51
|
Hemmer‐Hansen J, Hüssy K, Baktoft H, Huwer B, Bekkevold D, Haslob H, Herrmann J, Hinrichsen H, Krumme U, Mosegaard H, Nielsen EE, Reusch TBH, Storr‐Paulsen M, Velasco A, von Dewitz B, Dierking J, Eero M. Genetic analyses reveal complex dynamics within a marine fish management area. Evol Appl 2019; 12:830-844. [PMID: 30976313 PMCID: PMC6439499 DOI: 10.1111/eva.12760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
Genetic data have great potential for improving fisheries management by identifying the fundamental management units-that is, the biological populations-and their mixing. However, so far, the number of practical cases of marine fisheries management using genetics has been limited. Here, we used Atlantic cod in the Baltic Sea to demonstrate the applicability of genetics to a complex management scenario involving mixing of two genetically divergent populations. Specifically, we addressed several assumptions used in the current assessment of the two populations. Through analysis of 483 single nucleotide polymorphisms (SNPs) distributed across the Atlantic cod genome, we confirmed that a model of mechanical mixing, rather than hybridization and introgression, best explained the pattern of genetic differentiation. Thus, the fishery is best monitored as a mixed-stock fishery. Next, we developed a targeted panel of 39 SNPs with high statistical power for identifying population of origin and analyzed more than 2,000 tissue samples collected between 2011 and 2015 as well as 260 otoliths collected in 2003/2004. These data provided high spatial resolution and allowed us to investigate geographical trends in mixing, to compare patterns for different life stages and to investigate temporal trends in mixing. We found similar geographical trends for the two time points represented by tissue and otolith samples and that a recently implemented geographical management separation of the two populations provided a relatively close match to their distributions. In contrast to the current assumption, we found that patterns of mixing differed between juveniles and adults, a signal likely linked to the different reproductive dynamics of the two populations. Collectively, our data confirm that genetics is an operational tool for complex fisheries management applications. We recommend focussing on developing population assessment models and fisheries management frameworks to capitalize fully on the additional information offered by genetically assisted fisheries monitoring.
Collapse
Affiliation(s)
- Jakob Hemmer‐Hansen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Karin Hüssy
- National Institute of Aquatic ResourcesTechnical University of DenmarkKgs. LyngbyDenmark
| | - Henrik Baktoft
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Bastian Huwer
- National Institute of Aquatic ResourcesTechnical University of DenmarkKgs. LyngbyDenmark
| | - Dorte Bekkevold
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | - Jens‐Peter Herrmann
- Institute of Marine Ecosystem and Fishery ScienceUniversity of HamburgHamburgGermany
| | - Hans‐Harald Hinrichsen
- Evolutionary Ecology of Marine FishesGEOMAR Helmholtz Center for Ocean Research KielKielGermany
| | - Uwe Krumme
- Thünen Institute of Baltic Sea FisheriesRostockGermany
| | - Henrik Mosegaard
- National Institute of Aquatic ResourcesTechnical University of DenmarkKgs. LyngbyDenmark
| | - Einar Eg Nielsen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Thorsten B. H. Reusch
- Evolutionary Ecology of Marine FishesGEOMAR Helmholtz Center for Ocean Research KielKielGermany
| | - Marie Storr‐Paulsen
- National Institute of Aquatic ResourcesTechnical University of DenmarkKgs. LyngbyDenmark
| | | | - Burkhard von Dewitz
- Evolutionary Ecology of Marine FishesGEOMAR Helmholtz Center for Ocean Research KielKielGermany
| | - Jan Dierking
- Evolutionary Ecology of Marine FishesGEOMAR Helmholtz Center for Ocean Research KielKielGermany
| | - Margit Eero
- National Institute of Aquatic ResourcesTechnical University of DenmarkKgs. LyngbyDenmark
| |
Collapse
|
52
|
Long-Distance Benefits of Marine Reserves: Myth or Reality? Trends Ecol Evol 2019; 34:342-354. [PMID: 30777295 DOI: 10.1016/j.tree.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 02/08/2023]
Abstract
Long-distance (>40-km) dispersal from marine reserves is poorly documented; yet, it can provide essential benefits such as seeding fished areas or connecting marine reserves into networks. From a meta-analysis, we suggest that the spatial scale of marine connectivity is underestimated due to the limited geographic extent of sampling designs. We also found that the largest marine reserves (>1000km2) are the most isolated. These findings have important implications for the assessment of evolutionary, ecological, and socio-economic long-distance benefits of marine reserves. We conclude that existing methods to infer dispersal should consider the up-to-date genomic advances and also expand the spatial scale of sampling designs. Incorporating long-distance connectivity in conservation planning will contribute to increase the benefits of marine reserve networks.
Collapse
|
53
|
Milan M, Maroso F, Dalla Rovere G, Carraro L, Ferraresso S, Patarnello T, Bargelloni L, Cardazzo B, Fariselli P. Tracing seafood at high spatial resolution using NGS-generated data and machine learning: Comparing microbiome versus SNPs. Food Chem 2019; 286:413-420. [PMID: 30827626 DOI: 10.1016/j.foodchem.2019.02.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/16/2019] [Accepted: 02/11/2019] [Indexed: 11/25/2022]
Abstract
Developing reliable tools to trace food origin represents a major goal for producers and control authorities. Here, we test the hypothesis whether NGS-generated data could provide a reliable tool to ensure seafood traceability. As a test case, we used the Manila clam Ruditapes philippinarum, a bivalve mollusk of high commercial interest with worldwide distribution, collected in the Venice lagoon sites subjected to prohibition of clam harvesting because of chemical contamination as well as in authorized clam harvesting areas. The results obtained demonstrated that the geographic origin of Manila clam may be more accurately determined basing on microbiome data than single nucleotide polymorphisms. In particular, combining microbiome data with machine-learning techniques, we provide the experimental evidence that it is possible to trace the clam place of origin at high spatial resolution. Considering its low cost and portability, NGS-analysis of microbiome data might represent a cost-effective, high-resolution tool for reliable food traceability.
Collapse
Affiliation(s)
- Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy; CONISMA - Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy.
| | - Francesco Maroso
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy; CONISMA - Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Piero Fariselli
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| |
Collapse
|
54
|
Hoelzel AR, Bruford MW, Fleischer RC. Conservation of adaptive potential and functional diversity. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01151-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
55
|
Hobbs CAD, Potts RWA, Bjerregaard Walsh M, Usher J, Griffiths AM. Using DNA Barcoding to Investigate Patterns of Species Utilisation in UK Shark Products Reveals Threatened Species on Sale. Sci Rep 2019; 9:1028. [PMID: 30705397 PMCID: PMC6355914 DOI: 10.1038/s41598-018-38270-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Many shark populations are in decline, primarily due to overexploitation. In response, conservation measures have been applied at differing scales, often severely restricting sales of declining species. Therefore, DNA barcoding was used to investigate sales of shark products in fishmongers and fish and chip takeaways in England. The majority of samples were identified as Spiny Dogfish (Squalus acanthias), which is critically endangered in the Northeast Atlantic and landings have been prohibited (although there is evidence of importation of this species). Significant differences in the species sold between retailer types were also identified, suggesting differing supply chains. The results underline issues surrounding the use of 'umbrella' sales terms where many species are labelled with the same designation. This denies consumer choice as purchasers cannot easily avoid declining species or those associated with high levels of toxicants. For the first time in Europe, minibarcodes are also used to identify species from dried shark fins. Despite a small sample size, analysis of UK wholesaler fins identified threatened sharks, including the endangered and CITES listed Scalloped Hammerhead (Sphyrna lewini). This highlights the global nature of the damaging trade in endangered shark species, in which Europe and the UK have a continuing role.
Collapse
Affiliation(s)
- Catherine A D Hobbs
- Department of Biosciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Robert W A Potts
- Department of Biosciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK
| | | | - Jane Usher
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Andrew M Griffiths
- Department of Biosciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK.
| |
Collapse
|
56
|
Kerr Q, Fuentes‐Pardo AP, Kho J, McDermid JL, Ruzzante DE. Temporal stability and assignment power of adaptively divergent genomic regions between herring ( Clupea harengus) seasonal spawning aggregations. Ecol Evol 2019; 9:500-510. [PMID: 30680131 PMCID: PMC6342187 DOI: 10.1002/ece3.4768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 11/07/2022] Open
Abstract
Atlantic herring (Clupea harengus), a vital ecosystem component and target of the largest Northwest Atlantic pelagic fishery, undergo seasonal spawning migrations that result in elusive sympatric population structure. Herring spawn mostly in fall or spring, and genomic differentiation was recently detected between these groups. Here we used a subset of this differentiation, 66 single nucleotide polymorphisms (SNPs) to analyze the temporal dynamics of this local adaptation and the applicability of SNP subsets in stock assessment. We showed remarkable temporal stability of genomic differentiation corresponding to spawning season, between samples taken a decade apart (2005 N = 90 vs. 2014 N = 71) in the Gulf of St. Lawrence, and new evidence of limited interbreeding between spawning components. We also examined an understudied and overexploited herring population in Bras d'Or lake (N = 97); using highly reduced SNP panels (N SNPs > 6), we verified little-known sympatric spawning populations within this unique inland sea. These results describe consistent local adaptation, arising from asynchronous reproduction in a migratory and dynamic marine species. Our research demonstrates the efficiency and precision of SNP-based assessments of sympatric subpopulations; and indeed, this temporally stable local adaptation underlines the importance of such fine-scale management practices.
Collapse
Affiliation(s)
- Quentin Kerr
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | | | - James Kho
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Jenni L. McDermid
- Marine Fish and Mammals Section, Fisheries and Oceans CanadaGulf Fisheries CentreMonctonNew BrunswickCanada
| | | |
Collapse
|
57
|
Verrez-Bagnis V, Sotelo CG, Mendes R, Silva H, Kappel K, Schröder U. Methods for Seafood Authenticity Testing in Europe. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
58
|
Population Genomics Applied to Fishery Management and Conservation. POPULATION GENOMICS 2019. [DOI: 10.1007/13836_2019_66] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
59
|
Manuzzi A, Zane L, Muñoz-Merida A, Griffiths AM, Veríssimo A. Population genomics and phylogeography of a benthic coastal shark (Scyliorhinus canicula) using 2b-RAD single nucleotide polymorphisms. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Alice Manuzzi
- CIBIO – U.P. – Research Center for Biodiversity and Genetic Resources, Vairão, Portugal
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej, Silkeborg, Denmark
| | - Lorenzo Zane
- Department of Biology, University of Padova, Padova, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy
| | - Antonio Muñoz-Merida
- CIBIO – U.P. – Research Center for Biodiversity and Genetic Resources, Vairão, Portugal
| | | | - Ana Veríssimo
- CIBIO – U.P. – Research Center for Biodiversity and Genetic Resources, Vairão, Portugal
- Virginia Institute of Marine Science, College of William and Mary, VA, USA
| |
Collapse
|
60
|
Jorde PE, Synnes A, Espeland SH, Sodeland M, Knutsen H. Can we rely on selected genetic markers for population identification? Evidence from coastal Atlantic cod. Ecol Evol 2018; 8:12547-12558. [PMID: 30619564 PMCID: PMC6308871 DOI: 10.1002/ece3.4648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 01/03/2023] Open
Abstract
The use of genetic markers under putative selection in population studies carries the potential for erroneous identification of populations and misassignment of individuals to population of origin. Selected markers are nevertheless attractive, especially in marine organisms that are characterized by weak population structure at neutral loci. Highly fecund species may tolerate the cost of strong selective mortality during early life stages, potentially leading to a shift in offspring genotypes away from the parental proportions. In Atlantic cod, recent genetic studies have uncovered different genotype clusters apparently representing phenotypically cryptic populations that coexist in coastal waters. Here, we tested if a high-graded SNP panel specifically designed to classify individual cod to population of origin may be unreliable because of natural selection acting on the SNPs or their linked background. Temporal samples of cod were collected from two fjords, starting at the earliest life stage (pelagic eggs) and carried on until late autumn (bottom-settled juveniles), covering the period during summer of high natural mortality. Despite the potential for selective mortality during the study period, we found no evidence for selection, as both cod types occurred throughout the season, already in the earliest egg samples, and there was no evidence for a shift during the season in the proportions of one or the other type. We conclude that high-graded marker panels under putative natural selection represent a valid and useful tool for identifying biological population structure in this highly fecund species and presumably in others.
Collapse
Affiliation(s)
- Per Erik Jorde
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
- Institute of Marine ResearchHisNorway
| | - Ann‐Elin Synnes
- Centre of Coastal ResearchUniversity of AgderKristiansandNorway
| | - Sigurd Heiberg Espeland
- Institute of Marine ResearchHisNorway
- Centre of Coastal ResearchUniversity of AgderKristiansandNorway
| | - Marte Sodeland
- Centre of Coastal ResearchUniversity of AgderKristiansandNorway
| | - Halvor Knutsen
- Institute of Marine ResearchHisNorway
- Centre of Coastal ResearchUniversity of AgderKristiansandNorway
| |
Collapse
|
61
|
Fairweather R, Bradbury IR, Helyar SJ, de Bruyn M, Therkildsen NO, Bentzen P, Hemmer‐Hansen J, Carvalho GR. Range-wide genomic data synthesis reveals transatlantic vicariance and secondary contact in Atlantic cod. Ecol Evol 2018; 8:12140-12152. [PMID: 30598806 PMCID: PMC6303715 DOI: 10.1002/ece3.4672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 11/11/2022] Open
Abstract
Recent advances in genetic and genomic analysis have greatly improved our understanding of spatial population structure in marine species. However, studies addressing phylogeographic patterns at oceanic spatial scales remain rare. In Atlantic cod (Gadus morhua), existing range-wide examinations suggest significant transatlantic divergence, although the fine-scale contemporary distribution of populations and potential for secondary contact are largely unresolved. Here, we explore transatlantic phylogeography in Atlantic cod using a data-synthesis approach, integrating multiple genome-wide single-nucleotide polymorphism (SNP) datasets representative of different regions to create a single range-wide dataset containing 1,494 individuals from 54 locations and genotyped at 796 common loci. Our analysis highlights significant transatlantic divergence and supports the hypothesis of westward post-glacial colonization of Greenland from the East Atlantic. Accordingly, our analysis suggests the presence of transatlantic secondary contact off eastern North America and supports existing perspectives on the phylogeographic history of Atlantic cod with an unprecedented combination of genetic and geographic resolution. Moreover, we demonstrate the utility of integrating distinct SNP databases of high comparability.
Collapse
Affiliation(s)
- Robert Fairweather
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
- School of Biological SciencesBangor UniversityBangorUK
| | - Ian R. Bradbury
- Science Branch, Department of FisheriesSt John’s, Newfoundland and LabradorCanada
| | - Sarah J. Helyar
- Institute of Global Food SecurityQueen’s University BelfastBelfastUK
| | - Mark de Bruyn
- School of Biological SciencesBangor UniversityBangorUK
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | | | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Jakob Hemmer‐Hansen
- Section for Marine Living Resources, National Institute for Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | |
Collapse
|
62
|
Pecoraro C, Babbucci M, Franch R, Rico C, Papetti C, Chassot E, Bodin N, Cariani A, Bargelloni L, Tinti F. The population genomics of yellowfin tuna (Thunnus albacares) at global geographic scale challenges current stock delineation. Sci Rep 2018; 8:13890. [PMID: 30224658 PMCID: PMC6141456 DOI: 10.1038/s41598-018-32331-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/31/2018] [Indexed: 12/03/2022] Open
Abstract
Yellowfin tuna, Thunnus albacares, is one of the most important seafood commodities in the world. Despite its great biological and economic importance, conflicting evidence arises from classical genetic and tagging studies concerning the yellowfin tuna population structure at local and global oceanic scales. Access to more powerful and cost effective genetic tools would represent the first step towards resolving the population structure of yellowfin tuna across its distribution range. Using a panel of 939 neutral Single Nucleotide Polymorphisms (SNPs), and the most comprehensive data set of yellowfin samples available so far, we found genetic differentiation among the Atlantic, Indian and Pacific oceans. The genetic stock structure analysis carried out with 33 outlier SNPs, putatively under selection, identified discrete populations within the Pacific Ocean and, for the first time, also within the Atlantic Ocean. Stock assessment approaches that consider genetic differences at neutral and adaptive genomic loci should be routinely implemented to check the status of the yellowfin tuna, prevent illegal trade, and develop more sustainable management measures.
Collapse
Affiliation(s)
- Carlo Pecoraro
- Department Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, Via Selmi 3, 40126, Bologna, Italy. .,Institut de Recherche pour le Développement (IRD), UMR MARBEC (IRD/Ifremer/UM2/CNRS) SFA, Fishing Port, BP570, Victoria, Seychelles. .,Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.
| | - Massimiliano Babbucci
- Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Rafaella Franch
- Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Ciro Rico
- School of Marine Studies, Molecular Analytics Laboratory (MOANA-LAB), Faculty of Science Technology and Environment, The University of the South Pacific, Laucala Campus, Suva, Fiji.,Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD, CSIC), c/Américo Vespucio s/n, Sevilla, 41092, Spain
| | - Chiara Papetti
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Emmanuel Chassot
- Institut de Recherche pour le Développement (IRD), UMR MARBEC (IRD/Ifremer/UM2/CNRS) SFA, Fishing Port, BP570, Victoria, Seychelles
| | - Nathalie Bodin
- Institut de Recherche pour le Développement (IRD), UMR MARBEC (IRD/Ifremer/UM2/CNRS) SFA, Fishing Port, BP570, Victoria, Seychelles
| | - Alessia Cariani
- Department Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Luca Bargelloni
- Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Fausto Tinti
- Department Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
63
|
Dussex N, Taylor HR, Stovall WR, Rutherford K, Dodds KG, Clarke SM, Gemmell NJ. Reduced representation sequencing detects only subtle regional structure in a heavily exploited and rapidly recolonizing marine mammal species. Ecol Evol 2018; 8:8736-8749. [PMID: 30271541 PMCID: PMC6157699 DOI: 10.1002/ece3.4411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Abstract
Next-generation reduced representation sequencing (RRS) approaches show great potential for resolving the structure of wild populations. However, the population structure of species that have shown rapid demographic recovery following severe population bottlenecks may still prove difficult to resolve due to high gene flow between subpopulations. Here, we tested the effectiveness of the RRS method Genotyping-By-Sequencing (GBS) for describing the population structure of the New Zealand fur seal (NZFS, Arctocephalus forsteri), a species that was heavily exploited by the 19th century commercial sealing industry and has since rapidly recolonized most of its former range from a few isolated colonies. Using 26,026 neutral single nucleotide polymorphisms (SNPs), we assessed genetic variation within and between NZFS colonies. We identified low levels of population differentiation across the species range (<1% of variation explained by regional differences) suggesting a state of near panmixia. Nonetheless, we observed subtle population substructure between West Coast and Southern East Coast colonies and a weak, but significant (p = 0.01), isolation-by-distance pattern among the eight colonies studied. Furthermore, our demographic reconstructions supported severe bottlenecks with potential 10-fold and 250-fold declines in response to Polynesian and European hunting, respectively. Finally, we were able to assign individuals treated as unknowns to their regions of origin with high confidence (96%) using our SNP data. Our results indicate that while it may be difficult to detect population structure in species that have experienced rapid recovery, next-generation markers and methods are powerful tools for resolving fine-scale structure and informing conservation and management efforts.
Collapse
Affiliation(s)
- Nicolas Dussex
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
| | | | | | - Kim Rutherford
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | - Ken G. Dodds
- Invermay Agricultural CentreAgResearchPuddle AlleyMosgielNew Zealand
| | - Shannon M. Clarke
- Invermay Agricultural CentreAgResearchPuddle AlleyMosgielNew Zealand
| | | |
Collapse
|
64
|
Drinan DP, Gruenthal KM, Canino MF, Lowry D, Fisher MC, Hauser L. Population assignment and local adaptation along an isolation-by-distance gradient in Pacific cod ( Gadus macrocephalus). Evol Appl 2018; 11:1448-1464. [PMID: 30151052 PMCID: PMC6100185 DOI: 10.1111/eva.12639] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/12/2018] [Indexed: 01/03/2023] Open
Abstract
The discernment of populations as management units is a fundamental prerequisite for sustainable exploitation of species. A lack of clear stock boundaries complicates not only the identification of spatial management units, but also the assessment of mixed fisheries by population assignment and mixed stock analysis. Many marine species, such as Pacific cod, are characterized by isolation by distance, showing significant differentiation but no clear stock boundaries. Here, we used restriction-site-associated DNA (RAD) sequencing to investigate population structure and assess power to genetically assign Pacific cod to putative populations of origin. Samples were collected across the species range in the eastern Pacific Ocean, from the Salish Sea to the Aleutian Islands. A total of 6,425 putative biallelic single nucleotide polymorphisms were identified from 276 individuals. We found a strong isolation-by-distance signal along coastlines that mirrored previous microsatellite results and pronounced genetic differentiation between coastal samples and those from the inland waters of the Salish Sea, with no evidence for hybridization between these two populations. Individual assignment success based on two methods was high overall (≥84%) but decreased from south to north. Assignment to geographic location of origin also was successful, with average distance between capture and assignment location of 220 km. Outlier analyses identified more loci potentially under selection along the coast than between Salish Sea and coastal samples, suggesting more diverse adaptation to latitudinal environmental factors than inshore vs. offshore environments. Our results confirm previous observations of sharp genetic differentiation of the Salish Sea population and isolation by distance along the coast, but also highlight the feasibility of using modern genomic techniques to inform stock boundaries and fisheries management in a low FST marine species.
Collapse
Affiliation(s)
- Daniel P. Drinan
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| | | | | | - Dayv Lowry
- Washington Department of Fish and WildlifeOlympiaWashington
| | - Mary C. Fisher
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| | - Lorenz Hauser
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| |
Collapse
|
65
|
Carroll EL, Bruford MW, DeWoody JA, Leroy G, Strand A, Waits L, Wang J. Genetic and genomic monitoring with minimally invasive sampling methods. Evol Appl 2018; 11:1094-1119. [PMID: 30026800 PMCID: PMC6050181 DOI: 10.1111/eva.12600] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
The decreasing cost and increasing scope and power of emerging genomic technologies are reshaping the field of molecular ecology. However, many modern genomic approaches (e.g., RAD-seq) require large amounts of high-quality template DNA. This poses a problem for an active branch of conservation biology: genetic monitoring using minimally invasive sampling (MIS) methods. Without handling or even observing an animal, MIS methods (e.g., collection of hair, skin, faeces) can provide genetic information on individuals or populations. Such samples typically yield low-quality and/or quantities of DNA, restricting the type of molecular methods that can be used. Despite this limitation, genetic monitoring using MIS is an effective tool for estimating population demographic parameters and monitoring genetic diversity in natural populations. Genetic monitoring is likely to become more important in the future as many natural populations are undergoing anthropogenically driven declines, which are unlikely to abate without intensive adaptive management efforts that often include MIS approaches. Here, we profile the expanding suite of genomic methods and platforms compatible with producing genotypes from MIS, considering factors such as development costs and error rates. We evaluate how powerful new approaches will enhance our ability to investigate questions typically answered using genetic monitoring, such as estimating abundance, genetic structure and relatedness. As the field is in a period of unusually rapid transition, we also highlight the importance of legacy data sets and recommend how to address the challenges of moving between traditional and next-generation genetic monitoring platforms. Finally, we consider how genetic monitoring could move beyond genotypes in the future. For example, assessing microbiomes or epigenetic markers could provide a greater understanding of the relationship between individuals and their environment.
Collapse
Affiliation(s)
- Emma L. Carroll
- Scottish Oceans Institute and Sea Mammal Research UnitUniversity of St AndrewsSt AndrewsUK
| | - Mike W. Bruford
- Cardiff School of Biosciences and Sustainable Places Research InstituteCardiff UniversityCardiff, WalesUK
| | - J. Andrew DeWoody
- Department of Forestry and Natural Resources and Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Gregoire Leroy
- Animal Production and Health DivisionFood and Agriculture Organization of the United NationsRomeItaly
| | - Alan Strand
- Grice Marine LaboratoryDepartment of BiologyCollege of CharlestonCharlestonSCUSA
| | - Lisette Waits
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIDUSA
| | - Jinliang Wang
- Institute of ZoologyZoological Society of LondonLondonUK
| |
Collapse
|
66
|
Foster SD, Feutry P, Grewe PM, Berry O, Hui FKC, Davies CR. Reliably discriminating stock structure with genetic markers: Mixture models with robust and fast computation. Mol Ecol Resour 2018; 18:1310-1325. [PMID: 29943898 DOI: 10.1111/1755-0998.12920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/29/2022]
Abstract
Delineating naturally occurring and self-sustaining subpopulations (stocks) of a species is an important task, especially for species harvested from the wild. Despite its central importance to natural resource management, analytical methods used to delineate stocks are often, and increasingly, borrowed from superficially similar analytical tasks in human genetics even though models specifically for stock identification have been previously developed. Unfortunately, the analytical tasks in resource management and human genetics are not identical-questions about humans are typically aimed at inferring ancestry (often referred to as "admixture") rather than breeding stocks. In this article, we argue, and show through simulation experiments and an analysis of yellowfin tuna data, that ancestral analysis methods are not always appropriate for stock delineation. In this work, we advocate a variant of a previously introduced and simpler model that identifies stocks directly. We also highlight that the computational aspects of the analysis, irrespective of the model, are difficult. We introduce some alternative computational methods and quantitatively compare these methods to each other and to established methods. We also present a method for quantifying uncertainty in model parameters and in assignment probabilities. In doing so, we demonstrate that point estimates can be misleading. One of the computational strategies presented here, based on an expectation-maximization algorithm with judiciously chosen starting values, is robust and has a modest computational cost.
Collapse
Affiliation(s)
| | - Pierre Feutry
- Oceans and Atmosphere, CSIRO, Hobart, Tasmania, Australia
| | - Peter M Grewe
- Oceans and Atmosphere, CSIRO, Hobart, Tasmania, Australia
| | - Oliver Berry
- Environomics Future Science Platform, CSIRO, Crawley, Western Australia, Australia
| | - Francis K C Hui
- Mathematical Sciences Institute, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
67
|
Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S. Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics 2018; 19:217. [PMID: 29580201 PMCID: PMC5870821 DOI: 10.1186/s12864-018-4579-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/02/2018] [Indexed: 12/24/2022] Open
Abstract
Background Adaptive genomics may help predicting how a species will respond to future environmental changes. Genomic signatures of local adaptation in marine organisms are often driven by environmental selective agents impacting the physiology of organisms. With one of the highest salinity level, the Mediterranean Sea provides an excellent model to investigate adaptive genomic divergence underlying salinity adaptation. In the present study, we combined six genome scan methods to detect potential genomic signal of selection in the striped red mullet (Mullus surmuletus) populations distributed across a wide salinity gradient. We then blasted these outlier sequences on published fish genomic resources in order to identify relevant potential candidate genes for salinity adaptation in this species. Results Altogether, the six genome scan methods found 173 outliers out of 1153 SNPs. Using a blast approach, we discovered four candidate SNPs belonging to three genes potentially implicated in adaptation of M. surmuletus to salinity. The allele frequency at one of these SNPs significantly increases with salinity independently from the effect of longitude. The gene associated to this SNP, SOCS2, encodes for an inhibitor of cytokine and has previously been shown to be expressed under osmotic pressure in other marine organisms. Additionally, our results showed that genome scan methods not correcting for spatial structure can still be an efficient strategy to detect potential footprints of selection, when the spatial and environmental variation are confounded, and then, correcting for spatial structure in a second step represents a conservative method. Conclusion The present outcomes bring evidences of potential genomic footprint of selection, which suggest an adaptive response of M. surmuletus to salinity conditions in the Mediterranean Sea. Additional genomic data such as sequencing of a full-genome and transcriptome analyses of gene expression would provide new insights regarding the possibility that some striped red mullet populations are locally adapted to their saline environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-4579-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicia Dalongeville
- CEFE UMR 5175, EPHE, PSL Research University, CNRS, UM, SupAgro, IRD, INRA, 34293, Montpellier, France. .,MARBEC UMR 9190, CNRS - IRD - Université Montpellier - Ifremer, 34095, Montpellier, France.
| | - Laura Benestan
- Departement de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - David Mouillot
- MARBEC UMR 9190, CNRS - IRD - Université Montpellier - Ifremer, 34095, Montpellier, France
| | - Stephane Lobreaux
- Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université Joseph Fourier, BP53 38041, Grenoble, France
| | - Stéphanie Manel
- CEFE UMR 5175, EPHE, PSL Research University, CNRS, UM, SupAgro, IRD, INRA, 34293, Montpellier, France
| |
Collapse
|
68
|
Puncher GN, Cariani A, Maes GE, Van Houdt J, Herten K, Cannas R, Rodriguez-Ezpeleta N, Albaina A, Estonba A, Lutcavage M, Hanke A, Rooker J, Franks JS, Quattro JM, Basilone G, Fraile I, Laconcha U, Goñi N, Kimoto A, Macías D, Alemany F, Deguara S, Zgozi SW, Garibaldi F, Oray IK, Karakulak FS, Abid N, Santos MN, Addis P, Arrizabalaga H, Tinti F. Spatial dynamics and mixing of bluefin tuna in the Atlantic Ocean and Mediterranean Sea revealed using next-generation sequencing. Mol Ecol Resour 2018; 18:620-638. [PMID: 29405659 DOI: 10.1111/1755-0998.12764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/06/2018] [Accepted: 01/19/2018] [Indexed: 01/05/2023]
Abstract
The Atlantic bluefin tuna is a highly migratory species emblematic of the challenges associated with shared fisheries management. In an effort to resolve the species' stock dynamics, a genomewide search for spatially informative single nucleotide polymorphisms (SNPs) was undertaken, by way of sequencing reduced representation libraries. An allele frequency approach to SNP discovery was used, combining the data of 555 larvae and young-of-the-year (LYOY) into pools representing major geographical areas and mapping against a newly assembled genomic reference. From a set of 184,895 candidate loci, 384 were selected for validation using 167 LYOY. A highly discriminatory genotyping panel of 95 SNPs was ultimately developed by selecting loci with the most pronounced differences between western Atlantic and Mediterranean Sea LYOY. The panel was evaluated by genotyping a different set of LYOY (n = 326), and from these, 77.8% and 82.1% were correctly assigned to western Atlantic and Mediterranean Sea origins, respectively. The panel revealed temporally persistent differentiation among LYOY from the western Atlantic and Mediterranean Sea (FST = 0.008, p = .034). The composition of six mixed feeding aggregations in the Atlantic Ocean and Mediterranean Sea was characterized using genotypes from medium (n = 184) and large (n = 48) adults, applying population assignment and mixture analyses. The results provide evidence of persistent population structuring across broad geographic areas and extensive mixing in the Atlantic Ocean, particularly in the mid-Atlantic Bight and Gulf of St. Lawrence. The genomic reference and genotyping tools presented here constitute novel resources useful for future research and conservation efforts.
Collapse
Affiliation(s)
- Gregory N Puncher
- Department of Biological, Geological and Environmental Sciences/Laboratory of Genetics and Genomics of Marine Resources and Environment (GenoDREAM), University of Bologna, Ravenna, Italy.,Department of Biology, Marine Biology Research Group, Ghent University, Ghent, Belgium.,Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Alessia Cariani
- Department of Biological, Geological and Environmental Sciences/Laboratory of Genetics and Genomics of Marine Resources and Environment (GenoDREAM), University of Bologna, Ravenna, Italy
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, Comparative Genomics Centre, College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,Centre for Human Genetics, Genomics Core, KU Leuven - UZ Leuven, Leuven, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jeroen Van Houdt
- Centre for Human Genetics, Genomics Core, KU Leuven - UZ Leuven, Leuven, Belgium
| | - Koen Herten
- Centre for Human Genetics, Genomics Core, KU Leuven - UZ Leuven, Leuven, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven (KU Leuven), Leuven, Belgium
| | - Rita Cannas
- Department of Life & Environmental Sciences (DISVA), University of Cagliari, Cagliari, Italy
| | | | - Aitor Albaina
- Laboratory of Genetics Faculty of Science & Technology, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Environmental Studies Centre (CEA), Vitoria-Gasteiz City Council, Vitoria-Gasteiz, Spain
| | - Andone Estonba
- Laboratory of Genetics Faculty of Science & Technology, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Molly Lutcavage
- School for the Environment and Large Pelagics Research Center, University of Massachusetts, Boston, Gloucester, MA, USA
| | - Alex Hanke
- Fisheries and Oceans Canada, St. Andrews Biological Station, St. Andrews, NB, Canada
| | - Jay Rooker
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA.,Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA
| | - James S Franks
- Gulf Coast Research Laboratory, Center for Fisheries Research and Development, University of Southern Mississippi, Ocean Springs, MS, USA
| | - Joseph M Quattro
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Gualtiero Basilone
- National Research Council, Institute for Marine and Coastal Environment, Detached Unit of Capo Granitola, Trapani, Italy
| | - Igaratza Fraile
- Marine Research Division, AZTI Tecnalia, Pasaia, Gipuzkoa, Spain
| | - Urtzi Laconcha
- Marine Research Division, AZTI Tecnalia, Pasaia, Gipuzkoa, Spain.,Laboratory of Genetics Faculty of Science & Technology, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nicolas Goñi
- Marine Research Division, AZTI Tecnalia, Pasaia, Gipuzkoa, Spain
| | - Ai Kimoto
- National Research Institute of Far Seas Fisheries, Shizuoka, Japan
| | - David Macías
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma, Spain
| | - Francisco Alemany
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma, Spain
| | - Simeon Deguara
- Federation of Maltese Aquaculture Producers (FMAP), Valletta, Malta
| | - Salem W Zgozi
- Marine Biology Research Center, Tripoli-Tajura, Libya
| | - Fulvio Garibaldi
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genova, Italy
| | - Isik K Oray
- Faculty of Fisheries, Istanbul University, Laleli-Istanbul, Turkey
| | | | - Noureddine Abid
- National Institute of Fisheries Research, Regional Centre of Tangier, Tanger, Morocco
| | | | - Piero Addis
- Department of Life & Environmental Sciences (DISVA), University of Cagliari, Cagliari, Italy
| | | | - Fausto Tinti
- Department of Biological, Geological and Environmental Sciences/Laboratory of Genetics and Genomics of Marine Resources and Environment (GenoDREAM), University of Bologna, Ravenna, Italy
| |
Collapse
|
69
|
Jacobs A, De Noia M, Praebel K, Kanstad-Hanssen Ø, Paterno M, Jackson D, McGinnity P, Sturm A, Elmer KR, Llewellyn MS. Genetic fingerprinting of salmon louse (Lepeophtheirus salmonis) populations in the North-East Atlantic using a random forest classification approach. Sci Rep 2018; 8:1203. [PMID: 29352185 PMCID: PMC5775277 DOI: 10.1038/s41598-018-19323-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/17/2017] [Indexed: 12/13/2022] Open
Abstract
Caligid sea lice represent a significant threat to salmonid aquaculture worldwide. Population genetic analyses have consistently shown minimal population genetic structure in North Atlantic Lepeophtheirus salmonis, frustrating efforts to track louse populations and improve targeted control measures. The aim of this study was to test the power of reduced representation library sequencing (IIb-RAD sequencing) coupled with random forest machine learning algorithms to define markers for fine-scale discrimination of louse populations. We identified 1286 robustly supported SNPs among four L. salmonis populations from Ireland, Scotland and Northern Norway. Only weak global structure was observed based on the full SNP dataset. The application of a random forest machine-learning algorithm identified 98 discriminatory SNPs that dramatically improved population assignment, increased global genetic structure and resulted in significant genetic population differentiation. A large proportion of SNPs found to be under directional selection were also identified to be highly discriminatory. Our data suggest that it is possible to discriminate between nearby L. salmonis populations given suitable marker selection approaches, and that such differences might have an adaptive basis. We discuss these data in light of sea lice adaption to anthropogenic and environmental pressures as well as novel approaches to track and predict sea louse dispersal.
Collapse
Affiliation(s)
- A Jacobs
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - M De Noia
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - K Praebel
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | | | - M Paterno
- Department of Biology, University of Padova, Padova, Italy
| | | | - P McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - A Sturm
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - K R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - M S Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
70
|
Adaptation Without Boundaries: Population Genomics in Marine Systems. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
71
|
Kavakiotis I, Samaras P, Triantafyllidis A, Vlahavas I. FIFS: A data mining method for informative marker selection in high dimensional population genomic data. Comput Biol Med 2017; 90:146-154. [DOI: 10.1016/j.compbiomed.2017.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022]
|
72
|
Bernatchez L, Wellenreuther M, Araneda C, Ashton DT, Barth JMI, Beacham TD, Maes GE, Martinsohn JT, Miller KM, Naish KA, Ovenden JR, Primmer CR, Young Suk H, Therkildsen NO, Withler RE. Harnessing the Power of Genomics to Secure the Future of Seafood. Trends Ecol Evol 2017; 32:665-680. [PMID: 28818341 DOI: 10.1016/j.tree.2017.06.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 11/15/2022]
Abstract
Best use of scientific knowledge is required to maintain the fundamental role of seafood in human nutrition. While it is acknowledged that genomic-based methods allow the collection of powerful data, their value to inform fisheries management, aquaculture, and biosecurity applications remains underestimated. We review genomic applications of relevance to the sustainable management of seafood resources, illustrate the benefits of, and identify barriers to their integration. We conclude that the value of genomic information towards securing the future of seafood does not need to be further demonstrated. Instead, we need immediate efforts to remove structural roadblocks and focus on ways that support integration of genomic-informed methods into management and production practices. We propose solutions to pave the way forward.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
| | - Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Limited, Port Nelson, Nelson 7043, New Zealand; Department of Biology, Lund University, Lund, Sweden
| | - Cristián Araneda
- Universidad de Chile, Facultad de Ciencias Agronómicas Departamento de Producción Animal, Avda. Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
| | - David T Ashton
- The New Zealand Institute for Plant & Food Research Limited, Port Nelson, Nelson 7043, New Zealand
| | - Julia M I Barth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, Comparative Genomics Centre, College of Science and Engineering, James Cook University, Townsville, 4811 QLD, Australia; Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven (KU Leuven), B-3000 Leuven, Belgium; Genomics Core, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jann T Martinsohn
- European Commission, Joint Research Centre (JRC), Directorate D - Sustainable Resources, Unit D2 - Water and Marine Resources, Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Kristina M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Jennifer R Ovenden
- Molecular Fisheries Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Craig R Primmer
- Department of Biosciences, Institute of Biotechnology, 00014, University of Helsinki, Finland
| | - Ho Young Suk
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541, South Korea
| | | | - Ruth E Withler
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
73
|
Montes I, Laconcha U, Iriondo M, Manzano C, Arrizabalaga H, Estonba A. Reduced Single Nucleotide Polymorphism Panels for Assigning Atlantic Albacore and Bay of Biscay Anchovy Individuals to Their Geographic Origin: Toward Sustainable Fishery Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4351-4358. [PMID: 28489943 DOI: 10.1021/acs.jafc.7b00619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There is an increasing trend upon adding a detailed description of the origin of seafood products driven by a general interest in the implementation of sustainable fishery management plans for the conservation of marine ecosystems. North Atlantic albacore ("Bonito del Norte con Eusko Label") and Bay of Biscay anchovy ("Anchoa del Cantábrico") are two commercially important fish populations with high economical value and vulnerable to commercial fraud. This fact, together with the overexploited situation of these two populations, makes it necessary to develop a tool to identify individual origin and to detect commercial fraud. In the present study, we have developed and validated a traceability tool consisting of reduced panels of gene-associated single nucleotide polymorphisms (SNPs) suitable for assigning individuals of two species to their origin with unprecedented accuracy levels. Only 48 SNPs are necessary to assign 81.1% albacore and 93.4% anchovy individuals with 100% accuracy to their geographic origin. The total accuracy of the results demonstrates how gene-associated SNPs can revolutionize food traceability. Gene-associated SNP panels are not of mere commercial interest, but they also can result in a positive impact on sustainability of marine ecosystems through conservation of fish populations through establishing a more effective and sustainable fishery management framework and contributing to the prevention of falsified labeling.
Collapse
Affiliation(s)
- Iratxe Montes
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) , 48940 Leioa, Spain
| | - Urtzi Laconcha
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) , 48940 Leioa, Spain
- Marine Research Division, AZTI , 20110 Pasaia, Spain
| | - Mikel Iriondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) , 48940 Leioa, Spain
| | - Carmen Manzano
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) , 48940 Leioa, Spain
| | | | - Andone Estonba
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) , 48940 Leioa, Spain
| |
Collapse
|
74
|
Ruegg KC, Anderson EC, Harrigan RJ, Paxton KL, Kelly JF, Moore F, Smith TB. Genetic assignment with isotopes and habitat suitability (
gaiah
), a migratory bird case study. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kristen C. Ruegg
- Center for Tropical Research, Institute of the Environment and Sustainability University of California, Los Angeles Los Angeles CA 90095‐1496 USA
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA 95064 USA
| | - Eric C. Anderson
- Fisheries Ecology Division, Southwest Fisheries Science Center National Marine Fisheries Service, NOAA Santa Cruz CA 95060 USA
| | - Ryan J. Harrigan
- Center for Tropical Research, Institute of the Environment and Sustainability University of California, Los Angeles Los Angeles CA 90095‐1496 USA
| | | | - Jeffrey F. Kelly
- Oklahoma Biological Survey University of Oklahoma Norman OK 73019 USA
- Department of Biology University of Oklahoma Norman OK 73019 USA
| | - Frank Moore
- Department of Biological Sciences University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Thomas B. Smith
- Center for Tropical Research, Institute of the Environment and Sustainability University of California, Los Angeles Los Angeles CA 90095‐1496 USA
- Department of Ecology and Evolutionary Biology University of California Los Angles CA 90095 USA
| |
Collapse
|
75
|
Xu S, Song N, Zhao L, Cai S, Han Z, Gao T. Genomic evidence for local adaptation in the ovoviviparous marine fish Sebastiscus marmoratus with a background of population homogeneity. Sci Rep 2017; 7:1562. [PMID: 28484228 PMCID: PMC5431535 DOI: 10.1038/s41598-017-01742-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/07/2017] [Indexed: 11/09/2022] Open
Abstract
Advances in next-generation sequencing techniques have allowed for the generation of genome-wide sequence data, to gain insight into the dynamics influencing genetic structure and the local adaptation of marine fish. Here, using genotyping-by-sequencing (GBS) technique, we identified 31,119 single nucleotide polymorphisms (SNPs) for Sebastiscus marmoratus in 59 individuals from three populations in Chinese coastal waters. Based on all SNPs, there was little evidence of genetic differentiation among populations. However, outlier tests revealed 329 SNPs putatively under divergent selection across populations. Structural and phylogenetic topology analyses based on the outliers showed clear genetic differentiation among populations. Gene Ontology (GO) annotation results revealed that most of these outliers are known or hypothesized to be involved in metabolic process. Together with previous work using mitochondrial cytochrome b sequences, the present results further suggest that the population structure is strongly influenced by locally adaptive pressure. Overall, adaptive evolution in a heterogeneous environment plays an important role in inducing genetic differentiation among local populations. This study increases understanding of the factors (including gene flow and local adaptation) promoting and constraining population genetic differentiation in marine organisms.
Collapse
Affiliation(s)
- Shengyong Xu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5th Yushan Road, Qingdao, 266003, P.R. China
| | - Na Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5th Yushan Road, Qingdao, 266003, P.R. China
| | - Linlin Zhao
- The First Institute of Oceanography, State Oceanic Administration, 6th Xianxialing Road, Qingdao, 266061, P.R. China
| | - Shanshan Cai
- Fishery College, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan, 316022, P.R. China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan, 316022, P.R. China.
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan, 316022, P.R. China.
| |
Collapse
|
76
|
Tigano A, Shultz AJ, Edwards SV, Robertson GJ, Friesen VL. Outlier analyses to test for local adaptation to breeding grounds in a migratory arctic seabird. Ecol Evol 2017; 7:2370-2381. [PMID: 28405300 PMCID: PMC5383466 DOI: 10.1002/ece3.2819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/11/2017] [Accepted: 01/29/2017] [Indexed: 12/29/2022] Open
Abstract
Investigating the extent (or the existence) of local adaptation is crucial to understanding how populations adapt. When experiments or fitness measurements are difficult or impossible to perform in natural populations, genomic techniques allow us to investigate local adaptation through the comparison of allele frequencies and outlier loci along environmental clines. The thick‐billed murre (Uria lomvia) is a highly philopatric colonial arctic seabird that occupies a significant environmental gradient, shows marked phenotypic differences among colonies, and has large effective population sizes. To test whether thick‐billed murres from five colonies along the eastern Canadian Arctic coast show genomic signatures of local adaptation to their breeding grounds, we analyzed geographic variation in genome‐wide markers mapped to a newly assembled thick‐billed murre reference genome. We used outlier analyses to detect loci putatively under selection, and clustering analyses to investigate patterns of differentiation based on 2220 genomewide single nucleotide polymorphisms (SNPs) and 137 outlier SNPs. We found no evidence of population structure among colonies using all loci but found population structure based on outliers only, where birds from the two northernmost colonies (Minarets and Prince Leopold) grouped with birds from the southernmost colony (Gannet), and birds from Coats and Akpatok were distinct from all other colonies. Although results from our analyses did not support local adaptation along the latitudinal cline of breeding colonies, outlier loci grouped birds from different colonies according to their non‐breeding distributions, suggesting that outliers may be informative about adaptation and/or demographic connectivity associated with their migration patterns or nonbreeding grounds.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Biology Queen's University Kingston ON Canada
| | - Allison J Shultz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| | | | | |
Collapse
|
77
|
Lin Y, Chen Y, Yi C, Fong JJ, Kim W, Rius M, Zhan A. Genetic signatures of natural selection in a model invasive ascidian. Sci Rep 2017; 7:44080. [PMID: 28266616 PMCID: PMC5339779 DOI: 10.1038/srep44080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/02/2017] [Indexed: 12/26/2022] Open
Abstract
Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.
Collapse
Affiliation(s)
- Yaping Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Changho Yi
- Marine Biodiversity Assessment and Management Team, National Marine Biodiversity Institute of Korea, 101-75 Jangsan-ro, Janghang-eup, Seocheon-gun Chungcheongnam-do 33662, Korea
| | - Jonathan J Fong
- Science Unit, Lingnan University, 8 Castle Peak Road, Tuen Mun, New Territories, Hong Kong, China
| | - Won Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Marc Rius
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, United Kingdom.,Department of Zoology, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
78
|
Black C, Chevallier OP, Haughey SA, Balog J, Stead S, Pringle SD, Riina MV, Martucci F, Acutis PL, Morris M, Nikolopoulos DS, Takats Z, Elliott CT. A real time metabolomic profiling approach to detecting fish fraud using rapid evaporative ionisation mass spectrometry. Metabolomics 2017; 13:153. [PMID: 29151824 PMCID: PMC5668337 DOI: 10.1007/s11306-017-1291-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Fish fraud detection is mainly carried out using a genomic profiling approach requiring long and complex sample preparations and assay running times. Rapid evaporative ionisation mass spectrometry (REIMS) can circumvent these issues without sacrificing a loss in the quality of results. OBJECTIVES To demonstrate that REIMS can be used as a fast profiling technique capable of achieving accurate species identification without the need for any sample preparation. Additionally, we wanted to demonstrate that other aspects of fish fraud other than speciation are detectable using REIMS. METHODS 478 samples of five different white fish species were subjected to REIMS analysis using an electrosurgical knife. Each sample was cut 8-12 times with each one lasting 3-5 s and chemometric models were generated based on the mass range m/z 600-950 of each sample. RESULTS The identification of 99 validation samples provided a 98.99% correct classification in which species identification was obtained near-instantaneously (≈ 2 s) unlike any other form of food fraud analysis. Significant time comparisons between REIMS and polymerase chain reaction (PCR) were observed when analysing 6 mislabelled samples demonstrating how REIMS can be used as a complimentary technique to detect fish fraud. Additionally, we have demonstrated that the catch method of fish products is capable of detection using REIMS, a concept never previously reported. CONCLUSIONS REIMS has been proven to be an innovative technique to help aid the detection of fish fraud and has the potential to be utilised by fisheries to conduct their own quality control (QC) checks for fast accurate results.
Collapse
Affiliation(s)
- Connor Black
- 0000 0004 0374 7521grid.4777.3Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences, Queen’s University Belfast, 18-30 Malone Road, Belfast, BT9 5BN Northern Ireland, UK
| | - Olivier P. Chevallier
- 0000 0004 0374 7521grid.4777.3Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences, Queen’s University Belfast, 18-30 Malone Road, Belfast, BT9 5BN Northern Ireland, UK
| | - Simon A. Haughey
- 0000 0004 0374 7521grid.4777.3Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences, Queen’s University Belfast, 18-30 Malone Road, Belfast, BT9 5BN Northern Ireland, UK
| | - Julia Balog
- Waters Research Centre, 7 Zahony Street, Budapest, 1031 Hungary
- 0000 0001 2113 8111grid.7445.2Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2AZ UK
| | - Sara Stead
- Waters Corporation, Altrincham Road, Wilmslow, SK9 4AX UK
| | | | - Maria V. Riina
- 0000 0004 1759 3180grid.425427.2Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Francesca Martucci
- 0000 0004 1759 3180grid.425427.2Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Pier L. Acutis
- 0000 0004 1759 3180grid.425427.2Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Mike Morris
- Waters Corporation, Altrincham Road, Wilmslow, SK9 4AX UK
| | - Dimitrios S. Nikolopoulos
- 0000 0004 0374 7521grid.4777.3School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, UK
| | - Zoltan Takats
- 0000 0001 2113 8111grid.7445.2Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2AZ UK
| | - Christopher T. Elliott
- 0000 0004 0374 7521grid.4777.3Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences, Queen’s University Belfast, 18-30 Malone Road, Belfast, BT9 5BN Northern Ireland, UK
| |
Collapse
|
79
|
Pearse DE. Saving the spandrels? Adaptive genomic variation in conservation and fisheries management. JOURNAL OF FISH BIOLOGY 2016; 89:2697-2716. [PMID: 27723095 DOI: 10.1111/jfb.13168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
As highlighted by many of the papers in this issue, research on the genomic basis of adaptive phenotypic variation in natural populations has made spectacular progress in the past few years, largely due to the advances in sequencing technology and analysis. Without question, the resulting genomic data will improve the understanding of regions of the genome under selection and extend knowledge of the genetic basis of adaptive evolution. What is far less clear, but has been the focus of active discussion, is how such information can or should transfer into conservation practice to complement more typical conservation applications of genetic data. Before such applications can be realized, the evolutionary importance of specific targets of selection relative to the genome-wide diversity of the species as a whole must be evaluated. The key issues for the incorporation of adaptive genomic variation in conservation and management are discussed here, using published examples of adaptive genomic variation associated with specific phenotypes in salmonids and other taxa to highlight practical considerations for incorporating such information into conservation programmes. Scenarios are described in which adaptive genomic data could be used in conservation or restoration, constraints on its utility and the importance of validating inferences drawn from new genomic data before applying them in conservation practice. Finally, it is argued that an excessive focus on preserving the adaptive variation that can be measured, while ignoring the vast unknown majority that cannot, is a modern twist on the adaptationist programme that Gould and Lewontin critiqued almost 40 years ago.
Collapse
Affiliation(s)
- D E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, CA, 95060, U.S.A
| |
Collapse
|
80
|
Waples RS, Hindar K, Karlsson S, Hard JJ. Evaluating the Ryman-Laikre effect for marine stock enhancement and aquaculture. Curr Zool 2016; 62:617-627. [PMID: 29491949 PMCID: PMC5804264 DOI: 10.1093/cz/zow060] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/04/2016] [Indexed: 01/06/2023] Open
Abstract
The Ryman-Laikre (R-L) effect is an increase in inbreeding and a reduction in total effective population size (NeT ) in a combined captive-wild system, which arises when a few captive parents produce large numbers of offspring. To facilitate evaluation of the R-L effect for scenarios that are relevant to marine stock enhancement and aquaculture, we extended the original R-L formula to explicitly account for several key factors that determine NeT , including the numbers of captive and wild adults, the ratio of captive to wild Ne/N (β), productivity of captive and wild breeders, and removal of individuals from the wild for captive breeding. We show how to provide quantitative answers to questions such as: What scenarios lead to no loss of effective size? What is the maximum effective size that can be achieved? and What scenarios insure that NeT will be no smaller than a specified value? Important results include the following: (1) For large marine populations, the value of β becomes increasingly important as the captive contribution increases. Captive propagation will sharply reduce NeT unless the captive contribution is very small or β is very large (∼103 or higher). (2) Very large values of β are only possible if wild Ne/N is tiny. Therefore, large wild populations undergoing captive enhancement at even modest levels will suffer major reductions in effective size unless wild Ne is a tiny fraction of the census size (about 10-4 or lower).
Collapse
Affiliation(s)
- Robin S. Waples
- National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), Trondheim 7485, Norway
| | - Sten Karlsson
- Norwegian Institute for Nature Research (NINA), Trondheim 7485, Norway
| | - Jeffrey J. Hard
- National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| |
Collapse
|
81
|
Viard F, David P, Darling JA. Marine invasions enter the genomic era: three lessons from the past, and the way forward. Curr Zool 2016; 62:629-642. [PMID: 29491950 PMCID: PMC5804250 DOI: 10.1093/cz/zow053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/15/2016] [Indexed: 01/22/2023] Open
Abstract
The expanding scale and increasing rate of marine biological invasions have been documented since the early 20th century. Besides their global ecological and economic impacts, non-indigenous species (NIS) also have attracted much attention as opportunities to explore important eco-evolutionary processes such as rapid adaptation, long-distance dispersal and range expansion, and secondary contacts between divergent evolutionary lineages. In this context, genetic tools have been extensively used in the past 20 years. Three important issues appear to have emerged from such studies. First, the study of NIS has revealed unexpected cryptic diversity in what had previously been assumed homogeneous entities. Second, there has been surprisingly little evidence of strong founder events accompanying marine introductions, a pattern possibly driven by large propagule loads. Third, the evolutionary processes leading to successful invasion have been difficult to ascertain due to faint genetic signals. Here we explore the potential of novel tools associated with high-throughput sequencing (HTS) to address these still pressing issues. Dramatic increase in the number of loci accessible via HTS has the potential to radically increase the power of analyses aimed at species delineation, exploring the population genomic consequences of range expansions, and examining evolutionary processes such as admixture, introgression, and adaptation. Nevertheless, the value of this new wealth of genomic data will ultimately depend on the ability to couple it with expanded "traditional" efforts, including exhaustive sampling of marine populations over large geographic scales, integrated taxonomic analyses, and population level exploration of quantitative trait differentiation through common-garden and other laboratory experiments.
Collapse
Affiliation(s)
- Frédérique Viard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Lab. Adaptation Et Diversité En Milieu Marin, Team Div&Co, Station Biologique De Roscoff, Roscoff 29682, France
| | - Patrice David
- CEFE UMR 5175, CNRS-Université De Montpellier-UM III-EPHE, 1919 Route De Mende, Montpellier Cedex 34293, France
| | - John A. Darling
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
82
|
Carvalho GR, Hauser L, Martinsohn J, Naish K. Fish, genes and genomes: contributions to ecology, evolution and management. JOURNAL OF FISH BIOLOGY 2016; 89:2471-2478. [PMID: 27921308 DOI: 10.1111/jfb.13228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- G R Carvalho
- Molecular Ecology & Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, U.K
| | - L Hauser
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195-5020, U.S.A
| | - J Martinsohn
- European Commission, Joint Research Centre (JRC), Directorate D - Sustainable Resources, Water and Marine Resources, Via E. Fermi 2749, I-21027, Ispra, VA, Italy
| | - K Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195-5020, U.S.A
| |
Collapse
|
83
|
Jacobsen MW, Smedegaard L, Sørensen SR, Pujolar JM, Munk P, Jónsson B, Magnussen E, Hansen MM. Assessing pre- and post-zygotic barriers between North Atlantic eels (Anguilla anguilla and A. rostrata). Heredity (Edinb) 2016; 118:266-275. [PMID: 27827390 DOI: 10.1038/hdy.2016.96] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/13/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022] Open
Abstract
Elucidating barriers to gene flow is important for understanding the dynamics of speciation. Here we investigate pre- and post-zygotic mechanisms acting between the two hybridizing species of Atlantic eels: Anguilla anguilla and A. rostrata. Temporally varying hybridization was examined by analyzing 85 species-diagnostic single-nucleotide polymorphisms (SNPs; FST ⩾0.95) in eel larvae sampled in the spawning region in the Sargasso Sea in 2007 (N=92) and 2014 (N=460). We further investigated whether genotypes at these SNPs were nonrandomly distributed in post-F1 hybrids, indicating selection. Finally, we sequenced the mitochondrial ATP6 and nuclear ATP5c1 genes in 19 hybrids, identified using SNP and restriction site associated DNA (RAD) sequencing data, to test a previously proposed hypothesis of cytonuclear incompatibility leading to adenosine triphosphate (ATP) synthase dysfunction and selection against hybrids. No F1 hybrids but only later backcrosses were observed in the Sargasso Sea in 2007 and 2014. This suggests that interbreeding between the two species only occurs in some years, possibly controlled by environmental conditions at the spawning grounds, or that interbreeding has diminished through time as a result of a declining number of spawners. Moreover, potential selection was found at the nuclear and the cytonuclear levels. Nonetheless, one glass eel individual showed a mismatch, involving an American ATP6 haplotype and European ATP5c1 alleles. This contradicted the presence of cytonuclear incompatibility but may be explained by that (1) cytonuclear incompatibility is incomplete, (2) selection acts at a later life stage or (3) other genes are important for protein function. In total, the study demonstrates the utility of genomic data when examining pre- and post-zyotic barriers in natural hybrids.
Collapse
Affiliation(s)
- M W Jacobsen
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - L Smedegaard
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - S R Sørensen
- National Institute of Aquatic Resources, Charlottenlund, Denmark
| | - J M Pujolar
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - P Munk
- National Institute of Aquatic Resources, Charlottenlund, Denmark
| | - B Jónsson
- Northwest Iceland Nature Research Centre, Saudárkrókur, Iceland
| | - E Magnussen
- Faculty of Science and Technology, University of the Faroe Islands, Torshavn, Faroe Islands
| | - M M Hansen
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
84
|
Trueman CN, MacKenzie KM, St John Glew K. Stable isotope‐based location in a shelf sea setting: accuracy and precision are comparable to light‐based location methods. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12651] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clive N. Trueman
- Ocean and Earth Science University of Southampton Waterfront Campus Southampton SO143ZH UK
| | - Kirsteen M. MacKenzie
- Ocean and Earth Science University of Southampton Waterfront Campus Southampton SO143ZH UK
- Institute of Marine Research Tromsø Department P.O Box 6404 9294 Tromsø Norway
| | - Katie St John Glew
- Ocean and Earth Science University of Southampton Waterfront Campus Southampton SO143ZH UK
| |
Collapse
|
85
|
Kelley JL, Brown AP, Therkildsen NO, Foote AD. The life aquatic: advances in marine vertebrate genomics. Nat Rev Genet 2016; 17:523-34. [DOI: 10.1038/nrg.2016.66] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
86
|
Bekkevold D, Gross R, Arula T, Helyar SJ, Ojaveer H. Outlier Loci Detect Intraspecific Biodiversity amongst Spring and Autumn Spawning Herring across Local Scales. PLoS One 2016; 11:e0148499. [PMID: 27050440 PMCID: PMC4822851 DOI: 10.1371/journal.pone.0148499] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
Herring, Clupea harengus, is one of the ecologically and commercially most important species in European northern seas, where two distinct ecotypes have been described based on spawning time; spring and autumn. To date, it is unknown if these spring and autumn spawning herring constitute genetically distinct units. We assessed levels of genetic divergence between spring and autumn spawning herring in the Baltic Sea using two types of DNA markers, microsatellites and Single Nucleotide Polymorphisms, and compared the results with data for autumn spawning North Sea herring. Temporally replicated analyses reveal clear genetic differences between ecotypes and hence support reproductive isolation. Loci showing non-neutral behaviour, so-called outlier loci, show convergence between autumn spawning herring from demographically disjoint populations, potentially reflecting selective processes associated with autumn spawning ecotypes. The abundance and exploitation of the two ecotypes have varied strongly over space and time in the Baltic Sea, where autumn spawners have faced strong depression for decades. The results therefore have practical implications by highlighting the need for specific management of these co-occurring ecotypes to meet requirements for sustainable exploitation and ensure optimal livelihood for coastal communities.
Collapse
Affiliation(s)
- Dorte Bekkevold
- Technical University of Denmark, National Institute of Aquatic Resources, Charlottenlund, Denmark
- * E-mail:
| | - Riho Gross
- Estonian University of Life Sciences, Institute of Veterinary Medicine and Animal Sciences, Department of Aquaculture, Tartu, Estonia
| | - Timo Arula
- University of Tartu, Estonian Marine Institute, Pärnu, Estonia
| | - Sarah J. Helyar
- Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Henn Ojaveer
- University of Tartu, Estonian Marine Institute, Pärnu, Estonia
| |
Collapse
|
87
|
Walsh J, Shriver WG, Olsen BJ, Kovach AI. Differential introgression and the maintenance of species boundaries in an advanced generation avian hybrid zone. BMC Evol Biol 2016; 16:65. [PMID: 27000833 PMCID: PMC4802838 DOI: 10.1186/s12862-016-0635-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/10/2016] [Indexed: 12/31/2022] Open
Abstract
Background Evolutionary processes, including selection and differential fitness, shape the introgression of genetic material across a hybrid zone, resulting in the exchange of some genes but not others. Differential introgression of molecular or phenotypic markers can thus provide insight into factors contributing to reproductive isolation. We characterized patterns of genetic variation across a hybrid zone between two tidal marsh birds, Saltmarsh (Ammodramus caudacutus) and Nelson’s (A. nelsoni) sparrows (n = 286), and compared patterns of introgression among multiple genetic markers and phenotypic traits. Results Geographic and genomic cline analyses revealed variable patterns of introgression among marker types. Most markers exhibited gradual clines and indicated that introgression exceeds the spatial extent of the previously documented hybrid zone. We found steeper clines, indicating strong selection for loci associated with traits related to tidal marsh adaptations, including for a marker linked to a gene region associated with metabolic functions, including an osmotic regulatory pathway, as well as for a marker related to melanin-based pigmentation, supporting an adaptive role of darker plumage (salt marsh melanism) in tidal marshes. Narrow clines at mitochondrial and sex-linked markers also offer support for Haldane’s rule. We detected patterns of asymmetrical introgression toward A. caudacutus, which may be driven by differences in mating strategy or differences in population density between the two species. Conclusions Our findings offer insight into the dynamics of a hybrid zone traversing a unique environmental gradient and provide evidence for a role of ecological divergence in the maintenance of pure species boundaries despite ongoing gene flow. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0635-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer Walsh
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA. .,Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA.
| | - W Gregory Shriver
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | - Brian J Olsen
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
88
|
Rodríguez-Ezpeleta N, Bradbury IR, Mendibil I, Álvarez P, Cotano U, Irigoien X. Population structure of Atlantic mackerel inferred from RAD-seq-derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection. Mol Ecol Resour 2016; 16:991-1001. [DOI: 10.1111/1755-0998.12518] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 01/31/2016] [Accepted: 02/26/2016] [Indexed: 12/20/2022]
Affiliation(s)
| | - Ian R. Bradbury
- Department of Fisheries and Oceans; St. John's NF A1C 5X1 Canada
| | - Iñaki Mendibil
- Marine Research Division; AZTI; Txatxarramend ugartea z/g Sukarrieta 48395 Bizkaia Spain
| | - Paula Álvarez
- Marine Research Division; AZTI; Txatxarramend ugartea z/g Sukarrieta 48395 Bizkaia Spain
| | - Unai Cotano
- Marine Research Division; AZTI; Txatxarramend ugartea z/g Sukarrieta 48395 Bizkaia Spain
| | - Xabier Irigoien
- Red Sea Research Center; King Abdullah University of Technology; Thuwal 23955 Saudi Arabia
| |
Collapse
|
89
|
Valenzuela-Quiñonez F. How fisheries management can benefit from genomics? Brief Funct Genomics 2016; 15:352-7. [DOI: 10.1093/bfgp/elw006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
90
|
Bonanomi S, Overgaard Therkildsen N, Retzel A, Berg Hedeholm R, Pedersen MW, Meldrup D, Pampoulie C, Hemmer-Hansen J, Grønkjaer P, Nielsen EE. Historical DNA documents long-distance natal homing in marine fish. Mol Ecol 2016; 25:2727-34. [PMID: 26859133 DOI: 10.1111/mec.13580] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/07/2015] [Accepted: 12/21/2015] [Indexed: 01/27/2023]
Abstract
The occurrence of natal homing in marine fish remains a fundamental question in fish ecology as its unequivocal demonstration requires tracking of individuals from fertilization to reproduction. Here, we provide evidence of long-distance natal homing (>1000 km) over more than 60 years in Atlantic cod (Gadus morhua), through genetic analysis of archived samples from marked and recaptured individuals. Using a high differentiation single-nucleotide polymorphism assay, we demonstrate that the vast majority of cod tagged in West Greenland and recaptured on Icelandic spawning grounds belonged to the Iceland offshore population, strongly supporting a hypothesis of homing. The high degree of natal fidelity observed provides the evolutionary settings for development of locally adapted populations in marine fish and emphasize the need to consider portfolio effects in marine fisheries management strategies.
Collapse
Affiliation(s)
- Sara Bonanomi
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark.,Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland
| | - Nina Overgaard Therkildsen
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland.,Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview Blvd, Pacific Grove, CA, 93950, USA
| | - Anja Retzel
- Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland
| | - Rasmus Berg Hedeholm
- Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland
| | - Martin Waever Pedersen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Jaegersborg Allé 1, 2920, Charlottenlund, Denmark
| | - Dorte Meldrup
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | | | - Jakob Hemmer-Hansen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Peter Grønkjaer
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland.,Department of Bioscience, Aarhus University, Ole Worms Allé 1, 8000, Aarhus, Denmark
| | - Einar Eg Nielsen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark.,Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland
| |
Collapse
|
91
|
Robledo D, Fernández C, Hermida M, Sciara A, Álvarez-Dios JA, Cabaleiro S, Caamaño R, Martínez P, Bouza C. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot. Int J Mol Sci 2016; 17:243. [PMID: 26901189 PMCID: PMC4783974 DOI: 10.3390/ijms17020243] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/30/2022] Open
Abstract
Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species.
Collapse
Affiliation(s)
- Diego Robledo
- Departamento de Xenética, Facultade de Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Carlos Fernández
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Miguel Hermida
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Andrés Sciara
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario S2002LRK, Argentina.
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Santiago Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Rubén Caamaño
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Paulino Martínez
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Carmen Bouza
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
92
|
Shafer ABA, Northrup JM, Wikelski M, Wittemyer G, Wolf JBW. Forecasting Ecological Genomics: High-Tech Animal Instrumentation Meets High-Throughput Sequencing. PLoS Biol 2016; 14:e1002350. [PMID: 26745372 PMCID: PMC4712824 DOI: 10.1371/journal.pbio.1002350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent advancements in animal tracking technology and high-throughput sequencing are rapidly changing the questions and scope of research in the biological sciences. The integration of genomic data with high-tech animal instrumentation comes as a natural progression of traditional work in ecological genetics, and we provide a framework for linking the separate data streams from these technologies. Such a merger will elucidate the genetic basis of adaptive behaviors like migration and hibernation and advance our understanding of fundamental ecological and evolutionary processes such as pathogen transmission, population responses to environmental change, and communication in natural populations.
Collapse
Affiliation(s)
| | - Joseph M. Northrup
- Colorado State University, Department of Fish, Wildlife, and Conservation Biology, Fort Collins, Colorado, United States of America
| | - Martin Wikelski
- Max Planck Institute for Ornithology, Radolfzell, Germany
- University of Konstanz, Biology, Konstanz, Germany
| | - George Wittemyer
- Colorado State University, Department of Fish, Wildlife, and Conservation Biology, Fort Collins, Colorado, United States of America
| | - Jochen B. W. Wolf
- Uppsala University, Department of Ecology and Genetics, Uppsala, Sweden
| |
Collapse
|
93
|
Evidence of discrete yellowfin tuna (Thunnus albacares) populations demands rethink of management for this globally important resource. Sci Rep 2015; 5:16916. [PMID: 26593698 PMCID: PMC4655351 DOI: 10.1038/srep16916] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Tropical tuna fisheries are central to food security and economic development of many regions of the world. Contemporary population assessment and management generally assume these fisheries exploit a single mixed spawning population, within ocean basins. To date population genetics has lacked the required power to conclusively test this assumption. Here we demonstrate heterogeneous population structure among yellowfin tuna sampled at three locations across the Pacific Ocean (western, central, and eastern) via analysis of double digest restriction-site associated DNA using Next Generation Sequencing technology. The differences among locations are such that individuals sampled from one of the three regions examined can be assigned with close to 100% accuracy demonstrating the power of this approach for providing practical markers for fishery independent verification of catch provenance in a way not achieved by previous techniques. Given these results, an extended pan-tropical survey of yellowfin tuna using this approach will not only help combat the largest threat to sustainable fisheries (i.e. illegal, unreported, and unregulated fishing) but will also provide a basis to transform current monitoring, assessment, and management approaches for this globally significant species.
Collapse
|
94
|
AlMomin S, Kumar V, Al-Amad S, Al-Hussaini M, Dashti T, Al-Enezi K, Akbar A. Draft genome sequence of the silver pomfret fish, Pampus argenteus. Genome 2015; 59:51-8. [PMID: 26692342 DOI: 10.1139/gen-2015-0056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Silver pomfret, Pampus argenteus, is a fish species from coastal waters. Despite its high commercial value, this edible fish has not been sequenced. Hence, its genetic and genomic studies have been limited. We report the first draft genome sequence of the silver pomfret obtained using a Next Generation Sequencing (NGS) technology. We assembled 38.7 Gb of nucleotides into scaffolds of 350 Mb with N50 of about 1.5 kb, using high quality paired end reads. These scaffolds represent 63.7% of the estimated silver pomfret genome length. The newly sequenced and assembled genome has 11.06% repetitive DNA regions, and this percentage is comparable to that of the tilapia genome. The genome analysis predicted 16 322 genes. About 91% of these genes showed homology with known proteins. Many gene clusters were annotated to protein and fatty-acid metabolism pathways that may be important in the context of the meat texture and immune system developmental processes. The reference genome can pave the way for the identification of many other genomic features that could improve breeding and population-management strategies, and it can also help characterize the genetic diversity of P. argenteus.
Collapse
Affiliation(s)
- Sabah AlMomin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Vinod Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Sami Al-Amad
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Mohsen Al-Hussaini
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Talal Dashti
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Khaznah Al-Enezi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Abrar Akbar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| |
Collapse
|
95
|
Archived DNA reveals fisheries and climate induced collapse of a major fishery. Sci Rep 2015; 5:15395. [PMID: 26489934 PMCID: PMC4614879 DOI: 10.1038/srep15395] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/16/2015] [Indexed: 11/12/2022] Open
Abstract
Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.
Collapse
|
96
|
Ogden R, Linacre A. Wildlife forensic science: A review of genetic geographic origin assignment. Forensic Sci Int Genet 2015; 18:152-9. [DOI: 10.1016/j.fsigen.2015.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/12/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
97
|
Gagnaire PA, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, Arnaud-Haond S, Bierne N. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl 2015; 8:769-86. [PMID: 26366195 PMCID: PMC4561567 DOI: 10.1111/eva.12288] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022] Open
Abstract
Estimating the rate of exchange of individuals among populations is a central concern to evolutionary ecology and its applications to conservation and management. For instance, the efficiency of protected areas in sustaining locally endangered populations and ecosystems depends on reserve network connectivity. The population genetics theory offers a powerful framework for estimating dispersal distances and migration rates from molecular data. In the marine realm, however, decades of molecular studies have met limited success in inferring genetic connectivity, due to the frequent lack of spatial genetic structure in species exhibiting high fecundity and dispersal capabilities. This is especially true within biogeographic regions bounded by well-known hotspots of genetic differentiation. Here, we provide an overview of the current methods for estimating genetic connectivity using molecular markers and propose several directions for improving existing approaches using large population genomic datasets. We highlight several issues that limit the effectiveness of methods based on neutral markers when there is virtually no genetic differentiation among samples. We then focus on alternative methods based on markers influenced by selection. Although some of these methodologies are still underexplored, our aim was to stimulate new research to test how broadly they are applicable to nonmodel marine species. We argue that the increased ability to apply the concepts of cline analyses will improve dispersal inferences across physical and ecological barriers that reduce connectivity locally. We finally present how neutral markers hitchhiking with selected loci can also provide information about connectivity patterns within apparently well-mixed biogeographic regions. We contend that one of the most promising applications of population genomics is the use of outlier loci to delineate relevant conservation units and related eco-geographic features across which connectivity can be measured.
Collapse
Affiliation(s)
- Pierre-Alexandre Gagnaire
- Université de Montpellier Montpellier, France ; CNRS - Institut des Sciences de l'Evolution, UMR 5554 UM-CNRS-IRD-EPHE, Station Méditerranéenne de l'Environnement Littoral Sète, France
| | - Thomas Broquet
- CNRS team Diversity and connectivity of coastal marine landscapes, Station Biologique de Roscoff Roscoff, France ; Sorbonne Universités, UPMC Université Paris 06, UMR 7144, Station Biologique de Roscoff Roscoff, France
| | - Didier Aurelle
- Aix Marseille Université, CNRS-IRD-Avignon Université, IMBE UMR 7263 Marseille, France
| | - Frédérique Viard
- CNRS team Diversity and connectivity of coastal marine landscapes, Station Biologique de Roscoff Roscoff, France ; Sorbonne Universités, UPMC Université Paris 06, UMR 7144, Station Biologique de Roscoff Roscoff, France
| | | | - François Bonhomme
- Université de Montpellier Montpellier, France ; CNRS - Institut des Sciences de l'Evolution, UMR 5554 UM-CNRS-IRD-EPHE, Station Méditerranéenne de l'Environnement Littoral Sète, France
| | - Sophie Arnaud-Haond
- Université de Montpellier Montpellier, France ; Ifremer, UMR "Ecosystèmes Marins Exploités" Sète, France
| | - Nicolas Bierne
- Université de Montpellier Montpellier, France ; CNRS - Institut des Sciences de l'Evolution, UMR 5554 UM-CNRS-IRD-EPHE, Station Méditerranéenne de l'Environnement Littoral Sète, France
| |
Collapse
|
98
|
Kavakiotis I, Triantafyllidis A, Ntelidou D, Alexandri P, Megens HJ, Crooijmans RPMA, Groenen MAM, Tsoumakas G, Vlahavas I. TRES: Identification of Discriminatory and Informative SNPs from Population Genomic Data: Figure 1. J Hered 2015; 106:672-6. [DOI: 10.1093/jhered/esv044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/17/2015] [Indexed: 11/13/2022] Open
|
99
|
Benestan L, Gosselin T, Perrier C, Sainte-Marie B, Rochette R, Bernatchez L. RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Mol Ecol 2015; 24:3299-315. [DOI: 10.1111/mec.13245] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Laura Benestan
- Institut de Biologie Intégrative des Systèmes (IBIS); Université Laval; Québec Quebec Canada G1V0A6
| | - Thierry Gosselin
- Institut de Biologie Intégrative des Systèmes (IBIS); Université Laval; Québec Quebec Canada G1V0A6
| | - Charles Perrier
- Institut de Biologie Intégrative des Systèmes (IBIS); Université Laval; Québec Quebec Canada G1V0A6
| | - Bernard Sainte-Marie
- Pêches et Océans Canada; Institut Maurice-Lamontagne; CP 1000 Mont-Joli Quebec Canada G5H 3Z4
| | - Rémy Rochette
- Department of Biology; University of New Brunswick; PO Box 5050 Saint John New Brunswick Canada E2L 4L5
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS); Université Laval; Québec Quebec Canada G1V0A6
| |
Collapse
|
100
|
Souche EL, Hellemans B, Babbucci M, MacAoidh E, Guinand B, Bargelloni L, Chistiakov DA, Patarnello T, Bonhomme F, Martinsohn JT, Volckaert FAM. Range-wide population structure of European sea bassDicentrarchus labrax. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12572] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Erika L. Souche
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Ch. Deberiotstraat 32 - PO Box 2439 B-3000 Leuven Belgium
- Center of Human Genetics; University of Leuven; O&N I Herestraat 49 - PO Box 602 B-3000 Leuven Belgium
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Ch. Deberiotstraat 32 - PO Box 2439 B-3000 Leuven Belgium
| | - Massimiliano Babbucci
- Dipartimento di Biomedicina Comparata e Alimentazione; Università di Padova; I-35124 Padova Italy
| | - Eoin MacAoidh
- Joint Research Centre; Institute for the Protection and Security of the Citizen; European Commission; Maritime Affairs Unit (G.03) - TP051 (Bldg. 51), Via Enrico Fermi nr. 2749 I-21027 Ispra Italy
| | - Bruno Guinand
- Institut des Sciences de l'Evolution de Montpellier; Université de Montpellier; UMR CNRS 5554, Place Eugène Bataillon - cc63 F-34095 Montpellier Cedex 5 France
| | - Luca Bargelloni
- Dipartimento di Biomedicina Comparata e Alimentazione; Università di Padova; I-35124 Padova Italy
| | - Dimitry A. Chistiakov
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Ch. Deberiotstraat 32 - PO Box 2439 B-3000 Leuven Belgium
- Department of Medical Nanobiotechnology; Pirogov Russian State Medical University Research Center; Ulitsa Ostrovityanova 1 117997 Moscow Russia
| | - Tomaso Patarnello
- Dipartimento di Biomedicina Comparata e Alimentazione; Università di Padova; I-35124 Padova Italy
| | - François Bonhomme
- Institut des Sciences de l'Evolution de Montpellier; Université de Montpellier; UMR CNRS 5554, Place Eugène Bataillon - cc63 F-34095 Montpellier Cedex 5 France
| | - Jann T. Martinsohn
- Joint Research Centre; Institute for the Protection and Security of the Citizen; European Commission; Maritime Affairs Unit (G.03) - TP051 (Bldg. 51), Via Enrico Fermi nr. 2749 I-21027 Ispra Italy
| | - Filip A. M. Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Ch. Deberiotstraat 32 - PO Box 2439 B-3000 Leuven Belgium
- Department of Biological and Environmental Sciences; CeMEB; University of Gothenburg; Box 463 SE-405 30 Gothenburg Sweden
| |
Collapse
|