51
|
Ding D, Blee AM, Zhang J, Pan Y, Becker NA, Maher LJ, Jimenez R, Wang L, Huang H. Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis. Nat Commun 2023; 14:4671. [PMID: 37537199 PMCID: PMC10400651 DOI: 10.1038/s41467-023-40352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (GOF) mutants are now shown to bind to a unique DNA sequence in the CTNNB1 gene promoter and transactivate its expression. ERG and β-Catenin co-occupy sites at pyrimidine synthesis gene (PSG) loci and promote PSG expression, pyrimidine synthesis and PCa growth. β-Catenin inhibition by small molecule inhibitors or oligonucleotide-based PROTAC suppresses TMPRSS2-ERG- and p53 mutant-positive PCa cell growth in vitro and in mice. Our study identifies a gene transactivation function of GOF mutant p53 and reveals β-Catenin as a transcriptional target gene of p53 GOF mutants and a driver and therapeutic target of TMPRSS2-ERG- and p53 GOF mutant-positive PCa.
Collapse
Affiliation(s)
- Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 73240, USA
| | - Jianong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
52
|
Mahé M, Rios-Fuller TJ, Karolin A, Schneider RJ. Genetics of enzymatic dysfunctions in metabolic disorders and cancer. Front Oncol 2023; 13:1230934. [PMID: 37601653 PMCID: PMC10433910 DOI: 10.3389/fonc.2023.1230934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Inherited metabolic disorders arise from mutations in genes involved in the biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic deficiency and severe metabolic impairments. Metabolic enzymes are essential for the normal functioning of cells and are involved in the production of amino acids, fatty acids and nucleotides, which are essential for cell growth, division and survival. When the activity of metabolic enzymes is disrupted due to mutations or changes in expression levels, it can result in various metabolic disorders that have also been linked to cancer development. However, there remains much to learn regarding the relationship between the dysregulation of metabolic enzymes and metabolic adaptations in cancer cells. In this review, we explore how dysregulated metabolism due to the alteration or change of metabolic enzymes in cancer cells plays a crucial role in tumor development, progression, metastasis and drug resistance. In addition, these changes in metabolism provide cancer cells with a number of advantages, including increased proliferation, resistance to apoptosis and the ability to evade the immune system. The tumor microenvironment, genetic context, and different signaling pathways further influence this interplay between cancer and metabolism. This review aims to explore how the dysregulation of metabolic enzymes in specific pathways, including the urea cycle, glycogen storage, lysosome storage, fatty acid oxidation, and mitochondrial respiration, contributes to the development of metabolic disorders and cancer. Additionally, the review seeks to shed light on why these enzymes represent crucial potential therapeutic targets and biomarkers in various cancer types.
Collapse
Affiliation(s)
| | | | | | - Robert J. Schneider
- Department of Microbiology, Grossman NYU School of Medicine, New York, NY, United States
| |
Collapse
|
53
|
Moretton A, Kourtis S, Gañez Zapater A, Calabrò C, Espinar Calvo ML, Fontaine F, Darai E, Abad Cortel E, Block S, Pascual‐Reguant L, Pardo‐Lorente N, Ghose R, Vander Heiden MG, Janic A, Müller AC, Loizou JI, Sdelci S. A metabolic map of the DNA damage response identifies PRDX1 in the control of nuclear ROS scavenging and aspartate availability. Mol Syst Biol 2023; 19:e11267. [PMID: 37259925 PMCID: PMC10333845 DOI: 10.15252/msb.202211267] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
While cellular metabolism impacts the DNA damage response, a systematic understanding of the metabolic requirements that are crucial for DNA damage repair has yet to be achieved. Here, we investigate the metabolic enzymes and processes that are essential for the resolution of DNA damage. By integrating functional genomics with chromatin proteomics and metabolomics, we provide a detailed description of the interplay between cellular metabolism and the DNA damage response. Further analysis identified that Peroxiredoxin 1, PRDX1, contributes to the DNA damage repair. During the DNA damage response, PRDX1 translocates to the nucleus where it reduces DNA damage-induced nuclear reactive oxygen species. Moreover, PRDX1 loss lowers aspartate availability, which is required for the DNA damage-induced upregulation of de novo nucleotide synthesis. In the absence of PRDX1, cells accumulate replication stress and DNA damage, leading to proliferation defects that are exacerbated in the presence of etoposide, thus revealing a role for PRDX1 as a DNA damage surveillance factor.
Collapse
Affiliation(s)
- Amandine Moretton
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Antoni Gañez Zapater
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Chiara Calabrò
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | | | - Frédéric Fontaine
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Evangelia Darai
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Etna Abad Cortel
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Samuel Block
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Laura Pascual‐Reguant
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Natalia Pardo‐Lorente
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Ritobrata Ghose
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Dana‐Farber Cancer InstituteBostonMAUSA
| | - Ana Janic
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I Loizou
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
54
|
Thomsen KL, Eriksen PL, Kerbert AJC, De Chiara F, Jalan R, Vilstrup H. Role of ammonia in NAFLD: An unusual suspect. JHEP Rep 2023; 5:100780. [PMID: 37425212 PMCID: PMC10326708 DOI: 10.1016/j.jhepr.2023.100780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 07/11/2023] Open
Abstract
Mechanistically, the symptomatology and disease progression of non-alcoholic fatty liver disease (NAFLD) remain poorly understood, which makes therapeutic progress difficult. In this review, we focus on the potential importance of decreased urea cycle activity as a pathogenic mechanism. Urea synthesis is an exclusive hepatic function and is the body's only on-demand and definitive pathway to remove toxic ammonia. The compromised urea cycle activity in NAFLD is likely caused by epigenetic damage to urea cycle enzyme genes and increased hepatocyte senescence. When the urea cycle is dysfunctional, ammonia accumulates in liver tissue and blood, as has been demonstrated in both animal models and patients with NAFLD. The problem may be augmented by parallel changes in the glutamine/glutamate system. In the liver, the accumulation of ammonia leads to inflammation, stellate cell activation and fibrogenesis, which is partially reversible. This may be an important mechanism for the transition of bland steatosis to steatohepatitis and further to cirrhosis and hepatocellular carcinoma. Systemic hyperammonaemia has widespread negative effects on other organs. Best known are the cerebral consequences that manifest as cognitive disturbances, which are prevalent in patients with NAFLD. Furthermore, high ammonia levels induce a negative muscle protein balance leading to sarcopenia, compromised immune function and increased risk of liver cancer. There is currently no rational way to reverse reduced urea cycle activity but there are promising animal and human reports of ammonia-lowering strategies correcting several of the mentioned untoward aspects of NAFLD. In conclusion, the ability of ammonia-lowering strategies to control the symptoms and prevent the progression of NAFLD should be explored in clinical trials.
Collapse
Affiliation(s)
- Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Annarein JC. Kerbert
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Francesco De Chiara
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Rajiv Jalan
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| |
Collapse
|
55
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
56
|
Hong KU, Tagnedji AH, Doll MA, Walls KM, Hein DW. Upregulation of cytidine deaminase in NAT1 knockout breast cancer cells. J Cancer Res Clin Oncol 2023; 149:5047-5060. [PMID: 36329350 PMCID: PMC10193532 DOI: 10.1007/s00432-022-04436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Arylamine N-acetyltransferase 1 (NAT1), a phase II metabolic enzyme, is frequently upregulated in breast cancer. Inhibition or depletion of NAT1 leads to growth retardation in breast cancer cells in vitro and in vivo. A previous metabolomics study of MDA-MB-231 breast cancer cells suggests that NAT1 deletion leads to a defect in de novo pyrimidine biosynthesis. In the present study, we observed that NAT1 deletion results in upregulation of cytidine deaminase (CDA), which is involved in the pyrimidine salvage pathway, in multiple breast cancer cell lines (MDA-MB-231, MCF-7 and ZR-75-1). We hypothesized that NAT1 KO MDA-MB-231 cells show differential sensitivity to drugs that either inhibit cellular pyrimidine homeostasis or are metabolized by CDA. METHODS The cells were treated with (1) inhibitors of dihydroorotate dehydrogenase or CDA (e.g., teriflunomide and tetrahydrouridine); (2) pyrimidine/nucleoside analogs (e.g., gemcitabine and 5-azacytidine); and (3) naturally occurring, modified cytidines (e.g., 5-formyl-2'-deoxycytidine; 5fdC). RESULTS Although NAT1 KO cells failed to show differential sensitivity to nucleoside analogs that are metabolized by CDA, they were markedly more sensitive to 5fdC which induces DNA damage in the presence of high CDA activity. Co-treatment with 5fdC and a CDA inhibitor, tetrahydrouridine, abrogated the increase in 5fdC cytotoxicity in NAT1 KO cells, suggesting that the increased sensitivity of NAT1 KO cells to 5fdC is dependent on their increased CDA activity. CONCLUSIONS The present findings suggest a novel therapeutic strategy to treat breast cancer with elevated NAT1 expression. For instance, NAT1 inhibition may be combined with cytotoxic nucleosides (e.g., 5fdC) for breast cancer treatment.
Collapse
Affiliation(s)
- Kyung U Hong
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Afi H Tagnedji
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark A Doll
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kennedy M Walls
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W Hein
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
57
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
58
|
Apiz Saab JJ, Dzierozynski LN, Jonker PB, AminiTabrizi R, Shah H, Menjivar RE, Scott AJ, Nwosu ZC, Zhu Z, Chen RN, Oh M, Sheehan C, Wahl DR, Pasca di Magliano M, Lyssiotis CA, Macleod KF, Weber CR, Muir A. Pancreatic tumors exhibit myeloid-driven amino acid stress and upregulate arginine biosynthesis. eLife 2023; 12:e81289. [PMID: 37254839 PMCID: PMC10260022 DOI: 10.7554/elife.81289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023] Open
Abstract
Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic programs for survival and proliferation. Therefore, knowledge of microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to understand the metabolism underpinning cancer cell biology. Previously, we performed quantitative metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the microenvironment of these tumors. Here, we develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the PDAC microenvironment, enabling us to study PDAC metabolism ex vivo under physiological nutrient conditions. We show that PDAC cells cultured in TIFM adopt a cellular state closer to that of PDAC cells present in tumors compared to standard culture models. Further, using the TIFM model, we found arginine biosynthesis is active in PDAC and allows PDAC cells to maintain levels of this amino acid despite microenvironmental arginine depletion. We also show that myeloid derived arginase activity is largely responsible for the low levels of arginine in PDAC tumors. Altogether, these data indicate that nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models that incorporate physiological nutrient availability have improved fidelity to in vivo systems and enable the discovery of novel cancer metabolic phenotypes.
Collapse
Affiliation(s)
- Juan J Apiz Saab
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Patrick B Jonker
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Roya AminiTabrizi
- Metabolomics Platform, Comprehensive Cancer Center, University of ChicagoChicagoUnited States
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, University of ChicagoChicagoUnited States
| | - Rosa Elena Menjivar
- Cellular and Molecular Biology Program, University of Michigan-Ann ArborAnn ArborUnited States
| | - Andrew J Scott
- Department of Radiation Oncology, University of MichiganAnn ArborUnited States
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Zhou Zhu
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Riona N Chen
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Moses Oh
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Colin Sheehan
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Daniel R Wahl
- Department of Radiation Oncology, University of MichiganAnn ArborUnited States
| | | | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Kay F Macleod
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Alexander Muir
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| |
Collapse
|
59
|
Offin M, Fitzgerald B, Zauderer MG, Doroshow D. The past, present, and future of targeted therapeutic approaches in patients with diffuse pleural mesotheliomas. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:21. [PMID: 38895597 PMCID: PMC11185317 DOI: 10.20517/2394-4722.2022.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Despite our growing understanding of the genomic landscape of diffuse pleural mesotheliomas (DPM), there has been limited success in targeted therapeutic strategies for the disease. This review summarizes attempts to develop targeted therapies in DPM, focusing on the following targets being clinically explored in recent and ongoing clinical trials: vascular endothelial growth factor, mesothelin, BRCA1-associated protein 1, Wilms tumor 1 protein, NF2/YAP/TAZ, CDKN2, methylthioadenosine phosphorylase, v-domain Ig suppressor T-cell activation, and argininosuccinate synthetase 1. Although preclinical data for these targets are promising, few have efficaciously translated to benefit our patients. Future efforts should seek to expand the availability of preclinical models that faithfully recapitulate DPM biology, develop clinically relevant biomarkers, and refine patient selection criteria for clinical trials.
Collapse
Affiliation(s)
- Michael Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bailey Fitzgerald
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marjorie G. Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Deborah Doroshow
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
60
|
Rattigan KM, Zarou MM, Helgason GV. Metabolism in stem cell-driven leukemia: parallels between hematopoiesis and immunity. Blood 2023; 141:2553-2565. [PMID: 36634302 PMCID: PMC10646800 DOI: 10.1182/blood.2022018258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Our understanding of cancer metabolism spans from its role in cellular energetics and supplying the building blocks necessary for proliferation, to maintaining cellular redox and regulating the cellular epigenome and transcriptome. Cancer metabolism, once thought to be solely driven by upregulated glycolysis, is now known to comprise multiple pathways with great plasticity in response to extrinsic challenges. Furthermore, cancer cells can modify their surrounding niche during disease initiation, maintenance, and metastasis, thereby contributing to therapy resistance. Leukemia is a paradigm model of stem cell-driven cancer. In this study, we review how leukemia remodels the niche and rewires its metabolism, with particular attention paid to therapy-resistant stem cells. Specifically, we aim to give a global, nonexhaustive overview of key metabolic pathways. By contrasting the metabolic rewiring required by myeloid-leukemic stem cells with that required for hematopoiesis and immune cell function, we highlight the metabolic features they share. This is a critical consideration when contemplating anticancer metabolic inhibitor options, especially in the context of anticancer immune therapies. Finally, we examine pathways that have not been studied in leukemia but are critical in solid cancers in the context of metastasis and interaction with new niches. These studies also offer detailed mechanisms that are yet to be investigated in leukemia. Given that cancer (and normal) cells can meet their energy requirements by not only upregulating metabolic pathways but also utilizing systemically available substrates, we aim to inform how interlinked these metabolic pathways are, both within leukemic cells and between cancer cells and their niche.
Collapse
Affiliation(s)
- Kevin M. Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martha M. Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - G. Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
61
|
Owusu-Ansah M, Guptan N, Alindogan D, Morizono M, Caldovic L. NAGS, CPS1, and SLC25A13 (Citrin) at the Crossroads of Arginine and Pyrimidines Metabolism in Tumor Cells. Int J Mol Sci 2023; 24:ijms24076754. [PMID: 37047726 PMCID: PMC10094985 DOI: 10.3390/ijms24076754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Urea cycle enzymes and transporters collectively convert ammonia into urea in the liver. Aberrant overexpression of carbamylphosphate synthetase 1 (CPS1) and SLC25A13 (citrin) genes has been associated with faster proliferation of tumor cells due to metabolic reprogramming that increases the activity of the CAD complex and pyrimidine biosynthesis. N-acetylglutamate (NAG), produced by NAG synthase (NAGS), is an essential activator of CPS1. Although NAGS is expressed in lung cancer derived cell lines, expression of the NAGS gene and its product was not evaluated in tumors with aberrant expression of CPS1 and citrin. We used data mining approaches to identify tumor types that exhibit aberrant overexpression of NAGS, CPS1, and citrin genes, and evaluated factors that may contribute to increased expression of the three genes and their products in tumors. Median expression of NAGS, CPS1, and citrin mRNA was higher in glioblastoma multiforme (GBM), glioma, and stomach adenocarcinoma (STAD) samples compared to the matched normal tissue. Median expression of CPS1 and citrin mRNA was higher in the lung adenocarcinoma (LUAD) sample while expression of NAGS mRNA did not differ. High NAGS expression was associated with an unfavorable outcome in patients with glioblastoma and GBM. Low NAGS expression was associated with an unfavorable outcome in patients with LUAD. Patterns of DNase hypersensitive sites and histone modifications in the upstream regulatory regions of NAGS, CPS1, and citrin genes were similar in liver tissue, lung tissue, and A549 lung adenocarcinoma cells despite different expression levels of the three genes in the liver and lung. Citrin gene copy numbers correlated with its mRNA expression in glioblastoma, GBM, LUAD, and STAD samples. There was little overlap between NAGS, CPS1, and citrin sequence variants found in patients with respective deficiencies, tumor samples, and individuals without known rare genetic diseases. The correlation between NAGS, CPS1, and citrin mRNA expression in the individual glioblastoma, GBM, LUAD, and STAD samples was very weak. These results suggest that the increased cytoplasmic supply of either carbamylphosphate, produced by CPS1, or aspartate may be sufficient to promote tumorigenesis, as well as the need for an alternative explanation of CPS1 activity in the absence of NAGS expression and NAG.
Collapse
Affiliation(s)
- Melissa Owusu-Ansah
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Nikita Guptan
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Dylon Alindogan
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Michio Morizono
- School of Mathematics, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ljubica Caldovic
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| |
Collapse
|
62
|
Phillips MM, Pavlyk I, Allen M, Ghazaly E, Cutts R, Carpentier J, Berry JS, Nattress C, Feng S, Hallden G, Chelala C, Bomalaski J, Steele J, Sheaff M, Balkwill F, Szlosarek PW. A role for macrophages under cytokine control in mediating resistance to ADI-PEG20 (pegargiminase) in ASS1-deficient mesothelioma. Pharmacol Rep 2023; 75:570-584. [PMID: 37010783 DOI: 10.1007/s43440-023-00480-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Pegylated arginine deiminase (ADI-PEG20; pegargiminase) depletes arginine and improves survival outcomes for patients with argininosuccinate synthetase 1 (ASS1)-deficient malignant pleural mesothelioma (MPM). Optimisation of ADI-PEG20-based therapy will require a deeper understanding of resistance mechanisms, including those mediated by the tumor microenvironment. Here, we sought to reverse translate increased tumoral macrophage infiltration in patients with ASS1-deficient MPM relapsing on pegargiminase therapy. METHODS Macrophage-MPM tumor cell line (2591, MSTO, JU77) co-cultures treated with ADI-PEG20 were analyzed by flow cytometry. Microarray experiments of gene expression profiling were performed in ADI-PEG20-treated MPM tumor cells, and macrophage-relevant genetic "hits" were validated by qPCR, ELISA, and LC/MS. Cytokine and argininosuccinate analyses were performed using plasma from pegargiminase-treated patients with MPM. RESULTS We identified that ASS1-expressing macrophages promoted viability of ADI-PEG20-treated ASS1-negative MPM cell lines. Microarray gene expression data revealed a dominant CXCR2-dependent chemotactic signature and co-expression of VEGF-A and IL-1α in ADI-PEG20-treated MPM cell lines. We confirmed that ASS1 in macrophages was IL-1α-inducible and that the argininosuccinate concentration doubled in the cell supernatant sufficient to restore MPM cell viability under co-culture conditions with ADI-PEG20. For further validation, we detected elevated plasma VEGF-A and CXCR2-dependent cytokines, and increased argininosuccinate in patients with MPM progressing on ADI-PEG20. Finally, liposomal clodronate depleted ADI-PEG20-driven macrophage infiltration and suppressed growth significantly in the MSTO xenograft murine model. CONCLUSIONS Collectively, our data indicate that ADI-PEG20-inducible cytokines orchestrate argininosuccinate fuelling of ASS1-deficient mesothelioma by macrophages. This novel stromal-mediated resistance pathway may be leveraged to optimize arginine deprivation therapy for mesothelioma and related arginine-dependent cancers.
Collapse
Affiliation(s)
- Melissa M Phillips
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
- Department of Medical Oncology, Barts Health NHS Trust, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Iuliia Pavlyk
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Michael Allen
- Center for Tumor Microenvironment, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Essam Ghazaly
- Centre for Haemato-Oncology, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
- Medicines and Healthcare Products Regulatory Agency (MHRA), London, UK
| | - Rosalind Cutts
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Josephine Carpentier
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Joe Scott Berry
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Callum Nattress
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Shenghui Feng
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Gunnel Hallden
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Claude Chelala
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - John Bomalaski
- Polaris Pharmaceuticals, Inc., San Diego, CA, 92121, USA
| | - Jeremy Steele
- Department of Medical Oncology, Barts Health NHS Trust, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Michael Sheaff
- Department of Histopathology, Barts Health NHS Trust, Royal London Hospital, London, E1 1BB, UK
| | - Frances Balkwill
- Center for Tumor Microenvironment, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Peter W Szlosarek
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK.
- Department of Medical Oncology, Barts Health NHS Trust, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK.
| |
Collapse
|
63
|
Missiaen R, Lesner NP, Simon MC. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment. EMBO J 2023; 42:e112067. [PMID: 36808622 PMCID: PMC10015374 DOI: 10.15252/embj.2022112067] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 02/22/2023] Open
Abstract
A role for hypoxia-inducible factors (HIFs) in hypoxia-dependent regulation of tumor cell metabolism has been thoroughly investigated and covered in reviews. However, there is limited information available regarding HIF-dependent regulation of nutrient fates in tumor and stromal cells. Tumor and stromal cells may generate nutrients necessary for function (metabolic symbiosis) or deplete nutrients resulting in possible competition between tumor cells and immune cells, a result of altered nutrient fates. HIF and nutrients in the tumor microenvironment (TME) affect stromal and immune cell metabolism in addition to intrinsic tumor cell metabolism. HIF-dependent metabolic regulation will inevitably result in the accumulation or depletion of essential metabolites in the TME. In response, various cell types in the TME will respond to these hypoxia-dependent alterations by activating HIF-dependent transcription to alter nutrient import, export, and utilization. In recent years, the concept of metabolic competition has been proposed for critical substrates, including glucose, lactate, glutamine, arginine, and tryptophan. In this review, we discuss how HIF-mediated mechanisms control nutrient sensing and availability in the TME, the competition for nutrients, and the metabolic cross-talk between tumor and stromal cells.
Collapse
Affiliation(s)
- Rindert Missiaen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
64
|
Srivastava A, Vinod PK. Identification and Characterization of Metabolic Subtypes of Endometrial Cancer Using a Systems-Level Approach. Metabolites 2023; 13:metabo13030409. [PMID: 36984849 PMCID: PMC10054278 DOI: 10.3390/metabo13030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Endometrial cancer (EC) is the most common gynecological cancer worldwide. Understanding metabolic adaptation and its heterogeneity in tumor tissues may provide new insights and help in cancer diagnosis, prognosis, and treatment. In this study, we investigated metabolic alterations of EC to understand the variations in metabolism within tumor samples. Integration of transcriptomics data of EC (RNA-Seq) and the human genome-scale metabolic network was performed to identify the metabolic subtypes of EC and uncover the underlying dysregulated metabolic pathways and reporter metabolites in each subtype. The relationship between metabolic subtypes and clinical variables was explored. Further, we correlated the metabolic changes occurring at the transcriptome level with the genomic alterations. Based on metabolic profile, EC patients were stratified into two subtypes (metabolic subtype-1 and subtype-2) that significantly correlated to patient survival, tumor stages, mutation, and copy number variations. We observed the co-activation of the pentose phosphate pathway, one-carbon metabolism, and genes involved in controlling estrogen levels in metabolic subtype-2, which is linked to poor survival. PNMT and ERBB2 are also upregulated in metabolic subtype-2 samples and present on the same chromosome locus 17q12, which is amplified. PTEN and TP53 mutations show mutually exclusive behavior between subtypes and display a difference in survival. This work identifies metabolic subtypes with distinct characteristics at the transcriptome and genome levels, highlighting the metabolic heterogeneity within EC.
Collapse
|
65
|
Bench-to-Bedside Studies of Arginine Deprivation in Cancer. Molecules 2023; 28:molecules28052150. [PMID: 36903394 PMCID: PMC10005060 DOI: 10.3390/molecules28052150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Arginine is a semi-essential amino acid which becomes wholly essential in many cancers commonly due to the functional loss of Argininosuccinate Synthetase 1 (ASS1). As arginine is vital for a plethora of cellular processes, its deprivation provides a rationale strategy for combatting arginine-dependent cancers. Here we have focused on pegylated arginine deiminase (ADI-PEG20, pegargiminase)-mediated arginine deprivation therapy from preclinical through to clinical investigation, from monotherapy to combinations with other anticancer therapeutics. The translation of ADI-PEG20 from the first in vitro studies to the first positive phase 3 trial of arginine depletion in cancer is highlighted. Finally, this review discusses how the identification of biomarkers that may denote enhanced sensitivity to ADI-PEG20 beyond ASS1 may be realized in future clinical practice, thus personalising arginine deprivation therapy for patients with cancer.
Collapse
|
66
|
Zhang J, Zou S, Fang L. Metabolic reprogramming in colorectal cancer: regulatory networks and therapy. Cell Biosci 2023; 13:25. [PMID: 36755301 PMCID: PMC9906896 DOI: 10.1186/s13578-023-00977-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
With high prevalence and mortality, together with metabolic reprogramming, colorectal cancer is a leading cause of cancer-related death. Metabolic reprogramming gives tumors the capacity for long-term cell proliferation, making it a distinguishing feature of cancer. Energy and intermediate metabolites produced by metabolic reprogramming fuel the rapid growth of cancer cells. Aberrant metabolic enzyme-mediated tumor metabolism is regulated at multiple levels. Notably, tumor metabolism is affected by nutrient levels, cell interactions, and transcriptional and posttranscriptional regulation. Understanding the crosstalk between metabolic enzymes and colorectal carcinogenesis factors is particularly important to advance research for targeted cancer therapy strategies via the investigation into the aberrant regulation of metabolic pathways. Hence, the abnormal roles and regulation of metabolic enzymes in recent years are reviewed in this paper, which provides an overview of targeted inhibitors for targeting metabolic enzymes in colorectal cancer that have been identified through tumor research or clinical trials.
Collapse
Affiliation(s)
- Jieping Zhang
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Shaomin Zou
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Lekun Fang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangzhou, 510655, China.
| |
Collapse
|
67
|
Zhao Y, Chen Y, Wei L, Ran J, Wang K, Zhu S, Liu Q. p53 inhibits the Urea cycle and represses polyamine biosynthesis in glioma cell lines. Metab Brain Dis 2023; 38:1143-1153. [PMID: 36745250 DOI: 10.1007/s11011-023-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023]
Abstract
Glioma is the most common malignant tumor of the central nervous system. The urea cycle (UC) is an essential pathway to convert excess nitrogen and ammonia into the less toxic urea in humans. However, less is known about the functional significance of the urea cycle in glioma. p53 functions as a tumor suppressor and modulates several cellular functions and disease processes. In the present study, we aimed to explore whether p53 influences glioma progression by regulating the urea cycle. Here, we demonstrated the inhibitory impact of p53 on the expression of urea cycle enzymes and urea genesis in glioma cells. The level of polyamine, a urea cycle metabolite, was also regulated by p53 in glioma cells. Carbamoyl phosphate synthetase-1 (CPS1) is the first key enzyme involved in the urea cycle. Functionally, we demonstrated that CPS1 knockdown suppressed glioma cell proliferation, migration and invasion. Mechanistically, we demonstrated that the expression of ornithine decarboxylase (ODC), which determines the generation of polyamine, was regulated by CPS1. In addition, the impacts of p53 knockdown on ODC expression, glioma cell growth and aggressive phenotypes were significantly reversed by CPS1 inhibition. In conclusion, these results demonstrated that p53 inhibits polyamine metabolism by suppressing the urea cycle, which inhibits glioma progression.
Collapse
Affiliation(s)
- Yuhong Zhao
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Yingxi Chen
- Department of basic Medicine, Chongqing College of traditional Chinese Medicine, Chongqing, 402760, PR China
| | - Ling Wei
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Jianhua Ran
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Kejian Wang
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Shujuan Zhu
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China.
- Department of basic Medicine, Chongqing College of traditional Chinese Medicine, Chongqing, 402760, PR China.
| |
Collapse
|
68
|
Zhu S, Han X, Yang R, Tian Y, Zhang Q, Wu Y, Dong S, Zhang B. Metabolomics study of ribavirin in the treatment of orthotopic lung cancer based on UPLC-Q-TOF/MS. Chem Biol Interact 2023; 370:110305. [PMID: 36529159 DOI: 10.1016/j.cbi.2022.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Ribavirin is a common antiviral drug, especially for patients with hepatitis C. Our recent studies demonstrated that ribavirin showed anti-tumor activity in colorectal cancer and hepatocellular carcinoma, but its effects on lung cancer remains unclear. This study aimed to evaluate the anti-tumor activity of ribavirin against lung cancer and elucidate the underlying mechanism. We established orthotopic mouse model of lung cancer (LLC and GLC-82) and employed an ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomics approach. We found that ribavirin significantly inhibited the proliferation and colony formation of lung cancer cells. Tumor sizes of orthotopic lung cancer in ribavirin-treated groups were also significantly lower than those in control groups. Metabolomics analysis revealed that ribavirin mainly affected 5 metabolic pathways in orthotopic lung tumor models, taurine and hypotaurine metabolism, nicotinate and nicotinamide metabolism, linoleic acid metabolism, arginine biosynthesis and arachidonic acid metabolism. Furthermore, we identified 5 upregulated metabolites including β-nicotinamide adenine dinucleotide (NAD+), nicotinamide (NAM), taurine, ornithine and citrulline, and 7 downregulated metabolites including 1-methylnicotinamide (MNAM), S-adenosyl-l-homocysteine (SAH), N1-Methyl-2-pyridone-5-carboxamide (2PY), homocysteine (Hcy), linoleic acid, arachidonic acid (AA) and argininosuccinic acid in ribavirin-treated groups. These results provide new insight into the anti-tumor mechanism of ribavirin for lung cancer.
Collapse
Affiliation(s)
- Shihao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiang Han
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ruiying Yang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yizhen Tian
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qingqing Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongjie Wu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuhong Dong
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
69
|
Hsu DJ, Gao J, Yamaguchi N, Pinzaru A, Wu Q, Mandayam N, Liberti M, Heissel S, Alwaseem H, Tavazoie S, Tavazoie SF. Arginine limitation drives a directed codon-dependent DNA sequence evolution response in colorectal cancer cells. SCIENCE ADVANCES 2023; 9:eade9120. [PMID: 36608131 PMCID: PMC9821863 DOI: 10.1126/sciadv.ade9120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 05/18/2023]
Abstract
Utilization of specific codons varies between organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine limitation-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced an adaptive proteomic shift toward low-arginine codon-containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.
Collapse
Affiliation(s)
- Dennis J. Hsu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Gao
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Alexandra Pinzaru
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Qiushuang Wu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Nandan Mandayam
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Maria Liberti
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
70
|
Hsu DJ, Gao J, Yamaguchi N, Pinzaru A, Mandayam N, Liberti M, Heissel S, Alwaseem H, Tavazoie S, Tavazoie SF. Arginine limitation causes a directed DNA sequence evolution response in colorectal cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.521806. [PMID: 36711568 PMCID: PMC9881871 DOI: 10.1101/2023.01.02.521806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Utilization of specific codons varies significantly across organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine restriction-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced a proteomic shift towards low arginine codon containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.
Collapse
Affiliation(s)
- Dennis J. Hsu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Gao
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Alexandra Pinzaru
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Nandan Mandayam
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Maria Liberti
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY USA
| | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
71
|
Sciacovelli M, Dugourd A, Jimenez LV, Yang M, Nikitopoulou E, Costa ASH, Tronci L, Caraffini V, Rodrigues P, Schmidt C, Ryan DG, Young T, Zecchini VR, Rossi SH, Massie C, Lohoff C, Masid M, Hatzimanikatis V, Kuppe C, Von Kriegsheim A, Kramann R, Gnanapragasam V, Warren AY, Stewart GD, Erez A, Vanharanta S, Saez-Rodriguez J, Frezza C. Dynamic partitioning of branched-chain amino acids-derived nitrogen supports renal cancer progression. Nat Commun 2022; 13:7830. [PMID: 36539415 PMCID: PMC9767928 DOI: 10.1038/s41467-022-35036-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we integrate multimodal analyses of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in physiological media to identify key stage-specific metabolic vulnerabilities. We show that a VHL loss-dependent reprogramming of branched-chain amino acid catabolism sustains the de novo biosynthesis of aspartate and arginine enabling tumor cells with the flexibility of partitioning the nitrogen of the amino acids depending on their needs. Importantly, we identify the epigenetic reactivation of argininosuccinate synthase (ASS1), a urea cycle enzyme suppressed in primary ccRCC, as a crucial event for metastatic renal cancer cells to acquire the capability to generate arginine, invade in vitro and metastasize in vivo. Overall, our study uncovers a mechanism of metabolic flexibility occurring during ccRCC progression, paving the way for the development of novel stage-specific therapies.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- Department of Molecular and Clinical Cancer Medicine; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Aurelien Dugourd
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Lorea Valcarcel Jimenez
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine-University Hospital Cologne, 50931, Cologne, Germany
| | - Ming Yang
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine-University Hospital Cologne, 50931, Cologne, Germany
| | - Efterpi Nikitopoulou
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Ana S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- Matterworks, Somerville, MA, 02143, USA
| | - Laura Tronci
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Veronica Caraffini
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Paulo Rodrigues
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Christina Schmidt
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine-University Hospital Cologne, 50931, Cologne, Germany
| | - Dylan Gerard Ryan
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Timothy Young
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Vincent R Zecchini
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Sabrina H Rossi
- Early Detection Programme, CRUK Cambridge Centre, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Charlie Massie
- Early Detection Programme, CRUK Cambridge Centre, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Caroline Lohoff
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Maria Masid
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Alex Von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincent Gnanapragasam
- Department of Surgery, University of Cambridge and Cambridge University Hospitals NHS Cambridge Biomedical Campus, Cambridge, UK
| | - Anne Y Warren
- Department of Histopathology-Cambridge University Hospitals NHS, Box 235 Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Grant D Stewart
- Department of Surgery, University of Cambridge and Cambridge University Hospitals NHS Cambridge Biomedical Campus, Cambridge, UK
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sakari Vanharanta
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Julio Saez-Rodriguez
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany.
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK.
- CECAD Research Center, Faculty of Medicine-University Hospital Cologne, 50931, Cologne, Germany.
| |
Collapse
|
72
|
Dai W, Shen J, Yan J, Bott AJ, Maimouni S, Daguplo HQ, Wang Y, Khayati K, Guo JY, Zhang L, Wang Y, Valvezan A, Ding WX, Chen X, Su X, Gao S, Zong WX. Glutamine synthetase limits β-catenin-mutated liver cancer growth by maintaining nitrogen homeostasis and suppressing mTORC1. J Clin Invest 2022; 132:e161408. [PMID: 36256480 PMCID: PMC9754002 DOI: 10.1172/jci161408] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glutamine synthetase (GS) catalyzes de novo synthesis of glutamine that facilitates cancer cell growth. In the liver, GS functions next to the urea cycle to remove ammonia waste. As a dysregulated urea cycle is implicated in cancer development, the impact of GS's ammonia clearance function has not been explored in cancer. Here, we show that oncogenic activation of β-catenin (encoded by CTNNB1) led to a decreased urea cycle and elevated ammonia waste burden. While β-catenin induced the expression of GS, which is thought to be cancer promoting, surprisingly, genetic ablation of hepatic GS accelerated the onset of liver tumors in several mouse models that involved β-catenin activation. Mechanistically, GS ablation exacerbated hyperammonemia and facilitated the production of glutamate-derived nonessential amino acids, which subsequently stimulated mechanistic target of rapamycin complex 1 (mTORC1). Pharmacological and genetic inhibition of mTORC1 and glutamic transaminases suppressed tumorigenesis facilitated by GS ablation. While patients with hepatocellular carcinoma, especially those with CTNNB1 mutations, have an overall defective urea cycle and increased expression of GS, there exists a subset of patients with low GS expression that is associated with mTORC1 hyperactivation. Therefore, GS-mediated ammonia clearance serves as a tumor-suppressing mechanism in livers that harbor β-catenin activation mutations and a compromised urea cycle.
Collapse
Affiliation(s)
- Weiwei Dai
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Junrong Yan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Alex J. Bott
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sara Maimouni
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Heineken Q. Daguplo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yujue Wang
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Khoosheh Khayati
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jessie Yanxiang Guo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Lanjing Zhang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Alexander Valvezan
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
- Center for Advanced Biotechnology and Medicine, Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
73
|
di Meo NA, Lasorsa F, Rutigliano M, Loizzo D, Ferro M, Stella A, Bizzoca C, Vincenti L, Pandolfo SD, Autorino R, Crocetto F, Montanari E, Spilotros M, Battaglia M, Ditonno P, Lucarelli G. Renal Cell Carcinoma as a Metabolic Disease: An Update on Main Pathways, Potential Biomarkers, and Therapeutic Targets. Int J Mol Sci 2022; 23:ijms232214360. [PMID: 36430837 PMCID: PMC9698586 DOI: 10.3390/ijms232214360] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most frequent histological kidney cancer subtype. Over the last decade, significant progress has been made in identifying the genetic and metabolic alterations driving ccRCC development. In particular, an integrated approach using transcriptomics, metabolomics, and lipidomics has led to a better understanding of ccRCC as a metabolic disease. The metabolic profiling of this cancer could help define and predict its behavior in terms of aggressiveness, prognosis, and therapeutic responsiveness, and would be an innovative strategy for choosing the optimal therapy for a specific patient. This review article describes the current state-of-the-art in research on ccRCC metabolic pathways and potential therapeutic applications. In addition, the clinical implication of pharmacometabolomic intervention is analyzed, which represents a new field for novel stage-related and patient-tailored strategies according to the specific susceptibility to new classes of drugs.
Collapse
Affiliation(s)
- Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Davide Loizzo
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Alessandro Stella
- Laboratory of Human Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Cinzia Bizzoca
- Division of General Surgery, Polyclinic Hospital, 70124 Bari, Italy
| | | | | | | | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Emanuele Montanari
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Spilotros
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: or
| |
Collapse
|
74
|
Metabolic remodeling of pyrimidine synthesis pathway and serine synthesis pathway in human glioblastoma. Sci Rep 2022; 12:16277. [PMID: 36175487 PMCID: PMC9522918 DOI: 10.1038/s41598-022-20613-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma is the most common brain tumor with dismal outcomes in adults. Metabolic remodeling is now widely acknowledged as a hallmark of cancer cells, but glioblastoma-specific metabolic pathways remain unclear. Here we show, using a large-scale targeted proteomics platform and integrated molecular pathway-level analysis tool, that the de novo pyrimidine synthesis pathway and serine synthesis pathway (SSP) are the major enriched pathways in vivo for patients with glioblastoma. Among the enzymes associated with nucleotide synthesis, RRM1 and NME1 are significantly upregulated in glioblastoma. In the SSP, SHMT2 and PSPH are upregulated but the upstream enzyme PSAT1 is downregulated in glioblastoma. Kaplan–Meier curves of overall survival for the GSE16011 and The Cancer Genome Atlas datasets revealed that high SSP activity correlated with poor outcome. Enzymes relating to the pyrimidine synthesis pathway and SSP might offer therapeutic targets for new glioblastoma treatments.
Collapse
|
75
|
Zhang Z, Chen D, Yu J, Su X, Li L. Metabolic perturbations in human hepatocytes induced by bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate exposure: Insights from high-coverage quantitative metabolomics. Anal Biochem 2022; 657:114887. [PMID: 36150471 DOI: 10.1016/j.ab.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) is an extensively used novel brominated flame retardant that is present ubiquitously in the environment and in biota. However, there is inadequate data on its potential hepatotoxicity to humans. In this study, high-coverage quantitative metabolomics based on 12C-/13C-dansylation labeling LC-MS was performed for the first time to assess the metabolic perturbations and underlying mechanisms of TBPH on human hepatocytes. HepG2 cells were exposed to TBPH at dosages of 0.1,1,10 μM for 24 or 72 h. Overall, 1887 and 1364 amine/phenol-containing metabolites were relatively quantified in cells and culture supernatant. Our results revealed that exposure to 0.1 μM TBPH showed little adverse effects, whereas exposure to 10 μM TBPH for 24 h enhanced intracellular protein catabolism and disrupted energy and lipid homeostasis-related pathways such as histidine metabolism, pantothenate and CoA biosynthesis, alanine, aspartate and glutamate metabolism. Nevertheless, most of these perturbations returned to the same levels as controls after 72 h of exposure. Additionally, prolonged TBPH exposure increased oxidative stress, as reflected by marked disturbances in taurine metabolism. This study sensitively revealed the dysregulations of intracellular and extracellular metabolome induced by TBPH, providing a comprehensive understanding of metabolic responses of cells to novel brominated flame retardants.
Collapse
Affiliation(s)
- Zhehua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
76
|
Carpentier J, Pavlyk I, Mukherjee U, Hall PE, Szlosarek PW. Arginine Deprivation in SCLC: Mechanisms and Perspectives for Therapy. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:53-66. [PMID: 36091646 PMCID: PMC9462517 DOI: 10.2147/lctt.s335117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Arginine deprivation has gained increasing traction as a novel and safe antimetabolite strategy for the treatment of several hard-to-treat cancers characterised by a critical dependency on arginine. Small cell lung cancer (SCLC) displays marked arginine auxotrophy due to inactivation of the rate-limiting enzyme argininosuccinate synthetase 1 (ASS1), and as a consequence may be targeted with pegylated arginine deiminase or ADI-PEG20 (pegargiminase) and human recombinant pegylated arginases (rhArgPEG, BCT-100 and pegzilarginase). Although preclinical studies reveal that ASS1-deficient SCLC cell lines are highly sensitive to arginine-degrading enzymes, there is a clear disconnect with the clinic with minimal activity seen to date that may be due in part to patient selection. Recent studies have explored resistance mechanisms to arginine depletion focusing on tumor adaptation, such as ASS1 re-expression and autophagy, stromal cell inputs including macrophage infiltration, and tumor heterogeneity. Here, we explore how arginine deprivation may be combined strategically with novel agents to improve SCLC management by modulating resistance and increasing the efficacy of existing agents. Moreover, recent work has identified an intriguing role for targeting arginine in combination with PD-1/PD-L1 immune checkpoint inhibitors and clinical trials are in progress. Thus, future studies of arginine-depleting agents with chemoimmunotherapy, the current standard of care for SCLC, may lead to enhanced disease control and much needed improvements in long-term survival for patients.
Collapse
Affiliation(s)
- Joséphine Carpentier
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Iuliia Pavlyk
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Uma Mukherjee
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter E Hall
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter W Szlosarek
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| |
Collapse
|
77
|
Szyszko TA, Dunn JT, Phillips MM, Bomalaski J, Sheaff MT, Ellis S, Pike L, Goh V, Cook GJ, Szlosarek PW. Role of 3'-Deoxy-3'-[ 18F] Fluorothymidine Positron Emission Tomography-Computed Tomography as a Predictive Biomarker in Argininosuccinate Synthetase 1-Deficient Thoracic Cancers Treated With Pegargiminase. JTO Clin Res Rep 2022; 3:100382. [PMID: 36082278 PMCID: PMC9445378 DOI: 10.1016/j.jtocrr.2022.100382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 10/26/2022] Open
Abstract
Introduction Pegargiminase (ADI-PEG 20I) degrades arginine in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma (MPM) and NSCLC. Imaging with proliferation biomarker 3'-deoxy-3'-[18F] fluorothymidine (18F-FLT) positron emission tomography (PET)-computed tomography (CT) was performed in a phase 1 study of pegargiminase with pemetrexed and cisplatin (ADIPemCis). The aim was to determine whether FLT PET-CT predicts treatment response earlier than CT. Methods A total of 18 patients with thoracic malignancies (10 MPM; eight NSCLC) underwent imaging. FLT PET-CT was performed at baseline (PET1), 24 hours post-pegargiminase monotherapy (PET2), post one cycle of ADIPemCis (PET3), and at end of treatment (EOT, PET4). CT was performed at baseline (CT1) and EOT (CT4). CT4 (modified) Response Evaluation Criteria in Solid Tumors (RECIST) response was compared with treatment response on PET (changes in maximum standardized uptake value [SUVmax] on European Organisation for Research and Treatment of Cancer-based criteria). Categorical responses (progression, partial response, and stable disease) for PET2, PET3, and PET4 were compared against CT using Cohen's kappa. Results ADIPemCis treatment response resulted in 22% mean decrease in size between CT1 and CT4 and 37% mean decrease in SUVmax between PET1 and PET4. PET2 agreed with CT4 response in 62% (8 of 13) of patients (p = 0.043), although decrease in proliferation (SUVmax) did not precede decrease in size (RECIST). Partial responses on FLT PET-CT were detected in 20% (3 of 15) of participants at PET2 and 69% (9 of 13) at PET4 with good agreement between modalities in MPM at EOT. Conclusions Early FLT imaging (PET2) agrees with EOT CT results in nearly two-thirds of patients. Both early and late FLT PET-CT provide evidence of response to ADIPemCis therapy in MPM and NSCLC. We provide first-in-human FLT PET-CT data in MPM, indicating it is comparable with modified RECIST.
Collapse
Affiliation(s)
- Teresa A. Szyszko
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
- Department of Nuclear Medicine, Royal Free Hospital NHS Trust, London, United Kingdom
- Department of Oncology, University College London, London, United Kingdom
| | - Joel T. Dunn
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
| | - Melissa M. Phillips
- Department of Medical Oncology, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | | | - Michael T. Sheaff
- Department of Histopathology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Steve Ellis
- Department of Diagnostic Imaging, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Lucy Pike
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
| | - Vicky Goh
- Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Gary J.R. Cook
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
- Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Peter W. Szlosarek
- Department of Medical Oncology, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
78
|
Lin ES, Huang CY. Cytotoxic Activities and the Allantoinase Inhibitory Effect of the Leaf Extract of the Carnivorous Pitcher Plant Nepenthes miranda. PLANTS (BASEL, SWITZERLAND) 2022; 11:2265. [PMID: 36079647 PMCID: PMC9460348 DOI: 10.3390/plants11172265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
Nepenthes are carnivorous pitcher plants that have several ethnobotanical uses, such as curing stomachache and fever. Here, we prepared different extracts from the stem, leaf, and pitcher of Nepenthes miranda to further investigate their pharmacological potential. The leaf extract of N. miranda obtained by 100% acetone (N. miranda-leaf-acetone) was used in this study to analyze the cytotoxic activities, antioxidation capacity, antibacterial activity, and allantoinase (ALLase) inhibitory effect of this plant. The cytotoxic effects of N. miranda-leaf-acetone on the survival, apoptosis, and migration of the cancer cell lines PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were demonstrated. Based on collective data, the cytotoxic activities of N. miranda-leaf-acetone followed the order: B16F10 > 4T1 > PC-9 cells. In addition, the cytotoxic activities of N. miranda-leaf-acetone were synergistically enhanced when co-acting with the clinical anticancer drug 5-fluorouracil. N. miranda-leaf-acetone could also inhibit the activity of ALLase, a key enzyme in the catabolism pathway for purine degradation. Through gas chromatography−mass spectrometry, the 16 most abundant ingredients in N. miranda-leaf-acetone were identified. The top six compounds in N. miranda-leaf-acetone, namely, plumbagin, lupenone, palmitic acid, stigmast-5-en-3-ol, neophytadiene, and citraconic anhydride, were docked to ALLase, and their docking scores were compared. The docking results suggested plumbagin and stigmast-5-en-3-ol as potential inhibitors of ALLase. Overall, these results may indicate the pharmacological potential of N. miranda for further medical applications.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
79
|
Zhang J, Wang S, Guo X, Lu Y, Liu X, Jiang M, Li X, Qin B, Luo Z, Liu H, Li Q, Du YZ, Luo L, You J. Arginine Supplementation Targeting Tumor-Killing Immune Cells Reconstructs the Tumor Microenvironment and Enhances the Antitumor Immune Response. ACS NANO 2022; 16:12964-12978. [PMID: 35968927 DOI: 10.1021/acsnano.2c05408] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The tumor microenvironment (TME) is characterized by several immunosuppressive factors, of which weak acidity and l-arginine (l-arg) deficiency are two common features. A weak acidic environment threatens the survival of immune cells, and insufficient l-arg will severely restrain the effect of antitumor immune responses, both of which affect the efficiency of cancer treatments (especially immunotherapy). Meanwhile, l-arg is essential for tumor progression. Thus, two strategies, l-arg supplementation and l-arg deprivation, are developed for cancer treatment. However, these strategies have the potential risk of promoting tumor growth and impairing immune responses, which might lead to a paradoxical therapeutic effect. It is optimal to limit the l-arg availability of tumor cells from the microenvironment while supplying l-arg for immune cells. In this study, we designed a multivesicular liposome technology to continuously supply alkaline l-arg, which simultaneously changed the acidity and l-arg deficiency in the TME, and by selectively knocking down the CAT-2 transporter, l-arg starvation of tumors was maintained while tumor-killing immune cells were enriched in the TME. The results showed that our strategy promoted the infiltration and activation of CD8+ T cells in tumor, increased the proportion of M1 macrophages, inhibited melanoma growth, and prolonged survival. In combination with anti-PD-1 antibody, our strategy reversed the low tumor response to immune checkpoint blockade therapy, showing a synergistic antitumor effect. Our work provided a reference for improving the TME combined with regulating nutritional competitiveness to achieve the sensitization of immunotherapy.
Collapse
Affiliation(s)
- Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Huihui Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
80
|
Missiaen R, Anderson NM, Kim LC, Nance B, Burrows M, Skuli N, Carens M, Riscal R, Steensels A, Li F, Simon MC. GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment. Cell Metab 2022; 34:1151-1167.e7. [PMID: 35839757 PMCID: PMC9357184 DOI: 10.1016/j.cmet.2022.06.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a typically fatal malignancy exhibiting genetic heterogeneity and limited therapy responses. We demonstrate here that HCCs consistently repress urea cycle gene expression and thereby become auxotrophic for exogenous arginine. Surprisingly, arginine import is uniquely dependent on the cationic amino acid transporter SLC7A1, whose inhibition slows HCC cell growth in vitro and in vivo. Moreover, arginine deprivation engages an integrated stress response that promotes HCC cell-cycle arrest and quiescence, dependent on the general control nonderepressible 2 (GCN2) kinase. Inhibiting GCN2 in arginine-deprived HCC cells promotes a senescent phenotype instead, rendering these cells vulnerable to senolytic compounds. Preclinical models confirm that combined dietary arginine deprivation, GCN2 inhibition, and senotherapy promote HCC cell apoptosis and tumor regression. These data suggest novel strategies to treat human liver cancers through targeting SLC7A1 and/or a combination of arginine restriction, inhibition of GCN2, and senolytic agents.
Collapse
Affiliation(s)
- Rindert Missiaen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole M Anderson
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura C Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bailey Nance
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Burrows
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Madeleine Carens
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Romain Riscal
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - An Steensels
- Department of Medicine, Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Department of Pediatrics, Comprehensive Bone Marrow Failure Center, Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fuming Li
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
81
|
Kim JE, Kim E, Lee JW. TM4SF5-Mediated Regulation of Hepatocyte Transporters during Metabolic Liver Diseases. Int J Mol Sci 2022; 23:ijms23158387. [PMID: 35955521 PMCID: PMC9369364 DOI: 10.3390/ijms23158387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is found in up to 30% of the world’s population and can lead to hepatocellular carcinoma (HCC), which has a poor 5-year relative survival rate of less than 40%. Clinical therapeutic strategies are not very successful. The co-occurrence of metabolic disorders and inflammatory environments during the development of steatohepatitis thus needs to be more specifically diagnosed and treated to prevent fatal HCC development. To improve diagnostic and therapeutic strategies, the identification of molecules and/or pathways responsible for the initiation and progression of chronic liver disease has been explored in many studies, but further study is still required. Transmembrane 4 L six family member 5 (TM4SF5) has been observed to play roles in the regulation of metabolic functions and activities in hepatocytes using in vitro cell and in vivo animal models without or with TM4SF5 expression in addition to clinical liver tissue samples. TM4SF5 is present on the membranes of different organelles or vesicles and cooperates with transporters for fatty acids, amino acids, and monocarbohydrates, thus regulating nutrient uptake into hepatocytes and metabolism and leading to phenotypes of chronic liver diseases. In addition, TM4SF5 can remodel the immune environment by interacting with immune cells during TM4SF5-mediated chronic liver diseases. Because TM4SF5 may act as an NAFLD biomarker, this review summarizes crosstalk between TM4SF5 and nutrient transporters in hepatocytes, which is related to chronic liver diseases.
Collapse
|
82
|
Roles of lncRNA LVBU in regulating urea cycle/polyamine synthesis axis to promote colorectal carcinoma progression. Oncogene 2022; 41:4231-4243. [PMID: 35906392 PMCID: PMC9439952 DOI: 10.1038/s41388-022-02413-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
Altered expression of Urea Cycle (UC) enzymes occurs in many tumors, resulting a metabolic hallmark termed as UC dysregulation. Polyamines are synthesized from ornithine, and polyamine synthetic genes are elevated in various tumors. However, the underlying deregulations of UC/ polyamine synthesis in cancer remain elusive. Here, we characterized a hypoxia-induced lncRNA LVBU (lncRNA regulation via BCL6/urea cycle) that is highly expressed in colorectal cancer (CRC) and correlates with poor cancer prognosis. Increased LVBU expression promoted CRC cells proliferation, foci formation and tumorigenesis. Further, LVBU regulates urea cycle and polyamine synthesis through BCL6, a negative regulator of p53. Mechanistically, overexpression of LVBU competitively bound miR-10a/miR-34c to protect BCL6 from miR-10a/34c-mediated degradation, which in turn allows BCL6 to block p53-mediated suppression of genes (arginase1 ARG1, ornithine transcarbamylase OTC, ornithine decarboxylase 1 ODC1) involved in UC/polyamine synthesis. Significantly, ODC1 inhibitor attenuated the growth of patient derived xenografts (PDX) that sustain high LVBU levels. Taken together, elevated LVBU can regulate BCL6-p53 signaling axis for systemic UC/polyamine synthesis reprogramming and confers a predilection toward CRC development. Our data demonstrates that further drug development and clinical evaluation of inhibiting UC/polyamine synthesis are warranted for CRC patients with high expression of LVBU.
Collapse
|
83
|
Fu Y, Liu S, Rodrigues RM, Han Y, Guo C, Zhu Z, He Y, Mackowiak B, Feng D, Gao B, Zeng S, Shen H. Activation of VIPR1 suppresses hepatocellular carcinoma progression by regulating arginine and pyrimidine metabolism. Int J Biol Sci 2022; 18:4341-4356. [PMID: 35864952 PMCID: PMC9295067 DOI: 10.7150/ijbs.71134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/27/2022] [Indexed: 12/09/2022] Open
Abstract
Background and aims: Vasoactive intestinal polypeptide type-I receptor (VIPR1) overexpression has been reported in numerous types of malignancies and utilized to develop novel target therapeutics and radiolabeled VIP analogue-based tumor imaging technology, but its role in liver carcinogenesis has not been explored. In the current study, we investigated the role of the VIP/VIPR1 signaling in controlling hepatocellular carcinoma (HCC) progression. Approach and results: By analyzing clinical samples, we found the expression level of VIPR1 was downregulated in human HCC tissues, which was correlated with advanced clinical stages, tumor growth, recurrence, and poor outcomes of HCC clinically. In vitro and in vivo studies revealed that activation of VIPR1 by VIP markedly inhibited HCC growth and metastasis. Intriguingly, transcriptome sequencing analyses revealed that activation of VIPR1 by VIP regulated arginine biosynthesis. Mechanistical studies in cultured HCC cells demonstrated that VIP treatment partially restored the expression of arginine anabolic key enzyme argininosuccinate synthase (ASS1), and to some extent, inhibited de novo pyrimidine synthetic pathway by downregulating the activation of CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase). VIP treatment upregulated ASS1 and subsequently suppressed CAD phosphorylation in an mTOR/p70S6K signaling dependent manner. Clinically, we found human HCC samples were associated with downregulation of ASS1 but upregulation of CAD phosphorylation, and that VIPR1 levels positively correlated with ASS1 levels and serum levels of urea, the end product of the urea cycle and arginine metabolism in HCC. Conclusions: Loss of VIPR1 expression in HCC facilitates CAD phosphorylation and tumor progression, and restoration of VIPR1 and treatment with the VIPR1 agonist may be a promising approach for HCC treatment.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhanwei Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
84
|
Sun N, Zhao X. Argininosuccinate synthase 1, arginine deprivation therapy and cancer management. Front Pharmacol 2022; 13:935553. [PMID: 35910381 PMCID: PMC9335876 DOI: 10.3389/fphar.2022.935553] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming is an emerging hallmark of tumor cells. In order to survive in the nutrient-deprived environment, tumor cells rewire their metabolic phenotype to provide sufficient energy and build biomass to sustain their transformed state and promote malignant behaviors. Amino acids are the main compositions of protein, which provide key intermediate substrates for the activation of signaling pathways. Considering that cells can synthesize arginine via argininosuccinate synthase 1 (ASS1), arginine is regarded as a non-essential amino acid, making arginine depletion as a promising therapeutic strategy for ASS1-silencing tumors. In this review, we summarize the current knowledge of expression pattern of ASS1 and related signaling pathways in cancer and its potential role as a novel therapeutic target in cancer. Besides, we outline how ASS1 affects metabolic regulation and tumor progression and further discuss the role of ASS1 in arginine deprivation therapy. Finally, we review approaches to target ASS1 for cancer therapies.
Collapse
Affiliation(s)
- Naihui Sun
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Zhao
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xing Zhao,
| |
Collapse
|
85
|
Parker AL, Toulabi L, Oike T, Kanke Y, Patel D, Tada T, Taylor S, Beck JA, Bowman E, Reyzer ML, Butcher D, Kuhn S, Pauly GT, Krausz KW, Gonzalez FJ, Hussain SP, Ambs S, Ryan BM, Wang XW, Harris CC. Creatine riboside is a cancer cell-derived metabolite associated with arginine auxotrophy. J Clin Invest 2022; 132:157410. [PMID: 35838048 PMCID: PMC9282934 DOI: 10.1172/jci157410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/25/2022] [Indexed: 12/17/2022] Open
Abstract
The metabolic dependencies of cancer cells have substantial potential to be exploited to improve the diagnosis and treatment of cancer. Creatine riboside (CR) is identified as a urinary metabolite associated with risk and prognosis in lung and liver cancer. However, the source of high CR levels in patients with cancer as well as their implications for the treatment of these aggressive cancers remain unclear. By integrating multiomics data on lung and liver cancer, we have shown that CR is a cancer cell–derived metabolite. Global metabolomics and gene expression analysis of human tumors and matched liquid biopsies, together with functional studies, revealed that dysregulation of the mitochondrial urea cycle and a nucleotide imbalance were associated with high CR levels and indicators of a poor prognosis. This metabolic phenotype was associated with reduced immune infiltration and supported rapid cancer cell proliferation that drove aggressive tumor growth. CRhi cancer cells were auxotrophic for arginine, revealing a metabolic vulnerability that may be exploited therapeutically. This highlights the potential of CR not only as a poor-prognosis biomarker but also as a companion biomarker to inform the administration of arginine-targeted therapies in precision medicine strategies to improve survival for patients with cancer.
Collapse
Affiliation(s)
- Amelia L Parker
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Leila Toulabi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Takahiro Oike
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Yasuyuki Kanke
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Daxeshkumar Patel
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Takeshi Tada
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Sheryse Taylor
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jessica A Beck
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Elise Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Michelle L Reyzer
- National Research Resource for Imaging Mass Spectrometry, Vanderbilt University, Nashville, Tennessee, USA
| | - Donna Butcher
- Pathology and Histotechnology Laboratory, Frederick National Laboratory, Frederick, Maryland, USA
| | - Skyler Kuhn
- Center for Cancer Research Collaborative Bioinformatics Resource
| | | | | | | | - S Perwez Hussain
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.,Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
86
|
Identification of Candidate Biomarker and Drug Targets for Improving Endometrial Cancer Racial Disparities. Int J Mol Sci 2022; 23:ijms23147779. [PMID: 35887124 PMCID: PMC9318530 DOI: 10.3390/ijms23147779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Racial disparities in incidence and survival exist for many human cancers. Racial disparities are undoubtedly multifactorial and due in part to differences in socioeconomic factors, access to care, and comorbidities. Within the U.S., fundamental causes of health inequalities, including socio-economic factors, insurance status, access to healthcare and screening and treatment biases, are issues that contribute to cancer disparities. Yet even these epidemiologic differences do not fully account for survival disparities, as for nearly every stage, grade and histologic subtype, survival among Black women is significantly lower than their White counterparts. To address this, we sought to investigate the proteomic profiling molecular features of endometrial cancer in order to detect modifiable and targetable elements of endometrial cancer in different racial groups, which could be essential for treatment planning. The majority of proteins identified to be significantly altered among the racial groups and that can be regulated by existing drugs or investigational agents are enzymes that regulate metabolism and protein synthesis. These drugs have the potential to improve the worse outcomes of endometrial cancer patients based on race.
Collapse
|
87
|
Hou X, Chen S, Zhang P, Guo D, Wang B. Targeted Arginine Metabolism Therapy: A Dilemma in Glioma Treatment. Front Oncol 2022; 12:938847. [PMID: 35898872 PMCID: PMC9313538 DOI: 10.3389/fonc.2022.938847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Efforts in the treatment of glioma which is the most common primary malignant tumor of the central nervous system, have not shown satisfactory results despite a comprehensive treatment model that combines various treatment methods, including immunotherapy. Cellular metabolism is a determinant of the viability and function of cancer cells as well as immune cells, and the interplay of immune regulation and metabolic reprogramming in tumors has become an active area of research in recent years. From the perspective of metabolism and immunity in the glioma microenvironment, we elaborated on arginine metabolic reprogramming in glioma cells, which leads to a decrease in arginine levels in the tumor microenvironment. Reduced arginine availability significantly inhibits the proliferation, activation, and function of T cells, thereby promoting the establishment of an immunosuppressive microenvironment. Therefore, replenishment of arginine levels to enhance the anti-tumor activity of T cells is a promising strategy for the treatment of glioma. However, due to the lack of expression of argininosuccinate synthase, gliomas are unable to synthesize arginine; thus, they are highly dependent on the availability of arginine in the extracellular environment. This metabolic weakness of glioma has been utilized by researchers to develop arginine deprivation therapy, which ‘starves’ tumor cells by consuming large amounts of arginine in circulation. Although it has shown good results, this treatment modality that targets arginine metabolism in glioma is controversial. Exploiting a suitable strategy that can not only enhance the antitumor immune response, but also “starve” tumor cells by regulating arginine metabolism to cure glioma will be promising.
Collapse
|
88
|
Chan PY, Phillips MM, Ellis S, Johnston A, Feng X, Arora A, Hay G, Cohen VML, Sagoo MS, Bomalaski JS, Sheaff MT, Szlosarek PW. A Phase 1 study of ADI-PEG20 (pegargiminase) combined with cisplatin and pemetrexed in ASS1-negative metastatic uveal melanoma. Pigment Cell Melanoma Res 2022; 35:461-470. [PMID: 35466524 PMCID: PMC9322321 DOI: 10.1111/pcmr.13042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Metastatic uveal melanoma (UM) is a devastating disease with few treatment options. We evaluated the safety, tolerability and preliminary activity of arginine depletion using pegylated arginine deiminase (ADI‐PEG20; pegargiminase) combined with pemetrexed (Pem) and cisplatin (Cis) chemotherapy in a phase 1 dose‐expansion study of patients with argininosuccinate synthetase (ASS1)‐deficient metastatic UM. Eligible patients received up to six cycles of Pem (500 mg/m2) and Cis (75 mg/m2) every 3 weeks plus weekly intramuscular ADI (36 mg/m2), followed by maintenance ADI until progression (NCT02029690). Ten of fourteen ASS1‐deficient patients with UM liver metastases and a median of one line of prior immunotherapy received ADIPemCis. Only one ≥ grade 3 adverse event of febrile neutropenia was reported. Seven patients had stable disease with a median progression‐free survival of 3.0 months (range, 1.3–8.1) and a median overall survival of 11.5 months (range, 3.2–36.9). Despite anti‐ADI‐PEG20 antibody emergence, plasma arginine concentrations remained suppressed by 18 weeks with a reciprocal increase in plasma citrulline. Tumour rebiopsies at progression revealed ASS1 re‐expression as an escape mechanism. ADIPemCis was well tolerated with modest disease stabilisation in metastatic UM. Further investigation of arginine deprivation is indicated in UM including combinations with immune checkpoint blockade and additional anti‐metabolite strategies.
Collapse
Affiliation(s)
- Pui Ying Chan
- Department of Medical Oncology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK.,Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Melissa M Phillips
- Department of Medical Oncology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Stephen Ellis
- Department of Medical Oncology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | | | - Xiaoxing Feng
- Polaris Pharmaceuticals Inc, San Diego, California, USA
| | - Amit Arora
- Department of Ocular Oncology, Moorfields Eye Hospital, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Gordon Hay
- Department of Ocular Oncology, Moorfields Eye Hospital, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Victoria M L Cohen
- Department of Ocular Oncology, Moorfields Eye Hospital, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mandeep S Sagoo
- Department of Ocular Oncology, Moorfields Eye Hospital, Moorfields Eye Hospital NHS Foundation Trust, London, UK.,NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | | | - Michael T Sheaff
- Department of Histopathology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Peter W Szlosarek
- Department of Medical Oncology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK.,Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
89
|
SARS-CoV-2 couples evasion of inflammatory response to activated nucleotide synthesis. Proc Natl Acad Sci U S A 2022; 119:e2122897119. [PMID: 35700355 PMCID: PMC9245715 DOI: 10.1073/pnas.2122897119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic. Although ongoing vaccination drastically reduces SARS-CoV-2 infection, mutant viruses are emerging under the pressure of neutralizing antibodies, calling for new antiviral strategies. Here, we report that SARS-CoV-2 couples evasion of inflammatory response to activated nucleotide synthesis. Inhibition of a key metabolic enzyme not only depletes the nucleotide pool but also restores host inflammatory defense, thereby effectively impeding SARS-CoV-2 replication. Targeting cellular enzymes offers an avenue to combat rapidly evolving SARS-CoV-2 variants. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolves rapidly under the pressure of host immunity, as evidenced by waves of emerging variants despite effective vaccinations, highlighting the need for complementing antivirals. We report that targeting a pyrimidine synthesis enzyme restores inflammatory response and depletes the nucleotide pool to impede SARS-CoV-2 infection. SARS-CoV-2 deploys Nsp9 to activate carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD) that catalyzes the rate-limiting steps of the de novo pyrimidine synthesis. Activated CAD not only fuels de novo nucleotide synthesis but also deamidates RelA. While RelA deamidation shuts down NF-κB activation and subsequent inflammatory response, it up-regulates key glycolytic enzymes to promote aerobic glycolysis that provides metabolites for de novo nucleotide synthesis. A newly synthesized small-molecule inhibitor of CAD restores antiviral inflammatory response and depletes the pyrimidine pool, thus effectively impeding SARS-CoV-2 replication. Targeting an essential cellular metabolic enzyme thus offers an antiviral strategy that would be more refractory to SARS-CoV-2 genetic changes.
Collapse
|
90
|
Du Z, Li T, Huang J, Chen Y, Chen C. Arginase: Mechanisms and Clinical Application in Hematologic Malignancy. Front Oncol 2022; 12:905893. [PMID: 35814439 PMCID: PMC9260017 DOI: 10.3389/fonc.2022.905893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Compared to normal tissues and cells, the metabolic patterns of tumor illnesses are more complex, and there are hallmarks of metabolic reprogramming in energy metabolism, lipid metabolism, and amino acid metabolism. When tumor cells are in a state of fast growth, they are susceptible to food shortage, resulting in growth suppression. Using this metabolic sensitivity of tumor cells to construct amino acid consumption therapy does not harm the function of normal cells, which is the focus of metabolic therapy research at the moment. As a non-essential amino acid, arginine is involved in numerous crucial biological processes, including the signaling system, cell proliferation, and material metabolism. Rapidly dividing tumor cells are more likely to be deficient in arginine; hence, utilizing arginase to consume arginine can suppress tumor growth. Due to the absence of arginine succinate synthase, arginine succinate lyase, and ornithine carbamoyl transferase in some blood tumors, arginases may be employed to treat blood tumors. By investigating the mechanism of arginase treatment and the mechanism of drug resistance in greater depth, arginase treatment becomes more successful in hematological cancers and a new anti-cancer agent in clinical practice.
Collapse
Affiliation(s)
- Zefan Du
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Tianwen Li
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junbin Huang
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen,
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen,
| |
Collapse
|
91
|
Mizuno R, Hojo H, Takahashi M, Kashio S, Enya S, Nakao M, Konishi R, Yoda M, Harata A, Hamanishi J, Kawamoto H, Mandai M, Suzuki Y, Miura M, Bamba T, Izumi Y, Kawaoka S. Remote solid cancers rewire hepatic nitrogen metabolism via host nicotinamide-N-methyltransferase. Nat Commun 2022; 13:3346. [PMID: 35705545 PMCID: PMC9200709 DOI: 10.1038/s41467-022-30926-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers disrupt host homeostasis in various manners but the identity of host factors underlying such disruption remains largely unknown. Here we show that nicotinamide-N-methyltransferase (NNMT) is a host factor that mediates metabolic dysfunction in the livers of cancer-bearing mice. Multiple solid cancers distantly increase expression of Nnmt and its product 1-methylnicotinamide (MNAM) in the liver. Multi-omics analyses reveal suppression of the urea cycle accompanied by accumulation of amino acids, and enhancement of uracil biogenesis in the livers of cancer-bearing mice. Importantly, genetic deletion of Nnmt leads to alleviation of these metabolic abnormalities, and buffers cancer-dependent weight loss and reduction of the voluntary wheel-running activity. Our data also demonstrate that MNAM is capable of affecting urea cycle metabolites in the liver. These results suggest that cancers up-regulate the hepatic NNMT pathway to rewire liver metabolism towards uracil biogenesis rather than nitrogen disposal via the urea cycle, thereby disrupting host homeostasis. The presence of cancer can induce systemic disruption of the host homeostasis. Here, the authors show that different solid tumours remotely increase hepatic nicotinamide-Nmethyltransferase disrupting the host urea cycle metabolism in the liver.
Collapse
Affiliation(s)
- Rin Mizuno
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Hiroaki Hojo
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, 619-0237, Japan.,ERATO Sato Live Bio-forecasting Project, Japan Science and Technology Agency (JST), Kyoto, 619-0237, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sora Enya
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, 619-0237, Japan.,ERATO Sato Live Bio-forecasting Project, Japan Science and Technology Agency (JST), Kyoto, 619-0237, Japan
| | - Motonao Nakao
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Riyo Konishi
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Mayuko Yoda
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Ayano Harata
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Science, The University of Tokyo, Chiba, 277-8562, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shinpei Kawaoka
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, 619-0237, Japan. .,ERATO Sato Live Bio-forecasting Project, Japan Science and Technology Agency (JST), Kyoto, 619-0237, Japan. .,Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
92
|
Zhou L, Wang QL, Mao LH, Chen SY, Yang ZH, Liu X, Gao YH, Li XQ, Zhou ZH, He S. Hepatocyte-Specific Knock-Out of Nfib Aggravates Hepatocellular Tumorigenesis via Enhancing Urea Cycle. Front Mol Biosci 2022; 9:875324. [PMID: 35655758 PMCID: PMC9152321 DOI: 10.3389/fmolb.2022.875324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nuclear Factor I B (NFIB) has been reported to promote tumor growth, metastasis, and liver regeneration, but its mechanism in liver cancer is not fully elucidated. The present study aims to reveal the role of NFIB in hepatocellular carcinogenesis. In our study, we constructed hepatocyte-specific NFIB gene knockout mice with CRISPR/Cas9 technology (Nfib-/-; Alb-cre), and induced liver cancer mouse model by intraperitoneal injection of DEN/CCl4. First, we found that Nfib-/- mice developed more tumor nodules and had heavier livers than wild-type mice. H&E staining indicated that the liver histological severity of Nfib-/- group was more serious than that of WT group. Then we found that the differentially expressed genes in the tumor tissue between Nfib-/- mice and wild type mice were enriched in urea cycle. Furthermore, ASS1 and CPS1, the core enzymes of the urea cycle, were significantly upregulated in Nfib-/- tumors. Subsequently, we validated that the expression of ASS1 and CPS1 increased after knockdown of NFIB by lentivirus in normal hepatocytes and also promoted cell proliferation in vitro. In addition, ChIP assay confirmed that NFIB can bind with promoter region of both ASS1 and CPS1 gene. Our study reveals for the first time that hepatocyte-specific knock-out of Nfib aggravates hepatocellular tumor development by enhancing the urea cycle.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Liang Wang
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Gastroenterology, Chengdu Second People's Hospital, Sichuan, China
| | - Si-Yuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Han Yang
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Xue Liu
- Department of Pathology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Yu-Hua Gao
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiao-Qin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Hang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
93
|
Wang X, Yin Y, Qian W, Peng C, Shen S, Wang T, Zhao S. Citric acid of ovarian cancer metabolite induces pyroptosis via the caspase-4/TXNIP-NLRP3-GSDMD pathway in ovarian cancer. FASEB J 2022; 36:e22362. [PMID: 35608902 DOI: 10.1096/fj.202101993rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Malignant tumors display profound changes in cellular metabolism, yet how these altered metabolites affect the development and growth of tumors is not fully understood. Here, we used metabolomics to analyze the metabolic profile differences in ovarian cancer and found that citric acid (CA) is the most significantly downregulated metabolite. Recently, CA has been reported to inhibit the growth of a variety of tumor cells, but whether it is involved in pyroptosis of ovarian cancer and its potential molecular mechanisms still remains to be further investigated. Here, we demonstrated that CA inhibits the growth of ovarian cancer cells in a dose-dependent manner. RNA-seq analysis revealed that CA significantly promoted the expression of thioredoxin interacting protein (TXNIP) and caspase-4 (CASP4). Morphologic examination by transmission electron microscopy indicated that CA-treated ovarian cancer cells exhibited typical pyroptosis characteristics. Further mechanistic analyses showed that CA facilitates pyroptosis via the CASP4/TXNIP-NLRP3-Gesdermin-d (GSDMD) pathway in ovarian cancer. This study elucidated that CA induces ovarian cancer cell death through classical and non-classical pyroptosis pathways, which may be beneficial as an ovarian cancer therapy.
Collapse
Affiliation(s)
- Xiaogang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yuxin Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Wei Qian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Chen Peng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
94
|
Expression of GOT2 Is Epigenetically Regulated by DNA Methylation and Correlates with Immune Infiltrates in Clear-Cell Renal Cell Carcinoma. Curr Issues Mol Biol 2022; 44:2472-2489. [PMID: 35735610 PMCID: PMC9222030 DOI: 10.3390/cimb44060169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (KIRC) is the most common and highly malignant pathological type of kidney cancer, characterized by a profound metabolism dysregulation. As part of aspartate biosynthesis, mitochondrial GOT2 (glutamic-oxaloacetic transaminase 2) is essential for regulating cellular energy production and biosynthesis, linking multiple pathways. Nevertheless, the expression profile and prognostic significance of GOT2 in KIRC remain unclear. This study comprehensively analyzed the transcriptional levels, epigenetic regulation, correlation with immune infiltration, and prognosis of GOT2 in KIRC using rigorous bioinformatics analysis. We discovered that the expression levels of both mRNA and protein of GOT2 were remarkably decreased in KIRC tissues in comparison with normal tissues and were also significantly related to the clinical features and prognosis of KIRC. Remarkably, low GOT2 expression was positively associated with poorer overall survival (OS) and disease-free survival (DFS). Further analysis revealed that GOT2 downregulation is driven by DNA methylation in the promoter-related CpG islands. Finally, we also shed light on the influence of GOT2 expression in immune cell infiltration, suggesting that GOT2 may be a potential prognostic marker and therapeutic target for KIRC patients.
Collapse
|
95
|
Yu S, Wang H, Gao J, Liu L, Sun X, Wang Z, Wen P, Shi X, Shi J, Guo W, Zhang S. Identification of Context-Specific Fitness Genes Associated With Metabolic Rearrangements for Prognosis and Potential Treatment Targets for Liver Cancer. Front Genet 2022; 13:863536. [PMID: 35646101 PMCID: PMC9136325 DOI: 10.3389/fgene.2022.863536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the most frequent fatal malignancy. Furthermore, there is a lack of effective therapeutics for this cancer type. To construct a prognostic model for potential beneficiary screens and identify novel treatment targets, we used an adaptive daisy model (ADaM) to identify context-specific fitness genes from the CRISPR-Cas9 screens database, DepMap. Functional analysis and prognostic significance were assessed using data from TCGA and ICGC cohorts, while drug sensitivity analysis was performed using data from the Liver Cancer Model Repository (LIMORE). Finally, a 25-gene prognostic model was established. Patients were then divided into high- and low-risk groups; the high-risk group had a higher stemness index and shorter overall survival time than the low-risk group. The C-index, time-dependent ROC curves, and multivariate Cox regression analysis confirmed the excellent prognostic ability of this model. Functional enrichment analysis revealed the importance of metabolic rearrangements and serine/threonine kinase activity, which could be targeted by trametinib and is the key pathway in regulating liver cancer cell viability. In conclusion, the present study provides a prognostic model for patients with liver cancer and might help in the exploration of novel therapeutic targets to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Shizhe Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Haoren Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Xiaoyan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Zhihui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Jihua Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
- *Correspondence: Shuijun Zhang,
| |
Collapse
|
96
|
Artemether Alleviates Diabetic Kidney Disease by Modulating Amino Acid Metabolism. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7339611. [PMID: 35601149 PMCID: PMC9117059 DOI: 10.1155/2022/7339611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Diabetes is a worldwide metabolic disease with rapid growing incidence, characterized by hyperglycemia. Diabetic kidney disease (DKD), the leading cause of chronic kidney disease (CKD), has a high morbidity according to the constantly increasing diabetic patients and always develops irreversible deterioration of renal function. Though different in pathogenesis, clinical manifestations, and therapies, both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) can evolve into DKD. Since amino acids are both biomarkers and causal agents, rarely report has been made about its metabolism which lies in T1DM- and T2DM-related kidney disease. This study was designed to investigate artemether in adjusting renal amino acid metabolism in T1DM and T2DM mice. Artemether was applied as treatment in streptozotocin (STZ) induced T1DM mice and db/db T2DM mice, respectively. Artemether-treated mice showed lower FBG and HbA1c and reduced urinary albumin excretion, as well as urinary NAG. Both types of diabetic mice showed enlarged kidneys, as confirmed by increased kidney weight and the ratio of kidney weight to body weight. Artemether normalized kidney size and thus attenuated renal hypertrophy. Kidney tissue UPLC-MS analysis showed that branched-chain amino acids (BCAAs) and citrulline were upregulated in diabetic mice without treatment and downregulated after being treated with artemether. Expressions of glutamine, glutamic acid, aspartic acid, ornithine, glycine, histidine, phenylalanine and threonine were decreased in both types of diabetic mice whereas they increased after artemether treatment. The study demonstrates the initial evidence that artemether exerted renal protection in DKD by modulating amino acid metabolism.
Collapse
|
97
|
Russell RC, Guan KL. The multifaceted role of autophagy in cancer. EMBO J 2022; 41:e110031. [PMID: 35535466 PMCID: PMC9251852 DOI: 10.15252/embj.2021110031] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a cellular degradative pathway that plays diverse roles in maintaining cellular homeostasis. Cellular stress caused by starvation, organelle damage, or proteotoxic aggregates can increase autophagy, which uses the degradative capacity of lysosomal enzymes to mitigate intracellular stresses. Early studies have shown a role for autophagy in the suppression of tumorigenesis. However, work in genetically engineered mouse models and in vitro cell studies have now shown that autophagy can be either cancer-promoting or inhibiting. Here, we summarize the effects of autophagy on cancer initiation, progression, immune infiltration, and metabolism. We also discuss the efforts to pharmacologically target autophagy in the clinic and highlight future areas for exploration.
Collapse
Affiliation(s)
- Ryan C Russell
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
98
|
Wang Y, Zhou G, Guan T, Wang Y, Xuan C, Ding T, Gao J. A network-based matrix factorization framework for ceRNA co-modules recognition of cancer genomic data. Brief Bioinform 2022; 23:6581436. [PMID: 35514181 DOI: 10.1093/bib/bbac154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
With the development of high-throughput technologies, the accumulation of large amounts of multidimensional genomic data provides an excellent opportunity to study the multilevel biological regulatory relationships in cancer. Based on the hypothesis of competitive endogenous ribonucleic acid (RNA) (ceRNA) network, lncRNAs can eliminate the inhibition of microRNAs (miRNAs) on their target genes by binding to intracellular miRNA sites so as to improve the expression level of these target genes. However, previous studies on cancer expression mechanism are mostly based on individual or two-dimensional data, and lack of integration and analysis of various RNA-seq data, making it difficult to verify the complex biological relationships involved. To explore RNA expression patterns and potential molecular mechanisms of cancer, a network-regularized sparse orthogonal-regularized joint non-negative matrix factorization (NSOJNMF) algorithm is proposed, which combines the interaction relations among RNA-seq data in the way of network regularization and effectively prevents multicollinearity through sparse constraints and orthogonal regularization constraints to generate good modular sparse solutions. NSOJNMF algorithm is performed on the datasets of liver cancer and colon cancer, then ceRNA co-modules of them are recognized. The enrichment analysis of these modules shows that >90% of them are closely related to the occurrence and development of cancer. In addition, the ceRNA networks constructed by the ceRNA co-modules not only accurately mine the known correlations of the three RNA molecules but also further discover their potential biological associations, which may contribute to the exploration of the competitive relationships among multiple RNAs and the molecular mechanisms affecting tumor development.
Collapse
Affiliation(s)
- Yujie Wang
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Gang Zhou
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Tianhao Guan
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Yan Wang
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Chenxu Xuan
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Tao Ding
- School of Mathematics Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jie Gao
- School of Science, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
99
|
Huang Y, Du S, Liu J, Huang W, Liu W, Zhang M, Li N, Wang R, Wu J, Chen W, Jiang M, Zhou T, Cao J, Yang J, Huang L, Gu A, Niu J, Cao Y, Zong WX, Wang X, Liu J, Qian K, Wang H. Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints. Proc Natl Acad Sci U S A 2022; 119:e2122245119. [PMID: 35302894 PMCID: PMC8944253 DOI: 10.1073/pnas.2122245119] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ionization mass spectrometry (NPELDI-MS) to record serum metabolic fingerprints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption of direct serum detection without treatment. Subsequently, machine learning of SMFs generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis scoring system was constructed using SMFs with effective prediction performance toward BrCa (P < 0.005). Finally, we identified a biomarker panel of seven metabolites that were differentially enriched in BrCa serum and their related pathways. Together, our findings provide an efficient serum metabolic tool to characterize BrCa and highlight certain metabolic signatures as potential diagnostic and prognostic factors of diseases including but not limited to BrCa.
Collapse
Affiliation(s)
- Yida Huang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shaoqian Du
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jun Liu
- Department of Breast-Thyroid Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Weiyi Huang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Wanshan Liu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengji Zhang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ning Li
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Ruimin Wang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiao Wu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Chen
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengyi Jiang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Tianhao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jing Cao
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Yang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin Huang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - An Gu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jingyang Niu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Jun Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
100
|
Hajji N, Garcia-Revilla J, Soto MS, Perryman R, Symington J, Quarles CC, Healey DR, Guo Y, Orta-Vázquez ML, Mateos-Cordero S, Shah K, Bomalaski J, Anichini G, Tzakos AG, Crook T, O’Neill K, Scheck AC, Venero JL, Syed N. Arginine deprivation alters microglial polarity and synergizes with radiation to eradicate non-arginine-auxotrophic glioblastoma tumors. J Clin Invest 2022; 132:e142137. [PMID: 35113813 PMCID: PMC8920336 DOI: 10.1172/jci142137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
New approaches for the management of glioblastoma (GBM) are an urgent and unmet clinical need. Here, we illustrate that the efficacy of radiotherapy for GBM is strikingly potentiated by concomitant therapy with the arginine-depleting agent ADI-PEG20 in a non-arginine-auxotrophic cellular background (argininosuccinate synthetase 1 positive). Moreover, this combination led to durable and complete radiological and pathological response, with extended disease-free survival in an orthotopic immune-competent model of GBM, with no significant toxicity. ADI-PEG20 not only enhanced the cellular sensitivity of argininosuccinate synthetase 1-positive GBM to ionizing radiation by elevated production of nitric oxide (˙NO) and hence generation of cytotoxic peroxynitrites, but also promoted glioma-associated macrophage/microglial infiltration into tumors and turned their classical antiinflammatory (protumor) phenotype into a proinflammatory (antitumor) phenotype. Our results provide an effective, well-tolerated, and simple strategy to improve GBM treatment that merits consideration for early evaluation in clinical trials.
Collapse
Affiliation(s)
- Nabil Hajji
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Juan Garcia-Revilla
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC, University of Seville, Seville, Spain
| | - Manuel Sarmiento Soto
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC, University of Seville, Seville, Spain
| | - Richard Perryman
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Jake Symington
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Chad C. Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Deborah R. Healey
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Yijie Guo
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Bomalaski
- Polaris Pharmaceuticals Inc., San Diego, California, USA
| | - Giulio Anichini
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina, Ioannina, Greece
| | - Timothy Crook
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Kevin O’Neill
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Adrienne C. Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Jose Luis Venero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC, University of Seville, Seville, Spain
| | - Nelofer Syed
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| |
Collapse
|