51
|
Guo J, Fei C, Zhao Y, Zhao S, Zheng Q, Su J, Wu D, Li X, Chang C. Lenalidomide restores the osteogenic differentiation of bone marrow mesenchymal stem cells from multiple myeloma patients via deactivating Notch signaling pathway. Oncotarget 2017; 8:55405-55421. [PMID: 28903429 PMCID: PMC5589668 DOI: 10.18632/oncotarget.19265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/24/2017] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) always presents osteolytic bone lesions, resulting from the abnormal osteoblastic and osteoclastic function in patients. MM patients exhibit the impairment of osteogenic differentiation of BMMSCs (bone marrow mesenchymal stem cells) and osteoblast deficiency. Effects of the drug, lenalidomide on the osteoblastic functions and the involved mechanisms remain unexplored. In the present study, it is observed that the osteogenic differentiation of BMMSCs from MM patients (MM-MSCs) is impaired and activation of Notch signaling pathway in MM-MSCs is abnormal. Notch signaling activation inhibits BMMSCs osteogenesis. Knockdown of Notch1 expression and DAPT application reverse the osteogenic differentiation from MM-MSCs. Furthermore, it is shown that the gene expression of Notch signaling molecules, including receptors, ligands and downstream factors are significantly decreased in MM-MSCs following lenalidomide treatment, compared with non-treated MM-MSCs. Taken together, treatment with lenalidomide restores the osteogenic differentiation of MM-MSCs via deactivating Notch signaling pathway.
Collapse
Affiliation(s)
- Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chengming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Youshan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Sida Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qingqing Zheng
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
52
|
Li S, Jiang Y, Li A, Liu X, Xing X, Guo Y, Xu Y, Hao Y, Zheng C. Telomere length is positively associated with the expression of IL‑6 and MIP‑1α in bone marrow mesenchymal stem cells of multiple myeloma. Mol Med Rep 2017; 16:2497-2504. [PMID: 28677723 PMCID: PMC5547952 DOI: 10.3892/mmr.2017.6885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
Potential roles of mesenchymal stem cells (MSCs) in the pathogenesis of multiple myeloma (MM) are largely unknown. In the current study, the authors analyzed telomere length and the expressions of interleukin (IL)-6 and macrophage inflammatory protein (MIP)-1α in MSCs derived from the bone marrow (BM) of MM patients and controls. The current results demonstrated that there was no significant difference in cell surface expression of CD73 and CD90, and the capacity to differentiate into bone tissue were identified between the BM MSCs derived from MM patients and controls. Interestingly, telomere length (TL) and mRNA expressions of IL-6 and MIP-1α were significantly longer or higher in BM MSCs of MM than those of controls. Moreover, TL is positively associated with the expressions of IL-6 and MIP-1α at the mRNA level in BM MSCs of MM. Additionally, IL-6 and MIP-1α expression were significantly upregulated when MSCs from MM patients were cultured in the myeloma associated condition medium. The present study indicated that myeloma-associated elongation of TL of BM MSCs may be a key element contributing to the increased IL-6 and MIP-1α expression, by which MSCs in the tumor microenvironment may facilitate MM and/or MM bone disease development.
Collapse
Affiliation(s)
- Shengli Li
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yang Jiang
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ai Li
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiangling Xing
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yanan Guo
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yaqi Xu
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yunliang Hao
- Department of Hematology, Jining No. 1 People's Hospital, Jining, Shandong 272100, P.R. China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
53
|
Bolzoni M, Ronchetti D, Storti P, Donofrio G, Marchica V, Costa F, Agnelli L, Toscani D, Vescovini R, Todoerti K, Bonomini S, Sammarelli G, Vecchi A, Guasco D, Accardi F, Palma BD, Gamberi B, Ferrari C, Neri A, Aversa F, Giuliani N. IL21R expressing CD14 +CD16 + monocytes expand in multiple myeloma patients leading to increased osteoclasts. Haematologica 2017; 102:773-784. [PMID: 28057743 PMCID: PMC5395118 DOI: 10.3324/haematol.2016.153841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/23/2016] [Indexed: 11/18/2022] Open
Abstract
Bone marrow monocytes are primarily committed to osteoclast formation. It is, however, unknown whether potential primary alterations are specifically present in bone marrow monocytes from patients with multiple myeloma, smoldering myeloma or monoclonal gammopathy of undetermined significance. We analyzed the immunophenotypic and transcriptional profiles of bone marrow CD14+ monocytes in a cohort of patients with different types of monoclonal gammopathies to identify alterations involved in myeloma-enhanced osteoclastogenesis. The number of bone marrow CD14+CD16+ cells was higher in patients with active myeloma than in those with smoldering myeloma or monoclonal gammopathy of undetermined significance. Interestingly, sorted bone marrow CD14+CD16+ cells from myeloma patients were more pro-osteoclastogenic than CD14+CD16-cells in cultures ex vivo. Moreover, transcriptional analysis demonstrated that bone marrow CD14+ cells from patients with multiple myeloma (but neither monoclonal gammopathy of undetermined significance nor smoldering myeloma) significantly upregulated genes involved in osteoclast formation, including IL21R. IL21R mRNA over-expression by bone marrow CD14+ cells was independent of the presence of interleukin-21. Consistently, interleukin-21 production by T cells as well as levels of interleukin-21 in the bone marrow were not significantly different among monoclonal gammopathies. Thereafter, we showed that IL21R over-expression in CD14+ cells increased osteoclast formation. Consistently, interleukin-21 receptor signaling inhibition by Janex 1 suppressed osteoclast differentiation from bone marrow CD14+ cells of myeloma patients. Our results indicate that bone marrow monocytes from multiple myeloma patients show distinct features compared to those from patients with indolent monoclonal gammopathies, supporting the role of IL21R over-expression by bone marrow CD14+ cells in enhanced osteoclast formation.
Collapse
Affiliation(s)
- Marina Bolzoni
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy
| | - Domenica Ronchetti
- Dept. of Oncology and Hemato-Oncology, University of Milan, Italy.,Hematology Unit, "Fondazione IRCCS Ca' Granda", Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Storti
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,CoreLab, University Hospital of Parma, Rionero in Vulture, Italy
| | - Gaetano Donofrio
- Dept. of Medical-Veterinary Science, University of Parma, Rionero in Vulture, Italy
| | - Valentina Marchica
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,CoreLab, University Hospital of Parma, Rionero in Vulture, Italy
| | - Federica Costa
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy
| | - Luca Agnelli
- Dept. of Oncology and Hemato-Oncology, University of Milan, Italy.,Hematology Unit, "Fondazione IRCCS Ca' Granda", Ospedale Maggiore Policlinico, Milan, Italy
| | - Denise Toscani
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy
| | - Rosanna Vescovini
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy
| | - Katia Todoerti
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | | | - Gabriella Sammarelli
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,Hematology and BMT Center, University Hospital of Parma, Italy
| | - Andrea Vecchi
- Infectious Disease Unit, University Hospital of Parma, Italy
| | - Daniela Guasco
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy
| | - Fabrizio Accardi
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,Hematology and BMT Center, University Hospital of Parma, Italy
| | - Benedetta Dalla Palma
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,Hematology and BMT Center, University Hospital of Parma, Italy
| | - Barbara Gamberi
- "Dip. Oncologico e Tecnologie Avanzate", IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Carlo Ferrari
- Infectious Disease Unit, University Hospital of Parma, Italy
| | - Antonino Neri
- Dept. of Oncology and Hemato-Oncology, University of Milan, Italy.,Hematology Unit, "Fondazione IRCCS Ca' Granda", Ospedale Maggiore Policlinico, Milan, Italy
| | - Franco Aversa
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,CoreLab, University Hospital of Parma, Rionero in Vulture, Italy.,Hematology and BMT Center, University Hospital of Parma, Italy
| | - Nicola Giuliani
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy .,CoreLab, University Hospital of Parma, Rionero in Vulture, Italy.,Hematology and BMT Center, University Hospital of Parma, Italy
| |
Collapse
|
54
|
Poggi A, Giuliani M. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment. Vaccines (Basel) 2016; 4:41. [PMID: 27834810 PMCID: PMC5192361 DOI: 10.3390/vaccines4040041] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/01/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells' growth and expansion can influence neighboring cells' behavior, leading to a modulation of mesenchymal stromal cell (MSC) activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT), a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy.
| | - Massimo Giuliani
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City L-1526, Luxembourg.
| |
Collapse
|
55
|
Citrullination of histone H3 drives IL-6 production by bone marrow mesenchymal stem cells in MGUS and multiple myeloma. Leukemia 2016; 31:373-381. [PMID: 27400413 PMCID: PMC5292682 DOI: 10.1038/leu.2016.187] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM), an incurable plasma cell malignancy, requires localisation within the bone marrow. This microenvironment facilitates crucial interactions between the cancer cells and stromal cell types that permit the tumour to survive and proliferate. There is increasing evidence that the bone marrow mesenchymal stem cell (BMMSC) is stably altered in patients with MM-a phenotype also postulated to exist in patients with monoclonal gammopathy of undetermined significance (MGUS) a benign condition that precedes MM. In this study, we describe a mechanism by which increased expression of peptidyl arginine deiminase 2 (PADI2) by BMMSCs in patients with MGUS and MM directly alters malignant plasma cell phenotype. We identify PADI2 as one of the most highly upregulated transcripts in BMMSCs from both MGUS and MM patients, and that through its enzymatic deimination of histone H3 arginine 26, PADI2 activity directly induces the upregulation of interleukin-6 expression. This leads to the acquisition of resistance to the chemotherapeutic agent, bortezomib, by malignant plasma cells. We therefore describe a novel mechanism by which BMMSC dysfunction in patients with MGUS and MM directly leads to pro-malignancy signalling through the citrullination of histone H3R26.
Collapse
|
56
|
Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance. Blood 2016; 127:1896-906. [DOI: 10.1182/blood-2015-08-665679] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022] Open
Abstract
Key Points
We report for the first time the biological features of MRD cells in MM and unravel that clonal selection is already present at the MRD stage. MRD cells show a singular phenotypic signature that may result from persisting clones with different genetic and gene expression profiles.
Collapse
|
57
|
Marcus H, Attar-Schneider O, Dabbah M, Zismanov V, Tartakover-Matalon S, Lishner M, Drucker L. Mesenchymal stem cells secretomes' affect multiple myeloma translation initiation. Cell Signal 2016; 28:620-30. [PMID: 26976208 DOI: 10.1016/j.cellsig.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 12/29/2022]
Abstract
Bone marrow mesenchymal stem cells' (BM-MSCs) role in multiple myeloma (MM) pathogenesis is recognized. Recently, we have published that co-culture of MM cell lines with BM-MSCs results in mutual modulation of phenotype and proteome (via translation initiation (TI) factors eIF4E/eIF4GI) and that there are differences between normal donor BM-MSCs (ND-MSCs) and MM BM-MSCs (MM-MSCs) in this crosstalk. Here, we aimed to assess the involvement of soluble BM-MSCs' (ND, MM) components, more easily targeted, in manipulation of MM cell lines phenotype and TI with specific focus on microvesicles (MVs) capable of transferring critical biological material. We applied ND and MM-MSCs 72h secretomes to MM cell lines (U266 and ARP-1) for 12-72h and then assayed the cells' (viability, cell count, cell death, proliferation, cell cycle, autophagy) and TI (factors: eIF4E, teIF4GI; regulators: mTOR, MNK1/2, 4EBP; targets: cyclin D1, NFκB, SMAD5, cMyc, HIF1α). Furthermore, we dissected the secretome into >100kDa and <100kDa fractions and repeated the experiments. Finally, MVs were isolated from the ND and MM-MSCs secretomes and applied to MM cell lines. Phenotype and TI were assessed. Secretomes of BM-MSCs (ND, MM) significantly stimulated MM cell lines' TI, autophagy and proliferation. The dissected secretome yielded different effects on MM cell lines phenotype and TI according to fraction (>100kDa- repressed; <100kDa- stimulated) but with no association to source (ND, MM). Finally, in analyses of MVs extracted from BM-MSCs (ND, MM) we witnessed differences in accordance with source: ND-MSCs MVs inhibited proliferation, autophagy and TI whereas MM-MSCs MVs stimulated them. These observations highlight the very complex communication between MM and BM-MSCs and underscore its significance to major processes in the malignant cells. Studies into the influential MVs cargo are underway and expected to uncover targetable signals in the regulation of the TI/proliferation/autophagy cascade.
Collapse
Affiliation(s)
- H Marcus
- Oncogenetic Laboratory, Tel Aviv University, Tel Aviv, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O Attar-Schneider
- Oncogenetic Laboratory, Tel Aviv University, Tel Aviv, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Dabbah
- Oncogenetic Laboratory, Tel Aviv University, Tel Aviv, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - V Zismanov
- Oncogenetic Laboratory, Tel Aviv University, Tel Aviv, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - S Tartakover-Matalon
- Oncogenetic Laboratory, Tel Aviv University, Tel Aviv, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Lishner
- Oncogenetic Laboratory, Tel Aviv University, Tel Aviv, Israel; Internal Medicine Department, Meir Medical Center, Kfar Saba, Tel Aviv University, Tel Aviv, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L Drucker
- Oncogenetic Laboratory, Tel Aviv University, Tel Aviv, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
58
|
Sorokina T, Shipounova I, Bigildeev A, Petinati N, Drize N, Turkina A, Chelysheva E, Shukhov O, Kuzmina L, Parovichnikova E, Savchenko V. The ability of multipotent mesenchymal stromal cells from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells. Eur J Haematol 2016; 97:245-52. [PMID: 26643284 DOI: 10.1111/ejh.12713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND The development of leukemia impairs normal hematopoiesis and marrow stromal microenvironment. The aim of the investigation was to study the ability of multipotent mesenchymal stromal cells (MSCs) derived from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells. METHODS MSCs were obtained from the bone marrow of 14 patients with acute lymphoblastic (ALL), 25 with myeloid (AML), and 15 with chronic myeloid (CML) leukemia. As a control, MSCs from 22 healthy donors were used. The incidence of cobblestone area forming cells (CAFC 7-8 d) in the bone marrow of healthy donor cultivated on the supportive layer of patients MSCs was measured. RESULTS The ability of MSCs from AML and ALL patients at the moment of diagnosis to maintain normal CAFC was significantly decreased when compared to donors. After chemotherapy, the restoration of ALL patients' MSCs functions was slower than that of AML. CML MSCs maintained CAFC better than donors' at the moment of diagnosis and this ability increased with treatment. CONCLUSIONS The ability of patients' MSCs to maintain normal hematopoietic progenitor cells was shown to change in comparison with MSCs from healthy donors and depended on nosology. During treatment, the functional capacity of patients' MSCs had been partially restored.
Collapse
Affiliation(s)
| | | | | | | | - Nina Drize
- National Research Center for Hematology, Moscow, Russia
| | - Anna Turkina
- National Research Center for Hematology, Moscow, Russia
| | | | - Oleg Shukhov
- National Research Center for Hematology, Moscow, Russia
| | | | | | | |
Collapse
|
59
|
Abstract
Unprecedented advances in multiple myeloma (MM) therapy during the last 15 years are predominantly based on our increasing understanding of the pathophysiologic role of the bone marrow (BM) microenvironment. Indeed, new treatment paradigms, which incorporate thalidomide, immunomodulatory drugs (IMiDs), and proteasome inhibitors, target the tumor cell as well as its BM microenvironment. Ongoing translational research aims to understand in more detail how disordered BM-niche functions contribute to MM pathogenesis and to identify additional derived targeting agents. One of the most exciting advances in the field of MM treatment is the emergence of immune therapies including elotuzumab, daratumumab, the immune checkpoint inhibitors, Bispecific T-cell engagers (BiTes), and Chimeric antigen receptor (CAR)-T cells. This chapter will review our knowledge on the pathophysiology of the BM microenvironment and discuss derived novel agents that hold promise to further improve outcome in MM.
Collapse
Affiliation(s)
- Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
60
|
Muñiz C, Teodosio C, Mayado A, Amaral AT, Matarraz S, Bárcena P, Sanchez ML, Alvarez-Twose I, Diez-Campelo M, García-Montero AC, Blanco JF, Del Cañizo MC, del Pino Montes J, Orfao A. Ex vivo identification and characterization of a population of CD13(high) CD105(+) CD45(-) mesenchymal stem cells in human bone marrow. Stem Cell Res Ther 2015; 6:169. [PMID: 26347461 PMCID: PMC4562124 DOI: 10.1186/s13287-015-0152-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/03/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and multilineage differentiation. Their multipotential capacity and immunomodulatory properties have led to an increasing interest in their biological properties and therapeutic applications. Currently, the definition of MSCs relies on a combination of phenotypic, morphological and functional characteristics which are typically evaluated upon in vitro expansion, a process that may ultimately lead to modulation of the immunophenotypic, functional and/or genetic features of these cells. Therefore, at present there is great interest in providing markers and phenotypes for direct in vivo and ex vivo identification and isolation of MSCs. Methods Multiparameter flow cytometry immunophenotypic studies were performed on 65 bone marrow (BM) samples for characterization of CD13high CD105+ CD45– cells. Isolation and expansion of these cells was performed in a subset of samples in parallel to the expansion of MSCs from mononuclear cells following currently established procedures. The protein expression profile of these cells was further assessed on (paired) primary and in vitro expanded BM MSCs, and their adipogenic, chondrogenic and osteogenic differentiation potential was also determined. Results Our results show that the CD13high CD105+ CD45− immunophenotype defines a minor subset of cells that are systematically present ex vivo in normal/reactive BM (n = 65) and that display immunophenotypic features, plastic adherence ability, and osteogenic, adipogenic and chondrogenic differentiation capacities fully compatible with those of MSCs. In addition, we also show that in vitro expansion of these cells modulates their immunophenotypic characteristics, including changes in the expression of markers currently used for the definition of MSCs, such as CD105, CD146 and HLA-DR. Conclusions BM MSCs can be identified ex vivo in normal/reactive BM, based on a robust CD13high CD105+ and CD45− immunophenotypic profile. Furthermore, in vitro expansion of these cells is associated with significant changes in the immunophenotypic profile of MSCs. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0152-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carmen Muñiz
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain. .,Spanish Net on Aging and Frailty (RETICEF) Instituto de Salud Carlos III, Madrid, Spain.
| | - Cristina Teodosio
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain. .,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Andrea Mayado
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.
| | - Ana Teresa Amaral
- The Molecular Pathology group, Institute of Biomedicine of Seville - Hospital Virgen del Rocio, Seville, Spain.
| | - Sergio Matarraz
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.
| | - Paloma Bárcena
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.
| | - Maria Luz Sanchez
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.
| | - Iván Alvarez-Twose
- Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain.
| | - María Diez-Campelo
- Hematology Service, Hospital Universitario de Salamanca and IBSAL, Salamanca, Spain.
| | - Andrés C García-Montero
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.
| | - Juan F Blanco
- Spanish Net on Aging and Frailty (RETICEF) Instituto de Salud Carlos III, Madrid, Spain. .,Orthopedics Service, Hospital Universitario de Salamanca and IBSAL, Salamanca, Spain.
| | | | - Javier del Pino Montes
- Spanish Net on Aging and Frailty (RETICEF) Instituto de Salud Carlos III, Madrid, Spain. .,Rheumatology Service, Hospital Universitario de Salamanca and IBSAL, Salamanca, Spain.
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain. .,Centro de Investigación del Cáncer, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
61
|
Attar-Schneider O, Zismanov V, Dabbah M, Tartakover-Matalon S, Drucker L, Lishner M. Multiple myeloma and bone marrow mesenchymal stem cells' crosstalk: Effect on translation initiation. Mol Carcinog 2015; 55:1343-54. [PMID: 26293751 DOI: 10.1002/mc.22378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/26/2022]
Abstract
Multiple myeloma (MM) malignant plasma cells reside in the bone marrow (BM) and convert it into a specialized pre-neoplastic niche that promotes the proliferation and survival of the cancer cells. BM resident mesenchymal stem cells (BM-MSCs) are altered in MM and in vitro studies indicate their transformation by MM proximity is within hours. The response time frame suggested that protein translation may be implicated. Thus, we assembled a co-culture model of MM cell lines with MSCs from normal donors (ND) and MM patients to test our hypothesis. The cell lines (U266, ARP-1) and BM-MSCs (ND, MM) were harvested separately after 72 h of co-culture and assayed for proliferation, death, levels of major translation initiation factors (eIF4E, eIF4GI), their targets, and regulators. Significant changes were observed: BM-MSCs (ND and MM) co-cultured with MM cell lines displayed elevated proliferation and death as well as increased expression/activity of eIF4E/eIF4GI; MM cell lines co-cultured with MM-MSCs also displayed higher proliferation and death rates coupled with augmented translation initiation factors; in contrast, MM cell lines co-cultured with ND-MSCs did not display elevated proliferation only death and had no changes in eIF4GI levels/activity. eIF4E expression was increased in one of the cell lines. Our study demonstrates that there is direct dialogue between the MM and BM-MSCs populations that includes translation initiation manipulation and critically affects cell fate. Future research should be aimed at identifying therapeutic targets that may be used to minimize the collateral damage to the cancer microenvironment and limit its recruitment into the malignant process. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Oshrat Attar-Schneider
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Zismanov
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mahmoud Dabbah
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Tartakover-Matalon
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Internal Medicine, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
62
|
Roccaro AM, Mishima Y, Sacco A, Moschetta M, Tai YT, Shi J, Zhang Y, Reagan MR, Huynh D, Kawano Y, Sahin I, Chiarini M, Manier S, Cea M, Aljawai Y, Glavey S, Morgan E, Pan C, Michor F, Cardarelli P, Kuhne M, Ghobrial IM. CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-like Transcriptional Activation. Cell Rep 2015; 12:622-35. [PMID: 26190113 DOI: 10.1016/j.celrep.2015.06.059] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 12/29/2022] Open
Abstract
Extra-medullary disease (EMD) in multiple myeloma (MM) is associated with poor prognosis and resistance to chemotherapy. However, molecular alterations that lead to EMD have not been well defined. We developed bone marrow (BM)- and EMD-prone MM syngeneic cell lines; identified that epithelial-to-mesenchymal transition (EMT) transcriptional patterns were significantly enriched in both clones compared to parental cells, together with higher levels of CXCR4 protein; and demonstrated that CXCR4 enhanced the acquisition of an EMT-like phenotype in MM cells with a phenotypic conversion for invasion, leading to higher bone metastasis and EMD dissemination in vivo. In contrast, CXCR4 silencing led to inhibited tumor growth and reduced survival. Ulocuplumab, a monoclonal anti-CXCR4 antibody, inhibited MM cell dissemination, supported by suppression of the CXCR4-driven EMT-like phenotype. These results suggest that targeting CXCR4 may act as a regulator of EMD through EMT-like transcriptional modulation, thus representing a potential therapeutic strategy to prevent MM disease progression.
Collapse
Affiliation(s)
- Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yuji Mishima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Antonio Sacco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiantao Shi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Yong Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michaela R Reagan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Maine Medical Center Research Institute (MMCRI), Scarborough, ME 04074, USA
| | - Daisy Huynh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ilyas Sahin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Marco Chiarini
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Spedali Civili di Brescia, Centro per la Ricerca Onco-ematologica AIL (CREA), 25123 Brescia, Italy
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michele Cea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yosra Aljawai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Siobhan Glavey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth Morgan
- Department of Pathology, Brigham & Women's Hospital, Boston, MA 02215, USA
| | - Chin Pan
- Bristol-Myers Squibb, Redwood City, CA 94063, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | | | | | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
63
|
Garcia-Gomez A, De Las Rivas J, Ocio EM, Díaz-Rodríguez E, Montero JC, Martín M, Blanco JF, Sanchez-Guijo FM, Pandiella A, San Miguel JF, Garayoa M. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease. Oncotarget 2015; 5:8284-305. [PMID: 25268740 PMCID: PMC4226683 DOI: 10.18632/oncotarget.2058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease.
Collapse
Affiliation(s)
- Antonio Garcia-Gomez
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain. Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain. Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Javier De Las Rivas
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Enrique M Ocio
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain. Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Elena Díaz-Rodríguez
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Juan C Montero
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Montserrat Martín
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain. Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Juan F Blanco
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Fermín M Sanchez-Guijo
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain. Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain. Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Jesús F San Miguel
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain. Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain. Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain. Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain. Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| |
Collapse
|
64
|
Zhuang W, Ge X, Yang S, Huang M, Zhuang W, Chen P, Zhang X, Fu J, Qu J, Li B. Upregulation of lncRNA MEG3 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells From Multiple Myeloma Patients By Targeting BMP4 Transcription. Stem Cells 2015; 33:1985-1997. [PMID: 25753650 DOI: 10.1002/stem.1989] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 12/18/2022]
Abstract
Multiple myeloma (MM) is characterized by the impaired osteogenic differentiation of mesenchymal stromal cells (MSCs). However, the underlying molecular mechanisms are still poorly understood. Long noncoding RNAs (lncRNAs) are emerging as important regulatory molecules in tumor-suppressor and oncogenic pathways. Here we showed that MSCs from MM expressed less lncRNA MEG3 relative to those from normal donors during osteogenic differentiation. To evaluate the effect of MEG3 on osteogenesis, bone marrow MSCs with enhanced or reduced MEG3 were prepared. We observed that MEG3 knockdown significantly reduced the expression of key osteogenic markers, including Runt-related transcription factor 2, osterix, and osteocalcin, while overexpression of MEG3 enhanced their expression. Additionally, MEG3 knockdown decreased BMP4 transcription. Here we showed that MEG3 was critical for SOX2 transcriptional repression of the BMP4. MEG3, which is located near the BMP4 gene, could dissociate the transcription factor SOX2 from the BMP4 promoter. A stable complex containing the MEG3, SOX2, and the SOX2 consensus site of BMP4 suggested that MEG3 activated transcriptional activity by directly influencing SOX2 activity. By using assays such as luciferase, chromatin immunoprecipitation, and RNA immunoprecipitation, we showed that MEG3 had a critical function in a mechanism of promoter-specific transcriptional activation. These results suggested that MEG3 played an essential role in osteogenic differentiation in bone marrow MSCs, partly by activating BMP4 transcription. Our data provided novel evidence for the biological and clinical significance of lncRNA MEG3 expression as a potential biomarker for identifying patients with MM and as a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic of Medical Science, Soochow University, Suzhou, People's Republic of China
| | - Xueping Ge
- Department of Haematology, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Sijun Yang
- Department of Cell Biology, School of Biology & Basic of Medical Science, Soochow University, Suzhou, People's Republic of China
| | - Moli Huang
- Department of Bioinformatics, School of Biology & Basic of Medical Science, Soochow University, Suzhou, People's Republic of China
| | - Wenyue Zhuang
- Department of Molecular Biology, Medical Ecsomatics College, Beihua University, Jinlin, People's Republic of China
| | - Ping Chen
- Department of Haematology, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Xiaohui Zhang
- Department of Haematology, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Jinxiang Fu
- Department of Haematology, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Jing Qu
- Department of Cell Biology, School of Biology & Basic of Medical Science, Soochow University, Suzhou, People's Republic of China
| | - Bingzong Li
- Department of Haematology, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
65
|
Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015; 125:3049-58. [PMID: 25838343 DOI: 10.1182/blood-2014-11-568881] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
Over the past 4 decades, basic research has provided crucial information regarding the cellular and molecular biology of cancer. In particular, the relevance of cancer microenvironment (including both cellular and noncellular elements) and the concept of clonal evolution and heterogeneity have emerged as important in cancer pathogenesis, immunologic escape, and resistance to therapy. Multiple myeloma (MM), a cancer of terminally differentiated plasma cells, is emblematic of the impact of cancer microenvironment and the role of clonal evolution. Although genetic and epigenetic aberrations occur in MM and evolve over time under the pressure of exogenous stimuli, they are also largely present in premalignant plasma cell dyscrasia such as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM), suggesting that genetic mutations alone are necessary, but not sufficient, for myeloma transformation. The role of bone marrow microenvironment in mediating survival, proliferation, and resistance to therapy in myeloma is well established; and although an appealing speculation, its role in fostering the evolution of MGUS or SMM into MM is yet to be proven. In this review, we discuss MM pathogenesis with a particular emphasis on the role of bone marrow microenvironment.
Collapse
|
66
|
Ciavarella S, Caselli A, Tamma AV, Savonarola A, Loverro G, Paganelli R, Tucci M, Silvestris F. A peculiar molecular profile of umbilical cord-mesenchymal stromal cells drives their inhibitory effects on multiple myeloma cell growth and tumor progression. Stem Cells Dev 2015; 24:1457-70. [PMID: 25758779 DOI: 10.1089/scd.2014.0254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are under intensive investigation in preclinical models of cytotherapies against cancer, including multiple myeloma (MM). However, the therapeutic use of stromal progenitors holds critical safety concerns due to their potential MM-supporting activity in vivo. Here, we explored whether MSCs from sources other than BM, such as adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs), affect MM cell growth in comparison to either normal (nBM-MSCs) or myelomatous marrow MSCs (MM-BM-MSCs). Results from both proliferation and clonogenic assays indicated that, in contrast to nBM- and MM-BM-MSCs, both AD and particularly UC-MSCs significantly inhibit MM cell clonogenicity and growth in vitro. Furthermore, when co-injected with UC-MSCs into mice, RPMI-8226 MM cells formed smaller subcutaneous tumor masses, while peritumoral injections of the same MSC subtype significantly delayed the tumor burden growing in subcutaneous plasmocytoma-bearing mice. Finally, both microarrays and ELISA revealed different expression of several genes and soluble factors in UC-MSCs as compared with other MSCs. Our data suggest that UC-MSCs have a distinct molecular profile that correlates with their intrinsic anti-MM activity and emphasize the UCs as ideal sources of MSCs for future cell-based therapies against MM.
Collapse
Affiliation(s)
- Sabino Ciavarella
- 1Section of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Anna Caselli
- 1Section of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Antonella Valentina Tamma
- 1Section of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Annalisa Savonarola
- 1Section of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Giuseppe Loverro
- 1Section of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Roberto Paganelli
- 2Department of Medicine and Sciences of Aging, Ce.S.I. Center for Aging Studies, Stem TECH Group, University "G. D'Annunzio," Chieti Scalo, Italy
| | - Marco Tucci
- 1Section of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Franco Silvestris
- 1Section of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| |
Collapse
|
67
|
Multiple myeloma cells alter the senescence phenotype of bone marrow mesenchymal stromal cells under participation of the DLK1-DIO3 genomic region. BMC Cancer 2015; 15:68. [PMID: 25886144 PMCID: PMC4336751 DOI: 10.1186/s12885-015-1078-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/10/2015] [Indexed: 01/15/2023] Open
Abstract
Background Alterations and senescence in bone marrow mesenchymal stromal cells of multiple myeloma patients (MM-BMMSCs) have become an important research focus. However the role of senescence in the pathophysiology of MM is not clear. Methods Correlation between senescence, cell cycle and microRNA expression of MM-BMMSCs (n = 89) was analyzed. Gene expression analysis, copy number analysis and methylation specific PCR were performed by Real-Time PCR. Furthermore, cyclin E1, cyclin D1, p16 and p21 genes were analyzed at the protein level using ELISA. Cell cycle and senescence were analyzed by FACS. MiRNA transfection was performed with miR-485-5p inhibitor and mimic followed by downstream analysis of senescence and cell cycle characteristics of MM-BMMSCs. Results were analyzed by Mann–Whitney U test, Wilcoxon signed-rank test and paired t-test depending on the experimental set up. Results MM-BMMSCs displayed increased senescence associated β-galactosidase activity (SA-βGalA), cell cycle arrest in S phase and overexpression of microRNAs. The overexpressed microRNAs miR-485-5p and miR-519d are located on DLK1-DIO3 and C19MC, respectively. Analyses revealed copy number accumulation and hypomethylation of both clusters. KMS12-PE myeloma cells decreased SA-βGalA and influenced cell cycle characteristics of MM-BMMSCs. MiR-485-5p was significantly decreased in co-cultured MM-BMMSCs in connection with an increased methylation of DLK1-DIO3. Modification of miR-485-5p levels using microRNA mimic or inhibitor altered senescence and cell cycle characteristics of MM-BMMSCs. Conclusions Here, we show for the first time that MM-BMMSCs have aberrant methylation and copy number of the DLK1-DIO3 and C19MC genomic region. Furthermore, this is the first study pointing that multiple myeloma cells in vitro reduce both the senescence phenotype of MM-BMMSCs and the expression of miR-223 and miR-485-5p. Thus, it is questionable whether senescence of MM-BMMSCs plays a pathological role in active multiple myeloma or is more important when cell interaction with myeloma cells is inhibited. Furthermore, we found that MiR-485-5p, which is located on the DLK1-DIO3 cluster, seems to participate in the regulation of senescence status and cell cycle characteristics of MM-BMMSCs. Thus, further exploration of the microRNAs of DLK1-DIO3 could provide further insights into the origin of the senescence state and its reversal in MM-BMMSCs. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1078-3) contains supplementary material, which is available to authorized users.
Collapse
|
68
|
Toscani D, Bolzoni M, Accardi F, Aversa F, Giuliani N. The osteoblastic niche in the context of multiple myeloma. Ann N Y Acad Sci 2014; 1335:45-62. [DOI: 10.1111/nyas.12578] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Denise Toscani
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Marina Bolzoni
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Fabrizio Accardi
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Franco Aversa
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Nicola Giuliani
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| |
Collapse
|
69
|
Abstract
Regenerative medicine has recently been established as an emerging interdisciplinary field focused on the repair; replacement or regeneration of cells, tissues and organs. It involves various disciplines, which are focused on different aspects of the regeneration process such as cell biology, gene therapy, bioengineering, material science and pharmacology. In this article, we will outline progress on tissue engineering of specific tissues and organs relevant to paediatric surgery.
Collapse
Affiliation(s)
- Panagiotis Maghsoudlou
- Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - Luca Urbani
- Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - Paolo De Coppi
- Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, 30 Guilford St, London WC1N 1EH, UK.
| |
Collapse
|
70
|
Choi DS, Stark DJ, Raphael RM, Wen J, Su J, Zhou X, Chang CC, Zu Y. SDF-1α stiffens myeloma bone marrow mesenchymal stromal cells through the activation of RhoA-ROCK-Myosin II. Int J Cancer 2014; 136:E219-29. [PMID: 25137150 DOI: 10.1002/ijc.29145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 07/14/2014] [Accepted: 07/31/2014] [Indexed: 11/10/2022]
Abstract
Multiple myeloma (MM) is a B lymphocyte malignancy that remains incurable despite extensive research efforts. This is due, in part, to frequent disease recurrences associated with the persistence of myeloma cancer stem cells (mCSCs). Bone marrow mesenchymal stromal cells (BMSCs) play critical roles in supporting mCSCs through genetic or biochemical alterations. Previously, we identified mechanical distinctions between BMSCs isolated from MM patients (mBMSCs) and those present in the BM of healthy individuals (nBMSCs). These properties of mBMSC contributed to their ability to preferentially support mCSCs. To further illustrate mechanisms underlying the differences between mBMSCs and nBMSCs, here we report that (i) mBMSCs express an abnormal, constitutively high level of phosphorylated Myosin II, which leads to stiffer membrane mechanics, (ii) mBMSCs are more sensitive to SDF-1α-induced activation of MYL2 through the G(i./o)-PI3K-RhoA-ROCK-Myosin II signaling pathway, affecting Young's modulus in BMSCs and (iii) activated Myosin II confers increased cell contractile potential, leading to enhanced collagen matrix remodeling and promoting the cell-cell interaction between mCSCs and mBMSCs. Together, our findings suggest that interfering with SDF-1α signaling may serve as a new therapeutic approach for eliminating mCSCs by disrupting their interaction with mBMSCs.
Collapse
Affiliation(s)
- Dong Soon Choi
- Methodist Cancer Center, Houston Methodist Hospital, Houston, TX
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Garcia-Gomez A, Sanchez-Guijo F, del Cañizo MC, San Miguel JF, Garayoa M. Multiple myeloma mesenchymal stromal cells: Contribution to myeloma bone disease and therapeutics. World J Stem Cells 2014; 6:322-343. [PMID: 25126382 PMCID: PMC4131274 DOI: 10.4252/wjsc.v6.i3.322] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/24/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is a hematological malignancy in which clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic lesions due to increased osteoclast (OC) activity and suppressed osteoblast (OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells (MSCs) play a critical role in multiple myeloma pathophysiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of myeloma bone disease (MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients (pMSCs) and their healthy counterparts (dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibitory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and activity at various levels (i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncoupling ephrinB2-EphB4 signaling, and through augmented production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents (at preclinical or clinical stage) targeting those signaling pathways is commented.
Collapse
|
72
|
Zi FM, He JS, Li Y, Wu C, Wu WJ, Yang Y, Wang LJ, He DH, Yang L, Zhao Y, Zheng GF, Han XY, Huang H, Yi Q, Cai Z. Fibroblast activation protein protects bortezomib-induced apoptosis in multiple myeloma cells through β-catenin signaling pathway. Cancer Biol Ther 2014; 15:1413-22. [PMID: 25046247 DOI: 10.4161/cbt.29924] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cells proliferative disease. The intricate cross-talk of myeloma cells with bone marrow microenvironment plays an important role in facilitating growth and survival of myeloma cells. Bone marrow mesenchymal stem cells (BMMSCs) are important cells in MM microenvironment. In solid tumors, BMMSCs can be educated by tumor cells to become cancer-associated fibroblasts (CAFs) with high expression of fibroblast activation protein (FAP). FAP was reported to be involved in drug resistance, tumorigenesis, neoplastic progression, angiogenesis, invasion, and metastasis of tumor cells. However, the expression and the role of FAP in MM bone marrow microenvironment are still less known. The present study is aimed to investigate the expression of FAP, the role of FAP, and its relevant signaling pathway in regulating apoptosis induced by bortezomib in MM cells. In this study, our data illustrated that the expression levels of FAP were not different between the cultured BMMSCs isolated from MM patients and normal donors. The expression levels of FAP can be increased by tumor cells conditioned medium (TCCM) stimulation or coculture with RPMI8226 cells. FAP has important role in BMMSCs mediated protecting MM cell lines from apoptosis induced by bortezomib. Further study showed that this process may likely through β-catenin signaling pathway in vitro. The activation of β-catenin in MM cell lines was dependent on direct contact with BMMSCs other than separated by transwell or additional condition medium from BMMSCs and cytokines.
Collapse
Affiliation(s)
- Fu-Ming Zi
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Jing-Song He
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Yi Li
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Cai Wu
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Wen-Jun Wu
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Yang Yang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Li-Juan Wang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Dong-Hua He
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Li Yang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Yi Zhao
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Gao-Feng Zheng
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Xiao-Yan Han
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - He Huang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Qing Yi
- Department of Cancer Biology; Lerner Research Institute; Cleveland Clinic; Cleveland, OH USA
| | - Zhen Cai
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| |
Collapse
|
73
|
Lin HH, Hwang SM, Wu SJ, Hsu LF, Liao YH, Sheen YS, Chuang WH, Huang SY. The osteoblastogenesis potential of adipose mesenchymal stem cells in myeloma patients who had received intensive therapy. PLoS One 2014; 9:e94395. [PMID: 24722177 PMCID: PMC3983165 DOI: 10.1371/journal.pone.0094395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/14/2014] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is characterized by advanced osteolytic lesions resulting from the activation of osteoclasts (OCs) and inhibition of osteoblasts (OBs). OBs are derived from mesenchymal stem cells (MSCs) from the bone marrow (BM), however the pool and function of BMMSCs in MM patients (MM-BMMSCs) are reduced by myeloma cells (MCs) and cytokines secreted from MCs and related anti-MM treatment. Such reduction in MM-BMMSCs currently cannot be restored by any means. Recently, genetic aberrations of MM-BMMSCs have been noted, which further impaired their differentiation toward OBs. We hypothesize that the MSCs derived from adipose tissue (ADMSCs) can be used as alternative MSC sources to enhance the pool and function of OBs. Therefore, the purpose of this study was to compare the osteogenesis ability of paired ADMSCs and BMMSCs in MM patients who had completed intensive therapy. Fifteen MM patients who had received bortezomib-based induction and autologous transplantation were enrolled. At the third month after the transplant, the paired ADMSCs and BMMSCs were obtained and cultured. Compared with the BMMSCs, the ADMSCs exhibited a significantly higher expansion capacity (100% vs 13%, respectively; P = .001) and shorter doubling time (28 hours vs 115 hours, respectively; P = .019). After inducing osteogenic differentiation, although the ALP activity did not differ between the ADMSCs and BMMSCs (0.78 U/µg vs 0.74±0.14 U/µg, respectively; P = .834), the ADMSCs still exhibited higher calcium mineralization, which was determined using Alizarin red S (1029 nmole vs 341 nmole, respectively; P = .001) and von Kossa staining (2.6 E+05 µm2 vs 5 E+04 µm2, respectively; P = .042), than the BMMSCs did. Our results suggested that ADMSCs are a feasible MSC source for enhancing the pool and function of OBs in MM patients who have received intensive therapy.
Collapse
Affiliation(s)
- Hsiu-Hsia Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Shang-Ju Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Feng Hsu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Hui Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shang-Yi Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
74
|
Amaral AT, Manara MC, Berghuis D, Ordóñez JL, Biscuola M, Lopez-García MA, Osuna D, Lucarelli E, Alviano F, Lankester A, Scotlandi K, de Álava E. Characterization of human mesenchymal stem cells from ewing sarcoma patients. Pathogenetic implications. PLoS One 2014; 9:e85814. [PMID: 24498265 PMCID: PMC3911896 DOI: 10.1371/journal.pone.0085814] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ewing Sarcoma (EWS) is a mesenchymal-derived tumor that generally arises in bone and soft tissue. Intensive research regarding the pathogenesis of EWS has been insufficient to pinpoint the early events of Ewing sarcomagenesis. However, the Mesenchymal Stem Cell (MSC) is currently accepted as the most probable cell of origin. MATERIALS AND METHODS In an initial study regarding a deep characterization of MSC obtained specifically from EWS patients (MSC-P), we compared them with MSC derived from healthy donors (MSC-HD) and EWS cell lines. We evaluated the presence of the EWS-FLI1 gene fusion and EWSR1 gene rearrangements in MSC-P. The presence of the EWS transcript was confirmed by q-RT-PCR. In order to determine early events possibly involved in malignant transformation, we used a multiparameter quantitative strategy that included both MSC immunophenotypic negative/positive markers, and EWS intrinsic phenotypical features. Markers CD105, CD90, CD34 and CD45 were confirmed in EWS samples. RESULTS We determined that MSC-P lack the most prevalent gene fusion, EWSR1-FLI1 as well as EWSR1 gene rearrangements. Our study also revealed that MSC-P are more alike to MSC-HD than to EWS cells. Nonetheless, we also observed that EWS cells had a few overlapping features with MSC. As a relevant example, also MSC showed CD99 expression, hallmark of EWS diagnosis. However, we observed that, in contrast to EWS cells, MSC were not sensitive to the inhibition of CD99. CONCLUSIONS In conclusion, our results suggest that MSC from EWS patients behave like MSC-HD and are phenotypically different from EWS cells, thus raising important questions regarding MSC role in sarcomagenesis.
Collapse
MESH Headings
- 12E7 Antigen
- Antigens, CD/metabolism
- Antigens, CD34/metabolism
- Calmodulin-Binding Proteins/genetics
- Cell Adhesion Molecules/metabolism
- Cell Line
- Cells, Cultured
- Endoglin
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Gene Rearrangement
- Humans
- In Situ Hybridization, Fluorescence
- Leukocyte Common Antigens/metabolism
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Protein c-fli-1/genetics
- RNA-Binding Protein EWS/genetics
- RNA-Binding Proteins/genetics
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Thy-1 Antigens/metabolism
Collapse
Affiliation(s)
- Ana Teresa Amaral
- Molecular Pathology Program, Institute of Biomedical Research of Salamanca-Centro de Investigación del Cáncer, Centro de Investigación del Cáncer (IBSAL-CIC), Salamanca, Spain
- Instituto de Biomedicina de Sevilla (IBiS), CSIC-Universidad de Sevilla, Department of Pathology and Biobank, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Maria Cristina Manara
- CRS Sviluppo di Terapie Biomolecolari, Oncologia Sperimentale, Istituto Ortopedico Rizzoli (IOR), Bologna, Italy
| | - Dagmar Berghuis
- Department of Pediatrics and Biobank, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - José Luis Ordóñez
- Molecular Pathology Program, Institute of Biomedical Research of Salamanca-Centro de Investigación del Cáncer, Centro de Investigación del Cáncer (IBSAL-CIC), Salamanca, Spain
| | - Michele Biscuola
- Instituto de Biomedicina de Sevilla (IBiS), CSIC-Universidad de Sevilla, Department of Pathology and Biobank, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Maria Angeles Lopez-García
- Instituto de Biomedicina de Sevilla (IBiS), CSIC-Universidad de Sevilla, Department of Pathology and Biobank, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Daniel Osuna
- Molecular Pathology Program, Institute of Biomedical Research of Salamanca-Centro de Investigación del Cáncer, Centro de Investigación del Cáncer (IBSAL-CIC), Salamanca, Spain
| | - Enrico Lucarelli
- Osteoarticolar Regeneration Laboratory, Istituto Ortopedico Rizzoli (IOR), Bologna, Italy
| | - Francesco Alviano
- Dipartimento di Istologia, Embriologia e Biologia, Istituto Ortopedico Rizzoli (IOR), Bologna, Italy
| | - Arjan Lankester
- Department of Pediatrics and Biobank, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Katia Scotlandi
- CRS Sviluppo di Terapie Biomolecolari, Oncologia Sperimentale, Istituto Ortopedico Rizzoli (IOR), Bologna, Italy
| | - Enrique de Álava
- Molecular Pathology Program, Institute of Biomedical Research of Salamanca-Centro de Investigación del Cáncer, Centro de Investigación del Cáncer (IBSAL-CIC), Salamanca, Spain
- Instituto de Biomedicina de Sevilla (IBiS), CSIC-Universidad de Sevilla, Department of Pathology and Biobank, Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
75
|
Garcia-Gomez A, Quwaider D, Canavese M, Ocio EM, Tian Z, Blanco JF, Berger AJ, Ortiz-de-Solorzano C, Hernández-Iglesias T, Martens ACM, Groen RWJ, Mateo-Urdiales J, Fraile S, Galarraga M, Chauhan D, San Miguel JF, Raje N, Garayoa M. Preclinical activity of the oral proteasome inhibitor MLN9708 in Myeloma bone disease. Clin Cancer Res 2014; 20:1542-54. [PMID: 24486586 DOI: 10.1158/1078-0432.ccr-13-1657] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE MLN9708 (ixazomib citrate), which hydrolyzes to pharmacologically active MLN2238 (ixazomib), is a next-generation proteasome inhibitor with demonstrated preclinical and clinical antimyeloma activity, but yet with an unknown effect on myeloma bone disease. Here, we investigated its bone anabolic and antiresorptive effects in the myeloma setting and in comparison with bortezomib in preclinical models. EXPERIMENTAL DESIGN The in vitro effect of MLN2238 was tested on osteoclasts and osteoclast precursors from healthy donors and patients with myeloma, and on osteoprogenitors derived from bone marrow mesenchymal stem cells also from both origins. We used an in vivo model of bone marrow-disseminated human myeloma to evaluate MLN2238 antimyeloma and bone activities. RESULTS Clinically achievable concentrations of MLN2238 markedly inhibited in vitro osteoclastogenesis and osteoclast resorption; these effects involved blockade of RANKL (receptor activator of NF-κB ligand)-induced NF-κB activation, F-actin ring disruption, and diminished expression of αVβ3 integrin. A similar range of MLN2238 concentrations promoted in vitro osteoblastogenesis and osteoblast activity (even in osteoprogenitors from patients with myeloma), partly mediated by activation of TCF/β-catenin signaling and upregulation of the IRE1 component of the unfolded protein response. In a mouse model of bone marrow-disseminated human multiple myeloma, orally administered MLN2238 was equally effective as bortezomib to control tumor burden and also provided a marked benefit in associated bone disease (sustained by both bone anabolic and anticatabolic activities). CONCLUSION Given favorable data on pharmacologic properties and emerging clinical safety profile of MLN9708, it is conceivable that this proteasome inhibitor may achieve bone beneficial effects in addition to its antimyeloma activity in patients with myeloma.
Collapse
Affiliation(s)
- Antonio Garcia-Gomez
- Authors' Affiliations: Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC); Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León; Hospital Universitario de Salamanca-IBSAL, Salamanca; Laboratorio de Imagen del Cáncer, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain; MGH Cancer Center, Massachusetts General Hospital; Dana-Farber Cancer Institute, Harvard Medical School, Boston; Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA; and Departments of Cell Biology and Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Slany A, Haudek-Prinz V, Meshcheryakova A, Bileck A, Lamm W, Zielinski C, Gerner C, Drach J. Extracellular matrix remodeling by bone marrow fibroblast-like cells correlates with disease progression in multiple myeloma. J Proteome Res 2013; 13:844-54. [PMID: 24256566 DOI: 10.1021/pr400881p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pathogenesis of multiple myeloma (MM) is regarded as a multistep process, in which an asymptomatic stage of monoclonal gammopathy of undetermined significance (MGUS) precedes virtually all cases of MM. Molecular events characteristic for the transition from MGUS to MM are still poorly defined. We hypothesized that fibroblast-like cells in the tumor microenvironment are critically involved in the pathogenesis of MM. Therefore, we performed a comparative proteome profiling study, analyzing primary human fibroblast-like cells isolated from the bone marrow of MM, of MGUS, as well as of non-neoplastic control patients. Thereby, a group of extracellular matrix (ECM) proteins, ECM receptors, and ECM-modulating enzymes turned out to be progressively up-regulated in MGUS and MM. These proteins include laminin α4, lysyl-hydroxylase 2, prolyl 4-hydroxylase 1, nidogen-2, integrin α5β5, c-type mannose receptor 2, PAI-1, basigin, and MMP-2, in addition to PDGF-receptor β and the growth factor periostin, which are likewise involved in ECM activities. Our results indicate that ECM remodeling by fibroblast-like cells may take place already at the level of MGUS and may become even more pronounced in MM. The identified proteins which indicate the stepwise progression from MGUS to MM may offer new tools for therapeutic strategies.
Collapse
Affiliation(s)
- Astrid Slany
- Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna , Währingerstraße 38, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD. Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 2013; 95:2235-45. [PMID: 23747841 PMCID: PMC3825748 DOI: 10.1016/j.biochi.2013.05.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/26/2013] [Indexed: 02/06/2023]
Abstract
Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus on the impact of MSC secretome on cancer cell activity, and discusses the implications for regenerative therapy after cancer.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Tea Soon Park
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Elias T. Zambidis
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Vera S. Donnenberg
- University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Albert D. Donnenberg
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
78
|
Xu S, Cecilia Santini G, De Veirman K, Vande Broek I, Leleu X, De Becker A, Van Camp B, Vanderkerken K, Van Riet I. Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS One 2013; 8:e79752. [PMID: 24223191 PMCID: PMC3819242 DOI: 10.1371/journal.pone.0079752] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/27/2013] [Indexed: 12/21/2022] Open
Abstract
Previous studies have demonstrated that mesenchymal stem cells from multiple myeloma (MM) patients (MM-hMSCs) display a distinctive gene expression profile, an enhanced production of cytokines and an impaired osteogenic differentiation ability compared to normal donors (ND-hMSCs). However, the underlying molecular mechanisms are unclear. In the present study, we observed that MM-hMSCs exhibited an abnormal upregulation of miR-135b, showing meanwhile an impaired osteogenic differentiation and a decrease of SMAD5 expression, which is the target of miR-135b involved in osteogenesis. By gain and loss of function studies we confirmed that miR-135b negatively regulated hMSCs osteogenesis. We also found that MM cell-produced factors stimulated ND-hMSCs to upregulate the expression of miR-135b. Importantly, treatment with a miR-135b inhibitor promoted osteogenic differentiation in MM-hMSCs. Finally, we observed that MM cell-derived soluble factors could induce an upregulation of miR-135b expression in ND-hMSCs in an indirect coculture system and the miR-135b expression turned to normal level after the removal of MM cells. Collectively, we provide evidence that miR-135b is involved in the impaired osteogenic differentiation of MSCs derived from MM patients and might therefore be a promising target for controlling bone disease.
Collapse
Affiliation(s)
- Song Xu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, P.R.China
- Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Gaia Cecilia Santini
- Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Kim De Veirman
- Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Isabelle Vande Broek
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Xavier Leleu
- Service d'Hématologie, Centre Hospitalier Universitaire (CHU), Lille, France
| | - Ann De Becker
- Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ben Van Camp
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Ivan Van Riet
- Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| |
Collapse
|
79
|
Wang J, Liao L, Wang S, Tan J. Cell therapy with autologous mesenchymal stem cells-how the disease process impacts clinical considerations. Cytotherapy 2013; 15:893-904. [PMID: 23751203 DOI: 10.1016/j.jcyt.2013.01.218] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/07/2013] [Accepted: 01/23/2013] [Indexed: 12/13/2022]
Abstract
The prospective clinical use of multipotent mesenchymal stromal cells (MSCs) holds enormous promise for the treatment of a large number of degenerative and age-related diseases. In particular, autologous MSCs isolated from bone marrow (BM) are considered safe and have been extensively evaluated in clinical trials. Nevertheless, different efficacies have been reported, depending on the health status and age of the donor. In addition, the biological functions of BM-MSCs from patients with various diseases may be impaired. Furthermore, medical treatments such as long-term chemotherapy and immunomodulatory therapy may damage the BM microenvironment and affect the therapeutic potential of MSCs. Therefore, a number of practical problems must be addressed before autologous BM-MSCs can be widely applied with higher efficiency in patients. As such, this review focuses on various factors that directly influence the biological properties of BM-MSCs, and we discuss the possible mechanisms of these alterations.
Collapse
Affiliation(s)
- Jin Wang
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | | | | | | |
Collapse
|
80
|
Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E, Anderson KC, Scadden DT, Ghobrial IM. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013; 123:1542-55. [PMID: 23454749 DOI: 10.1172/jci66517] [Citation(s) in RCA: 637] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/03/2013] [Indexed: 12/13/2022] Open
Abstract
BM mesenchymal stromal cells (BM-MSCs) support multiple myeloma (MM) cell growth, but little is known about the putative mechanisms by which the BM microenvironment plays an oncogenic role in this disease. Cell-cell communication is mediated by exosomes. In this study, we showed that MM BM-MSCs release exosomes that are transferred to MM cells, thereby resulting in modulation of tumor growth in vivo. Exosomal microRNA (miR) content differed between MM and normal BM-MSCs, with a lower content of the tumor suppressor miR-15a. In addition, MM BM-MSC-derived exosomes had higher levels of oncogenic proteins, cytokines, and adhesion molecules compared with exosomes from the cells of origin. Importantly, whereas MM BM-MSC-derived exosomes promoted MM tumor growth, normal BM-MSC exosomes inhibited the growth of MM cells. In summary, these in vitro and in vivo studies demonstrated that exosome transfer from BM-MSCs to clonal plasma cells represents a previously undescribed and unique mechanism that highlights the contribution of BM-MSCs to MM disease progression.
Collapse
Affiliation(s)
- Aldo M Roccaro
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Xu S, De Veirman K, Evans H, Santini GC, Vande Broek I, Leleu X, De Becker A, Van Camp B, Croucher P, Vanderkerken K, Van Riet I. Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo. Acta Pharmacol Sin 2013; 34:699-709. [PMID: 23564084 DOI: 10.1038/aps.2012.182] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM Vorinostat, a histone deacetylase (HDAC) inhibitor currently in a clinical phase III trial for multiple myeloma (MM) patients, has been reported to cause bone loss. The purpose of this study was to test whether, and to what extent, vorinostat influences the osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro and bone formation in vivo. METHODS Bone marrow-derived MSCs were prepared from both normal donors and MM patients. The MSCs were cultured in an osteogenic differentiation induction medium to induce osteogenic differentiation, which was evaluated by alkaline phosphatase (ALP) staining, Alizarin Red S staining and the mRNA expression of osteogenic markers. Naïve mice were administered vorinostat (100 mg/kg, ip) every other day for 3 weeks. After the mice were sacrificed, bone formation was assessed based on serum osteocalcin level and histomorphometric analysis. RESULTS Vorinostat inhibited the viability of hMSCs in a concentration-dependent manner (the IC50 value was 15.57 μmol/L). The low concentration of vorinostat (1 μmol/L) did not significantly increase apoptosis in hMSCs, whereas pronounced apoptosis was observed following exposure to higher concentrations of vorinostat (10 and 50 μmol/L). In bone marrow-derived hMSCs from both normal donors and MM patients, vorinostat (1 μmol/L) significantly increased ALP activity, mRNA expression of osteogenic markers, and matrix mineralization. These effects were associated with upregulation of the bone-specifying transcription factor Runx2 and with the epigenetic alterations during normal hMSCs osteogenic differentiation. Importantly, the mice treated with vorinostat did not show any bone loss in response to the optimized treatment regimen. CONCLUSION Vorinostat, known as a potent anti-myeloma drug, stimulates MSC osteogenesis in vitro. With the optimized treatment regimen, any decrease in bone formation was not observed in vivo.
Collapse
|
82
|
Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells. PLoS One 2013; 8:e59756. [PMID: 23555770 PMCID: PMC3605355 DOI: 10.1371/journal.pone.0059756] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/18/2013] [Indexed: 01/01/2023] Open
Abstract
Background In multiple myeloma, bone marrow mesenchymal stromal cells support myeloma cell growth. Previous studies have suggested that direct and indirect interactions between malignant cells and bone marrow mesenchymal stromal cells result in constitutive abnormalities in the bone marrow mesenchymal stromal cells. Design and Methods The aims of this study were to investigate the constitutive abnormalities in myeloma bone marrow mesenchymal stromal cells and to evaluate the impact of new treatments. Results We demonstrated that myeloma bone marrow mesenchymal stromal cells have an increased expression of senescence-associated β-galactosidase, increased cell size, reduced proliferation capacity and characteristic expression of senescence-associated secretory profile members. We also observed a reduction in osteoblastogenic capacity and immunomodulatory activity and an increase in hematopoietic support capacity. Finally, we determined that current treatments were able to partially reduce some abnormalities in secreted factors, proliferation and osteoblastogenesis. Conclusions We showed that myeloma bone marrow mesenchymal stromal cells have an early senescent profile with profound alterations in their characteristics. This senescent state most likely participates in disease progression and relapse by altering the tumor microenvironment.
Collapse
|
83
|
Kristensen IB, Christensen JH, Lyng MB, Møller MB, Pedersen L, Rasmussen LM, Ditzel HJ, Abildgaard N. Hepatocyte growth factor pathway upregulation in the bone marrow microenvironment in multiple myeloma is associated with lytic bone disease. Br J Haematol 2013; 161:373-82. [PMID: 23431957 DOI: 10.1111/bjh.12270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/21/2013] [Indexed: 12/17/2022]
Abstract
Lytic bone disease (LBD) in multiple myeloma (MM) is caused by osteoclast hyperactivation and osteoblast inhibition. Based on in vitro studies, the hepatocyte growth factor (HGF) pathway is thought to be central in osteoblast inhibition. We evaluated the gene expression of the HGF pathway in vivo using bone marrow biopsies (BMBs) of patients with MM and monoclonal gammopathy of undetermined significance (MGUS), and healthy volunteers (HV). BMBs (N = 110) obtained at diagnosis were snap-frozen and used to evaluate gene expression by quantitative reverse transcription polymerase chain reaction. LBD was evaluated using standard radiographs. Enzyme-linked immunosorbent assay (ELISA) was performed on matched bone marrow plasma and immunohistochemistry on matched formalin-fixed paraffin-embedded biopsies. Gene expression of HGF, SDC1, and MET in BMBs were significantly altered in MM versus HV and MGUS, and HGF and MET correlated with the extent of LBD. A significant correlation between gene and protein expression levels was observed for SDC1 (Syndecan-1) and HGF. The HGF bone marrow plasma level was significantly lower in MM patients with no/limited versus advanced LBD. Our novel approach using snap-frozen BMBs seems generally applicable because it allows evaluation of gene expression independent of the extent of MM plasma-cell infiltration. Our study highlights the importance of the HGF pathway in MM LBD.
Collapse
Affiliation(s)
- Ida B Kristensen
- Department of Haematology, Odense University Hospital, Odense, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
García-Bernal D, Redondo-Muñoz J, Dios-Esponera A, Chèvre R, Bailón E, Garayoa M, Arellano-Sánchez N, Gutierrez NC, Hidalgo A, García-Pardo A, Teixidó J. Sphingosine-1-phosphate activates chemokine-promoted myeloma cell adhesion and migration involving α4β1 integrin function. J Pathol 2013; 229:36-48. [PMID: 22711564 DOI: 10.1002/path.4066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/14/2012] [Accepted: 06/12/2012] [Indexed: 12/21/2022]
Abstract
Myeloma cell adhesion dependent on α4β1 integrin is crucial for the progression of multiple myeloma (MM). The α4β1-dependent myeloma cell adhesion is up-regulated by the chemokine CXCL12, and pharmacological blockade of the CXCL12 receptor CXCR4 leads to defective myeloma cell homing to bone marrow (BM). Sphingosine-1-phosphate (S1P) regulates immune cell trafficking upon binding to G-protein-coupled receptors. Here we show that myeloma cells express S1P1, a receptor for S1P. We found that S1P up-regulated the α4β1-mediated myeloma cell adhesion and transendothelial migration stimulated by CXCL12. S1P promoted generation of high-affinity α4β1 that efficiently bound the α4β1 ligand VCAM-1, a finding that was associated with S1P-triggered increase in talin-β1 integrin association. Furthermore, S1P cooperated with CXCL12 for enhancement of α4β1-dependent adhesion strengthening and spreading. CXCL12 and S1P activated the DOCK2-Rac1 pathway, which was required for stimulation of myeloma cell adhesion involving α4β1. Moreover, in vivo analyses indicated that S1P contributes to optimizing the interactions of MM cells with the BM microvasculture and for their lodging inside the bone marrow. The regulation of α4β1-dependent adhesion and migration of myeloma cells by CXCL12-S1P combined activities might have important consequences for myeloma disease progression.
Collapse
Affiliation(s)
- David García-Bernal
- Cellular and Molecular Medicine Programme, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
White JS, Zordan A, Batzios C, Campbell LJ. Deletion(20q) as the sole abnormality in plasma cell myeloma is not associated with plasma cells as identified by cIg FISH. Cancer Genet 2012. [PMID: 23200818 DOI: 10.1016/j.cancergen.2012.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deletion of 20q is a common finding in myeloid disorders but it is also observed in plasma cell myeloma (PCM). As a del(20q) in a patient receiving treatment for myeloma may indicate therapy-related myelodysplastic syndrome (t-MDS), it is important to differentiate chromosome abnormalities associated with myeloma from those reflecting t-MDS. We performed fluorescence in situ hybridization (FISH) using a 20q12 probe (D20S108) in conjunction with cytoplasmic immunoglobulin (cIg) staining in 20 PCM cases with a del(20q) in order to confirm the cell type involved. Of the nine cases studied with a clone showing a del(20q) as the sole abnormality, 8 of 9 demonstrated loss of the D20S108 signals in non-plasma cells only and 5 of 9 had either a confirmed myeloid malignancy in addition to PCM or showed evidence of dysplastic changes in the marrow; however, of the 11 patients with a del(20q) within a complex PCM karyotype, 4 of 11 showed loss of the D20S108 signals in plasma cells only and 7 of 11 showed no significant loss in either plasma cells or non-plasma cells. Therefore, our results indicate that a del(20q) as the sole abnormality in PCM is present in non-plasma cells and, therefore, suggests the presence of an associated myeloid malignancy.
Collapse
Affiliation(s)
- Joanne S White
- Victorian Cancer Cytogenetics Service, St. Vincent's Hospital Melbourne, Fitzroy, Australia.
| | | | | | | |
Collapse
|
86
|
Pevsner-Fischer M, Levin S, Hammer-Topaz T, Cohen Y, Mor F, Wagemaker G, Nagler A, Cohen IR, Zipori D. Stable changes in mesenchymal stromal cells from multiple myeloma patients revealed through their responses to Toll-like receptor ligands and epidermal growth factor. Stem Cell Rev Rep 2012; 8:343-54. [PMID: 21881833 DOI: 10.1007/s12015-011-9310-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In human multiple myeloma (MM), the tumor cells exhibit strict dependence on bone marrow (BM) stromal elements. It has been suggested that, in turn, MM cells modify multipotent stromal cells (MSCs), diverting them to support the myeloma. We investigated MM-derived MSCs by comparing their toll-like receptor (TLR) responses to those of MSCs derived from healthy controls. We now report that MM-derived MSCs manifested intact proliferation responses and IL-6 secretion and their adipose and osteogenic differentiation responses to TLR ligands were also similar to those of healthy controls, ranging from augmentation to inhibition. However, MM-derived MSCs were found to be defective in IL-8 secretion and ERK1/2 phosphorylation following TLR-2 activation. Moreover, MM-derived MSCs failed to respond to EGF by elevation of ERK1/2 phosphorylation. The persistence of these changes in extensively cultured MM-derived MSCs, suggests that these cells are stably, if not irreversibly modified.
Collapse
Affiliation(s)
- Meirav Pevsner-Fischer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Li X, Ling W, Khan S, Yaccoby S. Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth. J Bone Miner Res 2012; 27:1635-48. [PMID: 22460389 PMCID: PMC3395777 DOI: 10.1002/jbmr.1620] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cytotherapeutic potential of mesenchymal stem cells (MSCs) has been evaluated in various disorders including those involving inflammation, autoimmunity, bone regeneration, and cancer. Multiple myeloma (MM) is a systemic malignancy associated with induction of osteolytic lesions that often are not repaired even after prolonged remission. The aims of this study were to evaluate the effects of intrabone and systemic injections of MSCs on MM bone disease, tumor growth, and tumor regrowth in the severe combined immunodeficiency (SCID)-rab model and to shed light on the exact localization of systemically injected MSCs. Intrabone injection of MSCs, but not hematopoietic stem cells, into myelomatous bones prevented MM-induced bone disease, promoted bone formation, and inhibited MM growth. After remission was induced with melphalan treatment, intrabone-injected MSCs promoted bone formation and delayed myeloma cell regrowth in bone. Most intrabone or systemically injected MSCs were undetected 2 to 4 weeks after injection. The bone-building effects of MSCs were mediated through activation of endogenous osteoblasts and suppression of osteoclast activity. Although a single intravenous injection of MSCs had no effect on MM, sequential weekly intravenous injections of MSCs prevented MM-induced bone disease but had no effect on tumor burden. MSCs expressed high levels of anti-inflammatory (eg, HMOX1) and bone-remodeling (eg, Decorin, CYR61) mediators. In vitro, MSCs promoted osteoblast maturation and suppressed osteoclast formation, and these effects were partially prevented by blocking decorin. A subset of intravenously or intracardially injected MSCs trafficked to myelomatous bone in SCID-rab mice. Although the majority of intravenously injected MSCs were trapped in lungs, intracardially injected MSCs were mainly localized in draining mesenteric lymph nodes. This study shows that exogenous MSCs act as bystander cells to inhibit MM-induced bone disease and tumor growth and that systemically injected MSCs are attracted to bone by myeloma cells or conditions induced by MM and inhibit bone disease.
Collapse
Affiliation(s)
- Xin Li
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
88
|
Campioni D, Bardi MA, Cavazzini F, Tammiso E, Pezzolo E, Pregnolato E, Volta E, Cuneo A, Lanza F. Cytogenetic and molecular cytogenetic profile of bone marrow-derived mesenchymal stromal cells in chronic and acute lymphoproliferative disorders. Ann Hematol 2012; 91:1563-77. [DOI: 10.1007/s00277-012-1500-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/22/2012] [Indexed: 12/31/2022]
|
89
|
Chen Y, Jacamo R, Shi YX, Wang RY, Battula VL, Konoplev S, Strunk D, Hofmann NA, Reinisch A, Konopleva M, Andreeff M. Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment. Blood 2012; 119:4971-80. [PMID: 22490334 PMCID: PMC3367899 DOI: 10.1182/blood-2011-11-389957] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/25/2012] [Indexed: 12/12/2022] Open
Abstract
The interactions between hematopoietic cells and the bone marrow (BM) microenvironment play a critical role in normal and malignant hematopoiesis and drug resistance. These interactions within the BM niche are unique and could be important for developing new therapies. Here, we describe the development of extramedullary bone and bone marrow using human mesenchymal stromal cells and endothelial colony-forming cells implanted subcutaneously into immunodeficient mice. We demonstrate the engraftment of human normal and leukemic cells engraft into the human extramedullary bone marrow. When normal hematopoietic cells are engrafted into the model, only discrete areas of the BM are hypoxic, whereas leukemia engraftment results in widespread severe hypoxia, just as recently reported by us in human leukemias. Importantly, the hematopoietic cell engraftment could be altered by genetical manipulation of the bone marrow microenvironment: Extramedullary bone marrow in which hypoxia-inducible factor 1α was knocked down in mesenchymal stromal cells by lentiviral transfer of short hairpin RNA showed significant reduction (50% ± 6%; P = .0006) in human leukemic cell engraftment. These results highlight the potential of a novel in vivo model of human BM microenvironment that can be genetically modified. The model could be useful for the study of leukemia biology and for the development of novel therapeutic modalities aimed at modifying the hematopoietic microenvironment.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/cytology
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/physiology
- Bone Marrow Transplantation/methods
- Bone Marrow Transplantation/physiology
- Cells, Cultured
- Cellular Microenvironment/genetics
- Cellular Microenvironment/physiology
- Hematopoiesis, Extramedullary/genetics
- Hematopoiesis, Extramedullary/physiology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Interleukin Receptor Common gamma Subunit/genetics
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Models, Animal
- Osteogenesis/genetics
- Osteogenesis/physiology
- Species Specificity
- Transplantation, Heterotopic
Collapse
Affiliation(s)
- Ye Chen
- Section of Molecular Hematology & Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Xu S, Menu E, De Becker A, Van Camp B, Vanderkerken K, Van Riet I. Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 2012; 30:266-79. [PMID: 22102554 DOI: 10.1002/stem.787] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells that are predominantly localized in the bone marrow (BM). Mesenchymal stromal cells (MSCs) give rise to most BM stromal cells that interact with MM cells. However, the direct involvement of MSCs in the pathophysiology of MM has not been well addressed. In this study, in vitro and in vivo migration assays revealed that MSCs have tropism toward MM cells, and CCL25 was identified as a major MM cell-produced chemoattractant for MSCs. By coculture experiments, we found that MSCs favor the proliferation of stroma-dependent MM cells through soluble factors and cell to cell contact, which was confirmed by intrafemoral coengraftment experiments. We also demonstrated that MSCs protected MM cells against spontaneous and Bortezomib-induced apoptosis. The tumor-promoting effect of MSCs correlated with their capacity to enhance AKT and ERK activities in MM cells, accompanied with increased expression of CyclinD2, CDK4, and Bcl-XL and decreased cleaved caspase-3 and poly(ADP-ribose) polymerase expression. In turn, MM cells upregulated interleukin-6 (IL-6), IL-10, insulin growth factor-1, vascular endothelial growth factor, and dickkopf homolog 1 expression in MSCs. Finally, infusion of in vitro-expanded murine MSCs in 5T33MM mice resulted in a significantly shorter survival. MSC infusion is a promising way to support hematopoietic recovery and to control graft versus host disease in patients after allogeneic hematopoietic stem cell transplantation. However, our data suggest that MSC-based cytotherapy has a potential risk for MM disease progression or relapse and should be considered with caution in MM patients.
Collapse
Affiliation(s)
- Song Xu
- Stem Cell Laboratory, Division of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
91
|
Novel strategies for immunotherapy in multiple myeloma: previous experience and future directions. Clin Dev Immunol 2012; 2012:753407. [PMID: 22649466 PMCID: PMC3357929 DOI: 10.1155/2012/753407] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/27/2012] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is a life-threatening haematological malignancy for which standard therapy is inadequate. Autologous stem cell transplantation is a relatively effective treatment, but residual malignant sites may cause relapse. Allogeneic transplantation may result in durable responses due to antitumour immunity mediated by donor lymphocytes. However, morbidity and mortality related to graft-versus-host disease remain a challenge. Recent advances in understanding the interaction between the immune system of the patient and the malignant cells are influencing the design of clinically more efficient study protocols for MM.
Cellular immunotherapy using specific antigen-presenting cells (APCs), to overcome aspects of immune incompetence in MM patients, has received great attention, and numerous clinical trials have evaluated the potential for dendritic cell (DC) vaccines as a novel immunotherapeutic approach. This paper will summarize the data investigating aspects of immunity concerning MM, immunotherapy for patients with MM, and strategies, on the way, to target the plasma cell more selectively. We also include the MM antigens and their specific antibodies that are of potential use for MM humoral immunotherapy, because they have demonstrated the most promising preclinical results.
Collapse
|
92
|
Impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients is associated with a blockade in the deactivation of the Notch signaling pathway. Leukemia 2012; 26:2546-9. [PMID: 22652628 DOI: 10.1038/leu.2012.126] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
93
|
Garcia-Gomez A, Ocio EM, Crusoe E, Santamaria C, Hernández-Campo P, Blanco JF, Sanchez-Guijo FM, Hernández-Iglesias T, Briñón JG, Fisac-Herrero RM, Lee FY, Pandiella A, San Miguel JF, Garayoa M. Dasatinib as a bone-modifying agent: anabolic and anti-resorptive effects. PLoS One 2012; 7:e34914. [PMID: 22539950 PMCID: PMC3335111 DOI: 10.1371/journal.pone.0034914] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 03/08/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bone loss, in malignant or non-malignant diseases, is caused by increased osteoclast resorption and/or reduced osteoblast bone formation, and is commonly associated with skeletal complications. Thus, there is a need to identify new agents capable of influencing bone remodeling. We aimed to further pre-clinically evaluate the effects of dasatinib (BMS-354825), a multitargeted tyrosine kinase inhibitor, on osteoblast and osteoclast differentiation and function. METHODS For studies on osteoblasts, primary human bone marrow mensenchymal stem cells (hMSCs) together with the hMSC-TERT and the MG-63 cell lines were employed. Osteoclasts were generated from peripheral blood mononuclear cells (PBMC) of healthy volunteers. Skeletally-immature CD1 mice were used in the in vivo model. RESULTS Dasatinib inhibited the platelet derived growth factor receptor-β (PDGFR-β), c-Src and c-Kit phosphorylation in hMSC-TERT and MG-63 cell lines, which was associated with decreased cell proliferation and activation of canonical Wnt signaling. Treatment of MSCs from healthy donors, but also from multiple myeloma patients with low doses of dasatinib (2-5 nM), promoted its osteogenic differentiation and matrix mineralization. The bone anabolic effect of dasatinib was also observed in vivo by targeting endogenous osteoprogenitors, as assessed by elevated serum levels of bone formation markers, and increased trabecular microarchitecture and number of osteoblast-like cells. By in vitro exposure of hemopoietic progenitors to a similar range of dasatinib concentrations (1-2 nM), novel biological sequelae relative to inhibition of osteoclast formation and resorptive function were identified, including F-actin ring disruption, reduced levels of c-Fos and of nuclear factor of activated T cells 1 (NFATc1) in the nucleus, together with lowered cathepsin K, αVβ3 integrin and CCR1 expression. CONCLUSIONS Low dasatinib concentrations show convergent bone anabolic and reduced bone resorption effects, which suggests its potential use for the treatment of bone diseases such as osteoporosis, osteolytic bone metastasis and myeloma bone disease.
Collapse
Affiliation(s)
- Antonio Garcia-Gomez
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Enrique M. Ocio
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Edvan Crusoe
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Carlos Santamaria
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Pilar Hernández-Campo
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Juan F. Blanco
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Fermin M. Sanchez-Guijo
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | | | - Jesús G. Briñón
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | | | - Francis Y. Lee
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey, United States of America
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Jesús F. San Miguel
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
- * E-mail:
| |
Collapse
|
94
|
Abarrategi A, Marińas-Pardo L, Mirones I, Rincón E, García-Castro J. Mesenchymal niches of bone marrow in cancer. Clin Transl Oncol 2012; 13:611-6. [PMID: 21865132 DOI: 10.1007/s12094-011-0706-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade, genetic and cell biology studies have indicated that tumour growth is not only determined by malignant cancer cells themselves, but also by the tumour microenvironment. Cells present in the tumour microenvironment include fibroblasts, vascular, smooth muscle, adipocytes, immune cells and mesenchymal stem cells (MSC). The nature of the relationship between MSC and tumour cells appears dual and whether MSC are pro- or anti-tumorigenic is a subject of controversial reports. This review is focused on the role of MSC and bone marrow (BM) niches in cancer.
Collapse
Affiliation(s)
- Ander Abarrategi
- Unidad de Biotecnología Celular, Área Biología Celular y del Desarrollo, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | |
Collapse
|
95
|
Patel AN, Genovese J. Potential clinical applications of adult human mesenchymal stem cell (Prochymal®) therapy. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2011; 4:61-72. [PMID: 24198531 PMCID: PMC3781758 DOI: 10.2147/sccaa.s11991] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In vitro, in vivo animal, and human clinical data show a broad field of application for mesenchymal stem cells (MSCs). There is overwhelming evidence of the usefulness of MSCs in regenerative medicine, tissue engineering, and immune therapy. At present, there are a significant number of clinical trials exploring the use of MSCs for the treatment of various diseases, including myocardial infarction and stroke, in which oxygen suppression causes widespread cell death, and others with clear involvement of the immune system, such as graft-versus-host disease, Crohn’s disease, and diabetes. With no less impact, MSCs have been used as cell therapy to treat defects in bone and cartilage and to help in wound healing, or in combination with biomaterials in tissue engineering development. Among the MSCs, allogeneic MSCs have been associated with a regenerative capacity due to their unique immune modulatory properties. Their immunosuppressive capability without evidence of immunosuppressive toxicity at a global level define their application in the treatment of diseases with a pathogenesis involving uncontrolled activity of the immune system. Until now, the limitation in the number of totally characterized autologous MSCs available represents a major obstacle to their use for adult stem cell therapy. The use of premanufactured allogeneic MSCs from controlled donors under optimal conditions and their application in highly standardized clinical trials would lead to a better understanding of their real applications and reduce the time to clinical translation.
Collapse
Affiliation(s)
- Amit N Patel
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|
96
|
Reagan MR, Ghobrial IM. Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clin Cancer Res 2011; 18:342-9. [PMID: 22065077 DOI: 10.1158/1078-0432.ccr-11-2212] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hematologic malignancies rely heavily on support from host cells through a number of well-documented mechanisms. Host cells, specifically mesenchymal stem cells (MSC), support tumor cell growth, metastasis, survival, bone marrow colonization, and evasion of the immune system. In multiple myeloma, similar to solid tumors, supporting cells have typically been considered healthy host cells. However, recent evidence reveals that many MSCs derived from patients with multiple myeloma (MM-MSC) show significant defects compared with MSCs from nondiseased donors (ND-MSC). These abnormalities range from differences in gene and protein expression to allelic abnormalities and can initiate after less than 1 day of coculture with myeloma cells or persist for months, perhaps years, after removal from myeloma influence. Alterations in MM-MSC function contribute to disease progression and provide new therapeutic targets. However, before the scientific community can capitalize on the distinctions between MM-MSCs and ND-MSCs, a number of confusions must be clarified, as we have done in this review, including the origin(s) of MM-MSCs, identification and characterization of MM-MSCs, and downstream effects and feedback circuits that support cancer progression. Further advances require more genetic analysis of MM-MSCs and disease models that accurately represent MSC-MM cell interactions.
Collapse
Affiliation(s)
- Michaela R Reagan
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | |
Collapse
|
97
|
McLean K, Gong Y, Choi Y, Deng N, Yang K, Bai S, Cabrera L, Keller E, McCauley L, Cho KR, Buckanovich RJ. Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest 2011; 121:3206-19. [PMID: 21737876 DOI: 10.1172/jci45273] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/11/2011] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence suggests that mesenchymal stem cells (MSCs) are recruited to the tumor microenvironment; however, controversy exists regarding their role in solid tumors. In this study, we identified and confirmed the presence of carcinoma-associated MSCs (CA-MSCs) in the majority of human ovarian tumor samples that we analyzed. These CA-MSCs had a normal morphologic appearance, a normal karyotype, and were nontumorigenic. CA-MSCs were multipotent with capacity for differentiating into adipose, cartilage, and bone. When combined with tumor cells in vivo, CA-MSCs promoted tumor growth more effectively than did control MSCs. In vitro and in vivo studies suggested that CA-MSCs promoted tumor growth by increasing the number of cancer stem cells. Although CA-MSCs expressed traditional MSCs markers, they had an expression profile distinct from that of MSCs from healthy individuals, including increased expression of BMP2, BMP4, and BMP6. Importantly, BMP2 treatment in vitro mimicked the effects of CA-MSCs on cancer stem cells, while inhibiting BMP signaling in vitro and in vivo partly abrogated MSC-promoted tumor growth. Taken together, our data suggest that MSCs in the ovarian tumor microenvironment have an expression profile that promotes tumorigenesis and that BMP inhibition may be an effective therapeutic approach for ovarian cancer.
Collapse
Affiliation(s)
- Karen McLean
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
The backbone of progress--preclinical studies and innovations with zoledronic acid. Crit Rev Oncol Hematol 2011; 77 Suppl 1:S3-S12. [PMID: 21353178 DOI: 10.1016/s1040-8428(11)70003-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bisphosphonates (BPs) are antiresorptive agents that block pathologic bone resorption by inhibiting osteoclast function and later inducing osteoclast apoptosis. These agents localize to bone and break the vicious cycle of bone resorption that results from cross-stimulation between cancer cells and the bone remodeling cells, thereby reducing cancer-induced osteolysis and the tumor burden in bone. Thus nitrogen-containing BPs (N-BPs) have well established clinical benefits in the treatment of bone metastases from solid tumors and bone lesions from multiple myeloma. Preclinical data indicate that N-BPs, especially zoledronic acid (ZOL), can exert antimyeloma activity both in vitro and in vivo. Studies show that N-BPs can inhibit multiple intracellular processes essential for cancer cell proliferation and invasion and induce apoptosis. Furthermore, clinically relevant doses of N-BPs inhibit tumor-associated angiogenesis and can modulate macrophage phenotype in vivo, which is likely to contribute to anticancer effects.
Collapse
|
99
|
Li X, Ling W, Pennisi A, Wang Y, Khan S, Heidaran M, Pal A, Zhang X, He S, Zeitlin A, Abbot S, Faleck H, Hariri R, Shaughnessy JD, van Rhee F, Nair B, Barlogie B, Epstein J, Yaccoby S. Human placenta-derived adherent cells prevent bone loss, stimulate bone formation, and suppress growth of multiple myeloma in bone. Stem Cells 2011; 29:263-73. [PMID: 21732484 PMCID: PMC3175303 DOI: 10.1002/stem.572] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human placenta has emerged as a valuable source of transplantable cells of mesenchymal and hematopoietic origin for multiple cytotherapeutic purposes, including enhanced engraftment of hematopoietic stem cells, modulation of inflammation, bone repair, and cancer. Placenta-derived adherent cells (PDACs) are mesenchymal-like stem cells isolated from postpartum human placenta. Multiple myeloma is closely associated with induction of bone disease and large lytic lesions, which are often not repaired and are usually the sites of relapses. We evaluated the antimyeloma therapeutic potential, in vivo survival, and trafficking of PDACs in the severe combined immunodeficiency (SCID)-rab model of medullary myeloma-associated bone loss. Intrabone injection of PDACs into nonmyelomatous and myelomatous implanted bone in SCID-rab mice promoted bone formation by stimulating endogenous osteoblastogenesis, and most PDACs disappeared from bone within 4 weeks. PDACs inhibitory effects on myeloma bone disease and tumor growth were dose-dependent and comparable with those of fetal human mesenchymal stem cells (MSCs). Intrabone, but not subcutaneous, engraftment of PDACs inhibited bone disease and tumor growth in SCID-rab mice. Intratumor injection of PDACs had no effect on subcutaneous growth of myeloma cells. A small number of intravenously injected PDACs trafficked into myelomatous bone. Myeloma cell growth rate in vitro was lower in coculture with PDACs than with MSCs from human fetal bone or myeloma patients. PDACs also promoted apoptosis in osteoclast precursors and inhibited their differentiation. This study suggests that altering the bone marrow microenvironment with PDAC cytotherapy attenuates growth of myeloma and that PDAC cytotherapy is a promising therapeutic approach for myeloma osteolysis.
Collapse
Affiliation(s)
- Xin Li
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Wen Ling
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angela Pennisi
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yuping Wang
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sharmin Khan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Ajai Pal
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - Xiaokui Zhang
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - Shuyang He
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - Andy Zeitlin
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - Stewart Abbot
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | | | - Robert Hariri
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - John D. Shaughnessy
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Frits van Rhee
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bijay Nair
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Joshua Epstein
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shmuel Yaccoby
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
100
|
Ocana A, Pandiella A, Siu LL, Tannock IF. Preclinical development of molecular-targeted agents for cancer. Nat Rev Clin Oncol 2010; 8:200-9. [DOI: 10.1038/nrclinonc.2010.194] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|