51
|
Hu YS, Xin J, Hu Y, Zhang L, Wang J. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach. Alzheimers Res Ther 2017; 9:29. [PMID: 28446202 PMCID: PMC5406904 DOI: 10.1186/s13195-017-0252-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. METHOD In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. RESULTS We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. CONCLUSION By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.
Collapse
Affiliation(s)
- Yan-Shi Hu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| | - Juncai Xin
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| | - Ying Hu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| | - Lei Zhang
- School of Computer Science and Technology, Tianjin University, Tianjin, 300072 China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
52
|
A genome-wide profiling of brain DNA hydroxymethylation in Alzheimer's disease. Alzheimers Dement 2017; 13:674-688. [PMID: 28089213 DOI: 10.1016/j.jalz.2016.10.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 01/13/2023]
Abstract
INTRODUCTION DNA methylation is a key epigenetic mechanism in brain aging and Alzheimer's disease (AD). The newly discovered 5-hydroxymethylcytosine mediates DNA demethylation, is highly abundant in the brain, and is dynamically regulated by life experiences. However, little is known about its genome-wide patterns and potential role in AD. METHODS Using a genome-wide capture followed by high-throughput sequencing, we studied the genome-wide distribution of 5-hydroxymethylcytosine at specific genomic loci in human AD brain and identified differentially hydroxymethylated regions (DhMRs) associated with AD pathology. RESULTS We identified 517 DhMRs significantly associated with neuritic plaques and 60 DhMRs associated with neurofibrillary tangles. DNA hydroxymethylation in gene bodies was predominantly positively correlated with cis-acting gene expression. Moreover, genes showing differential hydroxymethylation were significantly enriched in neurobiological processes and clustered in functional gene ontology categories. DISCUSSION Our results reveal a critical role of DNA hydroxymethylation in AD pathology and provide mechanistic insight into the molecular mechanisms underlying AD.
Collapse
|
53
|
Cuccaro D, De Marco EV, Cittadella R, Cavallaro S. Copy Number Variants in Alzheimer's Disease. J Alzheimers Dis 2017; 55:37-52. [PMID: 27662298 PMCID: PMC5115612 DOI: 10.3233/jad-160469] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2016] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a devastating disease mainly afflicting elderly people, characterized by decreased cognition, loss of memory, and eventually death. Although risk and deterministic genes are known, major genetics research programs are underway to gain further insights into the inheritance of AD. In the last years, in particular, new developments in genome-wide scanning methodologies have enabled the association of a number of previously uncharacterized copy number variants (CNVs, gain or loss of DNA) in AD. Because of the exceedingly large number of studies performed, it has become difficult for geneticists as well as clinicians to systematically follow, evaluate, and interpret the growing number of (sometime conflicting) CNVs implicated in AD. In this review, after a brief introduction of this type of structural variation, and a description of available databases, computational analyses, and technologies involved, we provide a systematic review of all published data showing statistical and scientific significance of pathogenic CNVs and discuss the role they might play in AD.
Collapse
Affiliation(s)
- Denis Cuccaro
- Institute of Neurological Sciences, National Research Council, Section of Catania, Italy
| | | | - Rita Cittadella
- Institute of Neurological Sciences, National Research Council, Section of Mangone, Italy
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences, National Research Council, Section of Catania, Italy
- Institute of Neurological Sciences, National Research Council, Section of Mangone, Italy
| |
Collapse
|
54
|
Nguyen HT, Boocock J, Merriman TR, Black MA. SRBreak: A Read-Depth and Split-Read Framework to Identify Breakpoints of Different Events Inside Simple Copy-Number Variable Regions. Front Genet 2016; 7:160. [PMID: 27695476 PMCID: PMC5023681 DOI: 10.3389/fgene.2016.00160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022] Open
Abstract
Copy-number variation (CNV) has been associated with increased risk of complex diseases. High-throughput sequencing (HTS) technologies facilitate the detection of copy-number variable regions (CNVRs) and their breakpoints. This helps in understanding genome structure as well as their evolution process. Various approaches have been proposed for detecting CNV breakpoints, but currently it is still challenging for tools based on a single analysis method to identify breakpoints of CNVs. It has been shown, however, that pipelines which integrate multiple approaches are able to report more reliable breakpoints. Here, based on HTS data, we have developed a pipeline to identify approximate breakpoints (±10 bp) relating to different ancestral events within a specific CNVR. The pipeline combines read-depth and split-read information to infer breakpoints, using information from multiple samples to allow an imputation approach to be taken. The main steps involve using a normal mixture model to cluster samples into different groups, followed by simple kernel-based approaches to maximize information obtained from read-depth and split-read approaches, after which common breakpoints of groups are inferred. The pipeline uses split-read information directly from CIGAR strings of BAM files, without using a re-alignment step. On simulated data sets, it was able to report breakpoints for very low-coverage samples including those for which only single-end reads were available. When applied to three loci from existing human resequencing data sets (NEGR1, LCE3, IRGM) the pipeline obtained good concordance with results from the 1000 Genomes Project (92, 100, and 82%, respectively). The package is available at https://github.com/hoangtn/SRBreak, and also as a docker-based application at https://registry.hub.docker.com/u/hoangtn/srbreak/.
Collapse
Affiliation(s)
- Hoang T Nguyen
- Department of Biochemistry, University of OtagoDunedin, New Zealand; Virtual Institute of Statistical GeneticsDunedin, New Zealand; Department of Psychiatry, Mount Sinai School of Medicine, New YorkNY, USA; Department of Mathematics, Cao Thang College of TechnologyHo Chi Minh City, Vietnam
| | - James Boocock
- Department of Biochemistry, University of OtagoDunedin, New Zealand; Virtual Institute of Statistical GeneticsDunedin, New Zealand; Department of Psychiatry, Mount Sinai School of Medicine, New YorkNY, USA
| | - Tony R Merriman
- Department of Biochemistry, University of OtagoDunedin, New Zealand; Virtual Institute of Statistical GeneticsDunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of OtagoDunedin, New Zealand; Virtual Institute of Statistical GeneticsDunedin, New Zealand
| |
Collapse
|
55
|
Tosto G, Reitz C. Genomics of Alzheimer's disease: Value of high-throughput genomic technologies to dissect its etiology. Mol Cell Probes 2016; 30:397-403. [PMID: 27618776 DOI: 10.1016/j.mcp.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
Late-onset Alzheimer's disease (AD), the most common neurodegenerative disorder in western countries, is clinically defined by progressive worsening in cognitive functions along with function and behavioral impairment. This ultimately results in complete incapacity and death. AD is a clinically and pathologically heterogeneous disease, and this is reflected by the numerous genetic findings that point to several diverse molecular mechanisms and pathways. Linkage, genome-wide association and next-generation sequencing studies have led to the identification of more than 20 novel susceptibility loci for AD. While these observations have significantly increased the knowledge of pathogenic mechanisms and potential therapeutic targets, a large part of the genetic component underlying AD is still unexplained. This review will summarize and discuss the major genetic findings and their potential impact on AD diagnosis and prediction of prognosis.
Collapse
Affiliation(s)
- Giuseppe Tosto
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA; The Department of Neurology, Columbia University, New York, NY, USA
| | - Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA; The Department of Neurology, Columbia University, New York, NY, USA; The Dept. of Epidemiology, Columbia University, New York, NY, USA.
| |
Collapse
|
56
|
Prakash S, Kuang SQ, GenTAC Registry Investigators, Regalado E, Guo D, Milewicz D. Recurrent Rare Genomic Copy Number Variants and Bicuspid Aortic Valve Are Enriched in Early Onset Thoracic Aortic Aneurysms and Dissections. PLoS One 2016; 11:e0153543. [PMID: 27092555 PMCID: PMC4836726 DOI: 10.1371/journal.pone.0153543] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/18/2016] [Indexed: 11/23/2022] Open
Abstract
Thoracic Aortic Aneurysms and Dissections (TAAD) are a major cause of death in the United States. The spectrum of TAAD ranges from genetic disorders, such as Marfan syndrome, to sporadic isolated disease of unknown cause. We hypothesized that genomic copy number variants (CNVs) contribute causally to early onset TAAD (ETAAD). We conducted a genome-wide SNP array analysis of ETAAD patients of European descent who were enrolled in the National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC). Genotyping was performed on the Illumina Omni-Express platform, using PennCNV, Nexus and CNVPartition for CNV detection. ETAAD patients (n = 108, 100% European American, 28% female, average age 20 years, 55% with bicuspid aortic valves) were compared to 7013 dbGAP controls without a history of vascular disease using downsampled Omni 2.5 data. For comparison, 805 sporadic TAAD patients with late onset aortic disease (STAAD cohort) and 192 affected probands from families with at least two affected relatives (FTAAD cohort) from our institution were screened for additional CNVs at these loci with SNP arrays. We identified 47 recurrent CNV regions in the ETAAD, FTAAD and STAAD groups that were absent or extremely rare in controls. Nine rare CNVs that were either very large (>1 Mb) or shared by ETAAD and STAAD or FTAAD patients were also identified. Four rare CNVs involved genes that cause arterial aneurysms when mutated. The largest and most prevalent of the recurrent CNVs were at Xq28 (two duplications and two deletions) and 17q25.1 (three duplications). The percentage of individuals harboring rare CNVs was significantly greater in the ETAAD cohort (32%) than in the FTAAD (23%) or STAAD (17%) cohorts. We identified multiple loci affected by rare CNVs in one-third of ETAAD patients, confirming the genetic heterogeneity of TAAD. Alterations of candidate genes at these loci may contribute to the pathogenesis of TAAD.
Collapse
Affiliation(s)
- Siddharth Prakash
- Department of Internal Medicine, Division of Medical Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Shao-Qing Kuang
- Department of Internal Medicine, Division of Medical Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - GenTAC Registry Investigators
- Department of Internal Medicine, Division of Medical Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ellen Regalado
- Department of Internal Medicine, Division of Medical Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dongchuan Guo
- Department of Internal Medicine, Division of Medical Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dianna Milewicz
- Department of Internal Medicine, Division of Medical Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
57
|
Krasniak CS, Ahmad ST. The role of CHMP2B Intron5 in autophagy and frontotemporal dementia. Brain Res 2016; 1649:151-157. [PMID: 26972529 DOI: 10.1016/j.brainres.2016.02.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 12/12/2022]
Abstract
Charged multivesicular body protein 2B (CHMP2B) - a component of the endosomal complex required for transport-III (ESCRT-III) - is responsible for the vital membrane deformation functions in autophagy and endolysosomal trafficking. A dominant mutation in CHMP2B (CHMP2BIntron5) is associated with a subset of heritable frontotemporal dementia - frontotemporal dementia linked to chromosome 3 (FTD-3). ESCRT-III recruits Vps4, an AAA-ATPase that abscises the membrane during various cellular processes including autophagy and intraluminal vesicle formation. CHMP2BIntron5 results in a C-terminus truncation removing an important Vps4 binding site as well as eliminating the normal autoinhibitory resting state of CHMP2B. CHMP2B is expressed in most cell types but seems to be especially vital for proper neuronal function. CHMP2BIntron5-mediated phenotypes include misregulation of transmembrane receptors, accumulation of multilamellar structures, abnormal lysosomal morphology, down regulation of a brain-specific micro RNA (miRNA-124), abnormal dendritic spine morphology, decrease in dendritic arborization, and cell death. Currently, transgenic-fly,-mouse, and -human cell lines are being used to better understand the diverse phenotypes and develop therapeutic approaches for the CHMP2BIntron5-induced FTD-3. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
| | - S Tariq Ahmad
- Department of Biology, Colby College, 5720 Mayflower Hill, Waterville, ME 04901, USA.
| |
Collapse
|
58
|
Spencer B, Kim C, Gonzalez T, Bisquertt A, Patrick C, Rockenstein E, Adame A, Lee SJ, Desplats P, Masliah E. α-Synuclein interferes with the ESCRT-III complex contributing to the pathogenesis of Lewy body disease. Hum Mol Genet 2016; 25:1100-15. [PMID: 26740557 DOI: 10.1093/hmg/ddv633] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/30/2015] [Indexed: 01/17/2023] Open
Abstract
α-Synuclein (α-syn) has been implicated in neurological disorders with parkinsonism, including Parkinson's disease and Dementia with Lewy body. Recent studies have shown α-syn oligomers released from neurons can propagate from cell-to-cell in a prion-like fashion exacerbating neurodegeneration. In this study, we examined the role of the endosomal sorting complex required for transport (ESCRT) pathway on the propagation of α-syn. α-syn, which is transported via the ESCRT pathway through multivesicular bodies for degradation, can also target the degradation of the ESCRT protein-charged multivesicular body protein (CHMP2B), thus generating a roadblock of endocytosed α-syn. Disruption of the ESCRT transport system also resulted in increased exocytosis of α-syn thus potentially increasing cell-to-cell propagation of synuclein. Conversely, delivery of a lentiviral vector overexpressing CHMP2B rescued the neurodegeneration in α-syn transgenic mice. Better understanding of the mechanisms of intracellular trafficking of α-syn might be important for understanding the pathogenesis and developing new treatments for synucleinopathies.
Collapse
Affiliation(s)
| | - Changyoun Kim
- Department of Neuroscience and Department of Medicine, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | | | | | | | | | | | - Seung-Jae Lee
- Department of Medicine, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | | | - Eliezer Masliah
- Department of Neuroscience and Department of Pathology, University of California, San Diego, San Diego, CA 92103, USA and
| |
Collapse
|
59
|
Castrillo JI, Oliver SG. Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks. Methods Mol Biol 2016; 1303:3-48. [PMID: 26235058 DOI: 10.1007/978-1-4939-2627-5_1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK,
| | | |
Collapse
|
60
|
Smith PY, Hernandez-Rapp J, Jolivette F, Lecours C, Bisht K, Goupil C, Dorval V, Parsi S, Morin F, Planel E, Bennett DA, Fernandez-Gomez FJ, Sergeant N, Buée L, Tremblay MÈ, Calon F, Hébert SS. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet 2015; 24:6721-35. [PMID: 26362250 PMCID: PMC4634376 DOI: 10.1093/hmg/ddv377] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) and related tauopathies comprise a large group of neurodegenerative diseases associated with the pathological aggregation of tau protein. While much effort has focused on understanding the function of tau, little is known about the endogenous mechanisms regulating tau metabolism in vivo and how these contribute to disease. Previously, we have shown that the microRNA (miRNA) cluster miR-132/212 is downregulated in tauopathies such as AD. Here, we report that miR-132/212 deficiency in mice leads to increased tau expression, phosphorylation and aggregation. Using reporter assays and cell-based studies, we demonstrate that miR-132 directly targets tau mRNA to regulate its expression. We identified GSK-3β and PP2B as effectors of abnormal tau phosphorylation in vivo. Deletion of miR-132/212 induced tau aggregation in mice expressing endogenous or human mutant tau, an effect associated with autophagy dysfunction. Conversely, treatment of AD mice with miR-132 mimics restored in part memory function and tau metabolism. Finally, miR-132 and miR-212 levels correlated with insoluble tau and cognitive impairment in humans. These findings support a role for miR-132/212 in the regulation of tau pathology in mice and humans and provide new alternatives for therapeutic development.
Collapse
Affiliation(s)
- Pascal Y Smith
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Julia Hernandez-Rapp
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Francis Jolivette
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Kanchan Bisht
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Claudia Goupil
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Veronique Dorval
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Sepideh Parsi
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Françoise Morin
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Francisco-Jose Fernandez-Gomez
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Nicolas Sergeant
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Luc Buée
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Frédéric Calon
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Faculté de Pharmacie, Université Laval, Québec, QC, Canada G1V 0A6
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences,
| |
Collapse
|
61
|
Rossi G, Tagliavini F. Frontotemporal lobar degeneration: old knowledge and new insight into the pathogenetic mechanisms of tau mutations. Front Aging Neurosci 2015; 7:192. [PMID: 26528178 PMCID: PMC4604311 DOI: 10.3389/fnagi.2015.00192] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative diseases which includes tauopathies. In the central nervous system (CNS) tau is the major microtubule-associated protein (MAP) of neurons, promoting assembly and stabilization of microtubules (MTs) required for morphogenesis and axonal transport. Primary tauopathies are characterized by deposition of abnormal fibrils of tau in neuronal and glial cells, leading to neuronal death, brain atrophy and eventually dementia. In genetic tauopathies mutations of tau gene impair the ability of tau to bind to MTs, alter the normal ratio among tau isoforms and favor fibril formation. Recently, additional functions have been ascribed to tau and different pathogenetic mechanisms are then emerging. In fact, a role of tau in DNA protection and genome stability has been reported and chromosome aberrations have been found associated with tau mutations. Furthermore, newly structurally and functionally characterized mutations have suggested novel pathological features, such as a tendency to form oligomeric rather than fibrillar aggregates. Tau mutations affecting axonal transport and plasma membrane interaction have also been described. In this article, we will review the pathogenetic mechanisms underlying tau mutations, focusing in particular on the less common aspects, so far poorly investigated.
Collapse
Affiliation(s)
- Giacomina Rossi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, Italy
| | - Fabrizio Tagliavini
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, Italy
| |
Collapse
|
62
|
Schneider A, Puechberty J, Ng BL, Coubes C, Gatinois V, Tournaire M, Girard M, Dumont B, Bouret P, Magnetto J, Baghdadli A, Pellestor F, Geneviève D. Identification of disrupted AUTS2 and EPHA6 genes by array painting in a patient carrying a de novo balanced translocation t(3;7) with intellectual disability and neurodevelopment disorder. Am J Med Genet A 2015; 167A:3031-7. [PMID: 26333717 DOI: 10.1002/ajmg.a.37350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/12/2015] [Indexed: 11/09/2022]
Abstract
Intellectual disability (ID) is a frequent feature but is highly clinically and genetically heterogeneous. The establishment of the precise diagnosis in patients with ID is challenging due to this heterogeneity but crucial for genetic counseling and appropriate care for the patients. Among the etiologies of patients with ID, apparently balanced de novo rearrangements represent 0.6%. Several mechanisms explain the ID in patients with apparently balanced de novo rearrangement. Among them, disruption of a disease gene at the breakpoint, is frequently evoked. In this context, technologies recently developed are used to characterize precisely such chromosomal rearrangements. Here, we report the case of a boy with ID, facial features and autistic behavior who is carrying a de novo balanced reciprocal translocation t(3;7)(q11.2;q11.22)dn. Using microarray analysis, array painting (AP) technology combined with molecular study, we have identified the interruption of the autism susceptibility candidate 2 gene (AUTS2) and EPH receptor A6 gene (EPHA6). We consider that the disruption of AUTS2 explains the phenotype of the patient; the exact role of EPHA6 in human pathology is not well defined. Based on the observation of recurrent germinal and somatic translocations involving AUTS2 and the molecular environment content, we put forward the hypothesis that the likely chromosomal mechanism responsible for the translocation could be due either to replicative stress or to recombination-based mechanisms.
Collapse
Affiliation(s)
- Anouck Schneider
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | | | - Bee Ling Ng
- Cytometry Core Facility, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Vincent Gatinois
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Magali Tournaire
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Manon Girard
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Bruno Dumont
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Pauline Bouret
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Julia Magnetto
- CRA, Département de Psychiatrie de l'Enfant et de l'Adolescent, Centre de Ressources Autisme, CHRU de Montpellier, France
| | - Amaria Baghdadli
- CRA, Département de Psychiatrie de l'Enfant et de l'Adolescent, Centre de Ressources Autisme, CHRU de Montpellier, France
| | - Franck Pellestor
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - David Geneviève
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France.,Département de Génétique Médicale, CHRU de Montpellier, France
| |
Collapse
|
63
|
Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VLJ, Fisher EMC, Strydom A. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci 2015; 16:564-74. [PMID: 26243569 PMCID: PMC4678594 DOI: 10.1038/nrn3983] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Down syndrome, which arises in individuals carrying an extra copy of chromosome 21, is associated with a greatly increased risk of early-onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP)--an Alzheimer disease risk factor--although the possession of extra copies of other chromosome 21 genes may also play a part. Further study of the mechanisms underlying the development of Alzheimer disease in people with Down syndrome could provide insights into the mechanisms that cause dementia in the general population.
Collapse
Affiliation(s)
- Frances K Wiseman
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Tamara Al-Janabi
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Annette Karmiloff-Smith
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore 308232; and the Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | | | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - André Strydom
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK
| |
Collapse
|
64
|
Song F, Han G, Bai Z, Peng X, Wang J, Lei H. Alzheimer's Disease: Genomics and Beyond. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:1-24. [PMID: 26315760 DOI: 10.1016/bs.irn.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a major form of senile dementia. Despite the critical roles of Aβ and tau in AD pathology, drugs targeting Aβ or tau have so far reached limited success. The advent of genomic technologies has made it possible to gain a more complete picture regarding the molecular network underlying the disease progression which may lead to discoveries of novel treatment targets. In this review, we will discuss recent progresses in AD research focusing on genome, transcriptome, epigenome, and related subjects. Advancements have been made in the finding of novel genetic risk factors, new hypothesis for disease mechanism, candidate biomarkers for early diagnosis, and potential drug targets. As an integration effort, we have curated relevant data in a database named AlzBase.
Collapse
Affiliation(s)
- Fuhai Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Guangchun Han
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Zhouxian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Jiajia Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, PR China.
| |
Collapse
|
65
|
Moore S, Evans LDB, Andersson T, Portelius E, Smith J, Dias TB, Saurat N, McGlade A, Kirwan P, Blennow K, Hardy J, Zetterberg H, Livesey FJ. APP metabolism regulates tau proteostasis in human cerebral cortex neurons. Cell Rep 2015; 11:689-96. [PMID: 25921538 PMCID: PMC4431668 DOI: 10.1016/j.celrep.2015.03.068] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 01/29/2015] [Accepted: 03/26/2015] [Indexed: 12/16/2022] Open
Abstract
Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons.
Collapse
Affiliation(s)
- Steven Moore
- The Gurdon Institute, Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Lewis D B Evans
- The Gurdon Institute, Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Therese Andersson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 80 Molndal, Sweden
| | - James Smith
- The Gurdon Institute, Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Tatyana B Dias
- The Gurdon Institute, Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Nathalie Saurat
- The Gurdon Institute, Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Amelia McGlade
- The Gurdon Institute, Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Peter Kirwan
- The Gurdon Institute, Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 80 Molndal, Sweden
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 1PJ, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 80 Molndal, Sweden; Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 1PJ, UK
| | - Frederick J Livesey
- The Gurdon Institute, Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
66
|
Cacabelos R, Torrellas C, Carrera I. Opportunities in pharmacogenomics for the treatment of Alzheimer's disease. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT In Alzheimer's disease (AD), approximately 10–20% of direct costs are associated with pharmacological treatment. Pharmacogenomics account for 30–90% variability in pharmacokinetics and pharmacodynamics. Genes potentially involved in the pharmacogenomics outcome include pathogenic, mechanistic, metabolic, transporter and pleiotropic genes. Over 75% of the Caucasian population is defective for the CYP2D6+2C9+2C19 cluster. Polymorphic variants in the APOE-TOMM40 region influence AD pharmacogenomics. APOE-4 carriers are the worst responders and APOE-3 carriers are the best responders to conventional treatments. TOMM40 poly T-S/S carriers are the best responders, VL/VL and S/VL carriers are intermediate responders and L/L carriers are the worst responders. The haplotype 4/4-L/L is probably responsible for early onset of the disease, a faster cognitive decline and a poor response to different treatments.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| | - Clara Torrellas
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| | - Iván Carrera
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| |
Collapse
|
67
|
Alzheimer’s Disease Genetics. Curr Behav Neurosci Rep 2014. [DOI: 10.1007/s40473-014-0026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
68
|
Gascon E, Lynch K, Ruan H, Almeida S, Verheyden J, Seeley WW, Dickson DW, Petrucelli L, Sun D, Jiao J, Zhou H, Jakovcevski M, Akbarian S, Yao WD, Gao FB. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med 2014; 20:1444-51. [PMID: 25401692 PMCID: PMC4257887 DOI: 10.1038/nm.3717] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases, such as frontotemporal dementia (FTD), are often associated with behavioral deficits, but the underlying anatomical and molecular causes remain poorly understood. Here we show that forebrain-specific expression of FTD-associated mutant CHMP2B in mice causes several age-dependent neurodegenerative phenotypes, including social behavioral impairments. The social deficits were accompanied by a change in AMPA receptor (AMPAR) composition, leading to an imbalance between Ca(2+)-permeable and Ca(2+)-impermeable AMPARs. Expression of most AMPAR subunits was regulated by the brain-enriched microRNA miR-124, whose abundance was markedly decreased in the superficial layers of the cerebral cortex of mice expressing the mutant CHMP2B. We found similar changes in miR-124 and AMPAR levels in the frontal cortex and induced pluripotent stem cell-derived neurons from subjects with behavioral variant FTD. Moreover, ectopic miR-124 expression in the medial prefrontal cortex of mutant mice decreased AMPAR levels and partially rescued behavioral deficits. Knockdown of the AMPAR subunit Gria2 also alleviated social impairments. Our results identify a previously undescribed mechanism involving miR-124 and AMPARs in regulating social behavior in FTD and suggest a potential therapeutic avenue.
Collapse
Affiliation(s)
- Eduardo Gascon
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605 USA
| | - Kelleen Lynch
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605 USA
| | - Hongyu Ruan
- Division of Neurosciences, New England Primate Research Center, Harvard Medical School, Southborough, MA, 01772 USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605 USA
| | - Jamie Verheyden
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Danqiong Sun
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
| | - Jian Jiao
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
| | - Hongru Zhou
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605 USA
| | - Mira Jakovcevski
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Wei-Dong Yao
- Division of Neurosciences, New England Primate Research Center, Harvard Medical School, Southborough, MA, 01772 USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605 USA
| |
Collapse
|
69
|
Abstract
INTRODUCTION It is assumed that epigenetic modifications are reversible and could potentially be targeted by pharmacological and dietary interventions. Epigenetic drugs are gaining particular interest as potential candidates for the treatment of Alzheimer's disease (AD). AREAS COVERED This article covers relevant information from over 50 different epigenetic drugs including: DNA methyltransferase inhibitors; histone deacetylase inhibitors; histone acetyltransferase modulators; histone methyltransferase inhibitors; histone demethylase inhibitors; non-coding RNAs (microRNAs) and dietary regimes. The authors also review the pharmacoepigenomics and the pharmacogenomics of epigenetic drugs. The readers will gain insight into i) the classification of epigenetic drugs; ii) the mechanisms by which these drugs might be useful in AD; iii) the pharmacological properties of selected epigenetic drugs; iv) pharmacoepigenomics and the influence of epigenetic drugs on genes encoding CYP enzymes, transporters and nuclear receptors; and v) the genes associated with the pharmacogenomics of anti-dementia drugs. EXPERT OPINION Epigenetic drugs reverse epigenetic changes in gene expression and might open future avenues in AD therapeutics. Unfortunately, clinical trials with this category of drugs are lacking in AD. The authors highlight the need for pharmacogenetic and pharmacoepigenetic studies to properly evaluate any efficacy and safety issues.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Professor,Camilo José Cela University, Chair of Genomic Medicine , Madrid , Spain
| | | |
Collapse
|
70
|
|
71
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|