51
|
Abstract
Enhanced long-term survival rates of young women with cancer and advances in reproductive medicine and cryobiology have culminated in an increased interest in fertility preservation methods in girls and young women with cancer. Present data suggest that young patients with cancer should be referred for fertility preservation counselling quickly to help with their coping process. Although the clinical application of novel developments, including oocyte vitrification and oocyte maturation in vitro, has resulted in reasonable success rates in assisted reproduction programmes, experience with these techniques in the setting of fertility preservation is in its infancy. It is hoped that these and other approaches, some of which are still regarded as experimental (eg, ovarian tissue cryopreservation, pharmacological protection against gonadotoxic agents, in-vitro follicle growth, and follicle transplantation) will be optimised and become established within the next decade. Unravelling the complex mechanisms of activation and suppression of follicle growth will not only expand the care of thousands of women diagnosed with cancer, but also inform the care of millions of women confronted with reduced reproductive fitness because of ageing.
Collapse
Affiliation(s)
- Michel De Vos
- Centre for Reproductive Medicine, UZ Brussel, Brussels, Belgium.
| | - Johan Smitz
- Laboratory of Clinical Chemistry and Radioimmunology, UZ Brussel, Brussels, Belgium
| | - Teresa K Woodruff
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
52
|
Yuan J, Zhang D, Wang L, Liu M, Mao J, Yin Y, Ye X, Liu N, Han J, Gao Y, Cheng T, Keefe DL, Liu L. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. Stem Cells 2014; 31:2538-50. [PMID: 23897655 DOI: 10.1002/stem.1480] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/18/2013] [Accepted: 07/05/2013] [Indexed: 12/15/2022]
Abstract
Female germline or oogonial stem cells transiently residing in fetal ovaries are analogous to the spermatogonial stem cells or germline stem cells (GSCs) in adult testes where GSCs and meiosis continuously renew. Oocytes can be generated in vitro from embryonic stem cells and induced pluripotent stem cells, but the existence of GSCs and neo-oogenesis in adult mammalian ovaries is less clear. Preliminary findings of GSCs and neo-oogenesis in mice and humans have not been consistently reproducible. Monkeys provide the most relevant model of human ovarian biology. We searched for GSCs and neo-meiosis in ovaries of adult monkeys at various ages, and compared them with GSCs from adult monkey testis, which are characterized by cytoplasmic staining for the germ cell marker DAZL and nuclear expression of the proliferative markers PCNA and KI67, and pluripotency-associated genes LIN28 and SOX2, and lack of nuclear LAMIN A, a marker for cell differentiation. Early meiocytes undergo homologous pairing at prophase I distinguished by synaptonemal complex lateral filaments with telomere perinuclear distribution. By exhaustive searching using comprehensive experimental approaches, we show that proliferative GSCs and neo-meiocytes by these specific criteria were undetectable in adult mouse and monkey ovaries. However, we found proliferative nongermline somatic stem cells that do not express LAMIN A and germ cell markers in the adult ovaries, notably in the cortex and granulosa cells of growing follicles. These data support the paradigm that adult ovaries do not undergo germ cell renewal, which may contribute significantly to ovarian senescence that occurs with age.
Collapse
Affiliation(s)
- Jihong Yuan
- State Key Laboratory of Medicinal Chemical Biology, The 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China; Key Laboratory of Ministry of Health on Hormones and Development, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Liu C, Ma Z, Xu S, Hou J, Hu Y, Yu Y, Liu R, Chen Z, Lu Y. Activation of the germ-cell potential of human bone marrow-derived cells by a chemical carcinogen. Sci Rep 2014; 4:5564. [PMID: 24998261 PMCID: PMC4083294 DOI: 10.1038/srep05564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/17/2014] [Indexed: 01/06/2023] Open
Abstract
Embryonic/germ cell traits are common in malignant tumors and are thought to be involved in malignant tumor behaviors. The reasons why tumors show strong embryonic/germline traits (displaced germ cells or gametogenic programming reactivation) are controversial. Here, we show that a chemical carcinogen, 3-methyl-cholanthrene (3-MCA), can trigger the germ-cell potential of human bone marrow-derived cells (hBMDCs). 3-MCA promoted the generation of germ cell-like cells from induced hBMDCs that had undergone malignant transformation, whereas similar results were not observed in the parallel hBMDC culture at the same time point. The malignant transformed hBMDCs spontaneously and more efficiently generated into germ cell-like cells even at the single-cell level. The germ cell-like cells from induced hBMDCs were similar to natural germ cells in many aspects, including morphology, gene expression, proliferation, migration, further development, and teratocarcinoma formation. Therefore, our results demonstrate that a chemical carcinogen can reactivate the germline phenotypes of human somatic tissue-derived cells, which might provide a novel idea to tumor biology and therapy.
Collapse
Affiliation(s)
- Chunfang Liu
- 1] Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China [2]
| | - Zhan Ma
- 1] Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China [2] Department of Laboratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China [3]
| | - Songtao Xu
- 1] Department of Thoracic Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China [2]
| | - Jun Hou
- Department of Pathology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yao Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yinglu Yu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Ruilai Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhihong Chen
- Department of Pulmonary Medicine, Research Institute of Respiratory Disease, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuan Lu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| |
Collapse
|
54
|
Polstyanoy AM, Sheina UI, Eremeev AV, Polstyanaya GN, Svetlakov AV. Isolation of germ-cell precursors from human ovary tissue. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14030109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
55
|
Lai D, Wang F, Dong Z, Zhang Q. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model. PLoS One 2014; 9:e98749. [PMID: 24879098 PMCID: PMC4039525 DOI: 10.1371/journal.pone.0098749] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022] Open
Abstract
Skin-derived mesenchymal stem cells (SMSCs) can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs) and male skin-derived mesenchymal stem cells (M-SMSCs) from red fluorescence protein (RFP) transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH) antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health.
Collapse
Affiliation(s)
- Dongmei Lai
- The Center of Research Laboratory, and Department of Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| | - Fangyuan Wang
- The Center of Research Laboratory, and Department of Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhangli Dong
- The Center of Research Laboratory, and Department of Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuwan Zhang
- The Center of Research Laboratory, and Department of Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
56
|
Pan Y. A new tool to generate transgenic rats using female germline stem cells from post-natal ovaries. Mol Hum Reprod 2014; 20:283-5. [PMID: 24608712 DOI: 10.1093/molehr/gau017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yuqiong Pan
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
57
|
Hanna CB, Hennebold JD. Ovarian germline stem cells: an unlimited source of oocytes? Fertil Steril 2014; 101:20-30. [PMID: 24382341 DOI: 10.1016/j.fertnstert.2013.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/28/2022]
Abstract
While there has been progress in directing the development of embryonic stem cells and induced pluripotent stem cells toward a germ cell state, their ability to serve as a source of functional oocytes in a clinically relevant model or situation has yet to be established. Recent studies suggest that the adult mammalian ovary is not endowed with a finite number of oocytes, but instead possesses stem cells that contribute to their renewal. The ability to isolate and promote the growth and development of such ovarian germline stem cells (GSCs) would provide a novel means to treat infertility in women. Although such ovarian GSCs are well characterized in nonmammalian model organisms, the findings that support the existence of adult ovarian GSCs in mammals have been met with considerable evidence that disputes their existence. This review details the lessons provided by model organisms that successfully utilize ovarian GSCs to allow for a continual and high level of female germ cell production throughout their life, with a specific focus on the cellular mechanisms involved in GSC self-renewal and oocyte development. Such an overview of the role that oogonial stem cells play in maintaining fertility in nonmammalian species serves as a backdrop for the data generated to date that supports or disputes the existence of GSCs in mammals as well as the future of this area of research in terms of its potential for any application in reproductive medicine.
Collapse
Affiliation(s)
- Carol B Hanna
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon.
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
58
|
Kaviani M, Ezzatabadipour M, Nematollahi-Mahani SN, Salehinejad P, Mohammadi M, Kalantar SM, Motamedi B. Evaluation of gametogenic potential of vitrified human umbilical cord Wharton's jelly–derived mesenchymal cells. Cytotherapy 2014; 16:203-12. [DOI: 10.1016/j.jcyt.2013.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/05/2013] [Accepted: 10/27/2013] [Indexed: 10/25/2022]
|
59
|
Abstract
SummaryFor decades, scientists have considered that female mammals are born with a lifetime reserve of oocytes in the ovary, irrevocably fated to decline after birth. However, controversy in the matter of the possible presence of oocytes and granulosa cells that originate from stem cells in the adult mammalian ovaries has been expanded. The restricted supply of oocytes in adult female mammals has been disputed in recent years by supporters of neo-oogenesis, who claim that germline stem cells (GSCs) exist in the ovarian surface epithelium (OSE) or the bone marrow (BM). Differentiation of ovarian stem cells (OSCs) into oocytes, fibroblast-like cells, granulosa phenotype, neural and mesenchymal type cells and generation of germ cells from OSCs under the contribution of an OSC niche that consists of immune system-related cells and hormonal signalling has been claimed. Although these arguments have met with intense suspicion, their confirmation would necessitate the revision of the current classic knowledge of female reproductive biology.
Collapse
|
60
|
Abstract
The female germline comprises a reserve population of primordial (non-growing) follicles containing diplotene oocytes arrested in the first meiotic prophase. By convention, the reserve is established when all individual oocytes are enclosed by granulosa cells. This commonly occurs prior to or around birth, according to species. Histologically, the ‘reserve’ is the number of primordial follicles in the ovary at any given age and is ultimately depleted by degeneration and progression through folliculogenesis until exhausted. How and when the reserve reaches its peak number of follicles is determined by ovarian morphogenesis and germ cell dynamics involving i) oogonial proliferation and entry into meiosis producing an oversupply of oocytes and ii) large-scale germ cell death resulting in markedly reduced numbers surviving as the primordial follicle reserve. Our understanding of the processes maintaining the reserve comes primarily from genetically engineered mouse models, experimental activation or destruction of oocytes, and quantitative histological analysis. As the source of ovulated oocytes in postnatal life, the primordial follicle reserve requires regulation of i) its survival or maintenance, ii) suppression of development (dormancy), and iii) activation for growth and entry into folliculogenesis. The mechanisms influencing these alternate and complex inter-related phenomena remain to be fully elucidated. Drawing upon direct and indirect evidence, we discuss the controversial concept of postnatal oogenesis. This posits a rare population of oogonial stem cells that contribute new oocytes to partially compensate for the age-related decline in the primordial follicle reserve.
Collapse
|
61
|
Zhang H, Adhikari D, Zheng W, Liu K. Combating ovarian aging depends on the use of existing ovarian follicles, not on putative oogonial stem cells. Reproduction 2013; 146:R229-33. [DOI: 10.1530/rep-13-0202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ovarian aging is characterized by both a reduction in egg quality and a drastic reduction in the number of ovarian follicles. It has been generally accepted for 60 years that a fixed population of primordial follicles is established in the ovaries during early life, and in most mammalian species, oocytes cannot renew themselves in postnatal or adult life. This dogma, however, has been challenged over the past decade. In this review, we summarize the recent studies on primordial follicles and putative oogonial stem cells and discuss what resources in the ovary might be more reliable and promising source tools for combating ovarian aging.
Collapse
|
62
|
Zhou L, Wang L, Kang JX, Xie W, Li X, Wu C, Xu B, Wu J. Production of fat-1 transgenic rats using a post-natal female germline stem cell line. ACTA ACUST UNITED AC 2013; 20:271-81. [DOI: 10.1093/molehr/gat081] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
63
|
Human amniotic epithelial cells can differentiate into granulosa cells and restore folliculogenesis in a mouse model of chemotherapy-induced premature ovarian failure. Stem Cell Res Ther 2013; 4:124. [PMID: 24406076 PMCID: PMC3854701 DOI: 10.1186/scrt335] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/09/2013] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Ovarian dysfunction frequently occurs in female cancer patients after chemotherapy, but human amniotic epithelial cells (hAECs) that can differentiate into cell types that arise from all three germ layers may offer promise for restoration of such dysfunction. Previous studies confirmed that hAECs could differentiate into cells that express germ cell-specific markers, but at this time hAECs have not been shown to restore ovarian function. METHODS To model premature ovarian failure, hAECs infected with lenti-virus carrying green fluorescent protein were injected into the tail vein of mice sterilized with cyclophosphamide and busulphan. hAECs migrated to the mouse ovaries and overall ovarian function was measured using immunohistochemical techniques. RESULTS Seven days to two months after hAECs transplantation, ovarian cells were morphologically restored in sterilized mice. Hemotoxylin and eosin staining revealed that restored ovarian cells developed follicles at all stages. No follicles were observed in control mice at the same time period. Immunostaining with anti-human antigen antibodies and pre-transplantation labeling with green fluorescent protein (GFP) revealed that the grafted hAECs survived and migrated to mouse ovary, differentiating into granulosa cells. Furthermore, the ovarian function marker, anti-Müllerian hormone, was evident in treated mouse ovaries after hAEC transplantation. CONCLUSIONS Intravenously injected hAECs reached the ovaries of chemotherapy-treated mice and restored folliculogenesis, data which suggest promise for hAECs for promoting reproductive health and improving the quality of life for female cancer survivors.
Collapse
|
64
|
Kharsa ZC, Gustin SLF, Westphal LM. Pregnancy During Recovery from Hematopoietic Stem Cell Transplant for Mycosis Fungoides. J Adolesc Young Adult Oncol 2013; 2:133-5. [PMID: 26812191 DOI: 10.1089/jayao.2013.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We report a case of spontaneous pregnancy with subsequent full-term live birth following hematopoietic stem cell transplantation (HSCT) for mycosis fungoides in a 24-year-old nulligravida with 4 years of prior infertility due to primary ovarian insufficiency. Four months post-transplant, the patient was found to be 10 weeks pregnant. Her pregnancy was complicated by first trimester fetal exposure to mycophenolate mofetil (pregnancy category D), delayed-onset acute gastrointestinal graft-versus-host disease, and multiple systemic infections. This report highlights the importance of discussing potential fertility outcomes in patients undergoing HSCT, including the necessity for adequate contraception post-transplant, even in the setting of previous infertility.
Collapse
Affiliation(s)
- Zena C Kharsa
- 1 University of California , San Diego School of Medicine, La Jolla, California
| | - Stephanie L F Gustin
- 2 Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Stanford University Medical Center , Stanford, California
| | - Lynn M Westphal
- 2 Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Stanford University Medical Center , Stanford, California.,3 Stanford Fertility and Reproductive Medicine Center , Palo Alto, California
| |
Collapse
|
65
|
Bai Y, Yu M, Hu Y, Qiu P, Liu W, Zheng W, Peng S, Hua J. Location and characterization of female germline stem cells (FGSCs) in juvenile porcine ovary. Cell Prolif 2013; 46:516-28. [PMID: 24033494 DOI: 10.1111/cpr.12058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/28/2013] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Existence of germline stem cells (GSCs) in juvenile mammalian female ovaries has been drastically debated recently since reports that adult mouse ovaries still have mitotically active germ cells have been proposed. In addition, definitive location of such female germline stem cells (FGSCs) had not been demonstrated. MATERIALS AND METHODS We segregated porcine FGSCs mechanically from ovary cortex, and tested our hypotheses by utilizing immunofluorescent staining, qRT-PCR and western blotting. RESULTS We attached emphasis to unambiguous location of FGSCs, which settle simultaneously in the theca. Dissected cells from porcine thecal layers maintained similar characteristics to mouse FGSCs and ESCs over 4-months in vitro culture. CONCLUSION These results may provide a new resource for the study of oogenesis and therapy for ovarian sterility.
Collapse
Affiliation(s)
- Y Bai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Abd-Allah SH, Shalaby SM, Pasha HF, El-Shal AS, Raafat N, Shabrawy SM, Awad HA, Amer MG, Gharib MA, El Gendy EA, Raslan AA, El-Kelawy HM. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy 2013; 15:64-75. [PMID: 23260087 DOI: 10.1016/j.jcyt.2012.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/16/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND No curative treatment is known for primary ovarian failure; however, mesenchymal stem cells (MSCs), through self-renewal and regeneration, push the trial to evaluate their role in the treatment of ovarian failure. The aim of this study was to explore the impact of MSCs on cyclophosphamide (CTX)-induced ovarian failure in rabbits and to clarify the mechanism(s) by which MSCs exert their action. METHODS Thirty-five adult female rabbits were injected with CTX to induce ovarian failure. Five rabbits were euthanized after the last injection of CTX for histological examination. The others (30 rabbits) were further subdivided into two groups: group 1 (ovarian failure group, 15 rabbits) received no treatment; group 2 (ovarian failure and MSC recipient group, 15 rabbits) received MSCs isolated from extracted bone marrow of male rabbits. RESULTS A decrease of follicle-stimulating hormone and an increase of estrogen and vascular endothelial growth factor (VEGF) levels in the MSC recipient group versus the ovarian failure group were found. Weak caspase-3 expression and +ve proliferating cell nuclear antigen staining after MSC injection were detected. Cytological and histological examinations showed increased follicle numbers with apparent normal structure of ovarian follicles in the MSC recipient group. Moreover, Y chromosome-containing cells from male donors were present within the ovarian tissues in group 2. CONCLUSIONS The current study suggests that intravenous injection of MSCs into rabbits with chemotherapy-induced ovarian damage improved ovarian function. MSCs accomplish this function by direct differentiation into specific cellular phenotypes and by secretion of VEGF, which influence the regeneration of the ovary.
Collapse
Affiliation(s)
- Somia H Abd-Allah
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, Sinha M, Dall'Osso C, Khong D, Shadrach JL, Miller CM, Singer BS, Stewart A, Psychogios N, Gerszten RE, Hartigan AJ, Kim MJ, Serwold T, Wagers AJ, Lee RT. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 2013; 153:828-39. [PMID: 23663781 DOI: 10.1016/j.cell.2013.04.015] [Citation(s) in RCA: 737] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 02/21/2013] [Accepted: 04/03/2013] [Indexed: 02/06/2023]
Abstract
The most common form of heart failure occurs with normal systolic function and often involves cardiac hypertrophy in the elderly. To clarify the biological mechanisms that drive cardiac hypertrophy in aging, we tested the influence of circulating factors using heterochronic parabiosis, a surgical technique in which joining of animals of different ages leads to a shared circulation. After 4 weeks of exposure to the circulation of young mice, cardiac hypertrophy in old mice dramatically regressed, accompanied by reduced cardiomyocyte size and molecular remodeling. Reversal of age-related hypertrophy was not attributable to hemodynamic or behavioral effects of parabiosis, implicating a blood-borne factor. Using modified aptamer-based proteomics, we identified the TGF-β superfamily member GDF11 as a circulating factor in young mice that declines with age. Treatment of old mice to restore GDF11 to youthful levels recapitulated the effects of parabiosis and reversed age-related hypertrophy, revealing a therapeutic opportunity for cardiac aging.
Collapse
Affiliation(s)
- Francesco S Loffredo
- Harvard Stem Cell Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Qiao J, Wang ZB, Feng HL, Miao YL, Wang Q, Yu Y, Wei YC, Yan J, Wang WH, Shen W, Sun SC, Schatten H, Sun QY. The root of reduced fertility in aged women and possible therapentic options: current status and future perspects. Mol Aspects Med 2013; 38:54-85. [PMID: 23796757 DOI: 10.1016/j.mam.2013.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
Abstract
It is well known that maternal ageing not only causes increased spontaneous abortion and reduced fertility, but it is also a high genetic disease risk. Although assisted reproductive technologies (ARTs) have been widely used to treat infertility, the overall success is still low. The main reasons for age-related changes include reduced follicle number, compromised oocyte quality especially aneuploidy, altered reproductive endocrinology, and increased reproductive tract defect. Various approaches for improving or treating infertility in aged women including controlled ovarian hyperstimulation with intrauterine insemination (IUI), IVF/ICSI-ET, ovarian reserve testing, preimplantation genetic diagnosis and screening (PGD/PGS), oocyte selection and donation, oocyte and ovary tissue cryopreservation before ageing, miscarriage prevention, and caloric restriction are summarized in this review. Future potential reproductive techniques for infertile older women including oocyte and zygote micromanipulations, derivation of oocytes from germ stem cells, ES cells, and iPS cells, as well as through bone marrow transplantation are discussed.
Collapse
Affiliation(s)
- Jie Qiao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Huai-Liang Feng
- Department of Laboratory Medicine, and Obstetrics and Gynecology, New York Hospital Queens, Weill Medical College of Cornell University, New York, NY, USA
| | - Yi-Liang Miao
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Qiang Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | - Yang Yu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Yan-Chang Wei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Yan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Wei-Hua Wang
- Houston Fertility Institute, Tomball Regional Hospital, Tomball, TX 77375, USA
| | - Wei Shen
- Laboratory of Germ Cell Biology, Department of Animal Science, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Shao-Chen Sun
- Department of Animal Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|
69
|
|
70
|
Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc Natl Acad Sci U S A 2013; 110:8585-90. [PMID: 23630252 DOI: 10.1073/pnas.1306189110] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.
Collapse
|
71
|
Evron A, Blumenfeld Z. Ovarian Stem Cells-the Pros and Cons. CLINICAL MEDICINE INSIGHTS. REPRODUCTIVE HEALTH 2013; 7:43-7. [PMID: 24453518 PMCID: PMC3888079 DOI: 10.4137/cmrh.s11086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The potential for postnatal de novo oogenesis in mammals and in humans has become very controversial in the fields of reproductive science and biology. Historically, it has been thought that females of most mammalian species lose the ability to produce oocytes at birth. A contemporary understanding of stem cell biology together with novel experimental methods has challenged the model of a prenatal fixed ovarian primordial follicle pool that declines with age. Researchers have suggested replenishment of post-natal oocytes by germ-line stem cells (GSCs). According to this theory, GSCs produce oocytes and primordial follicles throughout the lifetime of the adult female. This review describes recent approaches supporting the revolutionary idea of de novo oogenesis in mammals and humans of reproductive-age and provides counter arguments from opponents of this novel and innovative concept.
Collapse
Affiliation(s)
- Ayelet Evron
- 8 Ha'Aliyah St., Reproductive Endocrinology Dept. OB/GYN, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Zeev Blumenfeld
- 8 Ha'Aliyah St., Reproductive Endocrinology Dept. OB/GYN, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
72
|
Role of mesenchymal stem cell therapy in restoring ovarian function in a rat model of chemotherapy-induced ovarian failure. ACTA ACUST UNITED AC 2013. [DOI: 10.1097/01.ehx.0000423979.18253.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
73
|
El Ouaamari A, Kawamori D, Dirice E, Liew CW, Shadrach JL, Hu J, Katsuta H, Hollister-Lock J, Qian WJ, Wagers AJ, Kulkarni RN. Liver-derived systemic factors drive β cell hyperplasia in insulin-resistant states. Cell Rep 2013; 3:401-10. [PMID: 23375376 PMCID: PMC3655439 DOI: 10.1016/j.celrep.2013.01.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/22/2012] [Accepted: 01/07/2013] [Indexed: 01/04/2023] Open
Abstract
Integrative organ crosstalk regulates key aspects of energy homeostasis, and its dysregulation may underlie metabolic disorders such as obesity and diabetes. To test the hypothesis that crosstalk between the liver and pancreatic islets modulates β cell growth in response to insulin resistance, we used the liver-specific insulin receptor knockout (LIRKO) mouse, a unique model that exhibits dramatic islet hyperplasia. Using complementary in vivo parabiosis and transplantation assays, as well as in vitro islet culture approaches, we demonstrate that humoral, nonneural, non-cell-autonomous factor(s) induces β cell proliferation in LIRKO mice. Furthermore, we report that a hepatocyte-derived factor(s) stimulates mouse and human β cell proliferation in ex vivo assays, independent of ambient glucose and insulin levels. These data implicate the liver as a critical source of β cell growth factor(s) in insulin-resistant states.
Collapse
Affiliation(s)
- Abdelfattah El Ouaamari
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Dan Kawamori
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Ercument Dirice
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Chong Wee Liew
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer L. Shadrach
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Jiang Hu
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Hitoshi Katsuta
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Hollister-Lock
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Amy J. Wagers
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Rohit N. Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
74
|
|
75
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
76
|
[Current progress and future direction in the biology of ovarian germ stem cells in mammals]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:586-90. [PMID: 23266977 DOI: 10.3724/sp.j.1141.2012.06586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Whether or not oogenesis continues after birth in mammalian ovaries remains controversial. Since the 1950's, it has been generally accepted that oogenesis takes place during embryogenesis in mammals and ceases at birth. At birth, germ cells in mammalian ovaries have progressed to the diplotene stage of meiotic prophase and have formed primordial follicles with surrounding somatic cells. These primordial follicles represent follicle reserves of the reproductive life. However, this view has been recently challenged by a growing body of evidence showing the isolation and propagation of germ stem cells from mouse and human ovaries. These ovarian germ stem cells are capable of regenerating functional oocytes when transplanted back into recipient ovaries. Despite the discovery of the potential germ stem cells in mammalian ovaries, it remains uncertain whether these cells exist and function in ovaries under physiological conditions. Herein we review the current progress and future direction in this infant area.
Collapse
|
77
|
Celik O, Celik E, Turkcuoglu I, Yilmaz E, Simsek Y, Tiras B. Germline cells in ovarian surface epithelium of mammalians: a promising notion. Reprod Biol Endocrinol 2012; 10:112. [PMID: 23245287 PMCID: PMC3566967 DOI: 10.1186/1477-7827-10-112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 12/14/2012] [Indexed: 01/03/2023] Open
Abstract
It is a long held doctrine in reproductive biology that women are born with a finite number of oocytes and there is no oogenesis during the postnatal period. However, recent evidence challenges this by showing the presence of germ line stem cells in the human ovarian surface epithelium (OSE), which can serve as a source of germ cells, and differentiate into oocyte like structures. Postnatal renewal of oocytes may have enormous therapeutic potential especially in women facing the risk of premature ovarian failure idiopathically or iatrogenically after exposure to gonadotoxic chemotherapy and radiation for cancer therapy.This article reviews current knowledge on germ line stem cells in human OSE.
Collapse
Affiliation(s)
- Onder Celik
- Department of Obstetrics and Gynecology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Ebru Celik
- Department of Obstetrics and Gynecology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Ilgin Turkcuoglu
- Department of Obstetrics and Gynecology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Ercan Yilmaz
- Department of Obstetrics and Gynecology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Yavuz Simsek
- Department of Obstetrics and Gynecology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Bulent Tiras
- Department of Obstetric and Gynecology, Acibadem University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
78
|
|
79
|
BMP4 can generate primordial germ cells from bone-marrow-derived pluripotent stem cells. Cell Biol Int 2012; 36:1185-93. [DOI: 10.1042/cbi20110651] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
80
|
Santiquet N, Vallières L, Pothier F, Sirard MA, Robert C, Richard F. Transplanted bone marrow cells do not provide new oocytes but rescue fertility in female mice following treatment with chemotherapeutic agents. Cell Reprogram 2012; 14:123-9. [PMID: 22471934 DOI: 10.1089/cell.2011.0066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
It is generally accepted that mammalian females are born with a finite pool of oocytes and that this is the sole source of ovules throughout the reproductive life of the adult. This dogma was shaken in 2003 when researchers showed that the oocyte stock might be renewable in adult mammals. It has been proposed that hematopoietic stem cells might be a source of new oocytes. These discoveries have puzzled many researchers and remain controversial. In our study, we attempted to determine if transplanted bone marrow cells could provide new oocytes in PU.1 mice and in severe combined immunodeficiency (SCID) mice after treatment with chemotherapeutic agents. We also examined the possibility that grafted bovine embryonic ovarian cortex might provide an environment favoring such a response. We found no evidence that transplanted bone marrow cells provide new fertilizable oocytes in PU.1 mice, in SCID mice treated with chemotherapeutic agents, or with bovine embryonic ovarian tissue grafts. However, transplanted bone marrow cells have improved the fertility of SCID mice previously treated with chemotherapeutic agents. These data suggest that bone marrow cells cannot provide new oocytes but can positively influence ovarian physiology to improve the fertility of mice previously treated with chemotherapeutic agents.
Collapse
Affiliation(s)
- Nicolas Santiquet
- Centre de recherche en biologie de la reproduction, Université Laval, Québec, Québec, Canada
| | | | | | | | | | | |
Collapse
|
81
|
Liu XJ. Polar body emission. Cytoskeleton (Hoboken) 2012; 69:670-85. [PMID: 22730245 DOI: 10.1002/cm.21041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 12/13/2022]
Abstract
Generation of a haploid female germ cell, the egg, consists of two rounds of asymmetric cell division (meiosis I and meiosis II), yielding two diminutive and nonviable polar bodies and a large haploid egg. Animal eggs are also unique in the lack of centrioles and therefore form meiotic spindles without the pre-existence of the two dominant microtubule organizing centers (centrosomes) found in mitosis. Meiotic spindle assembly is further complicated by the unique requirement of sister chromatid mono-oriented in meiosis I. Nonetheless, the eggs appear to adopt many of the same proteins and mechanisms described in mitosis, with necessary modifications to accommodate their special needs. Unraveling these special modifications will not only help understanding animal reproduction, but should also enhance our understanding of cell division in general.
Collapse
Affiliation(s)
- X Johné Liu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa Hospital Civic Campus, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada.
| |
Collapse
|
82
|
Imamura M, Lin ZYC, Okano H. Cell-intrinsic reprogramming capability: gain or loss of pluripotency in germ cells. Reprod Med Biol 2012; 12:1-14. [PMID: 29699125 DOI: 10.1007/s12522-012-0131-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/30/2012] [Indexed: 12/23/2022] Open
Abstract
In multicellular organisms, germ cells are an extremely specialized cell type with the vital function of transmitting genetic information across generations. In this respect, they are responsible for the perpetuity of species, and are separated from somatic lineages at each generation. Interestingly, in the past two decades research has shown that germ cells have the potential to proceed along two distinct pathways: gametogenesis or pluripotency. Unequivocally, the primary role of germ cells is to produce gametes, the sperm or oocyte, to produce offspring. However, under specific conditions germ cells can become pluripotent, as shown by teratoma formation in vivo or cell culture-induced reprogramming in vitro. This phenomenon seems to be a general propensity of germ cells, irrespective of developmental phase. Recent attempts at cellular reprogramming have resulted in the generation of induced pluripotent stem cells (iPSCs). In iPSCs, the intracellular molecular networks instructing pluripotency have been activated and override the exclusively somatic cell programs that existed. Because the generation of iPSCs is highly artificial and depends on gene transduction, whether the resulting machinery reflects any physiological cell-intrinsic programs is open to question. In contrast, germ cells can spontaneously shift their fate to pluripotency during in-vitro culture. Here, we review the two fates of germ cells, i.e., differentiation and reprogramming. Understanding the molecular mechanisms regulating differentiation versus reprogramming would provide invaluable insight into understanding the mechanisms of cellular reprogramming that generate iPSCs.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| | - Zachary Yu-Ching Lin
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| |
Collapse
|
83
|
Monget P, Bobe J, Gougeon A, Fabre S, Monniaux D, Dalbies-Tran R. The ovarian reserve in mammals: a functional and evolutionary perspective. Mol Cell Endocrinol 2012; 356:2-12. [PMID: 21840373 DOI: 10.1016/j.mce.2011.07.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 01/15/2023]
Abstract
The constitution and the control of the ovarian reserve is of importance in mammals and women. In particular, the number of primordial follicles at puberty is positively correlated with the number of growing follicles and their response to gonadotropin treatments. The size of this ovarian reserve depends on genes involved in germ cell proliferation and differentiation, sexual differentiation, meiosis, germ cell degeneration, formation of primordial follicles, and on a potential mechanism of self-renewal of germ stem cells. In this review, we present the state of the art of the knowledge of genes and factors involved in all these processes. We first focus on the almost 70 genes identified mainly by mouse invalidation models, then we discuss the most plausible hypothesis concerning the possibility of the existence of germ cell self-renewal by neo-oogenesis in animal species and human, with a special interest for the role of corresponding genes in evolutionary distinct model species. All of the genes pointed out here are candidates susceptible to explain fertility defects such as the premature ovarian failure in human.
Collapse
Affiliation(s)
- Philippe Monget
- INRA, UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | | | | | | | | | | |
Collapse
|
84
|
Germline development from human pluripotent stem cells toward disease modeling of infertility. Fertil Steril 2012; 97:1250-9. [DOI: 10.1016/j.fertnstert.2012.04.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 01/05/2023]
|
85
|
Kyurkchiev S, Gandolfi F, Hayrabedyan S, Brevini TAL, Dimitrov R, Fitzgerald JS, Jabeen A, Mourdjeva M, Photini SM, Spencer P, Fernández N, Markert UR. Stem Cells in the Reproductive System. Am J Reprod Immunol 2012; 67:445-62. [DOI: 10.1111/j.1600-0897.2012.01140.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/16/2012] [Indexed: 01/01/2023] Open
Affiliation(s)
- Stanimir Kyurkchiev
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, UNISTEM; Università degli Studi di Milano; Milan; Italy
| | - Soren Hayrabedyan
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology, UNISTEM; Università degli Studi di Milano; Milan; Italy
| | - Roumen Dimitrov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences; Sofia; Bulgaria
| | | | - Asma Jabeen
- School of Biological Sciences; University of Essex; Colchester; Essex; UK
| | | | - Stella M. Photini
- Placenta , Department of Obstetrics; University Hospital Jena; Jena; Germany
| | - Patrick Spencer
- School of Biological Sciences; University of Essex; Colchester; Essex; UK
| | - Nelson Fernández
- School of Biological Sciences; University of Essex; Colchester; Essex; UK
| | - Udo R. Markert
- Placenta , Department of Obstetrics; University Hospital Jena; Jena; Germany
| |
Collapse
|
86
|
Reizel Y, Itzkovitz S, Adar R, Elbaz J, Jinich A, Chapal-Ilani N, Maruvka YE, Nevo N, Marx Z, Horovitz I, Wasserstrom A, Mayo A, Shur I, Benayahu D, Skorecki K, Segal E, Dekel N, Shapiro E. Cell lineage analysis of the mammalian female germline. PLoS Genet 2012; 8:e1002477. [PMID: 22383887 PMCID: PMC3285577 DOI: 10.1371/journal.pgen.1002477] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/23/2011] [Indexed: 01/11/2023] Open
Abstract
Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development. Many aspects of mammalian female germline development during embryogenesis and throughout adulthood are either unknown or under debate. In this study we applied a novel method for the reconstruction of cell lineage trees utilizing microsatellite mutations, accumulated during mouse life, in oocytes and other cells, sampled from young and old mice. Analysis of the reconstructed cell lineage trees shows that oocytes are clustered separately from bone-marrow derived cells, that oocytes from different ovaries share common progenitors, and that oocyte depth (number of cell divisions since the zygote) increases significantly with mouse age.
Collapse
Affiliation(s)
- Yitzhak Reizel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rivka Adar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Judith Elbaz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Adrian Jinich
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Chapal-Ilani
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef E. Maruvka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Nevo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Zipora Marx
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Horovitz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Adam Wasserstrom
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irena Shur
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Karl Skorecki
- Rappaport Faculty of Medicine and Research Institute, Technion and Rambam Medical Center, Haifa, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (ND); (ES)
| | - Ehud Shapiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (ND); (ES)
| |
Collapse
|
87
|
Kerr JB, Brogan L, Myers M, Hutt KJ, Mladenovska T, Ricardo S, Hamza K, Scott CL, Strasser A, Findlay JK. The primordial follicle reserve is not renewed after chemical or γ-irradiation mediated depletion. Reproduction 2012; 143:469-76. [PMID: 22301887 DOI: 10.1530/rep-11-0430] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reports indicate that germ-line stem cells present in adult mice can rapidly generate new oocytes and contribute to the primordial follicle reserve following conditions of ovotoxic stress. We further investigated the hypothesis that adult mice have the capacity to generate new oocytes by monitoring primordial follicle numbers throughout postnatal life and following depletion of the primordial follicle reserve by exposure to doxorubicin (DXR), trichostatin A (TSA), or whole-body γ-irradiation. We show that primordial follicle number remains stable in adult C57BL/6 mice between the ages of 25 and 100 days. However, within 2 days of treatment with DXR or TSA, primordial follicle numbers had declined to 65 and 51% respectively (P<0.05-0.01 when compared to untreated controls), with no restoration of follicle numbers evident after 7 days for either treatment. Furthermore, ovaries from mice subjected to sterilizing doses of γ-irradiation (0.45 or 4.5 Gy) revealed complete ablation of all primordial follicles 5 days after treatment, with no indication of follicular renewal. We conclude that neo-folliculogenesis does not occur following chemical or γ-irradiation mediated depletion of the primordial follicle reserve.
Collapse
Affiliation(s)
- J B Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Gougeon A, Notarianni E. There is no neo-oogenesis in the adult mammalian ovary. J Turk Ger Gynecol Assoc 2011; 12:270-3. [PMID: 24592008 DOI: 10.5152/jtgga.2011.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Alain Gougeon
- Inserm U1052, ANIPATH U.F.R. de médecine Lyon, Lyon, France
| | - Elena Notarianni
- Department of Biological and Biomedical Sciences, Durham University, Durham, UK
| |
Collapse
|
89
|
Bukovsky A. How can female germline stem cells contribute to the physiological neo-oogenesis in mammals and why menopause occurs? MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:498-505. [PMID: 20633318 DOI: 10.1017/s143192761000036x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
At the beginning of the last century, reproductive biologists have discussed whether in mammalian species the fetal oocytes persist or are replaced by neo-oogenesis during adulthood. Currently the prevailing view is that neo-oogenesis is functional in lower vertebrates but not in mammalian species. However, contrary to the evolutionary rules, this suggests that females of lower vertebrates have a better opportunity to provide healthy offspring compared to mammals with oocytes subjected to environmental threats for up to several decades. During the last 15 years, a new effort has been made to determine whether the oocyte pool in adult mammals is renewed as well. Most recently, Ji Wu and colleagues reported a production of offspring from female germline stem cells derived from neonatal and adult mouse ovaries. This indicates that both neonatal and adult mouse ovaries carry stem cells capable of producing functional oocytes. However, it is unclear whether neo-oogenesis from ovarian somatic stem cells is physiologically involved in follicular renewal and why menopause occurs. Here we review observations that indicate an involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from ovarian stem cells during the prime reproductive period and propose why menopause occurs in spite of persisting ovarian stem cells.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Department of Obstetrics and Gynecology, The University of Tennessee College of Medicine and Graduate School of Medicine, Knoxville, Tennessee 37920, USA.
| |
Collapse
|
90
|
Kim S, Izpisua Belmonte JC. Pluripotency of male germline stem cells. Mol Cells 2011; 32:113-21. [PMID: 21448589 PMCID: PMC3887674 DOI: 10.1007/s10059-011-1024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/22/2022] Open
Abstract
The ethical issues and public concerns regarding the use of embryonic stem (ES) cells in human therapy have motivated considerable research into the generation of pluripotent stem cell lines from non-embryonic sources. Numerous reports have shown that pluripotent cells can be generated and derived from germline stem cells (GSCs) in mouse and human testes during in vitro cultivation. The gene expression patterns of these cells are similar to those of ES cells and show the typical self-renewal and differentiation patterns of pluripotent cells in vivo and in vitro. However, the mechanisms underlying the spontaneous dedifferentiation of GSCs remain to be elucidated. Studies to identify master regulators in this reprogramming process are of critical importance for understanding the gene regulatory networks that sustain the cellular status of these cells. The results of such studies would provide a theoretical background for the practical use of these cells in regenerative medicine. Such studies would also help elucidate the molecular mechanisms underlying certain diseases, such as testicular germ cell tumors.
Collapse
Affiliation(s)
- Sungtae Kim
- Department of Chemistry, Korea University, Seoul 136-701, Korea
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, Barcelona, Spain
| |
Collapse
|
91
|
Silva-Santos KC, Santos GMG, Siloto LS, Hertel MF, Andrade ER, Rubin MIB, Sturion L, Melo-Sterza FA, Seneda MM. Estimate of the population of preantral follicles in the ovaries of Bos taurus indicus and Bos taurus taurus cattle. Theriogenology 2011; 76:1051-7. [PMID: 21722949 DOI: 10.1016/j.theriogenology.2011.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
Abstract
The number of oocytes recovered from Bos taurus indicus females subjected to ovum pick-up averaged two to four times greater compared to Bos taurus taurus females. The objective of the present study was to test the hypothesis that this difference in oocyte yield was due to more preantral follicles in the ovaries of Bos indicus females. Ovaries (n = 64) from Nelore (Bos indicus) fetuses (n = 10), heifers (n = 12), and cows (n = 10), and Aberdeen Angus (Bos taurus) fetuses (n = 10), heifers (n = 12), and cows (n = 10) were cut longitudinally into halves, fixed, and processed for histological evaluation. The number of preantral follicles was estimated by counting them in each histological section, using the oocyte nucleus as a marker and employing a correction factor. The average number of preantral follicles in the ovaries of Bos indicus vs Bos taurus was (mean ± SD) 143,929 ± 64,028 vs 285,155 ± 325,195 for fetuses, 76,851 ± 78,605 vs 109,673 ± 86,078 for heifers, and 39,438 ± 31,017 vs 89,577 ± 86,315 for cows (P > 0.05). The number of preantral follicles varied greatly among individual animals within the same category, as well as between breeds. In conclusion, we inferred that the higher oocyte yield from Bos indicus females was not due to a greater ovarian reserve of preantral follicles. Therefore, mechanisms controlling follicle development after the preantral stage likely accounted for differences between Bos indicus and Bos taurus females in number of oocytes retrieved at ovum pick-up.
Collapse
Affiliation(s)
- K C Silva-Santos
- Laboratório de Reprodução Animal, DCV-CCA-UEL, Londrina, PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Bukovsky A. Ovarian stem cell niche and follicular renewal in mammals. Anat Rec (Hoboken) 2011; 294:1284-306. [PMID: 21714105 DOI: 10.1002/ar.21422] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 04/28/2011] [Indexed: 12/24/2022]
Abstract
Stem cell niche consists of perivascular compartment, which connects the stem cells to the immune and vascular systems. During embryonic period, extragonadal primordial germ cells colonize coelomic epithelium of developing gonads. Subsequently, ovarian stem cells (OSC) produce secondary germ cells under the influence of OSC niche, including immune system-related cells and hormonal signaling. The OSC in fetal and adult human ovaries serve as a source of germ and granulosa cells. Lack of either granulosa or germ cell niche will result in premature ovarian failure in spite of the presence of OSC. During perinatal period, the OSC transdifferentiate into fibroblast-like cells forming the ovarian tunica albuginea resistant to environmental threats. They represent mesenchymal precursors of epithelial OSC during adulthood. The follicular renewal during the prime reproductive period (PRP) ensures that there are fresh eggs available for a healthy progeny. End of PRP is followed by exponentially growing fetal genetic abnormalities. The OSC are present in adult, aging, and postmenopausal ovaries, and differentiate in vitro into new oocytes. During in vitro development of large isolated oocytes reaching 200 μm in diameter, an ancestral mechanism of premeiotic nurse cells, which operates during oogenesis in developing ovaries from invertebrates to mammalian species, is utilized. In vitro developed eggs could be used for autologous IVF treatment of premature ovarian failure. Such eggs are also capable to produce parthenogenetic embryos like some cultured follicular oocytes. The parthenotes produce embryonic stem cells derived from inner cell mass, and these cells can serve as autologous pluripotent stem cells.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
93
|
Pontes J, Melo Sterza F, Basso A, Ferreira C, Sanches B, Rubin K, Seneda M. Ovum pick up, in vitro embryo production, and pregnancy rates from a large-scale commercial program using Nelore cattle (Bos indicus) donors. Theriogenology 2011; 75:1640-6. [DOI: 10.1016/j.theriogenology.2010.12.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 12/30/2010] [Accepted: 12/31/2010] [Indexed: 10/18/2022]
|
94
|
Byskov AG, Høyer PE, Yding Andersen C, Kristensen SG, Jespersen A, Møllgård K. No evidence for the presence of oogonia in the human ovary after their final clearance during the first two years of life. Hum Reprod 2011; 26:2129-39. [PMID: 21572085 DOI: 10.1093/humrep/der145] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Conflicting results of studies on mouse and human have either verified or refuted the presence of oogonia/primordial germ cells in the post-natal ovary. The aim of this study was to trace whether oogonia recognized by immunohistochemical methods in the first trimester human ovary were present also in peri- and post-natal ovaries. METHODS For this study, 82 human ovaries were collected: 25 from embryos from 5 to 10 weeks post conception (wpc), 2 at 18 wpc, 32 from 32 wpc to 2 years and 23 from 2 to 32 years. Of these, 80 ovaries were fixed and paraffin-embedded and 2 (8 year-old) ovaries were processed for plastic sections. Serial sections were prepared for immunohistochemical detection of markers for oogonia: tyrosine kinase receptor for stem cell factor (SCF)(C-KIT), stage-specific embryonic antigen-4 (SSEA4), homeobox gene transcription factor (NANOG), octamer binding transcription factor 4 (OCT4) and melanoma antigen-4 (Mage-A4), while noting that C-KIT also stains diplotene oocytes. RESULTS Almost all oogonia exclusively stained for SSEA4, NANOG, OCT4 and C-KIT, whereas MAGE-A4 only stained a small fraction. At birth only a few oogonia were stained. These disappeared before 2 years, leaving only diplotene oocytes stained for C-KIT. From 18 wpc to 2 years, the medulla contained conglomerates of healthy and degenerating oogonia and small follicles, waste baskets (WBs) and oogonia enclosed in growing follicles (FWB). Medulla of older ovaries contained groups of primordial, healthy follicles. CONCLUSIONS We found no evidence for the presence of oogonia in the human ovary after their final clearing during the first 2 years. We suggest that perinatal medullary WB and FWB give rise to the groups of small, healthy follicles in the medulla.
Collapse
Affiliation(s)
- A G Byskov
- Laboratory of Reproductive Biology, Section 5712, University Hospital of Copenhagen, Rigshospitalet, Section 5712, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
95
|
Nakamura S, Kobayashi K, Nishimura T, Tanaka M. Ovarian germline stem cells in the teleost fish, medaka (Oryzias latipes). Int J Biol Sci 2011; 7:403-9. [PMID: 21547057 PMCID: PMC3088282 DOI: 10.7150/ijbs.7.403] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 04/01/2011] [Indexed: 01/16/2023] Open
Abstract
In the mammalian testis germline stem cells keep producing many sperms, while there is no direct evidence for the presence of germline stem cells in the ovary. It is widely accepted in mammals that the mature oocytes are supplied from a pool of primordial follicles in the adult ovary. In other vertebrates, such as fish, however, there has been no investigation on the mechanism underlying the high egg-producing ability. In this review, we introduce the recently identified ovarian germline stem cells and the surrounding unique structure in teleost fish, medaka (Oryzias latipes) [Nakamura S et al. Science. 2010; 328: 1561-1563]. We also discuss about the expression and function of sox9 that characterizes this unique structure.
Collapse
Affiliation(s)
- Shuhei Nakamura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | | | | | | |
Collapse
|
96
|
Notarianni E. Reinterpretation of evidence advanced for neo-oogenesis in mammals, in terms of a finite oocyte reserve. J Ovarian Res 2011; 4:1. [PMID: 21211009 PMCID: PMC3024995 DOI: 10.1186/1757-2215-4-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/06/2011] [Indexed: 12/22/2022] Open
Abstract
The central tenet of ovarian biology, that the oocyte reserve in adult female mammals is finite, has been challenged over recent years by proponents of neo-oogenesis, who claim that germline stem cells exist in the ovarian surface epithelium or the bone marrow. Currently opinion is divided over these claims, and further scrutiny of the evidence advanced in support of the neo-oogenesis hypothesis is warranted - especially in view of the enormous implications for female fertility and health. This article contributes arguments against the hypothesis, providing alternative explanations for key observations, based on published data. Specifically, DNA synthesis in germ cells in the postnatal mouse ovary is attributed to mitochondrial genome replication, and to DNA repair in oocytes lagging in meiotic progression. Lines purported to consist of germline stem cells are identified as ovarian epithelium or as oogonia, from which cultures have been derived previously. Effects of ovotoxic treatments are found to negate claims for the existence of germline stem cells. And arguments are presented for the misidentification of ovarian somatic cells as de novo oocytes. These clarifications, if correct, undermine the concept that germline stem cells supplement the oocyte quota in the postnatal ovary; and instead comply with the theory of a fixed, unregenerated reserve. It is proposed that acceptance of the neo-oogenesis hypothesis is erroneous, and may effectively impede research in areas of ovarian biology. To illustrate, a novel explanation that is consistent with orthodox theory is provided for the observed restoration of fertility in chemotherapy-treated female mice following bone marrow transplantation, otherwise interpreted by proponents of neo-oogenesis as involving stimulation of endogenous germline stem cells. Instead, it is proposed that the chemotherapeutic regimens induce autoimmunity to ovarian antigens, and that the haematopoietic chimaerism produced by bone marrow transplantation circumvents activation of an autoreactive response, thereby rescuing ovarian function. The suggested mechanism draws from animal models of autoimmune ovarian disease, which implicate dysregulation of T cell regulatory function; and from a surmised role for follicular apoptosis in the provision of ovarian autoantigens, to sustain self-tolerance during homeostasis. This interpretation has direct implications for fertility preservation in women undergoing chemotherapy.
Collapse
Affiliation(s)
- Elena Notarianni
- Department of Biological & Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
97
|
Pontes J, Silva K, Basso A, Rigo A, Ferreira C, Santos G, Sanches B, Porcionato J, Vieira P, Faifer F, Sterza F, Schenk J, Seneda M. Large-scale in vitro embryo production and pregnancy rates from Bos taurus, Bos indicus, and indicus-taurus dairy cows using sexed sperm. Theriogenology 2010; 74:1349-55. [DOI: 10.1016/j.theriogenology.2010.06.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 05/22/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
|
98
|
Aydin Y, Celiloglu M, Koyuncuoglu M, Ulukus C. Follicular Dynamics and Apoptosis Following Unilateral Oophorectomy. Syst Biol Reprod Med 2010; 56:311-7. [DOI: 10.3109/19396368.2010.496033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
99
|
Kee K, Flores M, Cedars MI, Reijo Pera RA. Human primordial germ cell formation is diminished by exposure to environmental toxicants acting through the AHR signaling pathway. Toxicol Sci 2010; 117:218-24. [PMID: 20562217 PMCID: PMC2923286 DOI: 10.1093/toxsci/kfq179] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Historically, effects of environmental toxicants on human development have been deduced via epidemiological studies because direct experimental analysis has not been possible. However, in recent years, the derivation of human pluripotent stem cells has provided a potential experimental system to directly probe human development. Here, we used human embryonic stem cells (hESCs) to study the effect of environmental toxicants on human germ cell development, with a focus on differentiation of the founding population of primordial germ cells (PGCs), which will go on to form the oocytes of the adult. We demonstrate that human PGC numbers are specifically reduced by exposure to polycyclic aromatic hydrocarbons (PAHs), a group of toxicants common in air pollutants released from gasoline combustion or tobacco smoke. Further, we demonstrate that the adverse effects of PAH exposure are mediated through the aromatic hydrocarbon receptor (AHR) and BAX pathway. This study demonstrates the utility of hESCs as a model system for direct examination of the molecular and genetic pathways of environmental toxicants on human germ cell development.
Collapse
Affiliation(s)
- Kehkooi Kee
- Department of Obstetrics and Gynecology, Center for Human Embryonic Stem Cell Research and Education, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford University, Palo Alto, California, USA.
| | | | | | | |
Collapse
|
100
|
Gougeon A. [Is neo-oogenesis in the adult ovary, a realistic paradigm?]. ACTA ACUST UNITED AC 2010; 38:398-401. [PMID: 20576550 DOI: 10.1016/j.gyobfe.2010.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/12/2010] [Indexed: 01/10/2023]
Abstract
It is a central dogma of female reproductive biology that oogenesis ceases around the time of birth in mammalian species. In 2004 and 2005, two studies were published by Johnson et al., in which they claimed that in the adult mouse ovary, neo-oogenesis takes place and originates from female germline stem cells that are present in either the ovarian surface epithelium or bone marrow. Following these publications, experiments showed that non-germinal stem cells could generate oocytes. However, in the mouse, ability of extra-ovarian stem cells to refurbish the ovary in new oocytes competent to ovulate, and subsequent existence of a spontaneous neo-oogenesis in the adult ovary in normal physiologic conditions, have been disputed. Morphologic studies performed in the adult mouse ovary showed that atresia of the immature follicle pool was strongly overestimated by Johnson et al., and that no intermediary stages of meiosis were seen. These observations led to the conclusion that adult female mice do not need neo-oogenesis for maintaining a normal reproductive function. However, a recent study have shown that female germline stem cells might be present in the ovarian surface epithelium in mice and humans. When sampled in GFP transgenic mice, cultured for a long period and transplanted into ovaries of sterilized mice, these cells underwent oogenesis and the mice produced offsprings. These new data support the possibility to experimentally restore fertility in women suffering from a premature ovarian failure.
Collapse
|