51
|
Abstract
ERK1 and ERK2 (ERK1/2) are the primary effector kinases of the RAS-RAF-MEK-ERK signaling pathway. A variety of substrates and regulatory partners associate with ERK1/2 through distinct D-peptide- and DEF-docking sites on their kinase domains. While understanding of D-peptides that bind to ERK1/2 has become increasingly clear over the last decade, only more recently have structures of proteins interacting with other binding sites on ERK1/2 become available. PEA-15 is a 130-residue ERK1/2 regulator that engages both the D-peptide- and DEF-docking sites of ERK kinases, and directly sequesters the ERK2 activation loop in various different phosphorylation states. Here we describe the methods used to derive crystallization-grade complexes of ERK2-PEA-15, which may also be adapted for other regulators that associate with the activation loop of ERK1/2.
Collapse
Affiliation(s)
- Johannes F Weijman
- Biochemistry Department, Otago School of Medical Sciences, University of Otago, 56, 710 Cumberland St., Dunedin, 9054, New Zealand
| | - Stefan J Riedl
- Cell Death and Survival Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter D Mace
- Biochemistry Department, Otago School of Medical Sciences, University of Otago, 56, 710 Cumberland St., Dunedin, 9054, New Zealand.
| |
Collapse
|
52
|
Wang Y, Xu J, Gao G, Li J, Huang H, Jin H, Zhu J, Che X, Huang C. Tumor-suppressor NFκB2 p100 interacts with ERK2 and stabilizes PTEN mRNA via inhibition of miR-494. Oncogene 2016; 35:4080-90. [PMID: 26686085 PMCID: PMC4916044 DOI: 10.1038/onc.2015.470] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 10/19/2015] [Accepted: 11/14/2015] [Indexed: 12/19/2022]
Abstract
Emerging evidence from The Cancer Genome Atlas has revealed that nuclear factor κB2 (nfκb2) gene encoding p100 is genetically deleted or mutated in human cancers, implicating NFκB2 as a potential tumor suppressor. However, the molecular mechanism underlying the antitumorigenic action of p100 remains poorly understood. Here we report that p100 inhibits cancer cell anchorage-independent growth, a hallmark of cellular malignancy, by stabilizing the tumor-suppressor phosphatase and tensin homolog (PTEN) mRNA via a mechanism that is independent of p100's inhibitory role in NFκB activation. We further demonstrate that the regulatory effect of p100 on PTEN expression is mediated by its downregulation of miR-494 as a result of the inactivation of extracellular signal-regulated kinase 2 (ERK2), in turn leading to inhibition of c-Jun/activator protein-1-dependent transcriptional activity. Furthermore, we identify that p100 specifically interacts with non-phosphorylated ERK2 and prevents ERK2 phosphorylation and nuclear translocation. Moreover, the death domain at C-terminal of p100 is identified as being crucial and sufficient for its interaction with ERK2. Taken together, our findings provide novel mechanistic insights into the understanding of the tumor-suppressive role for NFκB2 p100.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chuanshu Huang
- Corresponding author: Dr. Chuanshu Huang, Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, Tel: 845-731-3519, Fax: 845-351-2320,
| |
Collapse
|
53
|
Herrero A, Casar B, Colón-Bolea P, Agudo-Ibáñez L, Crespo P. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells. Mol Biol Cell 2016; 27:1958-68. [PMID: 27099370 PMCID: PMC4907729 DOI: 10.1091/mbc.e15-02-0118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/13/2016] [Indexed: 11/11/2022] Open
Abstract
Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane-disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals.
Collapse
Affiliation(s)
- Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander E-39011, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander E-39011, Spain
| | - Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander E-39011, Spain
| | - Lorena Agudo-Ibáñez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander E-39011, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander E-39011, Spain
| |
Collapse
|
54
|
Hendus-Altenburger R, Pedraz-Cuesta E, Olesen CW, Papaleo E, Schnell JA, Hopper JTS, Robinson CV, Pedersen SF, Kragelund BB. The human Na(+)/H(+) exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2. BMC Biol 2016; 14:31. [PMID: 27083547 PMCID: PMC4833948 DOI: 10.1186/s12915-016-0252-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/29/2016] [Indexed: 11/22/2022] Open
Abstract
Background Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. Methods and results Here, we identify the human Na+/H+ exchanger 1 (hNHE1) as a membrane scaffold protein for ERK2 and show direct hNHE1-ERK1/2 interaction in cellular contexts. Using nuclear magnetic resonance (NMR) spectroscopy and immunofluorescence analysis we demonstrate that ERK2 scaffolding by hNHE1 occurs by one of three D-domains and by two non-canonical F-sites located in the disordered intracellular tail of hNHE1, mutation of which reduced cellular hNHE1-ERK1/2 co-localization, as well as reduced cellular ERK1/2 activation. Time-resolved NMR spectroscopy revealed that ERK2 phosphorylated the disordered tail of hNHE1 at six sites in vitro, in a distinct temporal order, with the phosphorylation rates at the individual sites being modulated by the docking sites in a distant dependent manner. Conclusions This work characterizes a new type of scaffolding complex, which we term a “shuffle complex”, between the disordered hNHE1-tail and ERK2, and provides a molecular mechanism for the important ERK2 scaffolding function of the membrane protein hNHE1, which regulates the phosphorylation of both hNHE1 and ERK2. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0252-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Cell and Developmental Biology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.,Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Elena Pedraz-Cuesta
- Cell and Developmental Biology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Christina W Olesen
- Cell and Developmental Biology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Elena Papaleo
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Jeff A Schnell
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Jonathan T S Hopper
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Stine F Pedersen
- Cell and Developmental Biology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
55
|
Qi H, Prabakaran S, Cantrelle FX, Chambraud B, Gunawardena J, Lippens G, Landrieu I. Characterization of Neuronal Tau Protein as a Target of Extracellular Signal-regulated Kinase. J Biol Chem 2016; 291:7742-53. [PMID: 26858248 DOI: 10.1074/jbc.m115.700914] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 01/16/2023] Open
Abstract
Tau neuronal protein has a central role in neurodegeneration and is implicated in Alzheimer disease development. Abnormal phosphorylation of Tau impairs its interaction with other proteins and is associated with its dysregulation in pathological conditions. Molecular mechanisms leading to hyperphosphorylation of Tau in pathological conditions are unknown. Here, we characterize phosphorylation of Tau by extracellular-regulated kinase (ERK2), a mitogen-activated kinase (MAPK) that responds to extracellular signals. Analysis ofin vitrophosphorylated Tau by activated recombinant ERK2 with nuclear magnetic resonance spectroscopy (NMR) reveals phosphorylation of 15 Ser/Thr sites.In vitrophosphorylation of Tau using rat brain extract and subsequent NMR analysis identifies the same sites. Phosphorylation with rat brain extract is known to transform Tau into an Alzheimer disease-like state. Our results indicate that phosphorylation of Tau by ERK2 alone is sufficient to produce the same characteristics. We further investigate the mechanism of ERK2 phosphorylation of Tau. Kinases are known to recognize their protein substrates not only by their specificity for a targeted Ser or Thr phosphorylation site but also by binding to linear-peptide motifs called docking sites. We identify two main ERK2 docking sites in Tau sequence using NMR. Our results suggest that ERK2 dysregulation in Alzheimer disease could lead to abnormal phosphorylation of Tau resulting in the pathology of the disease.
Collapse
Affiliation(s)
- Haoling Qi
- From Lille University, CNRS UMR8576, F-59000 Lille, France
| | - Sudhakaran Prabakaran
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | | | | | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Guy Lippens
- From Lille University, CNRS UMR8576, F-59000 Lille, France
| | | |
Collapse
|
56
|
Exler RE, Guo X, Chan D, Livne-Bar I, Vicic N, Flanagan JG, Sivak JM. Biomechanical insult switches PEA-15 activity to uncouple its anti-apoptotic function and promote erk mediated tissue remodeling. Exp Cell Res 2016; 340:283-94. [DOI: 10.1016/j.yexcr.2015.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/27/2015] [Accepted: 11/21/2015] [Indexed: 11/15/2022]
|
57
|
Cheng X, Gao Y, Yao X, Yu H, Bao J, Guan H, Sun Y, Zhang L. Punicalagin induces apoptosis-independent autophagic cell death in human papillary thyroid carcinoma BCPAP cells. RSC Adv 2016. [DOI: 10.1039/c6ra13431a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Punicalagin induces apoptosis-independent autophagic cell death in BCPAP cells.
Collapse
Affiliation(s)
- Xian Cheng
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| | - Yanyan Gao
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| | - Xin Yao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Huixin Yu
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| | - Jiandong Bao
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| | - Haixia Guan
- Department of Endocrinology & Metabolism and Institute of Endocrinology
- The First Hospital of China Medical University
- Shenyang
- China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing
- China
| | - Li Zhang
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| |
Collapse
|
58
|
Zeke A, Bastys T, Alexa A, Garai Á, Mészáros B, Kirsch K, Dosztányi Z, Kalinina OV, Reményi A. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Mol Syst Biol 2015; 11:837. [PMID: 26538579 PMCID: PMC4670726 DOI: 10.15252/msb.20156269] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitogen‐activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less‐characterized disordered regions. We used a structurally consistent model on kinase‐docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under‐explored part of the human proteome and applied experimental tools specifically tailored to detect low‐affinity protein–protein interactions for their validation in vitro and in cell‐based assays. The combined computational and experimental approach enabled the identification of many novel MAPK‐docking motifs that were elusive for other large‐scale protein–protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase‐mediated partnerships evolved over time. The analysis suggests that most human MAPK‐binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK‐binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles.
Collapse
Affiliation(s)
- András Zeke
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Tomas Bastys
- Max Planck Institute for Informatics, Saarbrücken, Germany Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anita Alexa
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Garai
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Bálint Mészáros
- Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Klára Kirsch
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | - Attila Reményi
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
59
|
Kerbrat S, Vingert B, Junier MP, Castellano F, Renault-Mihara F, Dos Reis Tavares S, Surenaud M, Noizat-Pirenne F, Boczkowski J, Guellaën G, Chneiweiss H, Le Gouvello S. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo. PLoS One 2015; 10:e0136885. [PMID: 26317969 PMCID: PMC4552951 DOI: 10.1371/journal.pone.0136885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023] Open
Abstract
TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4+ T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15kDa) is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4+ T cells. TCR-stimulated PEA-15-deficient CD4+ T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4+ T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4+ CD62L+ PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response.
Collapse
Affiliation(s)
- Stéphane Kerbrat
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
| | - Benoit Vingert
- Inserm U955, Créteil, France
- Etablissement Français du Sang, Créteil, France
| | - Marie-Pierre Junier
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
| | - Flavia Castellano
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Pôle de Biologie-Pathologie, Créteil, France
| | - François Renault-Mihara
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
| | - Silvina Dos Reis Tavares
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
| | | | - France Noizat-Pirenne
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
- Etablissement Français du Sang, Créteil, France
| | - Jorge Boczkowski
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
| | - Georges Guellaën
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
| | - Hervé Chneiweiss
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
- * E-mail: (SLG); (HC)
| | - Sabine Le Gouvello
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Pôle de Biologie-Pathologie, Créteil, France
- * E-mail: (SLG); (HC)
| |
Collapse
|
60
|
On the Quest of Cellular Functions of PEA-15 and the Therapeutic Opportunities. Pharmaceuticals (Basel) 2015; 8:455-73. [PMID: 26263999 PMCID: PMC4588177 DOI: 10.3390/ph8030455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/18/2015] [Accepted: 07/24/2015] [Indexed: 02/03/2023] Open
Abstract
Phosphoprotein enriched in astrocytes, 15 KDa (PEA-15), a ubiquitously expressed small protein in all mammals, is known for decades for its potent interactions with various protein partners along distinct biological pathways. Most notable interacting partners of PEA-15 include extracellular signal-regulated kinase 1 and 2 (ERK1/2) in the mitogen activated protein kinase (MAPK) pathway, the Fas-associated death domain (FADD) protein involving in the formation of the death-inducing signaling complex (DISC), and the phospholipase D1 (PLD1) affecting the insulin sensitivity. However, the actual cellular functions of PEA-15 are still mysterious, and the question why this protein is expressed in almost all cell and tissue types remains unanswered. Here we synthesize the most recent structural, biological, and clinical studies on PEA-15 with emphases on its anti-apoptotic, anti-proliferative, and anti-inflammative properties, and propose a converged protective role of PEA-15 that maintains the balance of death and survival in different cell types. Under conditions that this delicate balance is unsustainable, PEA-15 may become pathological and lead to various diseases, including cancers and diabetes. Targeting PEA-15 interactions, or the use of PEA-15 protein as therapeutics, may provide a wider window of opportunities to treat these diseases.
Collapse
|
61
|
Mapping the binding interface of ERK and transcriptional repressor Capicua using photocrosslinking. Proc Natl Acad Sci U S A 2015; 112:8590-5. [PMID: 26124095 DOI: 10.1073/pnas.1501373112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK) coordinates cellular responses to a range of stimuli by phosphorylating its numerous substrates. One of these substrates, Capicua (Cic), is a transcriptional repressor that was first identified in Drosophila and has been implicated in a number of human diseases. Here we use a chemical biology approach to map the binding interface of ERK and Cic. The noncanonical amino acid p-azidophenylalanine (AzF) was introduced into the ERK-binding region of Drosophila Cic, and photocrosslinking and tandem mass spectrometry were used to pinpoint its binding site on ERK. We also identified the ERK-binding region of human Cic and showed that it binds to the same site on ERK despite lacking conservation with the Drosophila Cic binding region. Finally, we mapped the amino acids involved in human Cic binding to ERK using AzF-labeled ERK. These results reveal the molecular details of the ERK-Cic interaction and demonstrate that the photocrosslinking approach is complementary to existing methods for mapping kinase-substrate binding interfaces.
Collapse
|
62
|
Structural and Dynamic Features of F-recruitment Site Driven Substrate Phosphorylation by ERK2. Sci Rep 2015; 5:11127. [PMID: 26054059 PMCID: PMC4459106 DOI: 10.1038/srep11127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/18/2015] [Indexed: 02/07/2023] Open
Abstract
The F-recruitment site (FRS) of active ERK2 binds F-site (Phe-x-Phe-Pro) sequences found downstream of the Ser/Thr phospho-acceptor on cellular substrates. Here we apply NMR methods to analyze the interaction between active ERK2 (ppERK2), and a 13-residue F-site-bearing peptide substrate derived from its cellular target, the transcription factor Elk-1. Our results provide detailed insight into previously elusive structural and dynamic features of FRS/F-site interactions and FRS-driven substrate phosphorylation. We show that substrate F-site engagement significantly quenches slow dynamics involving the ppERK2 activation-loop and the FRS. We also demonstrate that the F-site phenylalanines make critical contacts with ppERK2, in contrast to the proline whose cis-trans isomerization has no significant effect on F-site recognition by the kinase FRS. Our results support a mechanism where phosphorylation of the disordered N-terminal phospho-acceptor is facilitated by its increased productive encounters with the ppERK2 active site due to docking of the proximal F-site at the kinase FRS.
Collapse
|
63
|
Shin M, Lee KE, Yang EG, Jeon H, Song HK. PEA-15 facilitates EGFR dephosphorylationviaERK sequestration at increased ER-PM contacts in TNBC cells. FEBS Lett 2015; 589:1033-9. [DOI: 10.1016/j.febslet.2015.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
|
64
|
Qian J, Kong X, Deng N, Tan P, Chen H, Wang J, Li Z, Hu Y, Zou W, Xu J, Fang JY. OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Gut 2015; 64:37-48. [PMID: 24717932 PMCID: PMC4283676 DOI: 10.1136/gutjnl-2013-306584] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Octamer transcription factor 1 (OCT1) was found to be expressed in intestinal metaplasia and gastric cancer (GC), but the exact roles of OCT1 in GC remain unclear. The objective of this study was to determine the functional and prognostic implications of OCT1 in GC. DESIGN Expression of OCT1 was examined in paired normal and cancerous gastric tissues and the prognostic significance of OCT1 was analysed by univariate and multivariate survival analyses. The functions of OCT1 on synbindin expression and extracellular signal-regulated kinase (ERK) phosphorylation were studied in vitro and in xenograft mouse models. RESULTS The OCT1 gene is recurrently amplified and upregulated in GC. OCT1 overexpression and amplification are associated with poor survival in patients with GC and the prognostic significance was confirmed by independent patient cohorts. Combining OCT1 overexpression with American Joint Committee on Cancer staging improved the prediction of survival in patients with GC. High expression of OCT1 associates with activation of the ERK mitogen-activated protein kinase signalling pathway in GC tissues. OCT1 functions by transactivating synbindin, which binds to ERK DEF domain and facilitates ERK phosphorylation by MEK. OCT1-synbindin signalling results in the activation of ERK substrates ELK1 and RSK, leading to increased cell proliferation and invasion. Immunofluorescent study of human GC tissue samples revealed strong association between OCT1 protein level and synbindin expression/ERK phosphorylation. Upregulation of OCT1 in mouse xenograft models induced synbindin expression and ERK activation, leading to accelerated tumour growth in vivo. CONCLUSIONS OCT1 is a driver of synbindin-mediated ERK signalling and a promising marker for the prognosis and molecular subtyping of GC.
Collapse
Affiliation(s)
- Jin Qian
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xuan Kong
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Niantao Deng
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Haoyan Chen
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jilin Wang
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhaoli Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ye Hu
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Xu
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
65
|
Lo YC, Lin SC, Yang CY, Tung JY. Tandem DEDs and CARDs suggest novel mechanisms of signaling complex assembly. Apoptosis 2014; 20:124-35. [DOI: 10.1007/s10495-014-1054-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
66
|
FADD adaptor and PEA-15/ERK1/2 partners in major depression and schizophrenia postmortem brains: basal contents and effects of psychotropic treatments. Neuroscience 2014; 277:541-51. [PMID: 25075716 DOI: 10.1016/j.neuroscience.2014.07.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/26/2014] [Accepted: 07/18/2014] [Indexed: 01/05/2023]
Abstract
Enhanced brain apoptosis (neurons and glia) may be involved in major depression (MD) and schizophrenia (SZ), mainly through the activation of the intrinsic (mitochondrial) apoptotic pathway. In the extrinsic death pathway, pro-apoptotic Fas-associated death domain (FADD) adaptor and its non-apoptotic p-Ser194 FADD form have critical roles interacting with other death regulators such as phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) and extracellular signal-regulated kinase (ERK). The basal status of FADD (protein and messenger RNA (mRNA)) and the effects of psychotropic drugs (detected in blood/urine samples) were first assessed in postmortem prefrontal cortex of MD and SZ subjects (including a non-MD/SZ suicide group). In MD, p-FADD, but not total FADD (and mRNA), was increased (26%, n=24; all MD subjects) as well as p-FADD/FADD ratio (a pro-survival marker) in antidepressant-free MD subjects (50%, n=10). In contrast, cortical FADD (and mRNA), p-FADD, and p-FADD/FADD were not altered in SZ brains (n=21) regardless of antipsychotic medications (except enhanced mRNA in treated subjects). Similar negative results were quantified in the non-MD/SZ suicide group. In MD, the regulation of multifunctional PEA-15 (i.e., p-Ser116 PEA-15 blocks pro-apoptotic FADD and PEA-15 prevents pro-survival ERK action) and the modulation of p-ERK1/2 were also investigated. Cortical p-PEA-15 was not changed whereas PEA-15 was increased mainly in antidepressant-treated subjects (16-20%). Interestingly, cortical p-ERK1/2/ERK1/2 ratio was reduced (33%) in antidepressant-free when compared to antidepressant-treated MD subjects. The neurochemical adaptations of brain FADD (increased p-FADD and pro-survival p-FADD/FADD ratio), as well as its interaction with PEA-15, could play a major role to counteract the known activation of the mitochondrial apoptotic pathway in MD.
Collapse
|
67
|
Greig FH, Nixon GF. Phosphoprotein enriched in astrocytes (PEA)-15: a potential therapeutic target in multiple disease states. Pharmacol Ther 2014; 143:265-74. [PMID: 24657708 PMCID: PMC4127788 DOI: 10.1016/j.pharmthera.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphoprotein enriched in astrocytes-15 (PEA-15) is a cytoplasmic protein that sits at an important junction in intracellular signalling and can regulate diverse cellular processes, such as proliferation and apoptosis, dependent upon stimulation. Regulation of these processes occurs by virtue of the unique interaction of PEA-15 with other signalling proteins. PEA-15 acts as a cytoplasmic tether for the mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 (ERK1/2) preventing nuclear localisation. In order to release ERK1/2, PEA-15 requires to be phosphorylated via several potential pathways. PEA-15 (and its phosphorylation state) therefore regulates many ERK1/2-dependent processes, including proliferation, via regulating ERK1/2 nuclear translocation. In addition, PEA-15 contains a death effector domain (DED) which allows interaction with other DED-containing proteins. PEA-15 can bind the DED-containing apoptotic adaptor molecule, Fas-associated death domain protein (FADD) which is also dependent on the phosphorylation status of PEA-15. PEA-15 binding of FADD can inhibit apoptosis as bound FADD cannot participate in the assembly of apoptotic signalling complexes. Through these protein–protein interactions, PEA-15-regulated cellular effects have now been investigated in a number of disease-related studies. Changes in PEA-15 expression and regulation have been observed in diabetes mellitus, cancer, neurological disorders and the cardiovascular system. These changes have been suggested to contribute to the pathology related to each of these disease states. As such, new therapeutic targets based around PEA-15 and its associated interactions are now being uncovered and could provide novel avenues for treatment strategies in multiple diseases.
Collapse
Affiliation(s)
- Fiona H Greig
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Graeme F Nixon
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
68
|
Wallez Y, Riedl SJ, Pasquale EB. Association of the breast cancer antiestrogen resistance protein 1 (BCAR1) and BCAR3 scaffolding proteins in cell signaling and antiestrogen resistance. J Biol Chem 2014; 289:10431-10444. [PMID: 24584939 DOI: 10.1074/jbc.m113.541839] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most breast cancers are estrogen receptor-positive and treated with antiestrogens, but aberrant signaling networks can induce drug resistance. One of these networks involves the scaffolding protein BCAR1/p130CAS, which regulates cell growth and migration/invasion. A less investigated scaffolding protein that also confers antiestrogen resistance is the SH2 domain-containing protein BCAR3. BCAR1 and BCAR3 bind tightly to each other through their C-terminal domains, thus potentially connecting their associated signaling networks. However, recent studies using BCAR1 and BCAR3 interaction mutants concluded that association between the two proteins is not critical for many of their interrelated activities regulating breast cancer malignancy. We report that these previously used BCAR mutations fail to cause adequate loss-of-function of the complex. By using structure-based BCAR1 and BCAR3 mutants that lack the ability to interact, we show that BCAR3-induced antiestrogen resistance in MCF7 breast cancer cells critically depends on its ability to bind BCAR1. Interaction with BCAR3 increases the levels of phosphorylated BCAR1, ultimately potentiating BCAR1-dependent antiestrogen resistance. Furthermore, antiestrogen resistance in cells overexpressing BCAR1/BCAR3 correlates with increased ERK1/2 activity. Inhibiting ERK1/2 through overexpression of the regulatory protein PEA15 negates the resistance, revealing a key role for ERK1/2 in BCAR1/BCAR3-induced antiestrogen resistance. Reverse-phase protein array data show that PEA15 levels in invasive breast cancers correlate with patient survival, suggesting that PEA15 can override ERK1/2 activation by BCAR1/BCAR3 and other upstream regulators. We further uncovered that the BCAR3-related NSP3 can also promote antiestrogen resistance. Thus, strategies to disrupt BCAR1-BCAR3/NSP3 complexes and associated signaling networks could ultimately lead to new breast cancer therapies.
Collapse
Affiliation(s)
- Yann Wallez
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Stefan J Riedl
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Elena B Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037; Department of Pathology, University of California, San Diego California 92093.
| |
Collapse
|
69
|
Twomey EC, Cordasco DF, Kozuch SD, Wei Y. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions. PLoS One 2013; 8:e83421. [PMID: 24391764 PMCID: PMC3877032 DOI: 10.1371/journal.pone.0083421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/03/2013] [Indexed: 11/18/2022] Open
Abstract
Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs) mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC) data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) protein in the complex with a mitogen-activated protein (MAP) kinase, extracellular regulated kinase 2 (ERK2), which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.
Collapse
Affiliation(s)
- Edward C. Twomey
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, United States of America
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, United States of America
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York, United States of America
| | - Dana F. Cordasco
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, United States of America
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, United States of America
| | - Stephen D. Kozuch
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, United States of America
| | - Yufeng Wei
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
70
|
Peti W, Page R. Molecular basis of MAP kinase regulation. Protein Sci 2013; 22:1698-710. [PMID: 24115095 DOI: 10.1002/pro.2374] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022]
Abstract
Mitogen-activated protein kinases (MAPKs; ERK1/2, p38, JNK, and ERK5) have evolved to transduce environmental and developmental signals (growth factors, stress) into adaptive and programmed responses (differentiation, inflammation, apoptosis). Almost 20 years ago, it was discovered that MAPKs contain a docking site in the C-terminal lobe that binds a conserved 13-16 amino acid sequence known as the D- or KIM-motif (kinase interaction motif). Recent crystal structures of MAPK:KIM-peptide complexes are leading to a precise understanding of how KIM sequences contribute to MAPK selectivity. In addition, new crystal and especially NMR studies are revealing how residues outside the canonical KIM motif interact with specific MAPKs and contribute further to MAPK selectivity and signaling pathway fidelity. In this review, we focus on these recent studies, with an emphasis on the use of NMR spectroscopy, isothermal titration calorimetry and small angle X-ray scattering to investigate these processes.
Collapse
Affiliation(s)
- Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912; Department of Chemistry, Brown University, Providence, Rhode Island, 02912
| | | |
Collapse
|
71
|
Kumar GS, Zettl H, Page R, Peti W. Structural basis for the regulation of the mitogen-activated protein (MAP) kinase p38α by the dual specificity phosphatase 16 MAP kinase binding domain in solution. J Biol Chem 2013; 288:28347-56. [PMID: 23926106 PMCID: PMC3784751 DOI: 10.1074/jbc.m113.499178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) fulfill essential biological functions and are key pharmaceutical targets. Regulation of MAPKs is achieved via a plethora of regulatory proteins including activating MAPKKs and an abundance of deactivating phosphatases. Although all regulatory proteins use an identical interaction site on MAPKs, the common docking and hydrophobic pocket, they use distinct kinase interaction motif (KIM or D-motif) sequences that are present in linear, peptide-like, or well folded protein domains. It has been recently shown that a KIM-containing MAPK-specific dual specificity phosphatase DUSP10 uses a unique binding mode to interact with p38α. Here we describe the interaction of the MAPK binding domain of DUSP16 with p38α and show that despite belonging to the same dual specificity phosphatase (DUSP) family, its interaction mode differs from that of DUSP10. Indeed, the DUSP16 MAPK binding domain uses an additional helix, α-helix 4, to further engage p38α. This leads to an additional interaction surface on p38α. Together, these structural and energetic differences in p38α engagement highlight the fine-tuning necessary to achieve MAPK specificity and regulation among multiple regulatory proteins.
Collapse
Affiliation(s)
| | - Heiko Zettl
- From the Departments of Molecular Pharmacology, Physiology and Biotechnology
| | - Rebecca Page
- Molecular Biology, Cell Biology, and Biochemistry, and
| | - Wolfgang Peti
- From the Departments of Molecular Pharmacology, Physiology and Biotechnology
- Chemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|