51
|
Bock HH, May P. Canonical and Non-canonical Reelin Signaling. Front Cell Neurosci 2016; 10:166. [PMID: 27445693 PMCID: PMC4928174 DOI: 10.3389/fncel.2016.00166] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Reelin is a large secreted glycoprotein that is essential for correct neuronal positioning during neurodevelopment and is important for synaptic plasticity in the mature brain. Moreover, Reelin is expressed in many extraneuronal tissues; yet the roles of peripheral Reelin are largely unknown. In the brain, many of Reelin's functions are mediated by a molecular signaling cascade that involves two lipoprotein receptors, apolipoprotein E receptor-2 (Apoer2) and very low density-lipoprotein receptor (Vldlr), the neuronal phosphoprotein Disabled-1 (Dab1), and members of the Src family of protein tyrosine kinases as crucial elements. This core signaling pathway in turn modulates the activity of adaptor proteins and downstream protein kinase cascades, many of which target the neuronal cytoskeleton. However, additional Reelin-binding receptors have been postulated or described, either as coreceptors that are essential for the activation of the "canonical" Reelin signaling cascade involving Apoer2/Vldlr and Dab1, or as receptors that activate alternative or additional signaling pathways. Here we will give an overview of canonical and alternative Reelin signaling pathways, molecular mechanisms involved, and their potential physiological roles in the context of different biological settings.
Collapse
Affiliation(s)
- Hans H Bock
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Petra May
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
52
|
Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, in Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex. eNeuro 2016; 3:eN-NWR-0142-16. [PMID: 27390776 PMCID: PMC4917737 DOI: 10.1523/eneuro.0142-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 12/19/2022] Open
Abstract
Cerebral neocortex development in mammals requires highly orchestrated events involving proliferation, differentiation, and migration of neural progenitors and neurons. Rapgef2 and Rapgef6 constitute a unique family of guanine nucleotide exchange factors for Rap1 small GTPase, which is known to play crucial roles in migration of postmitotic neurons. We previously reported that conditional knockout of Rapgef2 in dorsal telencephalon (Rapgef2-cKO) resulted in the formation of an ectopic cortical mass (ECM) resembling that of subcortical band heterotopia. Here we show that double knockout of Rapgef6 in Rapgef2-cKO mice (Rapgef2/6-dKO) results in marked enlargement of the ECM. While Rapgef2-cKO affects late-born neurons only, Rapgef2/6-dKO affects both early-born and late-born neurons. The Rapgef2-cKO cortex at embryonic day (E) 15.5, and the Rapgef2/6-dKO cortex at E13.5 and E15.5 show disruption of the adherens junctions (AJs) on the apical surface, detachment of radial glial cells (RGCs) from the apical surface and disorganization of the radial glial fiber system, which are accompanied by aberrant distribution of RGCs and intermediate progenitors, normally located in the ventricular zone and the subventricular zone, respectively, over the entire cerebral cortex. Moreover, intrauterine transduction of Cre recombinase into the Rapgef2flox/flox brains also results in the apical surface AJ disruption and the RGC detachment from the apical surface, both of which are effectively suppressed by cotransduction of the constitutively active Rap1 mutant Rap1G12V. These results demonstrate a cell-autonomous role of the Rapgef2/6-Rap1 pathway in maintaining the apical surface AJ structures, which is necessary for the proper development of neural progenitor cells.
Collapse
|
53
|
Shah B, Lutter D, Bochenek ML, Kato K, Tsytsyura Y, Glyvuk N, Sakakibara A, Klingauf J, Adams RH, Püschel AW. C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development. PLoS One 2016; 11:e0154174. [PMID: 27111087 PMCID: PMC4844105 DOI: 10.1371/journal.pone.0154174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/08/2016] [Indexed: 12/03/2022] Open
Abstract
The establishment of a polarized morphology is essential for the development and function of neurons. During the development of the mammalian neocortex, neurons arise in the ventricular zone (VZ) from radial glia cells (RGCs) and leave the VZ to generate the cortical plate (CP). During their migration, newborn neurons first assume a multipolar morphology in the subventricular zone (SVZ) and lower intermediate zone (IZ). Subsequently, they undergo a multi-to-bipolar (MTB) transition to become bipolar in the upper IZ by developing a leading process and a trailing axon. The small GTPases Rap1A and Rap1B act as master regulators of neural cell polarity in the developing mouse neocortex. They are required for maintaining the polarity of RGCs and directing the MTB transition of multipolar neurons. Here we show that the Rap1 guanine nucleotide exchange factor (GEF) C3G (encoded by the Rapgef1 gene) is a crucial regulator of the MTB transition in vivo by conditionally inactivating the Rapgef1 gene in the developing mouse cortex at different time points during neuronal development. Inactivation of C3G results in defects in neuronal migration, axon formation and cortical lamination. Live cell imaging shows that C3G is required in cortical neurons for both the specification of an axon and the initiation of radial migration by forming a leading process.
Collapse
Affiliation(s)
- Bhavin Shah
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
| | - Daniela Lutter
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149 Münster, Germany
| | - Magdalena L. Bochenek
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Katsuhiro Kato
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Yaroslav Tsytsyura
- Institute of Medical Physics and Biophysics, Robert-Koch Straße 31, D-48149 Münster, Germany
| | - Natalia Glyvuk
- Institute of Medical Physics and Biophysics, Robert-Koch Straße 31, D-48149 Münster, Germany
| | - Akira Sakakibara
- College of Life and Health Sciences, Chubu University, Kasugai 487–8501, Japan
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, Robert-Koch Straße 31, D-48149 Münster, Germany
| | - Ralf H. Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
| | - Andreas W. Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
- * E-mail:
| |
Collapse
|
54
|
Radial Glial Cell-Neuron Interaction Directs Axon Formation at the Opposite Side of the Neuron from the Contact Site. J Neurosci 2016; 35:14517-32. [PMID: 26511243 DOI: 10.1523/jneurosci.1266-15.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
How extracellular cues direct axon-dendrite polarization in mouse developing neurons is not fully understood. Here, we report that the radial glial cell (RGC)-cortical neuron interaction directs axon formation at the opposite side of the neuron from the contact site. N-cadherin accumulates at the contact site between the RGC and cortical neuron. Inhibition of the N-cadherin-mediated adhesion decreases this oriented axon formation in vitro, and disrupts the axon-dendrite polarization in vivo. Furthermore, the RGC-neuron interaction induces the polarized distribution of active RhoA at the contacting neurite and active Rac1 at the opposite neurite. Inhibition of Rho-Rho-kinase signaling in a neuron impairs the oriented axon formation in vitro, and prevents axon-dendrite polarization in vivo. Collectively, these results suggest that the N-cadherin-mediated radial glia-neuron interaction determines the contacting neurite as the leading process for radial glia-guided neuronal migration and directs axon formation to the opposite side acting through the Rho family GTPases.
Collapse
|
55
|
Carabalona A, Hu DJK, Vallee RB. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci 2016; 19:253-62. [PMID: 26752160 PMCID: PMC4731285 DOI: 10.1038/nn.4213] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022]
Abstract
Brain neural stem cells (RGPs) undergo a mysterious form of cell cycle-entrained “interkinetic” nuclear migration (INM), driven apically by cytoplasmic dynein and basally by the kinesin KIF1A, which has recently been implicated in human brain developmental disease. To understand the consequences of altered basal INM and the roles of KIF1A in disease, we performed constitutive and conditional RNAi and expressed mutant KIF1A in E16-P7 rat RGPs and neurons. RGPs inhibited in basal INM still showed normal cell cycle progression, though neurogenic divisions were severely reduced. Postmitotic neuronal migration was independently disrupted at the multipolar stage, accompanied by premature ectopic expression of neuronal differentiation markers. Similar effects were unexpectedly observed throughout the layer of surrounding control cells, mimicked by Bdnf or Dcx RNAi, and rescued by BDNF application. These results identify novel, sequential, and independent roles for KIF1A and provide an important new approach for reversing the effects of human disease.
Collapse
Affiliation(s)
- Aurelie Carabalona
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Daniel Jun-Kit Hu
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
56
|
Tang BL. Rab, Arf, and Arl-Regulated Membrane Traffic in Cortical Neuron Migration. J Cell Physiol 2015; 231:1417-23. [DOI: 10.1002/jcp.25261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| |
Collapse
|
57
|
Ohtaka-Maruyama C, Okado H. Molecular Pathways Underlying Projection Neuron Production and Migration during Cerebral Cortical Development. Front Neurosci 2015; 9:447. [PMID: 26733777 PMCID: PMC4682034 DOI: 10.3389/fnins.2015.00447] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Glutamatergic neurons of the mammalian cerebral cortex originate from radial glia (RG) progenitors in the ventricular zone (VZ). During corticogenesis, neuroblasts migrate toward the pial surface using two different migration modes. One is multipolar (MP) migration with random directional movement, and the other is locomotion, which is a unidirectional movement guided by the RG fiber. After reaching their final destination, the neurons finalize their migration by terminal translocation, which is followed by maturation via dendrite extension to initiate synaptogenesis and thereby complete neural circuit formation. This switching of migration modes during cortical development is unique in mammals, which suggests that the RG-guided locomotion mode may contribute to the evolution of the mammalian neocortical 6-layer structure. Many factors have been reported to be involved in the regulation of this radial neuronal migration process. In general, the radial migration can be largely divided into four steps; (1) maintenance and departure from the VZ of neural progenitor cells, (2) MP migration and transition to bipolar cells, (3) RG-guided locomotion, and (4) terminal translocation and dendrite maturation. Among these, many different gene mutations or knockdown effects have resulted in failure of the MP to bipolar transition (step 2), suggesting that it is a critical step, particularly in radial migration. Moreover, this transition occurs at the subplate layer. In this review, we summarize recent advances in our understanding of the molecular mechanisms underlying each of these steps. Finally, we discuss the evolutionary aspects of neuronal migration in corticogenesis.
Collapse
Affiliation(s)
- Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| | - Haruo Okado
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| |
Collapse
|
58
|
Decoding the molecular mechanisms of neuronal migration using in utero electroporation. Med Mol Morphol 2015; 49:63-75. [DOI: 10.1007/s00795-015-0127-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/08/2015] [Indexed: 12/20/2022]
|
59
|
Kawauchi T. Cellullar insights into cerebral cortical development: focusing on the locomotion mode of neuronal migration. Front Cell Neurosci 2015; 9:394. [PMID: 26500496 PMCID: PMC4595654 DOI: 10.3389/fncel.2015.00394] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/22/2015] [Indexed: 02/01/2023] Open
Abstract
The mammalian brain consists of numerous compartments that are closely connected with each other via neural networks, comprising the basis of higher order brain functions. The highly specialized structure originates from simple pseudostratified neuroepithelium-derived neural progenitors located near the ventricle. A long journey by neurons from the ventricular side is essential for the formation of a sophisticated brain structure, including a mammalian-specific six-layered cerebral cortex. Neuronal migration consists of several contiguous steps, but the locomotion mode comprises a large part of the migration. The locomoting neurons exhibit unique features; a radial glial fiber-dependent migration requiring the endocytic recycling of N-cadherin and a neuron-specific migration mode with dilation/swelling formation that requires the actin and microtubule organization possibly regulated by cyclin-dependent kinase 5 (Cdk5), Dcx, p27(kip1), Rac1, and POSH. Here I will introduce the roles of various cellular events, such as cytoskeletal organization, cell adhesion, and membrane trafficking, in the regulation of the neuronal migration, with particular focus on the locomotion mode.
Collapse
Affiliation(s)
- Takeshi Kawauchi
- Department of Physiology, Keio University School of Medicine Tokyo, Japan ; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency Saitama, Japan ; Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation Kobe, Japan
| |
Collapse
|
60
|
Stouffer MA, Golden JA, Francis F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis 2015; 92:18-45. [PMID: 26299390 DOI: 10.1016/j.nbd.2015.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
Abstract
A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.
Collapse
Affiliation(s)
- Melissa A Stouffer
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jeffrey A Golden
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Fiona Francis
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
61
|
Abstract
Alzheimer's disease (AD) is known as the most fatal chronic neurodegenerative disease in adults along with progressive loss of memory and other cognitive function disorders. Cyclin-dependent kinase 5 (Cdk5), a unique member of the cyclin-dependent kinases (Cdks), is reported to intimately associate with the process of the pathogenesis of AD. Cdk5 is of vital importance in the development of CNS and neuron movements such as neuronal migration and differentiation, synaptic functions, and memory consolidation. However, when neurons suffer from pathological stimuli, Cdk5 activity becomes hyperactive and causes aberrant hyperphosphorylation of various substrates of Cdk5 like amyloid precursor protein (APP), tau and neurofilament, resulting in neurodegenerative diseases like AD. Deregulation of Cdk5 contributes to an array of pathological events in AD, ranging from formation of senile plaques and neurofibrillary tangles, synaptic damage, mitochondrial dysfunction to cell cycle reactivation as well as neuronal cell apoptosis. More importantly, an inhibition of Cdk5 activity with inhibitors such as RNA inference (RNAi) could protect from memory decline and neuronal cell loss through suppressing β-amyloid (Aβ)-induced neurotoxicity and tauopathies. This review will briefly describe the above-mentioned possible roles of Cdk5 in the physiological and pathological mechanisms of AD, further discussing recent advances and challenges in Cdk5 as a therapeutic target.
Collapse
|
62
|
Hu C, Dadon T, Chenna V, Yabuuchi S, Bannerji R, Booher R, Strack P, Azad N, Nelkin BD, Maitra A. Combined Inhibition of Cyclin-Dependent Kinases (Dinaciclib) and AKT (MK-2206) Blocks Pancreatic Tumor Growth and Metastases in Patient-Derived Xenograft Models. Mol Cancer Ther 2015; 14:1532-9. [PMID: 25931518 DOI: 10.1158/1535-7163.mct-15-0028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/26/2015] [Indexed: 12/17/2022]
Abstract
KRAS is activated by mutation in the vast majority of cases of pancreatic cancer; unfortunately, therapeutic attempts to inhibit KRAS directly have been unsuccessful. Our previous studies showed that inhibition of cyclin-dependent kinase 5 (CDK5) reduces pancreatic cancer growth and progression, through blockage of the centrally important RAL effector pathway, downstream of KRAS. In the current study, the therapeutic effects of combining the CDK inhibitor dinaciclib (SCH727965; MK-7965) with the pan-AKT inhibitor MK-2206 were evaluated using orthotopic and subcutaneous patient-derived human pancreatic cancer xenograft models. The combination of dinaciclib (20 mg/kg, i.p., three times a week) and MK-2206 (60 mg/kg, orally, three times a week) dramatically blocked tumor growth and metastasis in all eight pancreatic cancer models examined. Remarkably, several complete responses were induced by the combination treatment of dinaciclib and MK-2206. The striking results obtained in these models demonstrate that the combination of dinaciclib with the pan-AKT inhibitor MK-2206 is promising for therapeutic evaluation in pancreatic cancer, and strongly suggest that blocking RAL in combination with other effector pathways downstream from KRAS may provide increased efficacy in pancreatic cancer. Based on these data, an NCI-CTEP-approved multicenter phase I clinical trial for pancreatic cancer of the combination of dinaciclib and MK-2206 (NCT01783171) has now been opened.
Collapse
Affiliation(s)
- Chaoxin Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tikva Dadon
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Venugopal Chenna
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shinichi Yabuuchi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | - Nilofer Azad
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Barry D Nelkin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Anirban Maitra
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
63
|
Hayashi K, Kubo KI, Kitazawa A, Nakajima K. Cellular dynamics of neuronal migration in the hippocampus. Front Neurosci 2015; 9:135. [PMID: 25964735 PMCID: PMC4408843 DOI: 10.3389/fnins.2015.00135] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/02/2015] [Indexed: 12/30/2022] Open
Abstract
A fine structure of the hippocampus is required for proper functions, and disruption of this formation by neuronal migration defects during development may play a role in some psychiatric illnesses. During hippocampal development in rodents, pyramidal neurons in the Ammon's horn are mostly generated in the ventricular zone (VZ), spent as multipolar cells just above the VZ, and then migrate radially toward the pial surface, ultimately settling into the hippocampal plate. Although this process is similar to that of neocortical projection neurons, these are not identical. In addition to numerous histological studies, the development of novel techniques gives a clear picture of the cellular dynamics of hippocampal neurons, as well as neocortical neurons. In this article, we provide an overview of the cellular mechanisms of rodent hippocampal neuronal migration including those of dentate granule cells, especially focusing on the differences of migration modes between hippocampal neurons and neocortical neurons. The unique migration mode of hippocampal pyramidal neurons might enable clonally related cells in the Ammon's horn to distribute in a horizontal fashion.
Collapse
Affiliation(s)
- Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Ayako Kitazawa
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| |
Collapse
|
64
|
Abstract
The formation of the six-layered structure of the mammalian cortex via the inside-out pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues such as Reelin induce intracellular signaling cascades through the protein phosphorylation. Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and adhesion properties. Protein phosphorylation regulates these processes. Moreover, the balance between phosphorylation and dephosphorylation is modified by extracellular cues. Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps. In this review, I shall give an overview the roles of protein kinases in neuronal migration.
Collapse
Affiliation(s)
- Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University Tokyo, Japan
| |
Collapse
|