Willie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kurt J Smith
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Nia C Lewis
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Keita Ikeda
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
64
|
Sofronova SI, Tarasova OS, Gaynullina D, Borzykh AA, Behnke BJ, Stabley JN, McCullough DJ, Maraj JJ, Hanna M, Muller-Delp JM, Vinogradova OL, Delp MD. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice. J Appl Physiol (1985) 2015; 118:830-8. [PMID: 25593287 PMCID: PMC4385880 DOI: 10.1152/japplphysiol.00976.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/13/2015] [Indexed: 01/03/2023] Open
Abstract
Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite. Basilar arteries isolated from spaceflight (SF) (n = 6), habitat control (HC) (n = 6), and vivarium control (VC) (n = 16) mice were used for in vitro functional and mechanical testing and histological structural analysis. The results demonstrate that vasoconstriction elicited through a voltage-gated Ca(2+) mechanism (30-80 mM KCl) and thromboxane A2 receptors (10(-8) - 3 × 10(-5) M U46619) are lower in cerebral arteries from SF mice. Inhibition of Rho-kinase activity (1 μM Y27632) abolished group differences in U46619-evoked contractions. Endothelium-dependent vasodilation elicited by acetylcholine (10 μM, 2 μM U46619 preconstriction) was virtually absent in cerebral arteries from SF mice. The pressure-diameter relation was lower in arteries from SF mice relative to that in HC mice, which was not related to differences in the extracellular matrix protein elastin or collagen content or the elastin/collagen ratio in the basilar arteries. Diameter, medial wall thickness, and medial cross-sectional area of unpressurized basilar arteries were not different among groups. These results suggest that the microgravity-induced attenuation of both vasoconstrictor and vasodilator properties may limit the range of vascular control of cerebral perfusion or impair the distribution of brain blood flow during periods of stress.
Collapse
Affiliation(s)
- Svetlana I Sofronova
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University
| | - Olga S Tarasova
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University
| | - Dina Gaynullina
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University; Department of Physiology, Russian National Research Medical University, Moscow, Russia
| | - Anna A Borzykh
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow
| | - Bradley J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - John N Stabley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Danielle J McCullough
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Joshua J Maraj
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Mina Hanna
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida; and
| | | | - Michael D Delp
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
65
|
Magland JF, Li C, Langham MC, Wehrli FW. Pulse sequence programming in a dynamic visual environment: SequenceTree. Magn Reson Med 2015; 75:257-65. [PMID: 25754837 DOI: 10.1002/mrm.25640] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/09/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE To describe SequenceTree, an open source, integrated software environment for implementing MRI pulse sequences and, ideally, exporting them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for programmers and nonprogrammers alike. METHODS The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically, allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally, other types of scanners will be supported in the future. RESULTS SequenceTree has been used for 8 years in our laboratory and elsewhere and has contributed to more than 50 peer-reviewed publications in areas such as cardiovascular imaging, solid state and nonproton NMR, MR elastography, and high-resolution structural imaging. CONCLUSION SequenceTree is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal both for advanced users and users with limited programming experience.
Collapse
Affiliation(s)
- Jeremy F Magland
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cheng Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
66
|
Zhou Y, Rodgers ZB, Kuo AH. Cerebrovascular reactivity measured with arterial spin labeling and blood oxygen level dependent techniques. Magn Reson Imaging 2015; 33:566-76. [PMID: 25708263 DOI: 10.1016/j.mri.2015.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/17/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE To compare cerebrovascular reactivity (CVR) quantified with pseudo-continuous arterial spin labeling (pCASL) and blood oxygen level dependent (BOLD) fMRI techniques. MATERIALS AND METHODS Sixteen healthy volunteers (age: 37.8±14.3years; 6 women and 10 men; education attainment: 17±2.1years) were recruited and completed a 5% CO2 gas-mixture breathing paradigm at 3T field strength. ASL and BOLD images were acquired for CVR determination assuming that mild hypercapnia does not affect the cerebral metabolic rate of oxygen. Both CVR quantifications were derived as the ratio of the fractional cerebral blood flow (CBF) or BOLD signal change over the change in end-tidal CO2 pressure. RESULTS The absolute CBF, BOLD and CVR measures were consistent with literature values. CBF derived CVR was 5.11±0.87%/mmHg in gray matter (GM) and 4.64±0.37%/mmHg in parenchyma. BOLD CVR was 0.23±0.04%/mmHg and 0.22±0.04%/mmHg for GM and parenchyma respectively. The most significant correlations between BOLD and CBF-based CVRs were also in GM structures, with greater vascular response in occipital cortex than in frontal and parietal lobes (6.8%/mmHg versus 4.5%/mmHg, 50% greater). Parenchymal BOLD CVR correlated significantly with the fractional change in CBF in response to hypercapnia (r=0.61, P=0.01), suggesting the BOLD response to be significantly flow driven. GM CBF decreased with age in room air (-5.58mL/100g/min per decade for GM; r=-0.51, P=0.05), but there was no association of CBF with age during hypercapnia. A trend toward increased pCASL CVR with age was observed, scaling as 0.64%/mmHg per decade for GM. CONCLUSION Consistent with previously reported CVR values, our results suggest that BOLD and CBF CVR techniques are complementary to each other in evaluating neuronal and vascular underpinning of hemodynamic processes.
Collapse
Affiliation(s)
- Yongxia Zhou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104.
| | - Zachary B Rodgers
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Anderson H Kuo
- Department of Radiology, University of Texas South Medical Center, San Antonio, TX
| |
Collapse
|
67
|
Mathewson KW, Haykowsky MJ, Thompson RB. Feasibility and reproducibility of measurement of whole muscle blood flow, oxygen extraction, and VO2 with dynamic exercise using MRI. Magn Reson Med 2014; 74:1640-51. [PMID: 25533515 DOI: 10.1002/mrm.25564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/17/2014] [Accepted: 11/14/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE Develop an MRI method to estimate skeletal muscle oxygen consumption (VO2 ) with dynamic exercise using simultaneous measurement of venous blood flow (VBF) and venous oxygen saturation (SvO2 ). METHODS Real-time imaging of femoral VBF using a complex-difference method was interleaved with imaging of venous hemoglobin oxygen saturation (SvO2 ) using magnetic susceptometry to estimate muscle VO2 (Fick principle). Nine healthy subjects performed repeated 5-watt knee-extension (quadriceps) exercise within the bore of a 1.5 Tesla MRI scanner, for test/re-test comparison. VBF, SvO2 , and derived VO2 were estimated at baseline and immediately (<1 s) postexercise and every 2.4 s for 4 min. RESULTS Quadriceps muscle mass was 2.43 ± 0.31 kg. Mean baseline values were VBF = 0.13 ± 0.06 L/min/kg, SvO2 = 69.4 ± 10.1%, and VO2 = 6.8 ± 4.1 mL/min/kg. VBF, SvO2 , and VO2 values from peak exercise had good agreement between trials (VBF = 0.9 ± 0.1 versus 1.0 ± 0.1 L/min/kg, R(2) = 0.83, CV = 7.6%; SvO2 = 43.2 ± 13.5 versus 40.9 ± 13.1%, R(2) = 0.88, CV = 15.6%; VO2 = 95.7 ± 18.0 versus 108.9 ± 17.3 mL/min/kg, R(2) = 0.88, CV = 12.3%), as did the VO2 recovery time constant (26.1 ± 3.5 versus 26.0 ± 4.0 s, R(2) = 0.85, CV = 6.0%). CV = coefficient of variation. CONCLUSION Rapid imaging of VBF and SvO2 for the estimation of whole muscle VO2 is compatible with dynamic exercise for the estimation of peak values and recovery dynamics following exercise with good reproducibility.
Collapse
Affiliation(s)
- Kory W Mathewson
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Mark J Haykowsky
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
68
|
Rodgers ZB, Englund EK, Langham MC, Magland JF, Wehrli FW. Rapid T2- and susceptometry-based CMRO2 quantification with interleaved TRUST (iTRUST). Neuroimage 2014; 106:441-50. [PMID: 25449740 DOI: 10.1016/j.neuroimage.2014.10.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 11/16/2022] Open
Abstract
Susceptometry-based oximetry (SBO) and T2-relaxation-under-spin-tagging (TRUST) are two promising methods for quantifying the cerebral metabolic rate of oxygen (CMRO2), a critical parameter of brain function. We present a combined method, interleaved TRUST (iTRUST), which achieves rapid, simultaneous quantification of both susceptometry- and T2-based CMRO2 via insertion of a flow-encoded, dual-echo gradient-recalled echo (OxFlow) module within the T1 recovery portion of the TRUST sequence. In addition to allowing direct comparison between SBO- and TRUST-derived venous oxygen saturation (Yv) values, iTRUST substantially improves TRUST temporal resolution for CMRO2 quantification and obviates the need for a separate blood flow measurement following TRUST acquisition. iTRUST was compared directly to TRUST and OxFlow alone in three resting subjects at baseline, exhibiting close agreement with the separate techniques and comparable precision. These baseline data as well as simulation results support the use of two instead of the traditional four T2 preparation times for T2 fitting, allowing simultaneous quantification of susceptometry- and T2-based Yv (and CMRO2) with three- and six-second temporal resolution, respectively. In 10 young healthy subjects, iTRUST was applied during a 5% CO2 gas mixture-breathing paradigm. T2-based Yv values were lower at baseline relative to susceptometry (62.3 ± 3.1 vs. 66.7 ± 5.1 %HbO2, P<0.05), but increased more in response to hypercapnia. As a result, T2-based CMRO2 decreased from 140.4 ± 9.7 to 120.0 ± 9.5 μMol/100g/min, a significant -14.6 ± 3.6% response (P < 0.0001), whereas susceptometry-based CMRO2 changed insignificantly from 123.4 ± 18.7 to 127.9 ± 25.7, a 3.3 ± 9.7% response (P = 0.31). These differing results are in accord with previous studies applying the parent OxFlow or TRUST sequences individually, thus supporting the reliability of iTRUST but also strongly suggesting that a systematic bias exists between the susceptometry- and T2-based Yv quantification techniques.
Collapse
Affiliation(s)
- Zachary B Rodgers
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Erin K Englund
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Michael C Langham
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Jeremy F Magland
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
69
|
Low-frequency calcium oscillations accompany deoxyhemoglobin oscillations in rat somatosensory cortex. Proc Natl Acad Sci U S A 2014; 111:E4677-86. [PMID: 25313035 DOI: 10.1073/pnas.1410800111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spontaneous low-frequency oscillations (LFOs) of blood-oxygen-level-dependent (BOLD) signals are used to map brain functional connectivity with functional MRI, but their source is not well understood. Here we used optical imaging to assess whether LFOs from vascular signals covary with oscillatory intracellular calcium (Ca(2+)i) and with local field potentials in the rat's somatosensory cortex. We observed that the frequency of Ca(2+)i oscillations in tissue (∼0.07 Hz) was similar to the LFOs of deoxyhemoglobin (HbR) and oxyhemoglobin (HbO2) in both large blood vessels and capillaries. The HbR and HbO2 fluctuations within tissue correlated with Ca(2+)i oscillations with a lag time of ∼5-6 s. The Ca(2+)i and hemoglobin oscillations were insensitive to hypercapnia. In contrast, cerebral-blood-flow velocity (CBFv) in arteries and veins fluctuated at a higher frequency (∼0.12 Hz) and was sensitive to hypercapnia. However, in parenchymal tissue, CBFv oscillated with peaks at both ∼0.06 Hz and ∼0.12 Hz. Although the higher-frequency CBFv oscillation (∼0.12 Hz) was decreased by hypercapnia, its lower-frequency component (∼0.06 Hz) was not. The sensitivity of the higher CBFV oscillations to hypercapnia, which triggers blood vessel vasodilation, suggests its dependence on vascular effects that are distinct from the LFOs detected in HbR, HbO2, Ca(2+)i, and the lower-frequency tissue CBFv, which were insensitive to hypercapnia. Hemodynamic LFOs correlated both with Ca(2+)i and neuronal firing (local field potentials), indicating that they directly reflect neuronal activity (perhaps also glial). These findings show that HbR fluctuations (basis of BOLD oscillations) are linked to oscillatory cellular activity and detectable throughout the vascular tree (arteries, capillaries, and veins).
Collapse
|
70
|
Fan AP, Evans KC, Stout JN, Rosen BR, Adalsteinsson E. Regional quantification of cerebral venous oxygenation from MRI susceptibility during hypercapnia. Neuroimage 2014; 104:146-55. [PMID: 25300201 DOI: 10.1016/j.neuroimage.2014.09.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/18/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022] Open
Abstract
There is an unmet medical need for noninvasive imaging of regional brain oxygenation to manage stroke, tumor, and neurodegenerative diseases. Oxygenation imaging from magnetic susceptibility in MRI is a promising new technique to measure local venous oxygen extraction fraction (OEF) along the cerebral venous vasculature. However, this approach has not been tested in vivo at different levels of oxygenation. The primary goal of this study was to test whether susceptibility imaging of oxygenation can detect OEF changes induced by hypercapnia, via CO2 inhalation, within selected a priori brain regions. Ten healthy subjects were scanned at 3T with a 32-channel head coil. The end-tidal CO2 (ETCO2) was monitored continuously and inspired gases were adjusted to achieve steady-state conditions of eucapnia (41±3mmHg) and hypercapnia (50±4mmHg). Gradient echo phase images and pseudo-continuous arterial spin labeling (pcASL) images were acquired to measure regional OEF and CBF respectively during eucapnia and hypercapnia. By assuming constant cerebral oxygen consumption throughout both gas states, regional CBF values were computed to predict the local change in OEF in each brain region. Hypercapnia induced a relative decrease in OEF of -42.3% in the straight sinus, -39.9% in the internal cerebral veins, and approximately -50% in pial vessels draining each of the occipital, parietal, and frontal cortical areas. Across volunteers, regional changes in OEF correlated with changes in ETCO2. The reductions in regional OEF (via phase images) were significantly correlated (P<0.05) with predicted reductions in OEF derived from CBF data (via pcASL images). These findings suggest that susceptibility imaging is a promising technique for OEF measurements, and may serve as a clinical biomarker for brain conditions with aberrant regional oxygenation.
Collapse
Affiliation(s)
- Audrey P Fan
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA.
| | - Karleyton C Evans
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Psychiatry, Massachusetts General Hospital East, 149 Thirteenth Street, Charlestown, MA, USA.
| | - Jeffrey N Stout
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Bruce R Rosen
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Elfar Adalsteinsson
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| |
Collapse
|
71
|
Non-invasive MRI measurements of venous oxygenation, oxygen extraction fraction and oxygen consumption in neonates. Neuroimage 2014; 95:185-92. [DOI: 10.1016/j.neuroimage.2014.03.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/08/2014] [Accepted: 03/22/2014] [Indexed: 11/17/2022] Open
|
72
|
Barhoum S, Rodgers ZB, Langham M, Magland JF, Li C, Wehrli FW. Comparison of MRI methods for measuring whole-brain venous oxygen saturation. Magn Reson Med 2014; 73:2122-8. [PMID: 24975122 DOI: 10.1002/mrm.25336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 01/18/2023]
Abstract
PURPOSE In this work, we compare susceptometry-based oximetry (SBO) and two T2 -based methods for estimating resting baseline SvO2 in the superior sagittal sinus (SSS). METHODS SBO is a field-mapping technique whereas in T2 -based methods the intravascular blood signal is isolated either with velocity-encoded projections [projection-based T2 (PT2 )] or a tag-control scheme [T2 -relaxation under spin tagging (TRUST)] after T2 -preparation. The measurements were performed on twelve healthy subjects (mean age = 33 ± 6 years) at 3 Tesla field strength. The reliability, precision, and reproducibility were examined for the three techniques. RESULTS The mean (± standard deviation) SvO2 quantified by SBO, PT2 , and TRUST were found to be 65.9 ± 3.3, 65.6 ± 3.5, and 63.2 ± 4.1%. The standard deviation (SD) for 10 consecutive measurements in the quantified SvO2 was less than 2.7%, 4.7%, and 5.0% for SBO, PT2 , and TRUST across all subjects. In testing reproducibility across different days, the resulting SDs were 2.6, 3.5, and 2.0% for SBO, PT2 , and TRUST. CONCLUSION The results indicate that all three SvO2 quantification techniques to be reliable with good agreement between PT2 and SBO while TRUST yielded slightly lower values compared with the other two techniques.
Collapse
Affiliation(s)
- Suliman Barhoum
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zachary B Rodgers
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Langham
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy F Magland
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cheng Li
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
73
|
Jahanian H, Ni WW, Christen T, Moseley ME, Tamura MK, Zaharchuk G. Spontaneous BOLD signal fluctuations in young healthy subjects and elderly patients with chronic kidney disease. PLoS One 2014; 9:e92539. [PMID: 24651703 PMCID: PMC3961376 DOI: 10.1371/journal.pone.0092539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/24/2014] [Indexed: 11/18/2022] Open
Abstract
Spontaneous fluctuations in blood oxygenation level-dependent (BOLD) images are the basis of resting-state fMRI and frequently used for functional connectivity studies. However, there may be intrinsic information in the amplitudes of these fluctuations. We investigated the possibility of using the amplitude of spontaneous BOLD signal fluctuations as a biomarker for cerebral vasomotor reactivity. We compared the coefficient of variation (CV) of the time series (defined as the temporal standard deviation of the time series divided by the mean signal intensity) in two populations: 1) Ten young healthy adults and 2) Ten hypertensive elderly subjects with chronic kidney disease (CKD). We found a statistically significant increase (P<0.01) in the CV values for the CKD patients compared with the young healthy adults in both gray matter (GM) and white matter (WM). The difference was independent of the exact segmentation method, became more significant after correcting for physiological signals using RETROICOR, and mainly arose from very low frequency components of the BOLD signal fluctuation (f<0.025 Hz). Furthermore, there was a strong relationship between WM and GM signal fluctuation CV's (R2 = 0.87) in individuals, with a ratio of about 1∶3. These results suggest that amplitude of the spontaneous BOLD signal fluctuations may be used to assess the cerebrovascular reactivity mechanisms and provide valuable information about variations with age and different disease states.
Collapse
Affiliation(s)
- Hesamoddin Jahanian
- Department of Radiology, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Wendy W. Ni
- Department of Radiology, Stanford University, Stanford, California, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, California, Untied States of America
| | - Thomas Christen
- Department of Radiology, Stanford University, Stanford, California, United States of America
| | - Michael E. Moseley
- Department of Radiology, Stanford University, Stanford, California, United States of America
| | - Manjula Kurella Tamura
- Geriatric Research and Education Clinical Center, Palo Alto Veterans Affairs Health Care System and Division of Nephrology, Stanford University, Stanford, California, United States of America
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
74
|
Gramer M, Feuerstein D, Steimers A, Takagaki M, Kumagai T, Sué M, Vollmar S, Kohl-Bareis M, Backes H, Graf R. Device for simultaneous positron emission tomography, laser speckle imaging and RGB reflectometry: validation and application to cortical spreading depression and brain ischemia in rats. Neuroimage 2014; 94:250-262. [PMID: 24657778 DOI: 10.1016/j.neuroimage.2014.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 11/16/2022] Open
Abstract
Brain function critically relies on the supply with energy substrates (oxygen and glucose) via blood flow. Alterations in energy demand as during neuronal activation induce dynamic changes in substrate fluxes and blood flow. To study the complex system that regulates cerebral metabolism requires the combination of methods for the simultaneous assessment of multiple parameters. We developed a multimodal imaging device to combine positron emission tomography (PET) with laser speckle imaging (LSI) and RGB reflectometry (RGBR). Depending on the radiotracer, PET provides 3-dimensional quantitative information of specific molecular processes, while LSI and RGBR measure cerebral blood flow (CBF) and hemoglobin oxygenation at high temporal and spatial resolution. We first tested the functional capability of each modality within our system and showed that interference between the modalities is negligible. We then cross-calibrated the system by simultaneously measuring absolute CBF using (15)O-H2O PET (CBF(PET)) and the inverse correlation time (ICT), the LSI surrogate for CBF. ICT and CBF(PET) correlated in multiple measurements in individuals as well as across different animals (R(2)=0.87, n=44 measurements) indicating that ICT can be used for absolute quantitative assessment of CBF. To demonstrate the potential of the combined system, we applied it to cortical spreading depression (CSD), a wave of transient cellular depolarization that served here as a model system for neurovascular and neurometabolic coupling. We analyzed time courses of hemoglobin oxygenation and CBF alterations coupled to CSD, and simultaneously measured regional uptake of (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) used as a radiotracer for regional glucose metabolism, in response to a single CSD and to a cluster of CSD waves. With this unique combination, we characterized the changes in cerebral metabolic rate of oxygen (CMRO2) in real-time and showed a correlation between (18)F-FDG uptake and the number of CSD waves that passed the local tissue. Finally, we examined CSD spontaneously occurring during focal ischemia also referred to as peri-infarct depolarization (PID). In the vicinity of the ischemic territory, we observed PIDs that were characterized by reduced CMRO2 and increased oxygen extraction fraction (OEF), indicating a limitation of oxygen supply. Simultaneously measured PET showed an increased (18)F-FDG uptake in these regions. Our combined system proved to be a novel tool for the simultaneous study of dynamic spatiotemporal alterations of cortical blood flow, oxygen metabolism and glucose consumption under normal and pathologic conditions.
Collapse
Affiliation(s)
- M Gramer
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany.
| | - D Feuerstein
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - A Steimers
- RheinAhrCampus Remagen, University of Applied Sciences Koblenz, Joseph-Rovan Allee 2, 53424 Remagen, Germany
| | - M Takagaki
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - T Kumagai
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M Sué
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - S Vollmar
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - M Kohl-Bareis
- RheinAhrCampus Remagen, University of Applied Sciences Koblenz, Joseph-Rovan Allee 2, 53424 Remagen, Germany
| | - H Backes
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - R Graf
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| |
Collapse
|
75
|
Jain V, Buckley EM, Licht DJ, Lynch JM, Schwab PJ, Naim MY, Lavin NA, Nicolson SC, Montenegro LM, Yodh AG, Wehrli FW. Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics. J Cereb Blood Flow Metab 2014; 34:380-8. [PMID: 24326385 PMCID: PMC3948119 DOI: 10.1038/jcbfm.2013.214] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 11/09/2022]
Abstract
Neonatal congenital heart disease (CHD) is associated with altered cerebral hemodynamics and increased risk of brain injury. Two novel noninvasive techniques, magnetic resonance imaging (MRI) and diffuse optical and correlation spectroscopies (diffuse optical spectroscopy (DOS), diffuse correlation spectroscopy (DCS)), were employed to quantify cerebral blood flow (CBF) and oxygen metabolism (CMRO(2)) of 32 anesthetized CHD neonates at rest and during hypercapnia. Cerebral venous oxygen saturation (S(v)O(2)) and CBF were measured simultaneously with MRI in the superior sagittal sinus, yielding global oxygen extraction fraction (OEF) and global CMRO(2) in physiologic units. In addition, microvascular tissue oxygenation (StO(2)) and indices of microvascular CBF (BFI) and CMRO(2) (CMRO(2)(i)) in the frontal cortex were determined by DOS/DCS. Median resting-state MRI-measured OEF, CBF, and CMRO(2) were 0.38, 9.7 mL/minute per 100 g and 0.52 mL O(2)/minute per 100 g, respectively. These CBF and CMRO(2) values are lower than literature reports for healthy term neonates (which are sparse and quantified using different methods) and resemble values reported for premature infants. Comparison of MRI measurements of global S(v)O(2), CBF, and CMRO(2) with corresponding local DOS/DCS measurements demonstrated strong linear correlations (R(2)=0.69, 0.67, 0.67; P<0.001), permitting calibration of DOS/DCS indices. The results suggest that MRI and optics offer new tools to evaluate cerebral hemodynamics and metabolism in CHD neonates.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Erin M Buckley
- 1] Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA [2] Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Licht
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer M Lynch
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter J Schwab
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Maryam Y Naim
- Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Natasha A Lavin
- Division of Respiratory Therapy, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Susan C Nicolson
- Division of Cardiothoracic Anesthesia, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa M Montenegro
- Division of Cardiothoracic Anesthesia, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
76
|
Wehrli FW, Rodgers ZB, Jain V, Langham MC, Li C, Licht DJ, Magland J. Time-resolved MRI oximetry for quantifying CMRO(2) and vascular reactivity. Acad Radiol 2014; 21:207-14. [PMID: 24439334 PMCID: PMC3896886 DOI: 10.1016/j.acra.2013.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 11/23/2022]
Abstract
This brief review of magnetic resonance susceptometry summarizes the methods conceived in the authors' laboratory during the past several years. This article shows how venous oxygen saturation is quantified in large draining veins by field mapping and how this information, in concert with simultaneous measurement of cerebral blood flow, yields cerebral metabolic rate of oxygen, the brain's rate of oxygen consumption. The accuracy of this model-based approach in which the blood vessel is approximated as a long, straight cylinder, for which an analytical solution for the induced field exists, is discussed. It is shown that the approach is remarkably robust, allowing for time-resolved quantification of whole-brain metabolism at rest and in response to stimuli, thereby providing detailed information on cerebral physiology in health and disease not previously amenable by noninvasive methods.
Collapse
Affiliation(s)
- Felix W Wehrli
- Laboratory for Structural Nuclear Magnetic Resonance Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania Medical Center, 1 Founders, 3400 Spruce St, Philadelphia, PA 19104.
| | - Zachary B Rodgers
- Laboratory for Structural Nuclear Magnetic Resonance Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania Medical Center, 1 Founders, 3400 Spruce St, Philadelphia, PA 19104
| | - Varsha Jain
- Laboratory for Structural Nuclear Magnetic Resonance Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania Medical Center, 1 Founders, 3400 Spruce St, Philadelphia, PA 19104
| | - Michael C Langham
- Laboratory for Structural Nuclear Magnetic Resonance Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania Medical Center, 1 Founders, 3400 Spruce St, Philadelphia, PA 19104
| | - Cheng Li
- Laboratory for Structural Nuclear Magnetic Resonance Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania Medical Center, 1 Founders, 3400 Spruce St, Philadelphia, PA 19104
| | - Daniel J Licht
- Laboratory for Structural Nuclear Magnetic Resonance Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania Medical Center, 1 Founders, 3400 Spruce St, Philadelphia, PA 19104
| | - Jeremy Magland
- Laboratory for Structural Nuclear Magnetic Resonance Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania Medical Center, 1 Founders, 3400 Spruce St, Philadelphia, PA 19104
| |
Collapse
|
77
|
High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge. J Cereb Blood Flow Metab 2013; 33:1514-22. [PMID: 23838827 PMCID: PMC3790925 DOI: 10.1038/jcbfm.2013.110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 02/07/2023]
Abstract
We present a technique for quantifying global cerebral metabolic rate of oxygen consumption (CMRO2) in absolute physiologic units at 3-second temporal resolution and apply the technique to quantify the dynamic CMRO2 response to volitional apnea. Temporal resolution of 3 seconds was achieved via a combination of view sharing and superior sagittal sinus-based estimation of total cerebral blood flow (tCBF) rather than tCBF measurement in the neck arteries. These modifications were first validated in three healthy adults and demonstrated to produce minimal errors in image-derived blood flow and venous oxygen saturation (SvO2) values. The technique was then applied in 10 healthy adults during an apnea paradigm of three repeated 30-second breath-holds. Subject-averaged baseline tCBF, arteriovenous oxygen difference (AVO2D), and CMRO2 were 48.6 ± 7.0 mL/100 g per minute, 29.4 ± 3.4 %HbO2, and 125.1 ± 11.4 μmol/100 g per minute, respectively. Subject-averaged maximum changes in tCBF and AVO2D were 43.5 ± 9.4% and -32.1 ± 5.7%, respectively, resulting in a small (6.0 ± 3.5%) but statistically significant (P=0.00044, two-tailed t-test) increase in average end-apneic CMRO2. This method could be used to investigate neurometabolic-hemodynamic relationships in normal physiology, to better define the biophysical origins of the BOLD signal, and to quantify neurometabolic responsiveness in diseases of altered neurovascular reactivity.
Collapse
|
78
|
Fan AP, Bilgic B, Gagnon L, Witzel T, Bhat H, Rosen BR, Adalsteinsson E. Quantitative oxygenation venography from MRI phase. Magn Reson Med 2013; 72:149-59. [PMID: 24006229 DOI: 10.1002/mrm.24918] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/24/2013] [Accepted: 07/19/2013] [Indexed: 12/28/2022]
Abstract
PURPOSE To demonstrate acquisition and processing methods for quantitative oxygenation venograms that map in vivo oxygen saturation (SvO2 ) along cerebral venous vasculature. METHODS Regularized quantitative susceptibility mapping (QSM) is used to reconstruct susceptibility values and estimate SvO2 in veins. QSM with ℓ1 and ℓ2 regularization are compared in numerical simulations of vessel structures with known magnetic susceptibility. Dual-echo, flow-compensated phase images are collected in three healthy volunteers to create QSM images. Bright veins in the susceptibility maps are vectorized and used to form a three-dimensional vascular mesh, or venogram, along which to display SvO2 values from QSM. RESULTS Quantitative oxygenation venograms that map SvO2 along brain vessels of arbitrary orientation and geometry are shown in vivo. SvO2 values in major cerebral veins lie within the normal physiological range reported by (15) O positron emission tomography. SvO2 from QSM is consistent with previous MR susceptometry methods for vessel segments oriented parallel to the main magnetic field. In vessel simulations, ℓ1 regularization results in less than 10% SvO2 absolute error across all vessel tilt orientations and provides more accurate SvO2 estimation than ℓ2 regularization. CONCLUSION The proposed analysis of susceptibility images enables reliable mapping of quantitative SvO2 along venograms and may facilitate clinical use of venous oxygenation imaging.
Collapse
Affiliation(s)
- Audrey P Fan
- Magnetic Resonance Imaging Group, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Buxton RB. The physics of functional magnetic resonance imaging (fMRI). REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:096601. [PMID: 24006360 PMCID: PMC4376284 DOI: 10.1088/0034-4885/76/9/096601] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
Collapse
Affiliation(s)
- Richard B Buxton
- Department of Radiology, University of California, San Diego, USA
| |
Collapse
|
80
|
Yablonskiy DA, Sukstanskii AL, He X. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties - theoretical models and experimental approaches. NMR IN BIOMEDICINE 2013; 26:963-86. [PMID: 22927123 PMCID: PMC3510357 DOI: 10.1002/nbm.2839] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 05/06/2023]
Abstract
The quantitative evaluation of brain hemodynamics and metabolism, particularly the relationship between brain function and oxygen utilization, is important for the understanding of normal human brain operation, as well as the pathophysiology of neurological disorders. It can also be of great importance for the evaluation of hypoxia within tumors of the brain and other organs. A fundamental discovery by Ogawa and coworkers of the blood oxygenation level-dependent (BOLD) contrast opened up the possibility to use this effect to study brain hemodynamic and metabolic properties by means of MRI measurements. Such measurements require the development of theoretical models connecting the MRI signal to brain structure and function, and the design of experimental techniques allowing MR measurements to be made of the salient features of theoretical models. In this review, we discuss several such theoretical models and experimental methods for the quantification of brain hemodynamic and metabolic properties. The review's main focus is on methods for the evaluation of the oxygen extraction fraction (OEF) based on the measurement of the blood oxygenation level. A combination of the measurement of OEF and the cerebral blood flow (CBF) allows an evaluation to be made of the cerebral metabolic rate of oxygen consumption (CMRO2 ). We first consider in detail the magnetic properties of blood - magnetic susceptibility, MR relaxation and theoretical models of the intravascular contribution to the MR signal under different experimental conditions. We then describe a 'through-space' effect - the influence of inhomogeneous magnetic fields, created in the extravascular space by intravascular deoxygenated blood, on the formation of the MR signal. Further, we describe several experimental techniques taking advantage of these theoretical models. Some of these techniques - MR susceptometry and T2 -based quantification of OEF - utilize the intravascular MR signal. Another technique - quantitative BOLD - evaluates OEF by making use of through-space effects. In this review, we target both scientists just entering the MR field and more experienced MR researchers interested in the application of advanced BOLD-based techniques to the study of the brain in health and disease.
Collapse
|
81
|
Blockley NP, Griffeth VEM, Simon AB, Buxton RB. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism. NMR IN BIOMEDICINE 2013; 26:987-1003. [PMID: 22945365 PMCID: PMC3639302 DOI: 10.1002/nbm.2847] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/17/2012] [Accepted: 08/02/2012] [Indexed: 05/23/2023]
Abstract
The dynamics of the blood oxygenation level-dependent (BOLD) response are dependent on changes in cerebral blood flow, cerebral blood volume and the cerebral metabolic rate of oxygen consumption. Furthermore, the amplitude of the response is dependent on the baseline physiological state, defined by the haematocrit, oxygen extraction fraction and cerebral blood volume. As a result of this complex dependence, the accurate interpretation of BOLD data and robust intersubject comparisons when the baseline physiology is varied are difficult. The calibrated BOLD technique was developed to address these issues. However, the methodology is complex and its full promise has not yet been realised. In this review, the theoretical underpinnings of calibrated BOLD, and issues regarding this theory that are still to be resolved, are discussed. Important aspects of practical implementation are reviewed and reported applications of this methodology are presented.
Collapse
Affiliation(s)
- Nicholas P Blockley
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
82
|
A New Functional MRI Approach for Investigating Modulations of Brain Oxygen Metabolism. PLoS One 2013; 8:e68122. [PMID: 23826367 PMCID: PMC3694916 DOI: 10.1371/journal.pone.0068122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/29/2013] [Indexed: 11/29/2022] Open
Abstract
Functional MRI (fMRI) using the blood oxygenation level dependent (BOLD) signal is a common technique in the study of brain function. The BOLD signal is sensitive to the complex interaction of physiological changes including cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral oxygen metabolism (CMRO2). A primary goal of quantitative fMRI methods is to combine BOLD imaging with other measurements (such as CBF measured with arterial spin labeling) to derive information about CMRO2. This requires an accurate mathematical model to relate the BOLD signal to the physiological and hemodynamic changes; the most commonly used of these is the Davis model. Here, we propose a new nonlinear model that is straightforward and shows heuristic value in clearly relating the BOLD signal to blood flow, blood volume and the blood flow-oxygen metabolism coupling ratio. The model was tested for accuracy against a more detailed model adapted for magnetic fields of 1.5, 3 and 7T. The mathematical form of the heuristic model suggests a new ratio method for comparing combined BOLD and CBF data from two different stimulus responses to determine whether CBF and CMRO2 coupling differs. The method does not require a calibration experiment or knowledge of parameter values as long as the exponential parameter describing the CBF-CBV relationship remains constant between stimuli. The method was found to work well for 1.5 and 3T but is prone to systematic error at 7T. If more specific information regarding changes in CMRO2 is required, then with accuracy similar to that of the Davis model, the heuristic model can be applied to calibrated BOLD data at 1.5T, 3T and 7T. Both models work well over a reasonable range of blood flow and oxygen metabolism changes but are less accurate when applied to a simulated caffeine experiment in which CBF decreases and CMRO2 increases.
Collapse
|
83
|
Taylor CR, Hanna M, Behnke BJ, Stabley JN, McCullough DJ, Davis RT, Ghosh P, Papadopoulos A, Muller-Delp JM, Delp MD. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J 2013; 27:2282-92. [PMID: 23457215 PMCID: PMC3659353 DOI: 10.1096/fj.12-222687] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/11/2013] [Indexed: 11/11/2022]
Abstract
Evidence indicates that cerebral blood flow is both increased and diminished in astronauts on return to Earth. Data from ground-based animal models simulating the effects of microgravity have shown that decrements in cerebral perfusion are associated with enhanced vasoconstriction and structural remodeling of cerebral arteries. Based on these results, the purpose of this study was to test the hypothesis that 13 d of spaceflight [Space Transportation System (STS)-135 shuttle mission] enhances myogenic vasoconstriction, increases medial wall thickness, and elicits no change in the mechanical properties of mouse cerebral arteries. Basilar and posterior communicating arteries (PCAs) were isolated from 9-wk-old female C57BL/6 mice for in vitro vascular and mechanical testing. Contrary to that hypothesized, myogenic vasoconstrictor responses were lower and vascular distensibility greater in arteries from spaceflight group (SF) mice (n=7) relative to ground-based control group (GC) mice (n=12). Basilar artery maximal diameter was greater in SF mice (SF: 236±9 μm and GC: 215±5 μm) with no difference in medial wall thickness (SF: 12.4±1.6 μm; GC: 12.2±1.2 μm). Stiffness of the PCA, as characterized via nanoindentation, was lower in SF mice (SF: 3.4±0.3 N/m; GC: 5.4±0.8 N/m). Collectively, spaceflight-induced reductions in myogenic vasoconstriction and stiffness and increases in maximal diameter of cerebral arteries signify that elevations in brain blood flow may occur during spaceflight. Such changes in cerebral vascular control of perfusion could contribute to increases in intracranial pressure and an associated impairment of visual acuity in astronauts during spaceflight.
Collapse
Affiliation(s)
| | - Mina Hanna
- Department of Mechanical and Aerospace Engineering
- Department of Applied Physiology and Kinesiology
| | - Bradley J. Behnke
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | - John N. Stabley
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | | | - Robert T. Davis
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | - Payal Ghosh
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | | | - Judy M. Muller-Delp
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA; and
| | - Michael D. Delp
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| |
Collapse
|
84
|
Liu TT. Neurovascular factors in resting-state functional MRI. Neuroimage 2013; 80:339-48. [PMID: 23644003 DOI: 10.1016/j.neuroimage.2013.04.071] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 11/16/2022] Open
Abstract
There has been growing interest in the use of resting-state functional magnetic resonance imaging (rsfMRI) for the assessment of disease and treatment, and a number of studies have reported significant disease-related changes in resting-state blood oxygenation level dependent (BOLD) signal amplitude and functional connectivity. rsfMRI is particularly suitable for clinical applications because the approach does not require the patient to perform a task and scans can be obtained in a relatively short amount of time. However, the mechanisms underlying resting-state BOLD activity are not well understood and thus the interpretation of changes in resting state activity is not always straightforward. The BOLD signal represents the hemodynamic response to neural activity, and changes in resting-state activity can reflect a complex combination of neural, vascular, and metabolic factors. This paper examines the role of neurovascular factors in rsfMRI and reviews approaches for the interpretation and analysis of resting state measures in the presence of confounding factors.
Collapse
Affiliation(s)
- Thomas T Liu
- Center for Functional Magnetic Resonance Imaging, University of California San Diego, 9500 Gilman Drive, MC 0677, La Jolla, CA 92093-0677, USA.
| |
Collapse
|
85
|
Liu TT, Glover GH, Mueller BA, Greve DN, Brown GG. An introduction to normalization and calibration methods in functional MRI. PSYCHOMETRIKA 2013; 78:308-21. [PMID: 25107618 DOI: 10.1007/s11336-012-9309-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 02/15/2012] [Indexed: 05/26/2023]
Abstract
In functional magnetic resonance imaging (fMRI), the blood oxygenation level dependent (BOLD) signal is often interpreted as a measure of neural activity. However, because the BOLD signal reflects the complex interplay of neural, vascular, and metabolic processes, such an interpretation is not always valid. There is growing evidence that changes in the baseline neurovascular state can result in significant modulations of the BOLD signal that are independent of changes in neural activity. This paper introduces some of the normalization and calibration methods that have been proposed for making the BOLD signal a more accurate reflection of underlying brain activity for human fMRI studies.
Collapse
Affiliation(s)
- Thomas T Liu
- Center for Functional MRI, University of California San Diego, 9500 Gilman Drive, MC 0677, La Jolla, CA, 92093, USA,
| | | | | | | | | |
Collapse
|
86
|
Abstract
Traumatic brain injury (TBI) is the most common cause of acquired disability in children. Metabolic defects, and in particular mitochondrial dysfunction, are important contributors to brain injury after TBI. Studies of metabolic dysfunction are limited, but magnetic resonance methods suitable for use in children are overcoming this limitation. We performed noninvasive measurements of cerebral blood flow and oxygen metabolic index (OMI) to assess metabolic dysfunction in children with severe TBI. Cerebral blood flow is variable after TBI but hypoperfusion and low OMI are predominant, supporting metabolic dysfunction. This finding is consistent with preclinical and adult clinical studies of brain metabolism and mitochondrial dysfunction after TBI.
Collapse
|
87
|
Jain V, Magland J, Langham M, Wehrli FW. High temporal resolution in vivo blood oximetry via projection-based T2 measurement. Magn Reson Med 2012; 70:785-90. [PMID: 23081759 DOI: 10.1002/mrm.24519] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/13/2012] [Indexed: 11/06/2022]
Abstract
Measuring venous oxygen saturation (HbO2) in large blood vessels can provide important information about oxygen delivery and its consumption in vital organs. Quantification of blood's T2 value via MR can be utilized to determine HbO2 noninvasively. We propose a fast method for in vivo blood T2 quantification via computing the complex difference of velocity-encoded projections. As blood flows continuously, its signal can be robustly isolated from the surrounding tissue by computing the complex difference of two central k-space lines with different velocity encodings. This resultant signal can then be measured as a function of echo time for rapidly quantifying T2 of blood. We applied the method to quantify HbO2 in three cerebral veins at rest and in one of the veins in response to hypercapnia. Average HbO2 measurements in superior sagittal sinus (SSS), straight sinus and internal jugular vein in the group were 63 ± 3%, 68 ± 4% and 65 ± 4%, respectively. Average HbO2 values in SSS during baseline, hypercapnia, and recovery were 63 ± 2%, 79 ± 5%, and 61 ± 3%, respectively. When compared with standard T2 quantification techniques, the proposed method is fast, reliable, and robust against partial volume effects.
Collapse
Affiliation(s)
- Varsha Jain
- Laboratory of Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
88
|
Jensen-Kondering U, Baron JC. Oxygen imaging by MRI: can blood oxygen level-dependent imaging depict the ischemic penumbra? Stroke 2012; 43:2264-9. [PMID: 22588263 DOI: 10.1161/strokeaha.111.632455] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ulf Jensen-Kondering
- Stroke Research Group, University of Cambridge, Department of Clinical Neurosciences, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
89
|
Rudrapatna US, van der Toorn A, van Meer MPA, Dijkhuizen RM. Impact of hemodynamic effects on diffusion-weighted fMRI signals. Neuroimage 2012; 61:106-14. [PMID: 22406501 DOI: 10.1016/j.neuroimage.2012.02.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/03/2012] [Accepted: 02/17/2012] [Indexed: 11/15/2022] Open
Abstract
In some recent studies, diffusion weighted functional MRI has been proposed to provide contrast immune to vascular changes. Increases in relative signal change during neuronal activation observed under increasing diffusion weighting support the possible diffusion based origin of this contrast. A recent diffusion tensor imaging (DTI) study has also reported the use of Fractional Anisotropy (FA) to track activation in white matter. In this study we aimed to establish if relatively high diffusion weighting (b=1200 and 1800 s/mm(2)) eliminates the strong vascular influences brought about by 100% O(2) and carbogen (95%O(2)+5% CO(2)) induced vascular challenges in gray matter (GM) and white matter (WM) of rat brain. We also aimed to characterize the influences of these vascular changes on FA, both in GM and in WM. Our study endorses previous reports that even relatively heavily diffusion weighted data can be significantly influenced by hemodynamic changes. However, this was not only observed in GM, but also in WM. Moreover, our study demonstrates that the estimator used to calculate the relative changes should be carefully chosen in order to avoid biases at low signal-to-noise ratios (SNRs) which accompany increasing diffusion weighting. With the use of robust estimators, we found no increases in relative change with increasing b-value during both vascular challenges. Our data also demonstrate that FA can be significantly influenced by hemodynamics, both in GM and in WM. The observed influence of diffusion weighting direction on relative signal change in GM was shown to be associated with structural differences among various regions. If diffusion based functional contrasts immune to hemodynamics do exist, our results highlight the difficulty in discerning those diffusion changes from accompanying vascular changes.
Collapse
Affiliation(s)
- Umesh S Rudrapatna
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
90
|
Noninvasive Measurements of Cerebral Blood Flow, Oxygen Extraction Fraction, and Oxygen Metabolic Index in Human with Inhalation of Air and Carbogen using Magnetic Resonance Imaging. Transl Stroke Res 2011; 3:246-54. [PMID: 24323780 DOI: 10.1007/s12975-011-0142-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/16/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Noninvasive magnetic resonance (MR) methods have been explored to provide quantitative measurements of cerebral blood flow (CBF), oxygen extraction fraction (OEF), and oxygen metabolic index (OMI = CBF × OEF). In this study, we sought to evaluate whether MR measured OEF, CBF, and OMI can consistently detect the expected physiological changes in humans under normal and hyperoxic hypercapnic conditions. Nine healthy human subjects were scanned while breathing through a mask, alternating inhaled gas in a sequential order as room air, carbogen (3% CO2 mixed with 97% O2), room air, carbogen, and room air. OEF, CBF, and OMI were obtained from the whole brain, gray matter (GM), and white matter (WM) at each gas inhalation state. Similar to previous positron emission tomography findings, our study consistently demonstrated a 10-12% decrease in OEF with a 10% increase of CBF and a stable OMI during carbogen inhalation. Moreover, GM/WM ratio in CBF and OMI remained constant during air and carbogen breathing. In addition, OEF, CBF, and OMI were highly reproducible if the same inhaled gas was used. In summary, our results demonstrate that noninvasive MR measurements can provide reproducible measurements of OEF, CBF, and OMI in normal subjects under normal and altered physiological conditions.
Collapse
|
91
|
Jain V, Abdulmalik O, Propert KJ, Wehrli FW. Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification. Magn Reson Med 2011; 68:863-7. [PMID: 22162033 DOI: 10.1002/mrm.23282] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/15/2011] [Accepted: 10/12/2011] [Indexed: 01/06/2023]
Abstract
Quantification of blood oxygen saturation on the basis of a measurement of its magnetic susceptibility demands knowledge of the difference in volume susceptibility between fully oxygenated and fully deoxygenated blood (Δχ(do) ). However, two very different values of Δχ(do) are currently in use. In this work we measured Δχ(do) as well as the susceptibility of oxygenated blood relative to water, Δχ(oxy) , by MR susceptometry in samples of freshly drawn human blood oxygenated to various levels, from 6 to 98% as determined by blood gas analysis. Regression analysis yielded 0.273 ± 0.006 and -0.008 ± 0.003 ppm (cgs) respectively, for Δχ(do) and Δχ(oxy) , in excellent agreement with previous work by Spees et al. (Magn Reson Med 2001;45:533-542).
Collapse
Affiliation(s)
- Varsha Jain
- Department of Radiology, Laboratory of Structural NMR Imaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
92
|
Blockley NP, Griffeth VEM, Buxton RB. A general analysis of calibrated BOLD methodology for measuring CMRO2 responses: comparison of a new approach with existing methods. Neuroimage 2011; 60:279-89. [PMID: 22155329 DOI: 10.1016/j.neuroimage.2011.11.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/21/2011] [Accepted: 11/25/2011] [Indexed: 11/27/2022] Open
Abstract
The amplitude of the BOLD response to a stimulus is not only determined by changes in cerebral blood flow (CBF) and oxygen metabolism (CMRO(2)), but also by baseline physiological parameters such as haematocrit, oxygen extraction fraction (OEF) and blood volume. The calibrated BOLD approach aims to account for this physiological variation by performing an additional calibration scan. This calibration typically consists of a hypercapnia or hyperoxia respiratory challenge, although we propose that a measurement of the reversible transverse relaxation rate, R(2)', might also be used. A detailed model of the BOLD effect was used to simulate each of the calibration experiments, as well as the activation experiment, whilst varying a number of physiological parameters associated with the baseline state and response to activation. The effectiveness of the different calibration methods was considered by testing whether the BOLD response to activation scaled by the calibration parameter combined with the measured CBF provides sufficient information to reliably distinguish different levels of CMRO(2) response despite underlying physiological variability. In addition the effect of inaccuracies in the underlying assumptions of each technique were tested, e.g. isometabolism during hypercapnia. The three primary findings of the study were: 1) The new calibration method based on R(2)' worked reasonably well, although not as well as the ideal hypercapnia method; 2) The hyperoxia calibration method was significantly worse because baseline haematocrit and OEF must be assumed, and these physiological parameters have a significant effect on the measurements; and 3) the venous blood volume change with activation is an important confounding variable for all of the methods, with the hypercapnia method being the most robust when this is uncertain.
Collapse
Affiliation(s)
- Nicholas P Blockley
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, CA 92093-0677, USA.
| | | | | |
Collapse
|
93
|
Beaudin AE, Brugniaux JV, Vöhringer M, Flewitt J, Green JD, Friedrich MG, Poulin MJ. Cerebral and myocardial blood flow responses to hypercapnia and hypoxia in humans. Am J Physiol Heart Circ Physiol 2011; 301:H1678-86. [DOI: 10.1152/ajpheart.00281.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In humans, cerebrovascular responses to alterations in arterial Pco2 and Po2 are well documented. However, few studies have investigated human coronary vascular responses to alterations in blood gases. This study investigated the extent to which the cerebral and coronary vasculatures differ in their responses to euoxic hypercapnia and isocapnic hypoxia in healthy volunteers. Participants ( n = 15) were tested at rest on two occasions. On the first visit, middle cerebral artery blood velocity ( V̄P) was assessed using transcranial Doppler ultrasound. On the second visit, coronary sinus blood flow (CSBF) was measured using cardiac MRI. For comparison with V̄P, CSBF was normalized to the rate pressure product [an index of myocardial oxygen consumption; normalized (n)CSBF]. Both testing sessions began with 5 min of euoxic [end-tidal Po2 (PetO2) = 88 Torr] isocapnia [end-tidal Pco2 (PetCO2) = +1 Torr above resting values]. PetO2 was next held at 88 Torr, and PetCO2 was increased to 40 and 45 Torr in 5-min increments. Participants were then returned to euoxic isocapnia for 5 min, after which PetO2 was decreased from 88 to 60, 52 and 45 Torr in 5-min decrements. Changes in V̄P and nCSBF were normalized to isocapnic euoxic conditions and indexed against PetCO2 and arterial oxyhemoglobin saturation. The V̄P gain for euoxic hypercapnia (%/Torr) was significantly higher than nCSBF ( P = 0.030). Conversely, the V̄P gain for isocapnic hypoxia (%/%desaturation) was not different from nCSBF ( P = 0.518). These findings demonstrate, compared with coronary circulation, that the cerebral circulation is more sensitive to hypercapnia but similarly sensitive to hypoxia.
Collapse
Affiliation(s)
| | - Julien V. Brugniaux
- Departments of 1Physiology and Pharmacology and
- Hotchkiss Brain Institute, and
| | | | | | - Jordin D. Green
- Stephenson Cardiac MR Centre,
- Libin Cardiovascular Institute of Alberta,
- Siemens Healthcare, Calgary, Canada
| | | | - Marc J. Poulin
- Departments of 1Physiology and Pharmacology and
- Clinical Neurosciences,
- Libin Cardiovascular Institute of Alberta,
- Hotchkiss Brain Institute, and
- Faculties of 6Medicine and
| |
Collapse
|
94
|
|