51
|
Marcucci F, Rumio C. On the Role of Glycolysis in Early Tumorigenesis-Permissive and Executioner Effects. Cells 2023; 12:cells12081124. [PMID: 37190033 DOI: 10.3390/cells12081124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Reprogramming energy production from mitochondrial respiration to glycolysis is now considered a hallmark of cancer. When tumors grow beyond a certain size they give rise to changes in their microenvironment (e.g., hypoxia, mechanical stress) that are conducive to the upregulation of glycolysis. Over the years, however, it has become clear that glycolysis can also associate with the earliest steps of tumorigenesis. Thus, many of the oncoproteins most commonly involved in tumor initiation and progression upregulate glycolysis. Moreover, in recent years, considerable evidence has been reported suggesting that upregulated glycolysis itself, through its enzymes and/or metabolites, may play a causative role in tumorigenesis, either by acting itself as an oncogenic stimulus or by facilitating the appearance of oncogenic mutations. In fact, several changes induced by upregulated glycolysis have been shown to be involved in tumor initiation and early tumorigenesis: glycolysis-induced chromatin remodeling, inhibition of premature senescence and induction of proliferation, effects on DNA repair, O-linked N-acetylglucosamine modification of target proteins, antiapoptotic effects, induction of epithelial-mesenchymal transition or autophagy, and induction of angiogenesis. In this article we summarize the evidence that upregulated glycolysis is involved in tumor initiation and, in the following, we propose a mechanistic model aimed at explaining how upregulated glycolysis may play such a role.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
52
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (Beijing) 2023; 4:e218. [PMID: 36994237 PMCID: PMC10041388 DOI: 10.1002/mco2.218] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
Collapse
Affiliation(s)
- Shiqi Nong
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xiaoyue Han
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yu Xiang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yuran Qian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yuhao Wei
- Department of Clinical MedicineWest China School of MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tingyue Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Keyue Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Kai Shen
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuelei Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
53
|
Malloy CR, Sherry AD, Alger JR, Jin ES. Recent progress in analysis of intermediary metabolism by ex vivo 13 C NMR. NMR IN BIOMEDICINE 2023; 36:e4817. [PMID: 35997012 DOI: 10.1002/nbm.4817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Advanced imaging technologies, large-scale metabolomics, and the measurement of gene transcripts or enzyme expression all enable investigations of intermediary metabolism in human patients. Complementary information about fluxes in individual metabolic pathways may be obtained by ex vivo 13 C NMR of blood or tissue biopsies. Simple molecules such as 13 C-labeled glucose are readily administered to patients prior to surgical biopsies, and 13 C-labeled glycerol is easily administered orally to outpatients. Here, we review recent progress in practical applications of 13 C NMR to study cancer biology, the response to oxidative stress, gluconeogenesis, triglyceride synthesis in patients, as well as new insights into compartmentation of metabolism in the cytosol. The technical aspects of obtaining the sample, preparing material for analysis, and acquiring the spectra are relatively simple. This approach enables convenient, valuable, and quantitative insights into intermediary metabolism in patients.
Collapse
Affiliation(s)
- Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Veterans Affairs North Texas Healthcare System, Dallas, Texas, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Jeffry R Alger
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
54
|
Danzi F, Pacchiana R, Mafficini A, Scupoli MT, Scarpa A, Donadelli M, Fiore A. To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther 2023; 8:137. [PMID: 36949046 PMCID: PMC10033890 DOI: 10.1038/s41392-023-01380-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Federica Danzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria T Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biology and Genetics Section, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
55
|
Hou Y, Zhang X, Yao H, Hou L, Zhang Q, Tao E, Zhu X, Jiang S, Ren Y, Hong X, Lu S, Leng X, Xie Y, Gao Y, Liang Y, Zhong T, Long B, Fang JY, Meng X. METTL14 modulates glycolysis to inhibit colorectal tumorigenesis in p53-wild-type cells. EMBO Rep 2023; 24:e56325. [PMID: 36794620 PMCID: PMC10074077 DOI: 10.15252/embr.202256325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
The frequency of p53 mutations in colorectal cancer (CRC) is approximately 40-50%. A variety of therapies are being developed to target tumors expressing mutant p53. However, potential therapeutic targets for CRC expressing wild-type p53 are rare. In this study, we show that METTL14 is transcriptionally activated by wild-type p53 and suppresses tumor growth only in p53-wild-type (p53-WT) CRC cells. METTL14 deletion promotes both AOM/DSS and AOM-induced CRC growth in mouse models with the intestinal epithelial cell-specific knockout of METTL14. Additionally, METTL14 restrains aerobic glycolysis in p53-WT CRC, by repressing SLC2A3 and PGAM1 expression via selectively promoting m6 A-YTHDF2-dependent pri-miR-6769b/pri-miR-499a processing. Biosynthetic mature miR-6769b-3p and miR-499a-3p decrease SLC2A3 and PGAM1 levels, respectively, and suppress malignant phenotypes. Clinically, METTL14 only acts as a beneficial prognosis factor for the overall survival of p53-WT CRC patients. These results uncover a new mechanism for METTL14 inactivation in tumors and, most importantly, reveal that the activation of METTL14 is a critical mechanism for p53-dependent cancer growth inhibition, which could be targeted for therapy in p53-WT CRC.
Collapse
Affiliation(s)
- Yichao Hou
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xintian Zhang
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Yao
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lidan Hou
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingwei Zhang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Enwei Tao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Zhu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Jiang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Ren
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xialu Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyuan Lu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxu Leng
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yile Xie
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqi Gao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liang
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhong
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bohan Long
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Meng
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
56
|
Su W, Li J, Jiang L, Lei L, Li H. Hexokinase 2-mediated glycolysis supports inflammatory responses to Porphyromonas gingivalis in gingival fibroblasts. BMC Oral Health 2023; 23:103. [PMID: 36793034 PMCID: PMC9933269 DOI: 10.1186/s12903-023-02807-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND When infected with Porphyromonas gingivalis, gingival fibroblasts undergo metabolic reprogramming, and rely on aerobic glycolysis rather than oxidative phosphorylation for rapid energy replenishment. Hexokinases (HKs) are catalysts for glucose metabolism, and HK2 constitutes the major HK inducible isoform. The objective of this study is to determine whether HK2-mediated glycolysis promotes inflammatory responses in inflamed gingiva. METHODS Levels of glycolysis-related genes were assessed in normal and inflamed gingiva. Human gingival fibroblasts were harvested and infected with Porphyromonas gingivalis in order to mimic periodontal inflammation. 2-deoxy-d-glucose, an analogue of glucose, was used to block HK2-mediated glycolysis, while small interfering RNA was used to knock down HK2 expression. The mRNA and protein levels of genes were analyzed by real-time quantitative PCR and western blotting, respectively. HK2 activity and lactate production were assessed by ELISA. Cell proliferation was assessed by confocal microscopy. The generation of reactive oxygen species was assessed by flow cytometry. RESULTS Elevated expression of HK2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was observed in the inflamed gingiva. P. gingivalis infection was shown to promote glycolysis in human gingival fibroblasts, as evidenced by increased gene transcription of HK2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, cell glucose consumption, and HK2 activity. Inhibition and knockdown of HK2 resulted in reduced cytokine production, cell proliferation, and reactive oxygen species generation. Furthermore, P. gingivalis infection activated the hypoxia-inducible factor-1α signaling pathway, thus promoting HK2-mediated glycolysis and proinflammatory responses. CONCLUSIONS HK2-mediated glycolysis promotes inflammatory responses in gingival tissues, and therefore glycolysis can be targeted in order to inhibit the progression of periodontal inflammation.
Collapse
Affiliation(s)
- Wenqi Su
- grid.41156.370000 0001 2314 964XDepartment of Periodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, #30 Zhongyang Road, Nanjing, 210008 Jiangsu China ,grid.41156.370000 0001 2314 964XCentral Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingwen Li
- grid.41156.370000 0001 2314 964XDepartment of Periodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, #30 Zhongyang Road, Nanjing, 210008 Jiangsu China ,grid.41156.370000 0001 2314 964XCentral Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lishan Jiang
- grid.41156.370000 0001 2314 964XDepartment of Periodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, #30 Zhongyang Road, Nanjing, 210008 Jiangsu China ,grid.41156.370000 0001 2314 964XCentral Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lang Lei
- grid.41156.370000 0001 2314 964XDepartment of Orthodontics, Medical School of Nanjing University, Nanjing Stomatological Hospital, Nanjing, China
| | - Houxuan Li
- Department of Periodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, #30 Zhongyang Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
57
|
Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ 2023; 30:876-884. [PMID: 36755067 PMCID: PMC10070433 DOI: 10.1038/s41418-023-01125-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 02/10/2023] Open
Abstract
Cuproptosis is a novel type of copper-induced cell death that primarily occurs in cells that utilize oxidative phosphorylation as the main metabolic pathway to produce energy. Copper directly associates with the lipoylated proteins of the tricarboxylic acid cycle, leading to the disulfide-bond-dependent aggregation of these lipoylated proteins, destabilization of the iron-sulfur cluster proteins, and consequent proteotoxic stress. Cancer cells prefer glycolysis (Warburg effect) to oxidative phosphorylation for producing intermediate metabolites and energy, thereby achieving resistance to cuproptosis. Interestingly, the tumor suppressor p53 is a crucial metabolic regulator that inhibits glycolysis and drives a metabolic switch towards oxidative phosphorylation in cancer cells. Additionally, p53 regulates the biogenesis of iron-sulfur clusters and the copper chelator glutathione, which are two critical components of the cuproptotic pathway, suggesting that this tumor suppressor might play a role in cuproptosis. Furthermore, the possible roles of mutant p53 in regulating cuproptosis are discussed. In this essay, we review the recent progress in the understanding of the mechanism underlying cuproptosis, revisit the roles of p53 in metabolic regulation and iron-sulfur cluster and glutathione biosynthesis, and propose several potential mechanisms for wild-type and mutant p53-mediated cuproptosis regulation.
Collapse
Affiliation(s)
- Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Ling
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
58
|
Sanford JD, Jin A, Grois GA, Zhang Y. A role of cytoplasmic p53 in the regulation of metabolism shown by bat-mimicking p53 NLS mutant mice. Cell Rep 2023; 42:111920. [PMID: 36640361 DOI: 10.1016/j.celrep.2022.111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 10/02/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
The transcription factor p53 suppresses tumorigenesis via a wide-ranging, concerted set of functions. Although several studies have identified cytoplasmic, transcription-independent functions of p53, the biological relevance of these activities has not been fully elucidated, particularly in vivo. Here, we generated a mouse model with a p53K316P mutation, which mimics a naturally occurring p53 nuclear localization signal (NLS) change observed in bat species. We find that the p53K316P mutation increases cytoplasmic localization of p53 and promotes a pleiotropic metabolic phenotype that includes increased adiposity, increased de novo lipogenesis, and decreased lactate generation. Mechanistic studies show that, independent of its transactivation function, p53K316P interacts with lactate dehydrogenase B (LDHB) and alters the composition and enzymatic activities of LDH complex favoring pyruvate generation and hindering lactate production. Overall, the study identifies a role for cytoplasmic p53 in the regulation of metabolism that favors energy generation and storage.
Collapse
Affiliation(s)
- Jack D Sanford
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Aiwen Jin
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Gabriella A Grois
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yanping Zhang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
59
|
Brown K, Jenkins LMM, Crooks DR, Surman DR, Mazur SJ, Xu Y, Arimilli BS, Yang Y, Lane AN, Fan TWM, Schrump DS, Linehan WM, Ripley RT, Appella E. Targeting mutant p53-R248W reactivates WT p53 function and alters the onco-metabolic profile. Front Oncol 2023; 12:1094210. [PMID: 36713582 PMCID: PMC9874945 DOI: 10.3389/fonc.2022.1094210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
TP53 is the most commonly mutated gene in cancer, and gain-of-function mutations have wide-ranging effects. Efforts to reactivate wild-type p53 function and inhibit mutant functions have been complicated by the variety of TP53 mutations. Identified from a screen, the NSC59984 compound has been shown to restore activity to mutant p53 in colorectal cancer cells. Here, we investigated its effects on esophageal adenocarcinoma cells with specific p53 hot-spot mutations. NSC59984 treatment of cells reactivated p53 transcriptional regulation, inducing mitochondrial intrinsic apoptosis. Analysis of its effects on cellular metabolism demonstrated increased utilization of the pentose phosphate pathway and inhibition of glycolysis at the fructose-1,6-bisphosphate to fructose 6-phosphate junction. Furthermore, treatment of cells with NSC59984 increased reactive oxygen species production and decreased glutathione levels; these effects were enhanced by the addition of buthionine sulfoximine and inhibited by N-acetyl cysteine. We found that the effects of NSC59984 were substantially greater in cells harboring the p53 R248W mutation. Overall, these findings demonstrate p53-dependent effects of NSC59984 on cellular metabolism, with increased activity in cells harboring the p53 R248W mutation. This research highlights the importance of defining the mutational status of a particular cancer to create a patient-centric strategy for the treatment of p53-driven cancers.
Collapse
Affiliation(s)
- Kate Brown
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States,*Correspondence: Kate Brown,
| | - Lisa M. Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel R. Crooks
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Deborah R. Surman
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sharlyn J. Mazur
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuan Xu
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bhargav S. Arimilli
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, UK, Lexington, KY, United States
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, UK, Lexington, KY, United States
| | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - R. Taylor Ripley
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
60
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
61
|
Yang H, Zou X, Yang S, Zhang A, Li N, Ma Z. Identification of lactylation related model to predict prognostic, tumor infiltrating immunocytes and response of immunotherapy in gastric cancer. Front Immunol 2023; 14:1149989. [PMID: 36936929 PMCID: PMC10020516 DOI: 10.3389/fimmu.2023.1149989] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Background The epigenetic regulatory chemical lactate is a product of glycolysis. It can regulate gene expression through histone lactylation, thereby promoting tumor proliferation, metastasis, and immunosuppression. Methods In this study, a lactylation-related model for gastric cancer (GC) was constructed, and its relationships to prognosis, immune cell infiltration, and immunotherapy were investigated. By contrasting normal tissues and tumor tissues, four lactylation-related pathways that were substantially expressed in GC tissues were found in the GSEA database. Six lactylation-related genes were screened for bioinformatic analysis. The GC data sets from the TCGA and GEO databases were downloaded and integrated to perform cluster analysis, and the lactylation related model was constructed by secondary clustering. Results The fingding demonstrated that the lactylation score has a strong correlation with the overall survival rate from GC and the progression of GC. Mechanistic experiments showed that abundant immune cell infiltration (macrophages showed the highest degree of infiltration) and increased genetic instability are traits of high lactylation scores. Immune checkpoint inhibitors (ICIs) demonstrated a reduced response rate in GC with high lactylation scores. At the same time, tumors with high lactylation scores had high Tumor Immune Dysfunction and Exclusion scores, which means that they had a higher risk of immune evasion and dysfunction. Discussion These findings indicate that the lactylation score can be used to predict the malignant progression and immune evasion of GC. This model also can guide the treatment response to ICIs of GC. The constructed model of the lactate gene is also expected to become a potential therapeutic target for GC and diagnostic marker.
Collapse
|
62
|
Posttranslational Modifications of Rev-Erb α Protein and Abnormal Inflammatory Response in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6291656. [PMID: 36618075 PMCID: PMC9812611 DOI: 10.1155/2022/6291656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022]
Abstract
We reported that Rev-erbα, a transcriptional repressor, is reduced in human gastric cancer and that it inhibits glycolysis in cultured gastric cancer cells. However, it is unclear whether Rev-erbα undergoes posttranslational modifications in gastric cancer. Here, we determined levels of Rev-erbα and its posttranslational modifications including phosphorylation, SUMOylation, and ubiquitination in N-methyl-N-nitrosourea (MNU)/Helicobacter pylori (H. pylori)-induced gastric cancer in mice and in cultured human gastric cancer cells. Administration of MNU plus H. pylori infection successfully induced gastric tumor in C57BL/6J mice. MNU/H. pylori decreased the levels of Rev-erbα in gastric tumor tissues of mice accompanied by an increase in the level of lactic acid. Rev-erbα protein SUMOylation and ubiquitination modifications were significantly increased, whereas phosphorylation was unchanged, in gastric cancer cells line BGC-823 and MNU/H. pylori-induced mouse gastric cancer tissues. Using human gastric cancer tissues, we found that Rev-erbα was specifically reduced in mucosal epithelial cells in gastric tissue. Cytokine levels were increased in MNU/H. pylori-exposed mice compared with control mice. Similarly, the levels of IL-6 IL-10, TNF-α, and VEGF were higher in the BGC-823 cell line compared with GES-1 cells. IL-6 and IL-1 incubation did not affect Rev-erbα levels in BGC-823 cells. Furthermore, Rev-erbα was recruited on the promoters of these cytokine genes, which suppressed their expression. Conclusively, Rev-erbα SUMOylation and subsequent ubiquitination may contribute to its protein reduction, which leads to increased glycolysis and abnormal inflammatory responses during the development of gastric cancer. Targeting Rev-erbα and its SUMOylation represents promising approaches for prevention and management of gastric cancer.
Collapse
|
63
|
PRUSTY DEBASISH, Manna SK. Metabolic Reprogramming in Cancer. DRUG METABOLISM HANDBOOK 2022:841-892. [DOI: 10.1002/9781119851042.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
64
|
Mireștean CC, Iancu RI, Iancu DPT. p53 Modulates Radiosensitivity in Head and Neck Cancers-From Classic to Future Horizons. Diagnostics (Basel) 2022; 12:3052. [PMID: 36553058 PMCID: PMC9777383 DOI: 10.3390/diagnostics12123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
p53, initially considered a tumor suppressor, has been the subject of research related to cancer treatment resistance in the last 30 years. The unfavorable response to multimodal therapy and the higher recurrence rate, despite an aggressive approach, make HNSCC a research topic of interest for improving therapeutic outcomes, even if it is only the sixth most common malignancy worldwide. New advances in molecular biology and genetics include the involvement of miRNA in the control of the p53 pathway, the understanding of mechanisms such as gain/loss of function, and the development of different methods to restore p53 function, especially for HPV-negative cases. The different ratio between mutant p53 status in the primary tumor and distant metastasis originating HNSCC may serve to select the best therapeutic target for activating an abscopal effect by radiotherapy as a "booster" of the immune system. P53 may also be a key player in choosing radiotherapy fractionation regimens. Targeting any pathway involving p53, including tumor metabolism, in particular the Warburg effect, could modulate the radiosensitivity and chemo-sensitivity of head and neck cancers.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
- Department of Surgery, Railways Clinical Hospital Iasi, 700506 Iași, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Laboratory, “St. Spiridon” Emergency Universitary Hospital, 700111 Iași, Romania
| | - Dragoș Petru Teodor Iancu
- Oncology and Radiotherapy Department, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Radiation Oncology, Regional Institute of Oncology, 700483 Iași, Romania
| |
Collapse
|
65
|
Reprogramming of glycolysis by chemical carcinogens during tumor development. Semin Cancer Biol 2022; 87:127-136. [PMID: 36265806 DOI: 10.1016/j.semcancer.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Indiscriminate usage and mismanagement of chemicals in the agricultural and industrial sectors have contaminated different environmental compartments. Exposure to these persistent and hazardous pollutants like heavy metals, endocrine disruptors, aromatic hydrocarbons, and pesticides can result in various health adversities, including cancer. Chemical carcinogens follow a similar pattern of carcinogenesis, like oxidative stress, chromosomal aberration, DNA double-strand break, mismatch repair, and misregulation of oncogenic and/or tumor suppressors. Out of several cancer-associated endpoints, cellular metabolic homeostasis is the commonest to be deregulated upon chemical exposure. Chemical carcinogens hamper glycolytic reprogramming to fuel the malignant transformation of the cells and/or promote cancer progression. Several regulators like Akt, ERK, Ras, c-Myc, HIF-1α, and p53 regulate glycolysis in chemical-induced carcinogenesis. However, the deregulation of the anabolic biochemistry of glucose during chemical-induced carcinogenesis remains to be uncovered. This review comprehensively covers the environmental chemical-induced glycolytic shift during carcinogenesis and its mechanism. The focus is also to fill the major gaps associated with understanding the fairy tale between environmental carcinogens and metabolic reprogramming. Although evidence from studies regarding glycolytic reprogramming in chemical carcinogenesis provides valuable insights into cancer therapy, exposure to a mixture of toxicants and their mechanism of inducing carcinogenesis still needs to be studied.
Collapse
|
66
|
An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022; 14:cancers14235742. [PMID: 36497226 PMCID: PMC9738352 DOI: 10.3390/cancers14235742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|
67
|
Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen Y, Liu H, Jiang J, Yang Y, Zheng F, Wu B. Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:329. [PMID: 36411480 PMCID: PMC9677649 DOI: 10.1186/s13046-022-02531-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aerobic glycolysis has been recognized as one of the growth-promoting metabolic alterations of cancer cells. Emerging evidence indicates that nuclear factor κB (NF-κB) plays significant roles in metabolic adaptation in normal cells and cancer cells. However, whether and how NF-κB regulates metabolic reprogramming in hepatocellular carcinoma (HCC), specifically hepatitis B virus X protein (HBx)-initiated HCC, has not been determined. METHODS A dataset of the HCC cohort from the TCGA database was used to analyse the expression of NF-κB family members. Expression of NF-κBp65 and phosphorylation of NF-κBp65 (p-p65) were detected in liver tissues from HBV-related HCC patients and normal controls. A newly established HBx+/+/NF-κBp65f/f and HBx+/+/NF-κBp65Δhepa spontaneous HCC mouse model was used to investigate the effects of NF-κBp65 on HBx-initiated hepatocarcinogenesis. Whether and how NF-κBp65 is involved in aerobic glycolysis induced by HBx in hepatocellular carcinogenesis were analysed in vitro and in vivo. RESULTS NF-κBp65 was upregulated in HBV-related HCC, and HBx induced NF-κBp65 upregulation and phosphorylation in vivo and in vitro. Hepatocyte-specific NF-κBp65 deficiency remarkably decreased HBx-initiated spontaneous HCC incidence in HBx-TG mice. Mechanistically, HBx induced aerobic glycolysis by activating NF-κBp65/hexokinase 2 (HK2) signalling in spontaneous hepatocarcinogenesis, and overproduced lactate significantly promoted HCC cell pernicious proliferation via the PI3K (phosphatidylinositide 3-kinase)/Akt pathway in hepatocarcinogenesis. CONCLUSION The data elucidate that NF-κBp65 plays a pivotal role in HBx-initiated spontaneous HCC, which depends on hyperactive NF-κBp65/HK2-mediated aerobic glycolysis to activate PI3K/Akt signalling. Thus, phosphorylation of NF-κBp65 will be a potential therapeutic target for HBV-related HCC.
Collapse
Affiliation(s)
- Lingjun Chen
- grid.412558.f0000 0004 1762 1794Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 Guangdong Province China ,grid.484195.5Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630 Guangdong Province China
| | - Xianyi Lin
- grid.412558.f0000 0004 1762 1794Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 Guangdong Province China ,grid.484195.5Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630 Guangdong Province China
| | - Yiming Lei
- grid.412558.f0000 0004 1762 1794Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 Guangdong Province China ,grid.484195.5Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630 Guangdong Province China
| | - Xuan Xu
- grid.412558.f0000 0004 1762 1794Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 Guangdong Province China ,grid.484195.5Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630 Guangdong Province China
| | - Qi Zhou
- grid.412558.f0000 0004 1762 1794Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 Guangdong Province China ,grid.484195.5Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630 Guangdong Province China
| | - Yan Chen
- grid.412558.f0000 0004 1762 1794Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 Guangdong Province China ,grid.484195.5Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630 Guangdong Province China
| | - Huiling Liu
- grid.412558.f0000 0004 1762 1794Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 Guangdong Province China ,grid.484195.5Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630 Guangdong Province China
| | - Jie Jiang
- grid.412558.f0000 0004 1762 1794Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 Guangdong Province China ,grid.484195.5Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630 Guangdong Province China
| | - Yidong Yang
- grid.412558.f0000 0004 1762 1794Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 Guangdong Province China ,grid.484195.5Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630 Guangdong Province China
| | - Fengping Zheng
- grid.412558.f0000 0004 1762 1794Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 Guangdong Province China ,grid.484195.5Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630 Guangdong Province China
| | - Bin Wu
- grid.412558.f0000 0004 1762 1794Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 Guangdong Province China ,grid.484195.5Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630 Guangdong Province China
| |
Collapse
|
68
|
Vaseghi G, Ghasemi A, Laher I, Alaei H, Dana N, Naji esfahani H, Javanmard SH. Morphine upregulates Toll-like receptor 4 expression and promotes melanomas in mice. Immunopharmacol Immunotoxicol 2022; 45:347-354. [DOI: 10.1080/08923973.2022.2145967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - HojjatAllah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hajar Naji esfahani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
69
|
Huang B, Lang X, Li X. The role of TIGAR in nervous system diseases. Front Aging Neurosci 2022; 14:1023161. [DOI: 10.3389/fnagi.2022.1023161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) mainly regulates pentose phosphate pathway by inhibiting glycolysis, so as to synthesize ribose required by DNA, promote DNA damage repair and cell proliferation, maintain cell homeostasis and avoid body injury. Its physiological functions include anti-oxidative stress, reducing inflammation, maintaining mitochondrial function, inhibiting apoptosis, reducing autophagy etc. This paper reviews the research of TIGAR in neurological diseases, including stroke, Parkinson’s disease (PD), Alzheimer’s disease (AD), seizures and brain tumors, aiming to provide reference for the development of new therapeutic targets.
Collapse
|
70
|
Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol 2022; 15:160. [PMID: 36319992 PMCID: PMC9628128 DOI: 10.1186/s13045-022-01358-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Countless CRC patients undergo disease progression. As a hallmark of cancer, Warburg effect promotes cancer metastasis and remodels the tumor microenvironment, including promoting angiogenesis, immune suppression, cancer-associated fibroblasts formation and drug resistance. Targeting Warburg metabolism would be a promising method for the treatment of CRC. In this review, we summarize information about the roles of Warburg effect in tumor microenvironment to elucidate the mechanisms governing Warburg effect in CRC and to identify novel targets for therapy.
Collapse
|
71
|
FANG L, QI H, WANG P, WANG S, LI T, XIA T, PIAO H, GU C. UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis. J Zhejiang Univ Sci B 2022; 23:863-875. [PMID: 36226539 PMCID: PMC9561404 DOI: 10.1631/jzus.b2200144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Up-frameshift 1 (UPF1), as the most critical factor in nonsense-mediated messenger RNA (mRNA) decay (NMD), regulates tumor-associated molecular pathways in many cancers. However, the role of UPF1 in lung adenocarcinoma (LUAD) amino acid metabolism remains largely unknown. In this study, we found that UPF1 was significantly correlated with a portion of amino acid metabolic pathways in LUAD by integrating bioinformatics and metabolomics. We further confirmed that UPF1 knockdown inhibited activating transcription factor 4 (ATF4) and Ser51 phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), the core proteins in amino acid metabolism reprogramming. In addition, UPF1 promotes cell proliferation by increasing the amino-acid levels of LUAD cells, which depends on the function of ATF4. Clinically, UPF1 mRNA expression is abnormal in LUAD tissues, and higher expression of UPF1 and ATF4 was significantly correlated with poor overall survival (OS) in LUAD patients. Our findings reveal that UPF1 is a potential regulator of tumor-associated amino acid metabolism and may be a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Lei FANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Huan QI
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Peng WANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Shiqing WANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Tianjiao LI
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Tian XIA
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Hailong PIAO
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China,Hailong PIAO,
| | - Chundong GU
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China,Chundong GU,
| |
Collapse
|
72
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
73
|
Kliebhan J, Besse A, Kampa‐Schittenhelm K, Schittenhelm M, Driessen C. Mutant TP53 driving the Warburg Effect in Mantle Cell lymphoma. Clin Case Rep 2022; 10:e6296. [PMID: 36225622 PMCID: PMC9529752 DOI: 10.1002/ccr3.6296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
The p53 mutation R273H in tumor cells leads to increased glucose uptake, lactic acidosis, and accelerated tumor growth, as was previously shown in mice. We here present a patient with mantle cell lymphoma harboring this p53_R273H mutation, whose clinical course is characterized by severe lactic acidosis, hypoglycemia, and aggressive disease.
Collapse
Affiliation(s)
- Johannes Kliebhan
- Department of Oncology and HematologyCantonal Hospital St GallenSt GallenSwitzerland
| | - Andrej Besse
- Department of Oncology and HematologyCantonal Hospital St GallenSt GallenSwitzerland
| | | | - Marcus Schittenhelm
- Department of Oncology and HematologyCantonal Hospital St GallenSt GallenSwitzerland
| | - Christoph Driessen
- Department of Oncology and HematologyCantonal Hospital St GallenSt GallenSwitzerland
| |
Collapse
|
74
|
Kealey J, Düssmann H, Llorente-Folch I, Niewidok N, Salvucci M, Prehn JHM, D’Orsi B. Effect of TP53 deficiency and KRAS signaling on the bioenergetics of colon cancer cells in response to different substrates: A single cell study. Front Cell Dev Biol 2022; 10:893677. [PMID: 36238683 PMCID: PMC9550869 DOI: 10.3389/fcell.2022.893677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. Somatic mutations in genes involved in oncogenic signaling pathways, including KRAS and TP53, rewire the metabolic machinery in cancer cells. We here set out to determine, at the single cell level, metabolic signatures in human colon cancer cells engineered to express combinations of activating KRAS gene mutations and TP53 gene deletions. Specifically, we explored how somatic mutations in these genes and substrate availability (lactate, glucose, substrate deprivation) from the extracellular microenvironment affect bioenergetic parameters, including cellular ATP, NADH and mitochondrial membrane potential dynamics. Employing cytosolic and mitochondrial FRET-based ATP probes, fluorescent NADH sensors, and the membrane-permeant cationic fluorescent probe TMRM in HCT-116 cells as a model system, we observed that TP53 deletion and KRAS mutations drive a shift in metabolic signatures enabling lactate to become an efficient metabolite to replenish both ATP and NADH following nutrient deprivation. Intriguingly, cytosolic, mitochondrial and overall cellular ATP measurements revealed that, in WT KRAS cells, TP53 deficiency leads to an enhanced ATP production in the presence of extracellular lactate and glucose, and to the greatest increase in ATP following a starvation period. On the other hand, oncogenic KRAS in TP53-deficient cells reversed the alterations in cellular ATP levels. Moreover, cell population measurements of mitochondrial and glycolytic metabolism using a Seahorse analyzer demonstrated that WT KRAS TP53-silenced cells display an increase of the basal respiration and tightly-coupled mitochondria, in the presence of glucose as substrate, compared to TP53 competent cells. Furthermore, cells possessing oncogenic KRAS, independently of TP53 status, showed less pronounced mitochondrial membrane potential changes in response to metabolic nutrients. Furthermore, analysis of cytosolic and mitochondrial NADH levels revealed that the simultaneous presence of TP53 deletion and oncogenic KRAS showed the most pronounced alteration in cytosolic and mitochondrial NADH during metabolic stress. In conclusion, our findings demonstrate how activating KRAS mutation and loss of TP53 remodel cancer metabolism and lead to alterations in bioenergetics under metabolic stress conditions by modulating cellular ATP production, NADH oxidation, mitochondrial respiration and function.
Collapse
Affiliation(s)
- James Kealey
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Irene Llorente-Folch
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Universidad Rey Juan Carlos, Alcorcon-Madrid, Spain
| | - Natalia Niewidok
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- *Correspondence: Jochen H. M. Prehn, ; Beatrice D’Orsi,
| | - Beatrice D’Orsi
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
- *Correspondence: Jochen H. M. Prehn, ; Beatrice D’Orsi,
| |
Collapse
|
75
|
Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol 2022; 43:757-775. [PMID: 35965153 DOI: 10.1016/j.it.2022.07.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
The procurement and management of nutrients and ability to fight infections are fundamental requirements for survival. These defense responses are bioenergetically costly, requiring the immune system to balance protection against pathogens with the need to maintain metabolic homeostasis. NF-κB transcription factors are central regulators of immunity and inflammation. Over the last two decades, these factors have emerged as a pivotal node coordinating the immune and metabolic systems in physiology and the etiopathogenesis of major threats to human health, including cancer, autoimmunity, chronic inflammation, and others. In this review, we discuss recent advances in understanding how NF-κB-dependent metabolic programs control inflammation, metabolism, and immunity and how improved knowledge of them may lead to better diagnostics and therapeutics for widespread human diseases.
Collapse
Affiliation(s)
- Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
76
|
Wang Z, Mo S, Han P, Liu L, Liu Z, Fu X, Tian Y. The role of UXT in tumors and prospects for its application in hepatocellular carcinoma. Future Oncol 2022; 18:3335-3348. [PMID: 36000398 DOI: 10.2217/fon-2022-0582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UXT is widely expressed in human and mouse tissues and aberrantly expressed in various tumor tissues. UXT may play a pro-cancer or tumor suppressor role in different tumor types and microenvironments with different mechanisms of action. Studies have shown that UXT can interact with related receptors to exert its functions and affect tumor proliferation and metastasis, leading to a poor prognosis when the biological functions of these tumors are changed. Interestingly, the signaling pathways and mechanism-related molecules that interact with UXT are closely related to the occurrence of hepatocellular carcinoma (HCC) during disease progression. This article reviews the research progress of UXT and prospects for its application in HCC, with the aim of providing possible scientific suggestions for the basic research, diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhengwang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaojian Mo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Pengzhe Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lu Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ziang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
77
|
Feng Z, Ou Y, Hao L. The roles of glycolysis in osteosarcoma. Front Pharmacol 2022; 13:950886. [PMID: 36059961 PMCID: PMC9428632 DOI: 10.3389/fphar.2022.950886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic reprogramming is of great significance in the progression of various cancers and is critical for cancer progression, diagnosis, and treatment. Cellular metabolic pathways mainly include glycolysis, fat metabolism, glutamine decomposition, and oxidative phosphorylation. In cancer cells, reprogramming metabolic pathways is used to meet the massive energy requirement for tumorigenesis and development. Metabolisms are also altered in malignant osteosarcoma (OS) cells. Among reprogrammed metabolisms, alterations in aerobic glycolysis are key to the massive biosynthesis and energy demands of OS cells to sustain their growth and metastasis. Numerous studies have demonstrated that compared to normal cells, glycolysis in OS cells under aerobic conditions is substantially enhanced to promote malignant behaviors such as proliferation, invasion, metastasis, and drug resistance of OS. Glycolysis in OS is closely related to various oncogenes and tumor suppressor genes, and numerous signaling pathways have been reported to be involved in the regulation of glycolysis. In recent years, a vast number of inhibitors and natural products have been discovered to inhibit OS progression by targeting glycolysis-related proteins. These potential inhibitors and natural products may be ideal candidates for the treatment of osteosarcoma following hundreds of preclinical and clinical trials. In this article, we explore key pathways, glycolysis enzymes, non-coding RNAs, inhibitors, and natural products regulating aerobic glycolysis in OS cells to gain a deeper understanding of the relationship between glycolysis and the progression of OS and discover novel therapeutic approaches targeting glycolytic metabolism in OS.
Collapse
|
78
|
Gong S, Xiong L, Luo Z, Yin Q, Huang M, Zhou Y, Li J. SIRT6 promotes ferroptosis and attenuates glycolysis in pancreatic cancer through regulation of the NF-κB pathway. Exp Ther Med 2022; 24:502. [PMID: 35837046 PMCID: PMC9257961 DOI: 10.3892/etm.2022.11430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/16/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer (PC) is a malignant tumor with high mortality worldwide. SIRT6 plays versatile roles in human cancers. However, SIRT6 has rarely been studied in PC. The purpose of the present study was to explore the function and potential mechanism of SIRT6 in PC. The expression of SIRT6 in PC tissues and cells was detected by reverse transcription-quantitative PCR and western blotting. The overall survival time was analyzed through the Kaplan Meier method. Cell viability was measured by the Cell Counting Kit-8 assay. The Fe2+ content, glucose uptake, lactic acid and ATP production were detected through the corresponding kits. ROS was evaluated using the DCFH-DA detection kit. Protein expression was assessed by immunohistochemistry or western blot analysis. In the present study, SIRT6 was lowly expressed in PC tissues and cells compared with normal tissues and cells. Moreover, the low expression of SIRT6 was associated with a poor prognosis in patients with PC. Upregulation of SIRT6 significantly promoted the ferroptosis and inhibited the glycolysis in PC cells. However, knockdown of SIRT6 resisted ferroptosis and increased glycolysis in PC cells. Further studies found that the activation of NF-κB could reverse the effect of SIRT6 on PC cells. In addition, overexpression of SIRT6 restrained the growth of xenografted tumors and suppressed the nuclear transcription of NF-κB in vivo. Collectively, the present study indicated that SIRT6 promoted ferroptosis and inhibited glycolysis through inactivating the NF-κB signaling pathway in PC. These findings suggested that SIRT6 may become a therapeutic target for PC.
Collapse
Affiliation(s)
- Shuangxi Gong
- Department of General Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Lixin Xiong
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Zhen Luo
- Department of General Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Qinghua Yin
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ming Huang
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Yang Zhou
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Jian Li
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
79
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
80
|
Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells 2022; 11:cells11142155. [PMID: 35883598 PMCID: PMC9318640 DOI: 10.3390/cells11142155] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is the fourth leading cause of cancer death world-wide. Therapies for PDAC are largely ineffective due to the dense desmoplastic tumor microenvironment which prevents chemotherapeutic drugs and small molecule inhibitors from exerting effective anti-cancer effects. In this review, we will discuss the roles of TP53 and miRs on the PDAC tumor microenvironment and how loss of the normal functions of TP53 promote tumor progression. The TP53 gene is mutated in approximately 50% of pancreatic cancers. Often, these TP53 mutations are point mutations which confer additional functions for the TP53 proteins. These are called gain of function (GOF) mutations (mut). Another class of TP53 mutations are deletions which result in loss of the TP53 protein; these are referred to TP53-null mutations. We have organized this review into various components/properties of the PDAC microenvironment and how they may be altered in the presence of mutant TP53 and loss of certain miR expression.
Collapse
|
81
|
Tang Y, Zhang Z, Chen Y, Qin S, Zhou L, Gao W, Shen Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11071324. [PMID: 35883815 PMCID: PMC9311581 DOI: 10.3390/antiox11071324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Undue elevation of ROS levels commonly occurs during cancer evolution as a result of various antitumor therapeutics and/or endogenous immune response. Overwhelming ROS levels induced cancer cell death through the dysregulation of ROS-sensitive glycolytic enzymes, leading to the catastrophic depression of glycolysis and oxidative phosphorylation (OXPHOS), which are critical for cancer survival and progression. However, cancer cells also adapt to such catastrophic oxidative and metabolic stresses by metabolic reprograming, resulting in cancer residuality, progression, and relapse. This adaptation is highly dependent on NADPH and GSH syntheses for ROS scavenging and the upregulation of lipolysis and glutaminolysis, which fuel tricarboxylic acid cycle-coupled OXPHOS and biosynthesis. The underlying mechanism remains poorly understood, thus presenting a promising field with opportunities to manipulate metabolic adaptations for cancer prevention and therapy. In this review, we provide a summary of the mechanisms of metabolic regulation in the adaptation of cancer cells to oxidative stress and the current understanding of its regulatory role in cancer survival and progression.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610106, China
- Correspondence: (W.G.); (Z.S.)
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
- Correspondence: (W.G.); (Z.S.)
| |
Collapse
|
82
|
Wang CY, Chao CH. p53-Mediated Indirect Regulation on Cellular Metabolism: From the Mechanism of Pathogenesis to the Development of Cancer Therapeutics. Front Oncol 2022; 12:895112. [PMID: 35707366 PMCID: PMC9190692 DOI: 10.3389/fonc.2022.895112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The transcription factor p53 is the most well-characterized tumor suppressor involved in multiple cellular processes, which has expanded to the regulation of metabolism in recent decades. Accumulating evidence reinforces the link between the disturbance of p53-relevant metabolic activities and tumor development. However, a full-fledged understanding of the metabolic roles of p53 and the underlying detailed molecular mechanisms in human normal and cancer cells remain elusive, and persistent endeavor is required to foster the entry of drugs targeting p53 into clinical use. This mini-review summarizes the indirect regulation of cellular metabolism by wild-type p53 as well as mutant p53, in which mechanisms are categorized into three major groups: through modulating downstream transcriptional targets, protein-protein interaction with other transcription factors, and affecting signaling pathways. Indirect mechanisms expand the p53 regulatory networks of cellular metabolism, making p53 a master regulator of metabolism and a key metabolic sensor. Moreover, we provide a brief overview of recent achievements and potential developments in the therapeutic strategies targeting mutant p53, emphasizing synthetic lethal methods targeting mutant p53 with metabolism. Then, we delineate synthetic lethality targeting mutant p53 with its indirect regulation on metabolism, which expands the synthetic lethal networks of mutant p53 and broadens the horizon of developing novel therapeutic strategies for p53 mutated cancers, providing more opportunities for cancer patients with mutant p53. Finally, the limitations and current research gaps in studies of metabolic networks controlled by p53 and challenges of research on p53-mediated indirect regulation on metabolism are further discussed.
Collapse
Affiliation(s)
- Chen-Yun Wang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chi-Hong Chao
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
83
|
Jaiswara PK, Kumar A. Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, pH regulation, and ROS homeostasis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1445-1457. [PMID: 35199915 DOI: 10.1002/tox.23497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Nimbolide is reported as one of the potential anticancer candidates of the neem tree (Azadirachta indica A. Juss). The cytotoxic action of nimbolide has been well reported against a wide number of malignancies, including breast, prostate, lung, liver, and cervix cancers. Interestingly, only a few in vivo studies conducted on B cell lymphoma, glioblastoma, pancreatic cancer, and buccal pouch carcinoma have shown the in vivo antitumor efficacy of nimbolide. Therefore, it is highly needed to examine the in vivo antineoplastic activity of nimbolide on a wide variety of cancers to establish nimbolide as a promising anticancer drug. In the present study, we investigated the tumor retarding action of nimbolide in a murine model of T cell lymphoma. We noticed significantly augmented apoptosis in nimbolide- administered tumor-bearing mice, possibly due to down-regulated expression of Bcl2 and up-regulated expression of p53, cleaved caspase-3, Cyt c, and ROS. The nimbolide treatment-induced ROS production by suppressing the expression of antioxidant regulatory enzymes, namely superoxide dismutase and catalase. In addition, nimbolide administration impaired glycolysis and pH homeostasis with concomitant inhibition of crucial glycolysis and pH regulatory molecules such as GLUT3, LDHA, MCT1, and V-ATPase, CAIX and NHE1, respectively. Taken together, the present investigation provides novel insights into molecular mechanisms of nimbolide inhibited T cell lymphoma progression and directs the utility of nimbolide as a potential anticancer therapeutic drug for the treatment of T cell lymphoma.
Collapse
Affiliation(s)
- Pradip Kumar Jaiswara
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
84
|
Chen YC, Young MJ, Chang HP, Liu CY, Lee CC, Tseng YL, Wang YC, Chang WC, Hung JJ. Estradiol-mediated inhibition of DNMT1 decreases p53 expression to induce M2-macrophage polarization in lung cancer progression. Oncogenesis 2022; 11:25. [PMID: 35589688 PMCID: PMC9119954 DOI: 10.1038/s41389-022-00397-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022] Open
Abstract
Previous studies indicate that estrogen positively regulates lung cancer progression. Understanding the reasons will be beneficial for treating women with lung cancer in the future. In this study, we found that tumor formation was more significant in female EGFRL858R mice than in male mice. P53 expression levels were downregulated in the estradiol (E2)-treated lung cancer cells, female mice with EGFRL858R-induced lung cancer mice, and premenopausal women with lung cancer. E2 increased DNA methyltransferase 1 (DNMT1) expression to enhance methylation in the TP53 promoter, which led to the downregulation of p53. Overexpression of GFP-p53 decreased DNMT1 expression in lung cancer cells. TP53 knockout in mice with EGFRL858R-induced lung cancer not only changed gene expression in cancer cells but also increased the polarization of M2 macrophages by increasing C–C motif chemokine ligand 5 (CCL5) expression and decreasing growth differentiation factor 15 (GDF15) expression. The TP53 mutation rate was increased in females with late-stage but not early-stage lung cancer compared to males with lung cancer. In conclusion, E2-induced DNMT1 and p53 expression were negatively regulated each other in females with lung cancer, which not only affected cancer cells but also modulated the tumor-associated microenvironment, ultimately leading to a poor prognosis.
Collapse
Affiliation(s)
- Yung-Ching Chen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ping Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yu Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chi Lee
- Division of Thoracic Surgery, Department of Surgery, College of Medicine National Cheng Kung University, Tainan, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, College of Medicine National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chang Chang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
85
|
RIP140 inhibits glycolysis-dependent proliferation of breast cancer cells by regulating GLUT3 expression through transcriptional crosstalk between hypoxia induced factor and p53. Cell Mol Life Sci 2022; 79:270. [PMID: 35501580 PMCID: PMC9061696 DOI: 10.1007/s00018-022-04277-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Glycolysis is essential to support cancer cell proliferation, even in the presence of oxygen. The transcriptional co-regulator RIP140 represses the activity of transcription factors that drive cell proliferation and metabolism and plays a role in mammary tumorigenesis. Here we use cell proliferation and metabolic assays to demonstrate that RIP140-deficiency causes a glycolysis-dependent increase in breast tumor growth. We further demonstrate that RIP140 reduces the transcription of the glucose transporter GLUT3 gene, by inhibiting the transcriptional activity of hypoxia inducible factor HIF-2α in cooperation with p53. Interestingly, RIP140 expression was significantly associated with good prognosis only for breast cancer patients with tumors expressing low GLUT3, low HIF-2α and high p53, thus confirming the mechanism of RIP140 anti-tumor activity provided by our experimental data. Overall, our work establishes RIP140 as a critical modulator of the p53/HIF cross-talk to inhibit breast cancer cell glycolysis and proliferation.
Collapse
|
86
|
McCubrey JA, Meher AK, Akula SM, Abrams SL, Steelman LS, LaHair MM, Franklin RA, Martelli AM, Ratti S, Cocco L, Barbaro F, Duda P, Gizak A. Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging (Albany NY) 2022; 14:3365-3386. [PMID: 35477123 PMCID: PMC9085237 DOI: 10.18632/aging.204038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
TP53 is a master regulator of many signaling and apoptotic pathways involved in: aging, cell cycle progression, gene regulation, growth, apoptosis, cellular senescence, DNA repair, drug resistance, malignant transformation, metastasis, and metabolism. Most pancreatic cancers are classified as pancreatic ductal adenocarcinomas (PDAC). The tumor suppressor gene TP53 is mutated frequently (50-75%) in PDAC. Different types of TP53 mutations have been observed including gain of function (GOF) point mutations and various deletions of the TP53 gene resulting in lack of the protein expression. Most PDACs have point mutations at the KRAS gene which result in constitutive activation of KRas and multiple downstream signaling pathways. It has been difficult to develop specific KRas inhibitors and/or methods that result in recovery of functional TP53 activity. To further elucidate the roles of TP53 in drug-resistance of pancreatic cancer cells, we introduced wild-type (WT) TP53 or a control vector into two different PDAC cell lines. Introduction of WT-TP53 increased the sensitivity of the cells to multiple chemotherapeutic drugs, signal transduction inhibitors, drugs and nutraceuticals and influenced key metabolic properties of the cells. Therefore, TP53 is a key molecule which is critical in drug sensitivity and metabolism of PDAC.
Collapse
Affiliation(s)
- James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Michelle M. LaHair
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Richard A. Franklin
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Fulvio Barbaro
- Department of Medicine and Surgery, Re.Mo.Bio.S. Laboratory, Anatomy Section, University of Parma, Parma, Italy
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
87
|
Feng D, Shi X, Zhang F, Xiong Q, Wei Q, Yang L. Mitochondria Dysfunction-Mediated Molecular Subtypes and Gene Prognostic Index for Prostate Cancer Patients Undergoing Radical Prostatectomy or Radiotherapy. Front Oncol 2022; 12:858479. [PMID: 35463369 PMCID: PMC9019359 DOI: 10.3389/fonc.2022.858479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Background Given the age relevance of prostate cancer (PCa) and the role of mitochondrial dysfunction (MIDS) in aging, we orchestrated molecular subtypes and identified key genes for PCa from the perspective of MIDS. Methods Cluster analysis, COX regression analysis, function analysis, and tumor immune environment were conducted. We performed all analyses using software R 3.6.3 and its suitable packages. Results CXCL14, SFRP4, and CD38 were eventually identified to classify the PCa patients in The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) dataset into two distinct clusters. Patients in the cluster 2 had shorter BCR-free survival than those in the cluster 1 in terms of both TCGA database and GEO dataset. We divided the patients from the TCGA database and the GEO dataset into high- and low-risk groups according to the median of MIDS-related genetic prognostic index. For patients in the TCGA database, the biochemical recurrence (BCR) risk in high-risk group was 2.34 times higher than that in low-risk group. Similarly, for patients in the GEO dataset, the risk of BCR and metastasis in high-risk group was 2.35 and 3.04 times higher than that in low-risk group, respectively. Cluster 2 was closely associated with advanced T stage and higher Gleason score for patients undergoing radical prostatectomy or radiotherapy. For patients undergoing radical prostatectomy, the number of CD8+ T cells was significantly lower in cluster 2 than in cluster 1, while cluster 2 had significantly higher stromal score than cluster 1. For patients undergoing radical radiotherapy, cluster 2 had significantly higher level of CD8+ T cells, neutrophils, macrophages, dendritic cells, stromal score, immune score, and estimate score, but showed lower level of tumor purity than cluster 1. Conclusions We proposed distinctly prognosis-related molecular subtypes at genetic level and related formula for PCa patients undergoing radical prostatectomy or radiotherapy, mainly to provide a roadmap for precision medicine.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
88
|
Targeting lysophosphatidic acid receptor with Ki16425 impedes T cell lymphoma progression through apoptosis induction, glycolysis inhibition, and activation of antitumor immune response. Apoptosis 2022; 27:382-400. [PMID: 35366141 DOI: 10.1007/s10495-022-01723-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
Abstract
Lysophosphatidic acid (LPA) is a small phospholipid that acts as an extracellular lipid mediator. It promotes cancer progression by altering a wide array of cellular processes, including apoptosis, survival, angiogenesis, invasion, and migration through binding with its cognate receptors. Intriguingly, our previous study showed that in vitro treatment of LPA induced survival of T lymphoma cells. Hence, the present investigation was designed to investigate the antitumor potential of Ki16425, an antagonist of LPA receptors, against T cell lymphoma. Our in vitro results showed inhibition of LPA-mediated survival and metabolic activity of T lymphoma cells by Ki16425. Further, in vivo experimental findings indicated the tumor retarding potential of Ki16425 against T cell lymphoma through apoptosis induction, glycolysis inhibition, and immunoactivation. The administration of Ki16425 triggered apoptosis by down-regulating the expression of Bcl2 and up-regulating p53, Bax, cleaved caspase-3, and Cyt c expression. Further, Ki16425 suppressed glycolytic activity with concomitantly decreased expression of GLUT3 and MCT1. Moreover, we also noticed an elevated level of NO and iNOS in tumor cells after Ki16425 administration which might also be responsible for apoptosis induction and suppressed glycolysis. Additionally, we observed an increased population of total leukocytes, lymphocytes, and monocytes along with increased thymocytes count and IL-2 and IFN-γ levels. Besides, we observed amelioration of tumor-induced kidney and liver damages by Ki16425. Taken together, this is the first study that demonstrates that LPA receptors could be potential future therapeutic targets for designing promising therapeutic strategies against T cell lymphoma.
Collapse
|
89
|
Uehara I, Kajita M, Tanimura A, Hida S, Onda M, Naito Z, Taki S, Tanaka N. 2-Deoxy-d-glucose induces deglycosylation of proinflammatory cytokine receptors and strongly reduces immunological responses in mouse models of inflammation. Pharmacol Res Perspect 2022; 10:e00940. [PMID: 35212163 PMCID: PMC8873284 DOI: 10.1002/prp2.940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Anti‐proinflammatory cytokine therapies against interleukin (IL)‐6, tumor necrosis factor (TNF)‐α, and IL‐1 are major advancements in treating inflammatory diseases, especially rheumatoid arthritis. Such therapies are mainly performed by injection of antibodies against cytokines or cytokine receptors. We initially found that the glycolytic inhibitor 2‐deoxy‐d‐glucose (2‐DG), a simple monosaccharide, attenuated cellular responses to IL‐6 by inhibiting N‐linked glycosylation of the IL‐6 receptor gp130. Aglycoforms of gp130 did not bind to IL‐6 or activate downstream intracellular signals that included Janus kinases. 2‐DG completely inhibited dextran sodium sulfate‐induced colitis, a mouse model for inflammatory bowel disease, and alleviated laminarin‐induced arthritis in the SKG mouse, an experimental model for human rheumatoid arthritis. These diseases have been shown to be partially dependent on IL‐6. We also found that 2‐DG inhibited signals for other proinflammatory cytokines such as TNF‐α, IL‐1β, and interferon ‐γ, and accordingly, prevented death by another inflammatory disease, lipopolysaccharide (LPS) shock. Furthermore, 2‐DG prevented LPS shock, a model for a cytokine storm, and LPS‐induced pulmonary inflammation, a model for acute respiratory distress syndrome of coronavirus disease 2019 (COVID‐19). These results suggest that targeted therapies that inhibit cytokine receptor glycosylation are effective for treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Ikuno Uehara
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Mitsuko Kajita
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Atsuko Tanimura
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Munehiko Onda
- Department of Pathology, Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | - Zenya Naito
- Department of Pathology, Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | - Shinsuke Taki
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
90
|
Ishikawa C, Mori N. FX1, a BCL6 inhibitor, reactivates BCL6 target genes and suppresses HTLV-1-infected T cells. Invest New Drugs 2022; 40:245-254. [PMID: 34698964 DOI: 10.1007/s10637-021-01196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is responsible for adult T cell leukemia (ATL); however, molecular and cellular mechanisms underlying HTLV-1-induced leukemogenesis are unclear. BCL6 oncogene is involved in cancer progression and a preferred target of anti-cancer treatments. Here, we aimed to evaluate BCL6 expression and the effects of BCL6 inhibitor (FX1) on HTLV-1-infected T cell lines. BCL6 expression was higher in HTLV-1-infected T cell lines than that in uninfected T cell lines. BCL6 was localized mostly in the nucleus. The virus oncoprotein Tax induced BCL6 mRNA expression in T cells, whereas BCL6 knockdown reduced HTLV-1-infected T cell proliferation; thus, confirmed the association of BCL6 with cancer progression. Further, FX1 efficiently inhibited the cell growth and survival of HTLV-1-infected T cell lines in a dose- and time-dependent manner. The decreased levels of cell cycle regulatory proteins (phosphorylated retinoblastoma protein, cyclin-dependent kinase 4, cyclin D2 and c-Myc) and the increased levels of BCL6 target proteins (p21, p27 and p53) showed that FX1 arrested cell cycle at the G1 phase. Apoptosis was induced concomitantly with Bak upregulation and downregulation of survivin, Bcl-xL and Mcl-1, as well as with the activation of caspase-3, -8, -9 and poly(ADP-ribose) polymerase. FX1 also inhibited NF-κB and Akt signaling pathways. These events were because of the induction of the activity of cell cycle checkpoint proteins and relief of direct repression of the targets of cell cycle checkpoint proteins. Thus, BCL6 might be considered a novel target for ATL treatment.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
- Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| |
Collapse
|
91
|
Xiao Q, Werner J, Venkatachalam N, Boonekamp KE, Ebert MP, Zhan T. Cross-Talk between p53 and Wnt Signaling in Cancer. Biomolecules 2022; 12:453. [PMID: 35327645 PMCID: PMC8946298 DOI: 10.3390/biom12030453] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022] Open
Abstract
Targeting cancer hallmarks is a cardinal strategy to improve antineoplastic treatment. However, cross-talk between signaling pathways and key oncogenic processes frequently convey resistance to targeted therapies. The p53 and Wnt pathway play vital roles for the biology of many tumors, as they are critically involved in cancer onset and progression. Over recent decades, a high level of interaction between the two pathways has been revealed. Here, we provide a comprehensive overview of molecular interactions between the p53 and Wnt pathway discovered in cancer, including complex feedback loops and reciprocal transactivation. The mutational landscape of genes associated with p53 and Wnt signaling is described, including mutual exclusive and co-occurring genetic alterations. Finally, we summarize the functional consequences of this cross-talk for cancer phenotypes, such as invasiveness, metastasis or drug resistance, and discuss potential strategies to pharmacologically target the p53-Wnt interaction.
Collapse
Affiliation(s)
- Qiyun Xiao
- Department of Medicine II, Mannheim University Hospital, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (Q.X.); (N.V.); (M.P.E.)
| | - Johannes Werner
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University, D-69120 Heidelberg, Germany; (J.W.); (K.E.B.)
| | - Nachiyappan Venkatachalam
- Department of Medicine II, Mannheim University Hospital, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (Q.X.); (N.V.); (M.P.E.)
| | - Kim E. Boonekamp
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University, D-69120 Heidelberg, Germany; (J.W.); (K.E.B.)
| | - Matthias P. Ebert
- Department of Medicine II, Mannheim University Hospital, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (Q.X.); (N.V.); (M.P.E.)
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Tianzuo Zhan
- Department of Medicine II, Mannheim University Hospital, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (Q.X.); (N.V.); (M.P.E.)
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
92
|
Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022; 14:602. [PMID: 35337009 PMCID: PMC8955778 DOI: 10.3390/v14030602] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and has proven to be critical in viral infections. Metabolic reprogramming provides the cell with energy and biomass for large-scale biosynthesis. Based on studies of the cellular changes that contribute to metabolic reprogramming, seven main hallmarks can be identified: (1) increased glycolysis and lactic acid, (2) increased glutaminolysis, (3) increased pentose phosphate pathway, (4) mitochondrial changes, (5) increased lipid metabolism, (6) changes in amino acid metabolism, and (7) changes in other biosynthetic and bioenergetic pathways. Viruses depend on metabolic reprogramming to increase biomass to fuel viral genome replication and production of new virions. Viruses take advantage of the non-metabolic effects of metabolic reprogramming, creating an anti-apoptotic environment and evading the immune system. Other non-metabolic effects can negatively affect cellular function. Understanding the role metabolic reprogramming plays in viral pathogenesis may provide better therapeutic targets for antivirals.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
93
|
B HDM, Guru A, Sudhakaran G, Murugan R, Arshad A, Arockiaraj J. Double‐edged sword role of shrimp miRNA explains an evolutionary language between shrimp‐pathogen interactions that unties the knot of shrimp infection. REVIEWS IN AQUACULTURE 2022; 14:578-593. [DOI: 10.1111/raq.12613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/21/2021] [Indexed: 10/16/2023]
Abstract
AbstractShrimp production, using a small‐scale enclosed pond system, is a rapidly growing aquaculture sector, which is valued around USD 18.30 billion in 2020. Intensified shrimp culture leads to the outbreak of transmissible diseases to eventually cause a huge loss in the production process and thus the economy. Studies on microRNA (miRNA) reveal that miRNA has an influential role in the host‐pathogen interaction during an infection. Recently, shrimp miRNA has been shown to help pathogen‐like viruses for their replication and infection. Several shrimp miRNAs were reported to be involved in enhancing host immunity against viral infection, especially white spot syndrome virus (WSSV) infection and Vibrio infection caused by bacterial species, whereas some shrimp miRNAs were reported to be hijacked by WSSV and to enhance the viral replication and establish the infection in shrimp. This gives an insight into the double‐edged sword role played by shrimp miRNA during host‐pathogen interaction. In future, this role could be employed against the virus to strengthen the shrimp culture. In this review, we discuss the role of shrimp miRNA and their mechanism(s) associated with the establishment of host‐pathogen interaction during infection, which will reveal the complexity associated with shrimp infection.
Collapse
Affiliation(s)
- Hari Deva Muthu B
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Ajay Guru
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Gokul Sudhakaran
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Raghul Murugan
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS), Universiti Putra Malaysia Negeri Sembilan Malaysia
- Department of Aquaculture, Faculty of Agriculture Universiti Putra Malaysia Serdang Selangor Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
94
|
Enhanced O-GlcNAc modification induced by the RAS/MAPK/CDK1 pathway is required for SOX2 protein expression and generation of cancer stem cells. Sci Rep 2022; 12:2910. [PMID: 35190631 PMCID: PMC8861017 DOI: 10.1038/s41598-022-06916-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/31/2022] [Indexed: 12/27/2022] Open
Abstract
Cancer stem cells (CSCs) have tumour initiation, self-renewal, and long-term tumour repopulation properties, and it is postulated that differentiated somatic cells can be reprogrammed to CSCs by oncogenic signals. We previously showed that oncogenic HRASV12 conferred tumour initiation capacity in tumour suppressor p53-deficient (p53−/−) primary mouse embryonic fibroblasts (MEFs) through transcription factor NF-κB-mediated enhancement of glucose uptake; however, the underlying mechanisms of RAS oncogene-induced CSC reprogramming have not been elucidated. Here, we found that the expression of the reprogramming factor SOX2 was induced by HRASV12 in p53−/− MEFs. Moreover, gene knockout studies revealed that SOX2 is an essential factor for the generation of CSCs by HRASV12 in mouse and human fibroblasts. We demonstrated that HRASV12-induced cyclin-dependent kinase 1 (CDK1) activity and subsequent enhancement of protein O-GlcNAcylation were required for SOX2 induction and CSC generation in these fibroblasts and cancer cell lines containing RAS mutations. Moreover, the CDK inhibitor dinaciclib and O-GlcNAcylation inhibitor OSMI1 reduced the number of CSCs derived from these cells. Taken together, our results reveal a signalling pathway and mechanism for CSC generation by oncogenic RAS and suggest the possibility that this signalling pathway is a therapeutic target for CSCs.
Collapse
|
95
|
Nuan-Aliman S, Bordereaux D, Thieblemont C, Baud V. The Alternative RelB NF-kB Subunit Exerts a Critical Survival Function upon Metabolic Stress in Diffuse Large B-Cell Lymphoma-Derived Cells. Biomedicines 2022; 10:biomedicines10020348. [PMID: 35203557 PMCID: PMC8961793 DOI: 10.3390/biomedicines10020348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma in adults and reveals distinct genetic and metabolic signatures. NF-κB transcription factor family is involved in diverse biological processes enabling tumor development and resistance to anticancer-therapy through activation of its two main pathways, the canonical and the alternative NF-κB pathways, the main actor of the latter being the RelB NF-kB subunit. RelB DNA binding activity is frequently activated in DLBCL patients and cell lines. RelB activation defines a new DLBCL subgroup with dismal outcome upon immunochemotherapy, and RelB confers DLBCL cell resistance to DNA damage. However, whether RelB can impact on DLBCL cell metabolism and survival upon metabolic stress is unknown. Here, we reveal that RelB controls DLBCL oxidative energetic metabolism. Accordingly, RelB inhibition reduce DLBCL mitochondrial ATP production, and sensitizes DLBCL cells to apoptosis induced by Metformin and L-asparaginase (®Kidrolase), two FDA approved antimetabolic drugs targeting mitochondrial metabolism. RelB also confers DLBCL cell resistance to glutamine deprivation, an essential amino acid that feeds the TCA cycle. Taken together, our findings uncover a new role for RelB in the regulation of DLBCL cell metabolism and DLBCL cell survival upon metabolic stress.
Collapse
Affiliation(s)
- Stéphanie Nuan-Aliman
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
| | - Didier Bordereaux
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
| | - Catherine Thieblemont
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
- Hémato-Oncologie, APHP Hôpital Saint-Louis, 75010 Paris, France
| | - Véronique Baud
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
- Correspondence:
| |
Collapse
|
96
|
Hao Q, Huang Z, Li Q, Liu D, Wang P, Wang K, Li J, Cao W, Deng W, Wu K, Su R, Liu Z, Vadgama J, Wu Y. A Novel Metabolic Reprogramming Strategy for the Treatment of Diabetes-Associated Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102303. [PMID: 35023320 PMCID: PMC8867195 DOI: 10.1002/advs.202102303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/08/2021] [Indexed: 05/11/2023]
Abstract
Diabetes is directly related to the risk of breast cancer (BC) occurrence and worsened BC prognosis. Currently, there are no specific treatments for diabetes-associated BC. This paper aims to understand the fundamental mechanisms of diabetes-induced BC progression and to develop personalized treatments. It reports a metabolic reprogramming strategy (MRS) that pharmaceutical induction of glucose import and glycolysis with metformin and NF-κB inhibitor (NF-κBi) while blocking the export of excessive lactate via inhibiting monocarboxylate transporter 4 (MCT4) leads to a metabolic crisis within the cancer cells. It demonstrates that the MRS shifts the metabolism of BC cells toward higher production of lactate, blocks lactate secretion, prompts intracellular acidification and induces significant cytotoxicity. Moreover, a novel MCT4 inhibitor CB-2 has been identified by structure-based virtual screening. A triple combination of metformin, CB-2, and trabectedin, a drug that impedes NF-κB signaling, strongly inhibits BC cells. Compared to normal glucose condition, MRS elicits more potent cancer cell-killing effects under high glucose condition. Animal model studies show that diabetic conditions promote the proliferation and progression of BC xenografts in nude mice and that MRS treatment significantly inhibits HG-induced BC progression. Therefore, inhibition of MCT4 combined with metformin/NF-κBi is a promising cancer therapy, especially for diabetes-associated BC.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Zhimin Huang
- Key Laboratory of Cell Differentiation and ApoptosisMinistry of EducationDepartment of PathophysiologyShanghai Jiao‐Tong University School of MedicineShanghai200025China
- Department of BioengineeringRice UniversityHoustonTX77005USA
| | - Qun Li
- Department of OncologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123China
| | - Dingxie Liu
- Bluewater Biotech LLCNew ProvidenceNJ07974USA
| | - Piwen Wang
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Kun Wang
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhou510080China
| | - Jieqing Li
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhou510080China
| | - Wei Cao
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Wenhong Deng
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
- Department of General SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Ke Wu
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Rui Su
- College of EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Zhongmin Liu
- The Institute for Biomedical Engineering & Nano ScienceShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jay Vadgama
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Yong Wu
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| |
Collapse
|
97
|
Yu L, Wu M, Zhu G, Xu Y. Emerging Roles of the Tumor Suppressor p53 in Metabolism. Front Cell Dev Biol 2022; 9:762742. [PMID: 35118064 PMCID: PMC8806078 DOI: 10.3389/fcell.2021.762742] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/27/2021] [Indexed: 01/31/2023] Open
Abstract
Metabolism plays critical roles in maintaining the homeostasis of cells. Metabolic abnormalities are often considered as one of the main driving forces for cancer progression, providing energy and substrates of biosynthesis to support neoplastic proliferation effectively. The tumor suppressor p53 is well known for its roles in inducing cell cycle arrest, apoptosis, senescence and ferroptosis. Recently, emerging evidence has shown that p53 is also actively involved in the reprogramming of cellular metabolism. In this review, we focus on recent advances in our understanding of the interplay between p53 and metabolism of glucose, fatty acid as well as amino acid, and discuss how the deregulation of p53 in these processes could lead to cancer.
Collapse
Affiliation(s)
- Lili Yu
- Key Laboratory of Cancer Prevention and Intervention, Department of Medical Oncology, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Meng Wu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Gaoyang Zhu
- Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
- *Correspondence: Gaoyang Zhu, ; Yang Xu,
| | - Yang Xu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Gaoyang Zhu, ; Yang Xu,
| |
Collapse
|
98
|
Corchado-Cobos R, García-Sancha N, Mendiburu-Eliçabe M, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Pérez-Losada J. Pathophysiological Integration of Metabolic Reprogramming in Breast Cancer. Cancers (Basel) 2022; 14:cancers14020322. [PMID: 35053485 PMCID: PMC8773662 DOI: 10.3390/cancers14020322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tumors exhibit metabolic changes that differentiate them from the normal tissues from which they derive. These metabolic changes favor tumor growth, are primarily induced by cancer cells, and produce metabolic and functional changes in the surrounding stromal cells. There is a close functional connection between the metabolic changes in tumor cells and those that appear in the surrounding stroma. A better understanding of intratumoral metabolic interactions may help identify new vulnerabilities that will facilitate new, more individualized treatment strategies against cancer. We review the metabolic changes described in tumor and stromal cells and their functional changes and then consider, in depth, the metabolic interactions between the cells of the two compartments. Although these changes are generic, we illustrate them mainly with reference to examples in breast cancer. Abstract Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. The triggers of these metabolic changes are located in the tumor parenchymal cells, where oncogenic mutations induce an imperative need to proliferate and cause tumor initiation and progression. Cancer cells undergo significant metabolic reorganization during disease progression that is tailored to their energy demands and fluctuating environmental conditions. Oxidative stress plays an essential role as a trigger under such conditions. These metabolic changes are the consequence of the interaction between tumor cells and stromal myofibroblasts. The metabolic changes in tumor cells include protein anabolism and the synthesis of cell membranes and nucleic acids, which all facilitate cell proliferation. They are linked to catabolism and autophagy in stromal myofibroblasts, causing the release of nutrients for the cells of the tumor parenchyma. Metabolic changes lead to an interstitium deficient in nutrients, such as glucose and amino acids, and acidification by lactic acid. Together with hypoxia, they produce functional changes in other cells of the tumor stroma, such as many immune subpopulations and endothelial cells, which lead to tumor growth. Thus, immune cells favor tissue growth through changes in immunosuppression. This review considers some of the metabolic changes described in breast cancer.
Collapse
Affiliation(s)
- Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
- Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (S.C.-L.); (J.P-L.)
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Correspondence: (S.C.-L.); (J.P-L.)
| |
Collapse
|
99
|
Epigenetic Priming with Decitabine Augments the Therapeutic Effect of Cisplatin on Triple-Negative Breast Cancer Cells through Induction of Proapoptotic Factor NOXA. Cancers (Basel) 2022; 14:cancers14010248. [PMID: 35008411 PMCID: PMC8749981 DOI: 10.3390/cancers14010248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022] Open
Abstract
Epigenetic alterations caused by aberrant DNA methylation have a crucial role in cancer development, and the DNA-demethylating agent decitabine, is used to treat hematopoietic malignancy. Triple-negative breast cancers (TNBCs) have shown sensitivity to decitabine; however, the underlying mechanism of its anticancer effect and its effectiveness in treating TNBCs are not fully understood. We analyzed the effects of decitabine on nine TNBC cell lines and examined genes associated with its cytotoxic effects. According to the effect of decitabine, we classified the cell lines into cell death (D)-type, growth inhibition (G)-type, and resistant (R)-type. In D-type cells, decitabine induced the expression of apoptotic regulators and, among them, NOXA was functionally involved in decitabine-induced apoptosis. In G-type cells, induction of the cyclin-dependent kinase inhibitor, p21, and cell cycle arrest were observed. Furthermore, decitabine enhanced the cytotoxic effect of cisplatin mediated by NOXA in D-type and G-type cells. In contrast, the sensitivity to cisplatin was high in R-type cells, and no enhancing effect by decitabine was observed. These results indicate that decitabine enhances the proapoptotic effect of cisplatin on TNBC cell lines that are less sensitive to cisplatin, indicating the potential for combination therapy in TNBC.
Collapse
|
100
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|