51
|
ER Ca 2+ release and store-operated Ca 2+ entry - partners in crime or independent actors in oncogenic transformation? Cell Calcium 2019; 82:102061. [PMID: 31394337 DOI: 10.1016/j.ceca.2019.102061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is a pleiotropic messenger that controls life and death decisions from fertilisation until death. Cellular Ca2+ handling mechanisms show plasticity and are remodelled throughout life to meet the changing needs of the cell. In turn, as the demands on a cell alter, for example through a change in its niche environment or its functional requirements, Ca2+ handling systems may be targeted to sustain the remodelled cellular state. Nowhere is this more apparent than in cancer. Oncogenic transformation is a multi-stage process during which normal cells become progressively differentiated towards a cancerous state that is principally associated with enhanced proliferation and avoidance of death. Ca2+ signalling is intimately involved in almost all aspects of the life of a transformed cell and alterations in Ca2+ handling have been observed in cancer. Moreover, this remodelling of Ca2+ signalling pathways is also required in some cases to sustain the transformed phenotype. As such, Ca2+ handling is hijacked by oncogenic processes to deliver and maintain the transformed phenotype. Central to generation of intracellular Ca2+ signals is the release of Ca2+ from the endoplasmic reticulum intracellular (ER) Ca2+ store via inositol 1,4,5-trisphosphate receptors (InsP3Rs). Upon depletion of ER Ca2+, store-operated Ca2+ entry (SOCE) across the plasma membrane occurs via STIM-gated Orai channels. SOCE serves to both replenish stores but also sustain Ca2+ signalling events. Here, we will discuss the role and regulation of these two signalling pathways and their interplay in oncogenic transformation.
Collapse
|
52
|
Kim KM, Rana A, Park CY. Orai1 inhibitor STIM2β regulates myogenesis by controlling SOCE dependent transcriptional factors. Sci Rep 2019; 9:10794. [PMID: 31346235 PMCID: PMC6658661 DOI: 10.1038/s41598-019-47259-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE), the fundamental Ca2+ signaling mechanism in myogenesis, is mediated by stromal interaction molecule (STIM), which senses the depletion of endoplasmic reticulum Ca2+ stores and induces Ca2+ influx by activating Orai channels in the plasma membrane. Recently, STIM2β, an eight-residue-inserted splice variant of STIM2, was found to act as an inhibitor of SOCE. Although a previous study demonstrated an increase in STIM2β splicing during in vitro differentiation of skeletal muscle, the underlying mechanism and detailed function of STIM2β in myogenesis remain unclear. In this study, we investigated the function of STIM2β in myogenesis using the C2C12 cell line with RNA interference-mediated knockdown and CRISPR-Cas-mediated knockout approaches. Deletion of STIM2β delayed myogenic differentiation through the MEF2C and NFAT4 pathway in C2C12 cells. Further, loss of STIM2β increased cell proliferation by altering Ca2+ homeostasis and inhibited cell cycle arrest mediated by the cyclin D1-CDK4 degradation pathway. Thus, this study identified a previously unknown function of STIM2β in myogenesis and improves the understanding of how cells effectively regulate the development process via alternative splicing.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biological Sciences, School of Life Sciences, UNIST, Ulsan, 44919, Republic of Korea.
| | - Anshul Rana
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chan Young Park
- Department of Biological Sciences, School of Life Sciences, UNIST, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
53
|
STIM2 knockdown protects against ischemia/reperfusion injury through reducing mitochondrial calcium overload and preserving mitochondrial function. Life Sci 2019; 247:116560. [PMID: 31200000 DOI: 10.1016/j.lfs.2019.116560] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/03/2023]
Abstract
Mitochondrial dysfunction caused by calcium overload is a vital factor for mediating cardiomyocyte death following ischemia/reperfusion (I/R) injury. The stromal interactive molecule 2 (STIM2) is a calcium sensor protein that regulates the store-operated calcium entry (SOCE). Whereas, whether STIM2 is associated with I/R injury remains largely unclear. We report here that STIM2, but not its homologue STIM1, is upregulated in cultured H9c2 cells, a cell model for cardiomyocytes, following I/R injury. In addition, the knockdown of STIM2, but not STIM1, reduces H9c2 cell apoptosis following I/R injury, and similar results were obtained in primary neonatal cardiomyocytes. This anti-apoptotic effect could be attributed to the inhibited activation of mitochondrial apoptosis pathway. Moreover, STIM2 knockdown reduces ER calcium release and simultaneously alleviates mitochondrial calcium overload in H9c2 cells following I/R injury. Furthermore, STIM2 knockdown decreases mitochondrial injury and preserves mitochondrial function following I/R injury. Collectively, these results suggest that the protective role of STIM2 knockdown against I/R injury in cardiomyocytes is associated with the reduced mitochondrial calcium overload and preserved mitochondrial function. Hence, our study may provide a novel insight into the regulation of mitochondrial-mediated cardiomyocyte apoptosis following I/R injury.
Collapse
|
54
|
Tang KC, Pan W, Doschak MR, Alexander RT. Increased FoxO3a expression prevents osteoblast differentiation and matrix calcification. Bone Rep 2019; 10:100206. [PMID: 31193232 PMCID: PMC6522754 DOI: 10.1016/j.bonr.2019.100206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 10/28/2022] Open
Abstract
Forkhead Box O transcription factors play important roles in bone metabolism by defending against oxidative stress and apoptosis. FoxO3a is of special interest as it is the predominant isoform expressed in bone. In osteoblasts, the administration of 1,25 dihydroxyvitamin D3 (1,25D3) increases FoxO3a expression, and alters calcium handling. We therefore queried whether FoxO3a participates in vitamin D-mediated regulation of calcium transport pathways or matrix calcification, independent of reactive oxygen species (ROS) formation. To examine this possibility, we differentiated MC3T3-E1 cells into mature osteoblast-like cells over 7 days. This coincided with an increased ability to mineralize extracellular matrix. FoxO3a expression increased throughout differentiation. 1,25D3 enhanced both FoxO3a mRNA and protein expression. Immunofluorescence microscopy found increased FoxO3a nuclear localization with differentiation and after treatment with 1,25D3. Live cell ratiometric imaging with Fura-2AM identified significant L-type calcium channel mediated calcium uptake that was enhanced by 1,25D3. We observed expression of both Cav1.2 and Cav1.3, although expression decreased throughout differentiation and was not altered by 1,25D3 treatment. FoxO3a overexpression reduced calcium uptake and calcium deposition. FoxO3a overexpression also prevented alterations in calcium channel expression and the cell differentiation associated decrease in expression of Runx2 and increased expression of osteocalcin, findings consistent with a failure for the cells to differentiate. Based on both our expression and functional data, we suggest that high levels of FoxO3a prevent osteoblast differentiation and matrix calcification.
Collapse
Affiliation(s)
- Kathy C Tang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Wanling Pan
- Department of Physiology, The University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Michael R Doschak
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - R Todd Alexander
- Department of Physiology, The University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,Department of Pediatrics, The University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,The Women's & Children's Health Research Institute, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| |
Collapse
|
55
|
Frisch J, Angenendt A, Hoth M, Prates Roma L, Lis A. STIM-Orai Channels and Reactive Oxygen Species in the Tumor Microenvironment. Cancers (Basel) 2019; 11:E457. [PMID: 30935064 PMCID: PMC6520831 DOI: 10.3390/cancers11040457] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is shaped by cancer and noncancerous cells, the extracellular matrix, soluble factors, and blood vessels. Interactions between the cells, matrix, soluble factors, and blood vessels generate this complex heterogeneous microenvironment. The TME may be metabolically beneficial or unbeneficial for tumor growth, it may favor or not favor a productive immune response against tumor cells, or it may even favor conditions suited to hijacking the immune system for benefitting tumor growth. Soluble factors relevant for TME include oxygen, reactive oxygen species (ROS), ATP, Ca2+, H⁺, growth factors, or cytokines. Ca2+ plays a prominent role in the TME because its concentration is directly linked to cancer cell proliferation, apoptosis, or migration but also to immune cell function. Stromal-interaction molecules (STIM)-activated Orai channels are major Ca2+ entry channels in cancer cells and immune cells, they are upregulated in many tumors, and they are strongly regulated by ROS. Thus, STIM and Orai are interesting candidates to regulate cancer cell fate in the TME. In this review, we summarize the current knowledge about the function of ROS and STIM/Orai in cancer cells; discuss their interdependencies; and propose new hypotheses how TME, ROS, and Orai channels influence each other.
Collapse
Affiliation(s)
- Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Adrian Angenendt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Leticia Prates Roma
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
56
|
Clemens RA, Lowell CA. CRAC channel regulation of innate immune cells in health and disease. Cell Calcium 2019; 78:56-65. [PMID: 30641250 PMCID: PMC8055042 DOI: 10.1016/j.ceca.2019.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/26/2018] [Accepted: 01/08/2019] [Indexed: 01/17/2023]
Abstract
Calcium is a major intracellular signaling messenger in innate immune cells. Similar to other immune cell subsets, the majority of calcium entry into innate immune cells is induced by cell surface receptors that stimulate store-operated calcium entry through calcium-release activated calcium (CRAC) channels. Since the molecular description of the STIM family of calcium sensors and the ORAI family of CRAC channel proteins, the majority of studies support a dominant role for these proteins in calcium signaling in innate cells. In reviewing the literature on CRAC channel function in innate cells, several general themes emerge. All innate cells express multiple members of the STIM and ORAI family members, however the ratio and relative contribution of individual isoforms changes depending on the cell type and activation state of the cell. It is evident that study of functional roles for STIM molecules is clearly ahead of studies of specific ORAI family members in all innate cell types, and that studies of CRAC channels in innate cells are not nearly as advanced as studies in lymphocytes. However, taken together, evidence from both STIM calcium sensors and ORAI channels in innate cells indicates that deficiency of STIM and ORAI proteins tends not to affect the development of any innate cell lineage, but certainly affects their function, in particular activation of the neutrophil oxidase and mast cell activation via IgE receptors. Furthermore, there are clearly hints that therapeutic targeting of CRAC channels in innate cells offers a new approach to various inflammatory and allergic diseases.
Collapse
Affiliation(s)
- Regina A Clemens
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
57
|
Emrich SM, Yoast RE, Xin P, Zhang X, Pathak T, Nwokonko R, Gueguinou MF, Subedi KP, Zhou Y, Ambudkar IS, Hempel N, Machaca K, Gill DL, Trebak M. Cross-talk between N-terminal and C-terminal domains in stromal interaction molecule 2 (STIM2) determines enhanced STIM2 sensitivity. J Biol Chem 2019; 294:6318-6332. [PMID: 30824535 DOI: 10.1074/jbc.ra118.006801] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous pathway for Ca2+ influx across the plasma membrane (PM). SOCE is mediated by the endoplasmic reticulum (ER)-associated Ca2+-sensing proteins stromal interaction molecule 1 (STIM1) and STIM2, which transition into an active conformation in response to ER Ca2+ store depletion, thereby interacting with and gating PM-associated ORAI1 channels. Although structurally homologous, STIM1 and STIM2 generate distinct Ca2+ signatures in response to varying strengths of agonist stimulation. The physiological functions of these Ca2+ signatures, particularly under native conditions, remain unclear. To investigate the structural properties distinguishing STIM1 and STIM2 activation of ORAI1 channels under native conditions, here we used CRISPR/Cas9 to generate STIM1-/-, STIM2-/-, and STIM1/2-/- knockouts in HEK293 and colorectal HCT116 cells. We show that depending on cell type, STIM2 can significantly sustain SOCE in response to maximal store depletion. Utilizing the SOCE modifier 2-aminoethoxydiphenyl borate (2-APB), we demonstrate that 2-APB-activated store-independent Ca2+ entry is mediated exclusively by endogenous STIM2. Using variants that either stabilize or disrupt intramolecular interactions of STIM C termini, we show that the increased flexibility of the STIM2 C terminus contributes to its selective store-independent activation by 2-APB. However, STIM1 variants with enhanced flexibility in the C terminus failed to support its store-independent activation. STIM1/STIM2 chimeric constructs indicated that coordination between N-terminal sensitivity and C-terminal flexibility is required for specific store-independent STIM2 activation. Our results clarify the structural determinants underlying activation of specific STIM isoforms, insights that are potentially useful for isoform-selective drug targeting.
Collapse
Affiliation(s)
- Scott M Emrich
- From the Departments of Cellular and Molecular Physiology and
| | - Ryan E Yoast
- From the Departments of Cellular and Molecular Physiology and
| | - Ping Xin
- From the Departments of Cellular and Molecular Physiology and
| | - Xuexin Zhang
- From the Departments of Cellular and Molecular Physiology and
| | | | - Robert Nwokonko
- From the Departments of Cellular and Molecular Physiology and
| | | | - Krishna P Subedi
- the Secretory Physiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Yandong Zhou
- From the Departments of Cellular and Molecular Physiology and
| | - Indu S Ambudkar
- the Secretory Physiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Nadine Hempel
- Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Khaled Machaca
- the Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Donald L Gill
- From the Departments of Cellular and Molecular Physiology and
| | - Mohamed Trebak
- From the Departments of Cellular and Molecular Physiology and
| |
Collapse
|
58
|
Qiu R, Lewis RS. Structural features of STIM and Orai underlying store-operated calcium entry. Curr Opin Cell Biol 2019; 57:90-98. [PMID: 30716649 DOI: 10.1016/j.ceb.2018.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022]
Abstract
Store-operated calcium entry (SOCE) through Orai channels is triggered by receptor-stimulated depletion of Ca2+ from the ER. Orai1 is unique in terms of its activation mechanism, biophysical properties, and structure, and its precise regulation is essential for human health. Recent studies have begun to reveal the structural basis of the major steps in the SOCE pathway and how the system is reliably suppressed in resting cells but able to respond robustly to ER Ca2+ depletion. In this review, we discuss current models describing the activation of ER Ca2+ sensor STIM1, its binding to Orai1, propagation of the binding signal from the channel periphery to the central pore, and the resulting conformational changes underlying opening of the highly Ca2+ selective Orai1 channel.
Collapse
Affiliation(s)
- Ruoyi Qiu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
59
|
Kappel S, Borgström A, Stokłosa P, Dörr K, Peinelt C. Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol 2019; 94:66-73. [PMID: 30630032 DOI: 10.1016/j.semcdb.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Precise intracellular calcium signaling is crucial to numerous cellular functions. In non-excitable cells, store-operated calcium entry (SOCE) is a key step in the generation of intracellular calcium signals. Tight regulation of SOCE is important, and dysregulation is involved in several pathophysiological cellular malfunctions. The current underlying SOCE, calcium release-activated calcium current (ICRAC), was first discovered almost three decades ago. Since its discovery, the molecular components of ICRAC, Orai1 and stromal interaction molecule 1 (STIM1), have been extensively investigated. Several regulatory mechanisms and proteins contribute to alterations in SOCE and cellular malfunctions in cancer, immune and neurodegenerative diseases, inflammation, and neuronal disorders. This review summarizes these regulatory mechanisms, including glycosylation, pH sensing, and the regulatory proteins golli, α-SNAP, SARAF, ORMDL3, CRACR2A, and TRPM4 channels.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Anna Borgström
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
60
|
Lunz V, Romanin C, Frischauf I. STIM1 activation of Orai1. Cell Calcium 2019; 77:29-38. [PMID: 30530091 PMCID: PMC7617211 DOI: 10.1016/j.ceca.2018.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 11/23/2022]
Abstract
A primary calcium (Ca2+) entry pathway into non-excitable cells is through the store-operated Ca2+ release activated Ca2+ (CRAC) channel. Ca2+ entry into cells is responsible for the initiation of diverse signalling cascades that affect essential cellular processes like gene regulation, cell growth and death, secretion and gene transcription. Upon depletion of intracellular Ca2+ stores within the endoplasmic reticulum (ER), the CRAC channel opens to refill depleted stores. The two key limiting molecular players of the CRAC channel are the stromal interaction molecule (STIM1) embedded in the ER-membrane and Orai1, residing in the plasma membrane (PM), respectively. Together, they form a highly Ca2+ selective ion channel complex. STIM1 senses the Ca2+ content of the ER and confers Ca2+ store-depletion into the opening of Orai1 channels in the PM for triggering Ca2+-dependent gene transcription, T-cell activation or mast cell degranulation. The interplay of Orai and STIM proteins in the CRAC channel signalling cascade has been the main focus of research for more than twelve years. This chapter focuses on current knowledge and main experimental advances in the understanding of Orai1 activation by STIM1, thereby portraying key mechanistic steps in the CRAC channel signalling cascade.
Collapse
Affiliation(s)
- Victoria Lunz
- Institute of Biophysics, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, A-4020, Linz, Austria.
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, A-4020, Linz, Austria.
| |
Collapse
|
61
|
Diercks BP, Werner R, Weidemüller P, Czarniak F, Hernandez L, Lehmann C, Rosche A, Krüger A, Kaufmann U, Vaeth M, Failla AV, Zobiak B, Kandil FI, Schetelig D, Ruthenbeck A, Meier C, Lodygin D, Flügel A, Ren D, Wolf IMA, Feske S, Guse AH. ORAI1, STIM1/2, and RYR1 shape subsecond Ca 2+ microdomains upon T cell activation. Sci Signal 2018; 11:11/561/eaat0358. [PMID: 30563862 DOI: 10.1126/scisignal.aat0358] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The earliest intracellular signals that occur after T cell activation are local, subsecond Ca2+ microdomains. Here, we identified a Ca2+ entry component involved in Ca2+ microdomain formation in both unstimulated and stimulated T cells. In unstimulated T cells, spontaneously generated small Ca2+ microdomains required ORAI1, STIM1, and STIM2. Super-resolution microscopy of unstimulated T cells identified a circular subplasmalemmal region with a diameter of about 300 nm with preformed patches of colocalized ORAI1, ryanodine receptors (RYRs), and STIM1. Preformed complexes of STIM1 and ORAI1 in unstimulated cells were confirmed by coimmunoprecipitation and Förster resonance energy transfer studies. Furthermore, within the first second after T cell receptor (TCR) stimulation, the number of Ca2+ microdomains increased in the subplasmalemmal space, an effect that required ORAI1, STIM2, RYR1, and the Ca2+ mobilizing second messenger NAADP (nicotinic acid adenine dinucleotide phosphate). These results indicate that preformed clusters of STIM and ORAI1 enable local Ca2+ entry events in unstimulated cells. Upon TCR activation, NAADP-evoked Ca2+ release through RYR1, in coordination with Ca2+ entry through ORAI1 and STIM, rapidly increases the number of Ca2+ microdomains, thereby initiating spread of Ca2+ signals deeper into the cytoplasm to promote full T cell activation.
Collapse
Affiliation(s)
- Björn-Philipp Diercks
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Paula Weidemüller
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frederik Czarniak
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lola Hernandez
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cari Lehmann
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Annette Rosche
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Aileen Krüger
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ulrike Kaufmann
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Antonio V Failla
- Microscopy Core Facility, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bernd Zobiak
- Microscopy Core Facility, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Farid I Kandil
- Department of Computational Neuroscience, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel Schetelig
- Department of Computational Neuroscience, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Chris Meier
- Organic Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Dmitri Lodygin
- Institute of Neuroimmunology, University of Göttingen, 37075 Göttingen, Germany
| | - Alexander Flügel
- Institute of Neuroimmunology, University of Göttingen, 37075 Göttingen, Germany
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6313, USA
| | - Insa M A Wolf
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Andreas H Guse
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
62
|
Jardin I, Lopez JJ, Salido GM, Rosado JA. Store-Operated Ca 2+ Entry in Breast Cancer Cells: Remodeling and Functional Role. Int J Mol Sci 2018; 19:ijms19124053. [PMID: 30558192 PMCID: PMC6321005 DOI: 10.3390/ijms19124053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common type of cancer in women. It is a heterogeneous disease that ranges from the less undifferentiated luminal A to the more aggressive basal or triple negative breast cancer molecular subtype. Ca2+ influx from the extracellular medium, but more specifically store-operated Ca2+ entry (SOCE), has been reported to play an important role in tumorigenesis and the maintenance of a variety of cancer hallmarks, including cell migration, proliferation, invasion or epithelial to mesenchymal transition. Breast cancer cells remodel the expression and functional role of the molecular components of SOCE. This review focuses on the functional role and remodeling of SOCE in breast cancer cells. The current studies suggest the need to deepen our understanding of SOCE in the biology of the different breast cancer subtypes in order to develop new and specific therapeutic strategies.
Collapse
Affiliation(s)
- Isaac Jardin
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Jose J Lopez
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Gines M Salido
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Juan A Rosado
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
63
|
Tuning store-operated calcium entry to modulate Ca 2+-dependent physiological processes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1037-1045. [PMID: 30521873 DOI: 10.1016/j.bbamcr.2018.11.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/10/2023]
Abstract
The intracellular calcium signaling processes are tightly regulated to ensure the generation of calcium signals with the specific spatiotemporal characteristics required for regulating various cell functions. Compartmentalization of the molecular components involved in the generation of these signals at discrete intracellular sites ensures the signaling specificity and transduction fidelity of the signal for regulating downstream effector processes. Store-operated calcium entry (SOCE) is ubiquitously present in cells and is critical for essential cell functions in a variety of tissues. SOCE is mediated via plasma membrane Ca2+ channels that are activated when luminal [Ca2+] of the endoplasmic reticulum ([Ca2+]ER) is decreased. The ER-resident stromal interaction molecules, STIM1 and STIM2, respond to decreases in [Ca2+]ER by undergoing conformational changes that cause them to aggregate at the cell periphery in ER-plasma membrane (ER-PM) junctions. At these sites, STIM proteins recruit Orai1 channels and trigger their activation. Importantly, the two STIM proteins concertedly modulate Orai1 function as well as the sensitivity of SOCE to ER-Ca2+ store depletion. Another family of plasma membrane Ca2+ channels, known as the Transient Receptor Potential Canonical (TRPC) channels (TRPC1-7) also contribute to sustained [Ca2+]i elevation. Although Ca2+ signals generated by these channels overlap with those of Orai1, they regulate distinct functions in the cells. Importantly, STIM1 is also required for plasma membrane localization and activation of some TRPCs. In this review, we will discuss various molecular components and factors that govern the activation, regulation and modulation of the Ca2+ signal generated by Ca2+ entry pathways in response to depletion of ER-Ca2+ stores. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
64
|
Rosenberg P, Katz D, Bryson V. SOCE and STIM1 signaling in the heart: Timing and location matter. Cell Calcium 2018; 77:20-28. [PMID: 30508734 DOI: 10.1016/j.ceca.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/11/2023]
Abstract
Store operated Ca2+ entry (SOCE) is an ancient and ubiquitous Ca2+ signaling pathway discovered decades ago, but the function of SOCE in human physiology is only now being revealed. The relevance of this pathway to striated muscle was solidified with the description of skeletal myopathies that result from mutations in STIM1 and Orai1, the two SOCE components. Here, we consider the evidence for STIM1 and SOCE in cardiac muscle and the sinoatrial node. We highlight recent studies revealing a role for STIM1 in cardiac growth in response to developmental and pathologic cues. We also review the role of STIM1 in the regulation of SOCE and Ca2+ store refilling in a non-Orai dependent manner. Finally, we discuss the importance of this pathway in ventricular cardiomyocytes where SOCE contribute to developmental growth and in pacemaker cells where SOCE likely has a fundamental to generating the cardiac rhythm.
Collapse
Affiliation(s)
- Paul Rosenberg
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States.
| | - Danielle Katz
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Victoria Bryson
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
65
|
Zheng S, Ma G, He L, Zhang T, Li J, Yuan X, Nguyen NT, Huang Y, Zhang X, Gao P, Nwokonko R, Gill DL, Dong H, Zhou Y, Wang Y. Identification of molecular determinants that govern distinct STIM2 activation dynamics. PLoS Biol 2018; 16:e2006898. [PMID: 30444880 PMCID: PMC6267984 DOI: 10.1371/journal.pbio.2006898] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/30/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) Ca2+ sensors stromal interaction molecule 1 (STIM1) and STIM2, which connect ER Ca2+ depletion with extracellular Ca2+ influx, are crucial for the maintenance of Ca2+ homeostasis in mammalian cells. Despite the recent progress in unraveling the role of STIM2 in Ca2+ signaling, the mechanistic underpinnings of its activation remain underexplored. We use an engineering approach to direct ER-resident STIMs to the plasma membrane (PM) while maintaining their correct membrane topology, as well as Förster resonance energy transfer (FRET) sensors that enabled in cellulo real-time monitoring of STIM activities. This allowed us to determine the calcium affinities of STIM1 and STIM2 both in cellulo and in situ, explaining the current discrepancies in the literature. We also identified the key structural determinants, especially the corresponding G residue in STIM1, which define the distinct activation dynamics of STIM2. The chimeric E470G mutation could switch STIM2 from a slow and weak Orai channel activator into a fast and potent one like STIM1 and vice versa. The systemic dissection of STIM2 activation by protein engineering sets the stage for the elucidation of the regulation and function of STIM2-mediated signaling in mammals. Calcium ions play a major regulatory role in the physiology and biochemistry of the cell, and thus their levels and activities should be tightly regulated. The stromal interaction molecules (STIMs) are sensors of the calcium levels within the endoplasmic reticulum (ER)—which serves as a major intracellular calcium store—to mediate communication between the ER and the plasma membrane and are regarded as ubiquitous central players of calcium signaling in mammalian cells. STIM2 acts as a slow and weak activator of Orai1 calcium channels on the plasma membrane by direct binding; however, the affinity of STIMs for calcium or how Orai1 channels are activated remain unclear. In this study, we systematically analyzed the molecular determinants that govern the activation of STIM proteins. Adopting protein engineering approaches that enable the relocation of ER-resident STIM proteins at the plasma membrane, we determined the calcium affinities of STIMs under physiological conditions in mammalian cells. We identified a critical position within STIMs, which defines their distinct resting states and activation kinetics, as well as the efficacy to activate Orai1 channels. These findings shed new light on how STIM2 can efficiently respond to small changes within the ER lumen to regulate calcium homeostasis and signaling in mammalian cells.
Collapse
Affiliation(s)
- Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, P. R. China
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Tian Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, P. R. China
| | - Jia Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, P. R. China
| | - Xiaoman Yuan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, P. R. China
| | - Nhung T. Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Yun Huang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Xiaoyan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, P. R. China
| | - Ping Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, P. R. China
| | - Robert Nwokonko
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey Pennsylvania, United States of America
| | - Donald L. Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey Pennsylvania, United States of America
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, P. R. China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
- Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, Texas, United States of America
- * E-mail: (YZ); (YW)
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, P. R. China
- * E-mail: (YZ); (YW)
| |
Collapse
|
66
|
Schober R, Waldherr L, Schmidt T, Graziani A, Stilianu C, Legat L, Groschner K, Schindl R. STIM1 and Orai1 regulate Ca 2+ microdomains for activation of transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1079-1091. [PMID: 30408546 DOI: 10.1016/j.bbamcr.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Since calcium (Ca2+) regulates a large variety of cellular signaling processes in a cell's life, precise control of Ca2+ concentrations within the cell is essential. This enables the transduction of information via Ca2+ changes in a time-dependent and spatially defined manner. Here, we review molecular and functional aspects of how the store-operated Ca2+ channel Orai1 creates spatiotemporal Ca2+ microdomains. The architecture of this channel is unique, with a long helical pore and a six-fold symmetry. Energetic barriers within the Ca2+ channel pathway limit permeation to allow an extensive local Ca2+ increase in close proximity to the channel. The precise timing of the Orai1 channel function is controlled by direct binding to STIM proteins upon Ca2+ depletion in the endoplasmic reticulum. These induced Ca2+ microdomains are tailored to, and sufficient for, triggering long-term activation processes, such as transcription factor activation and subsequent gene regulation. We describe the principles of spatiotemporal activation of the transcription factor NFAT and compare its signaling characteristics to those of the autophagy regulating transcription factors, MITF and TFEB.
Collapse
Affiliation(s)
- Romana Schober
- Institute for Biophysics, Johannes Kepler University Linz, A-4040 Linz, Austria.
| | - Linda Waldherr
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Tony Schmidt
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Annarita Graziani
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Clemens Stilianu
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Lorenz Legat
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Klaus Groschner
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
67
|
Czeredys M, Vigont VA, Boeva VA, Mikoshiba K, Kaznacheyeva EV, Kuznicki J. Huntingtin-Associated Protein 1A Regulates Store-Operated Calcium Entry in Medium Spiny Neurons From Transgenic YAC128 Mice, a Model of Huntington's Disease. Front Cell Neurosci 2018; 12:381. [PMID: 30455632 PMCID: PMC6231533 DOI: 10.3389/fncel.2018.00381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disease that is caused by polyglutamine expansion within the huntingtin (HTT) gene. One of the cellular activities that is dysregulated in HD is store-operated calcium entry (SOCE), a process by which Ca2+ release from the endoplasmic reticulum (ER) induces Ca2+ influx from the extracellular space. HTT-associated protein-1 (HAP1) is a binding partner of HTT. The aim of the present study was to examine the role of HAP1A protein in regulating SOCE in YAC128 mice, a transgenic model of HD. After Ca2+ depletion from the ER by the activation of inositol-(1,4,5)triphosphate receptor type 1 (IP3R1), we detected an increase in the activity of SOC channels when HAP1 protein isoform HAP1A was overexpressed in medium spiny neurons (MSNs) from YAC128 mice. A decrease in the activity of SOC channels in YAC128 MSNs was observed when HAP1 protein was silenced. In YAC128 MSNs that overexpressed HAP1A, an increase in activity of IP3R1 was detected while the ionomycin-sensitive ER Ca2+ pool decreased. 6-Bromo-N-(2-phenylethyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine hydrochloride (C20H22BrClN2), identified in our previous studies as a SOCE inhibitor, restored the elevation of SOCE in YAC128 MSN cultures that overexpressed HAP1A. The IP3 sponge also restored the elevation of SOCE and increased the release of Ca2+ from the ER in YAC128 MSN cultures that overexpressed HAP1A. The overexpression of HAP1A in the human neuroblastoma cell line SK-N-SH (i.e., a cellular model of HD (SK-N-SH HTT138Q)) led to the appearance of a pool of constitutively active SOC channels and an increase in the expression of STIM2 protein. Our results showed that HAP1A causes the activation of SOC channels in HD models by affecting IP3R1 activity.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| | - Vladimir A. Vigont
- Institute of Cytology, Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Vasilisa A. Boeva
- Institute of Cytology, Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), Saitama, Japan
| | | | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| |
Collapse
|
68
|
The 2β Splice Variation Alters the Structure and Function of the Stromal Interaction Molecule Coiled-Coil Domains. Int J Mol Sci 2018; 19:ijms19113316. [PMID: 30366379 PMCID: PMC6274866 DOI: 10.3390/ijms19113316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
Stromal interaction molecule (STIM)-1 and -2 regulate agonist-induced and basal cytosolic calcium (Ca2+) levels after oligomerization and translocation to endoplasmic reticulum (ER)-plasma membrane (PM) junctions. At these junctions, the STIM cytosolic coiled-coil (CC) domains couple to PM Orai1 proteins and gate these Ca2+ release-activated Ca2+ (CRAC) channels, which facilitate store-operated Ca2+ entry (SOCE). Unlike STIM1 and STIM2, which are SOCE activators, the STIM2β splice variant contains an 8-residue insert located within the conserved CCs which inhibits SOCE. It remains unclear if the 2β insert further depotentiates weak STIM2 coupling to Orai1 or independently causes structural perturbations which prevent SOCE. Here, we use far-UV circular dichroism, light scattering, exposed hydrophobicity analysis, solution small angle X-ray scattering, and a chimeric STIM1/STIM2β functional assessment to provide insights into the molecular mechanism by which the 2β insert precludes SOCE activation. We find that the 2β insert reduces the overall α-helicity and enhances the exposed hydrophobicity of the STIM2 CC domains in the absence of a global conformational change. Remarkably, incorporation of the 2β insert into the STIM1 context not only affects the secondary structure and hydrophobicity as observed for STIM2, but also eliminates the more robust SOCE response mediated by STIM1. Collectively, our data show that the 2β insert directly precludes Orai1 channel activation by inducing structural perturbations in the STIM CC region.
Collapse
|
69
|
Trebak M, Putney JW. ORAI Calcium Channels. Physiology (Bethesda) 2018; 32:332-342. [PMID: 28615316 DOI: 10.1152/physiol.00011.2017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022] Open
Abstract
In this review article, we discuss the different gene products and translational variants of ORAI proteins and their contribution to the makeup of different native calcium-conducting channels with distinct compositions and modes of activation. We also review the different modes of regulation of these distinct calcium channels and their impact on downstream cellular signaling controlling important physiological functions.
Collapse
Affiliation(s)
- Mohamed Trebak
- The Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - James W Putney
- The National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
70
|
Nguyen NT, Han W, Cao W, Wang Y, Wen S, Huang Y, Li M, Du L, Zhou Y. Store‐Operated Calcium Entry Mediated by ORAI and STIM. Compr Physiol 2018; 8:981-1002. [DOI: 10.1002/cphy.c170031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
71
|
Profiling calcium signals of in vitro polarized human effector CD4 + T cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:932-943. [PMID: 29626493 DOI: 10.1016/j.bbamcr.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
Differentiation of naïve CD4+ T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca2+ signals, mainly mediated by the store operated Ca2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4+ T cell subsets show differential Ca2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4+ effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca2+ release activated Ca2+ currents (ICRAC) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca2+ profiles of helper CD4+ Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4+ T cells.
Collapse
|
72
|
Subedi KP, Ong HL, Son GY, Liu X, Ambudkar IS. STIM2 Induces Activated Conformation of STIM1 to Control Orai1 Function in ER-PM Junctions. Cell Rep 2018; 23:522-534. [DOI: 10.1016/j.celrep.2018.03.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
|
73
|
Abstract
The transmembrane docking of endoplasmic reticulum (ER) Ca2+-sensing STIM proteins with plasma membrane (PM) Orai Ca2+ channels is a critical but poorly understood step in Ca2+ signal generation. STIM1 protein dimers unfold to expose a discrete STIM-Orai activating region (SOAR1) that tethers and activates Orai1 channels within discrete ER-PM junctions. We reveal that each monomer within the SOAR dimer interacts independently with single Orai1 subunits to mediate cross-linking between Orai1 channels. Superresolution imaging and mobility measured by fluorescence recovery after photobleaching reveal that SOAR dimer cross-linking leads to substantial Orai1 channel clustering, resulting in increased efficacy and cooperativity of Orai1 channel function. A concatenated SOAR1 heterodimer containing one monomer point mutated at its critical Orai1 binding residue (F394H), although fully activating Orai channels, is completely defective in cross-linking Orai1 channels. Importantly, the naturally occurring STIM2 variant, STIM2.1, has an eight-amino acid insert in its SOAR unit that renders it functionally identical to the F394H mutant in SOAR1. Contrary to earlier predictions, the SOAR1-SOAR2.1 heterodimer fully activates Orai1 channels but prevents cross-linking and clustering of channels. Interestingly, combined expression of full-length STIM1 with STIM2.1 in a 5:1 ratio causes suppression of sustained agonist-induced Ca2+ oscillations and protects cells from Ca2+ overload, resulting from high agonist-induced Ca2+ release. Thus, STIM2.1 exerts a powerful regulatory effect on signal generation likely through preventing Orai1 channel cross-linking. Overall, STIM-mediated cross-linking of Orai1 channels is a hitherto unrecognized functional paradigm that likely provides an organizational microenvironment within ER-PM junctions with important functional impact on Ca2+ signal generation.
Collapse
|
74
|
Demaurex N, Saul S. The role of STIM proteins in neutrophil functions. J Physiol 2018; 596:2699-2708. [PMID: 29441588 PMCID: PMC6046061 DOI: 10.1113/jp275639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023] Open
Abstract
Stromal interaction molecule (STIM) proteins regulate store-operated Ca2+ entry (SOCE) in innate and adaptive immune cells and participate in the Ca2+ signals that control the functions of neutrophils, the first line of host defence against bacterial and fungal infections. Loss-of-function experiments in animal and cellular models indicate that both STIM1 and STIM2 regulate neutrophil functions, but the complexity of the SOCE machinery and the versatility of neutrophils complicate the evaluation of the results. This review aims to summarize the latest progress in the field, with special attention to the details of the experimental designs. Future study design should aim to improve the standardization of experimental procedures and to provide a more holistic understanding of the role of STIM proteins in neutrophils function.
Collapse
Affiliation(s)
- Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Stephanie Saul
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| |
Collapse
|
75
|
Nelson HA, Roe MW. Molecular physiology and pathophysiology of stromal interaction molecules. Exp Biol Med (Maywood) 2018; 243:451-472. [PMID: 29363328 DOI: 10.1177/1535370218754524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ca2+ release from the endoplasmic reticulum is an important component of Ca2+ signal transduction that controls numerous physiological processes in eukaryotic cells. Release of Ca2+ from the endoplasmic reticulum is coupled to the activation of store-operated Ca2+ entry into cells. Store-operated Ca2+ entry provides Ca2+ for replenishing depleted endoplasmic reticulum Ca2+ stores and a Ca2+ signal that regulates Ca2+-dependent intracellular biochemical events. Central to connecting discharge of endoplasmic reticulum Ca2+ stores following G protein-coupled receptor activation with the induction of store-operated Ca2+ entry are stromal interaction molecules (STIM1 and STIM2). These highly homologous endoplasmic reticulum transmembrane proteins function as sensors of the Ca2+ concentration within the endoplasmic reticulum lumen and activators of Ca2+ release-activated Ca2+ channels. Emerging evidence indicates that in addition to their role in Ca2+ release-activated Ca2+ channel gating and store-operated Ca2+ entry, STIM1 and STIM2 regulate other cellular signaling events. Recent studies have shown that disruption of STIM expression and function is associated with the pathogenesis of several diseases including autoimmune disorders, cancer, cardiovascular disease, and myopathies. Here, we provide an overview of the latest developments in the molecular physiology and pathophysiology of STIM1 and STIM2. Impact statement Intracellular Ca2+ signaling is a fundamentally important regulator of cell physiology. Recent studies have revealed that Ca2+-binding stromal interaction molecules (Stim1 and Stim2) expressed in the membrane of the endoplasmic reticulum (ER) are essential components of eukaryote Ca2+ signal transduction that control the activity of ion channels and other signaling effectors present in the plasma membrane. This review summarizes the most recent information on the molecular physiology and pathophysiology of stromal interaction molecules. We anticipate that the work presented in our review will provide new insights into molecular interactions that participate in interorganelle signaling crosstalk, cell function, and the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Heather A Nelson
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael W Roe
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA.,2 Department of Medicine, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
76
|
Song S, Carr SG, McDermott KM, Rodriguez M, Babicheva A, Balistrieri A, Ayon RJ, Wang J, Makino A, Yuan JXJ. STIM2 (Stromal Interaction Molecule 2)-Mediated Increase in Resting Cytosolic Free Ca 2+ Concentration Stimulates PASMC Proliferation in Pulmonary Arterial Hypertension. Hypertension 2018; 71:518-529. [PMID: 29358461 DOI: 10.1161/hypertensionaha.117.10503] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMCs) triggers pulmonary vasoconstriction and stimulates PASMC proliferation leading to vascular wall thickening. Here, we report that STIM2 (stromal interaction molecule 2), a Ca2+ sensor in the sarcoplasmic reticulum membrane, is required for raising the resting [Ca2+]cyt in PASMCs from patients with pulmonary arterial hypertension (PAH) and activating signaling cascades that stimulate PASMC proliferation and inhibit PASMC apoptosis. Downregulation of STIM2 in PAH-PASMCs reduces the resting [Ca2+]cyt, whereas overexpression of STIM2 in normal PASMCs increases the resting [Ca2+]cyt The increased resting [Ca2+]cyt in PAH-PASMCs is associated with enhanced phosphorylation (p) of CREB (cAMP response element-binding protein), STAT3 (signal transducer and activator of transcription 3), and AKT, increased NFAT (nuclear factor of activated T-cell) nuclear translocation, and elevated level of Ki67 (a marker of cell proliferation). Furthermore, the STIM2-associated increase in the resting [Ca2+]cyt also upregulates the antiapoptotic protein Bcl-2 in PAH-PASMCs. Downregulation of STIM2 in PAH-PASMCs with siRNA (1) decreases the level of pCREB, pSTAT3, and pAKT and inhibits NFAT nuclear translocation, thereby attenuating proliferation, and (2) decreases Bcl-2, which leads to an increase of apoptosis. In summary, these data indicate that upregulated STIM2 in PAH-PASMCs, by raising the resting [Ca2+]cyt, contributes to enhancing PASMC proliferation by activating the CREB, STAT3, AKT, and NFAT signaling pathways and stimulating PASMC proliferation. The STIM2-associated increase in the resting [Ca2+]cyt is also involved in upregulating Bcl-2 that makes PAH-PASMCs resistant to apoptosis, and thus plays an important role in sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in patients with PAH.
Collapse
Affiliation(s)
- Shanshan Song
- From the Division of Translational and Regenerative Medicine, Department of Medicine (S.S., S.G.C., K.M.M., M.R., A. Babicheva, A. Balistrieri, R.J.A., J.W., A.M., J.X.-J.Y.) and Department of Physiology (A.M., J.X.-J.Y.), The University of Arizona College of Medicine, Tucson
| | - Shane G Carr
- From the Division of Translational and Regenerative Medicine, Department of Medicine (S.S., S.G.C., K.M.M., M.R., A. Babicheva, A. Balistrieri, R.J.A., J.W., A.M., J.X.-J.Y.) and Department of Physiology (A.M., J.X.-J.Y.), The University of Arizona College of Medicine, Tucson
| | - Kimberly M McDermott
- From the Division of Translational and Regenerative Medicine, Department of Medicine (S.S., S.G.C., K.M.M., M.R., A. Babicheva, A. Balistrieri, R.J.A., J.W., A.M., J.X.-J.Y.) and Department of Physiology (A.M., J.X.-J.Y.), The University of Arizona College of Medicine, Tucson
| | - Marisela Rodriguez
- From the Division of Translational and Regenerative Medicine, Department of Medicine (S.S., S.G.C., K.M.M., M.R., A. Babicheva, A. Balistrieri, R.J.A., J.W., A.M., J.X.-J.Y.) and Department of Physiology (A.M., J.X.-J.Y.), The University of Arizona College of Medicine, Tucson
| | - Aleksandra Babicheva
- From the Division of Translational and Regenerative Medicine, Department of Medicine (S.S., S.G.C., K.M.M., M.R., A. Babicheva, A. Balistrieri, R.J.A., J.W., A.M., J.X.-J.Y.) and Department of Physiology (A.M., J.X.-J.Y.), The University of Arizona College of Medicine, Tucson
| | - Angela Balistrieri
- From the Division of Translational and Regenerative Medicine, Department of Medicine (S.S., S.G.C., K.M.M., M.R., A. Babicheva, A. Balistrieri, R.J.A., J.W., A.M., J.X.-J.Y.) and Department of Physiology (A.M., J.X.-J.Y.), The University of Arizona College of Medicine, Tucson
| | - Ramon J Ayon
- From the Division of Translational and Regenerative Medicine, Department of Medicine (S.S., S.G.C., K.M.M., M.R., A. Babicheva, A. Balistrieri, R.J.A., J.W., A.M., J.X.-J.Y.) and Department of Physiology (A.M., J.X.-J.Y.), The University of Arizona College of Medicine, Tucson
| | - Jian Wang
- From the Division of Translational and Regenerative Medicine, Department of Medicine (S.S., S.G.C., K.M.M., M.R., A. Babicheva, A. Balistrieri, R.J.A., J.W., A.M., J.X.-J.Y.) and Department of Physiology (A.M., J.X.-J.Y.), The University of Arizona College of Medicine, Tucson
| | - Ayako Makino
- From the Division of Translational and Regenerative Medicine, Department of Medicine (S.S., S.G.C., K.M.M., M.R., A. Babicheva, A. Balistrieri, R.J.A., J.W., A.M., J.X.-J.Y.) and Department of Physiology (A.M., J.X.-J.Y.), The University of Arizona College of Medicine, Tucson
| | - Jason X-J Yuan
- From the Division of Translational and Regenerative Medicine, Department of Medicine (S.S., S.G.C., K.M.M., M.R., A. Babicheva, A. Balistrieri, R.J.A., J.W., A.M., J.X.-J.Y.) and Department of Physiology (A.M., J.X.-J.Y.), The University of Arizona College of Medicine, Tucson.
| |
Collapse
|
77
|
Putney JW. Forms and functions of store-operated calcium entry mediators, STIM and Orai. Adv Biol Regul 2017; 68:88-96. [PMID: 29217255 DOI: 10.1016/j.jbior.2017.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022]
Abstract
Calcium signals arise by multiple mechanisms, including mechanisms of release of intracellular stored Ca2+, and the influx of Ca2+ through channels in the plasma membrane. One mechanism that links these two sources of Ca2+ is store-operated Ca2+ entry, the most commonly encountered version of which involves the extensively studied calcium-release-activated Ca2+ (CRAC) channel. The minimal and essential molecular components of the CRAC channel are the STIM proteins that function as Ca2+ sensors in the endoplasmic reticulum, and the Orai proteins that comprise the pore forming subunits of the CRAC channel. CRAC channels are known to play significant roles in a wide variety of physiological functions. This review discusses the multiple forms of STIM and Orai proteins encountered in mammalian cells, and discusses some specific examples of how these proteins modulate or mediate important physiological processes.
Collapse
Affiliation(s)
- James W Putney
- National Institute of Environmental Health Sciences - NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
78
|
Li X, Wu G, Yang Y, Fu S, Liu X, Kang H, Yang X, Su XC, Shen Y. Calmodulin dissociates the STIM1-Orai1 complex and STIM1 oligomers. Nat Commun 2017; 8:1042. [PMID: 29051492 PMCID: PMC5648805 DOI: 10.1038/s41467-017-01135-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 08/22/2017] [Indexed: 01/20/2023] Open
Abstract
Store-operated calcium entry (SOCE) is a major pathway for calcium ions influx into cells and has a critical role in various cell functions. Here we demonstrate that calcium-bound calmodulin (Ca2+-CaM) binds to the core region of activated STIM1. This interaction facilitates slow Ca2+-dependent inactivation after Orai1 channel activation by wild-type STIM1 or a constitutively active STIM1 mutant. We define the CaM-binding site in STIM1, which is adjacent to the STIM1-Orai1 coupling region. The binding of Ca2+-CaM to activated STIM1 disrupts the STIM1-Orai1 complex and also disassembles STIM1 oligomer. Based on these results we propose a model for the calcium-bound CaM-regulated deactivation of SOCE.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangyan Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shijuan Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiaofen Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Huimin Kang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,Synergetic Innovation Center of Chemical Science and Engineering, 94 Weijin Road, Tianjin, 300071, China.
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,Synergetic Innovation Center of Chemical Science and Engineering, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
79
|
Mignen O, Constantin B, Potier-Cartereau M, Penna A, Gautier M, Guéguinou M, Renaudineau Y, Shoji KF, Félix R, Bayet E, Buscaglia P, Debant M, Chantôme A, Vandier C. Constitutive calcium entry and cancer: updated views and insights. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:395-413. [PMID: 28516266 DOI: 10.1007/s00249-017-1216-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/10/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
Abstract
Tight control of basal cytosolic Ca2+ concentration is essential for cell survival and to fine-tune Ca2+-dependent cell functions. A way to control this basal cytosolic Ca2+ concentration is to regulate membrane Ca2+ channels including store-operated Ca2+ channels and secondary messenger-operated channels linked to G-protein-coupled or tyrosine kinase receptor activation. Orai, with or without its reticular STIM partner and Transient Receptor Potential (TRP) proteins, were considered to be the main Ca2+ channels involved. It is well accepted that, in response to cell stimulation, opening of these Ca2+ channels contributes to Ca2+ entry and the transient increase in cytosolic Ca2+ concentration involved in intracellular signaling. However, in various experimental conditions, Ca2+ entry and/or Ca2+ currents can be recorded at rest, without application of any experimental stimulation. This led to the proposition that some plasma membrane Ca2+ channels are already open/activated in basal condition, contributing therefore to constitutive Ca2+ entry. This article focuses on direct and indirect observations supporting constitutive activity of channels belonging to the Orai and TRP families and on the mechanisms underlying their basal/constitutive activities.
Collapse
Affiliation(s)
- Olivier Mignen
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Bruno Constantin
- STIM, ERL 7368 CNRS Université de Poitiers, Poitiers, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Marie Potier-Cartereau
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Aubin Penna
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Mathieu Gautier
- EA4667, Université de Picardie Jules Verne, 80039, Amiens, France
| | - Maxime Guéguinou
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Yves Renaudineau
- EA 2216, Inserm ESPRI, ERI 29, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Kenji F Shoji
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Romain Félix
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Elsa Bayet
- STIM, ERL 7368 CNRS Université de Poitiers, Poitiers, France
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Paul Buscaglia
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Marjolaine Debant
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- EA 2216, Inserm ESPRI, ERI 29, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Aurélie Chantôme
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Christophe Vandier
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France.
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France.
| |
Collapse
|
80
|
Nunes-Hasler P, Demaurex N. The ER phagosome connection in the era of membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1513-1524. [PMID: 28432021 DOI: 10.1016/j.bbamcr.2017.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Abstract
Phagocytosis is an essential mechanism through which innate immune cells ingest foreign material that is either destroyed or used to generate and present antigens and initiate adaptive immune responses. While a role for the ER during phagosome biogenesis has been recognized, whether fusion with ER cisternae or vesicular derivatives occurs has been the source of much contention. Membrane contact sites (MCS) are tight appositions between ER membranes and various organelles that coordinate multiple functions including localized signalling, lipid transfer and trafficking. The discovery that MCS form between the ER and phagosomes now begs the question of whether MCS play a role in connecting the ER to phagosomes under different contexts. In this review, we consider the implications of MCS between the ER and phagosomes during cross-presentation and infection with intracellular pathogens. We also discuss the similarities between these contacts and those between the ER and plasma membrane and acidic organelles such as endosomes and lysosomes. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland.
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| |
Collapse
|
81
|
Berna-Erro A, Jardin I, Salido GM, Rosado JA. Role of STIM2 in cell function and physiopathology. J Physiol 2017; 595:3111-3128. [PMID: 28087881 DOI: 10.1113/jp273889] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023] Open
Abstract
An endoplasmic reticulum (ER)-resident protein that regulates cytosolic and ER free-Ca2+ concentration by induction of store-operated calcium entry: that is the original definition of STIM2 and its function. While its activity strongly depends on the amount of calcium stored in the ER, its function goes further, to intracellular signalling and gene expression. Initially under-studied owing to the prominent function of STIM1, STIM2 came to be regarded as vital in mice, gradually emerging as an important player in the nervous system, and cooperating with STIM1 in the immune system. STIM2 has also been proposed as a relevant player in pathological conditions related to ageing, Alzheimer's and Huntington's diseases, autoimmune disorders and cancer. The discovery of additional functions, together with new splicing forms with opposite roles, has clarified existing controversies about STIM2 function in SOCE. With STIM2 being essential for life, but apparently not for development, newly available data demonstrate a complex and still intriguing behaviour that this review summarizes, updating current knowledge of STIM2 function.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Isaac Jardin
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003, Cáceres, Spain
| | - Gines M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003, Cáceres, Spain
| |
Collapse
|
82
|
Hempel N, Trebak M. Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium 2017; 63:70-96. [PMID: 28143649 DOI: 10.1016/j.ceca.2017.01.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 02/07/2023]
Abstract
The interplay between Ca2+ and reactive oxygen species (ROS) signaling pathways is well established, with reciprocal regulation occurring at a number of subcellular locations. Many Ca2+ channels at the cell surface and intracellular organelles, including the endoplasmic reticulum and mitochondria are regulated by redox modifications. In turn, Ca2+ signaling can influence the cellular generation of ROS, from sources such as NADPH oxidases and mitochondria. This relationship has been explored in great depth during the process of apoptosis, where surges of Ca2+ and ROS are important mediators of cell death. More recently, coordinated and localized Ca2+ and ROS transients appear to play a major role in a vast variety of pro-survival signaling pathways that may be crucial for both physiological and pathophysiological functions. While much work is required to firmly establish this Ca2+-ROS relationship in cancer, existing evidence from other disease models suggests this crosstalk is likely of significant importance in tumorigenesis. In this review, we describe the regulation of Ca2+ channels and transporters by oxidants and discuss the potential consequences of the ROS-Ca2+ interplay in tumor cells.
Collapse
Affiliation(s)
- Nadine Hempel
- Department of Pharmacology, Penn State College of Medicine, Hershey PA 17033, United States; Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States.
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey PA 17033, United States; Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States.
| |
Collapse
|
83
|
STIM-TRP Pathways and Microdomain Organization: Ca 2+ Influx Channels: The Orai-STIM1-TRPC Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:139-157. [PMID: 28900913 DOI: 10.1007/978-3-319-57732-6_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ca2+ influx by plasma membrane Ca2+ channels is the crucial component of the receptor-evoked Ca2+ signal. The two main Ca2+ influx channels of non-excitable cells are the Orai and TRPC families of Ca2+ channels. These channels are activated in response to cell stimulation and Ca2+ release from the endoplasmic reticulum (ER). The protein that conveys the Ca2+ content of the ER to the plasma membrane is the ER Ca2+ sensor STIM1. STIM1 activates the Orai channels and is obligatory for channel opening. TRPC channels can function in two modes, as STIM1-dependent and STIM1-independent. When activated by STIM1, both channel types function at the ER/PM (plasma membrane) junctions. This chapter describes the properties and regulation of the channels by STIM1, with emphasis how and when TRPC channels function as STIM1-dependent and STIM1-independent modes and their unique Ca2+-dependent physiological functions that are not shared with the Orai channels.
Collapse
|
84
|
Niemeyer BA. The STIM-Orai Pathway: Regulation of STIM and Orai by Thiol Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:99-116. [PMID: 28900911 DOI: 10.1007/978-3-319-57732-6_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteines are among the least abundant amino acids found in proteins. Due to their unique nucleophilic thiol group, they are able to undergo a broad range of chemical modifications besides their known role in disulfide formation, such as S-sulfenylation (-SOH), S-sulfinylation (-SO(2)H), S-sufonylation (-SO(3)H), S-glutathionylation (-SSG), and S-sulfhydration (-SSH), among others. These posttranslational modifications can be irreversible and act as transitional modifiers or as reversible on-off switches for the function of proteins. Disturbances of the redox homeostasis, for example, in situations of increased oxidative stress, can contribute to a range of diseases. Because Ca2+ signaling mediated by store-operated calcium entry (SOCE) is involved in a plethora of cellular responses, the cross-talk between reactive oxygen species (ROS) and Ca2+ is critical for homeostatic control. Identification of calcium regulatory protein targets of thiol redox modifications is needed to understand their role in biology and disease.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
85
|
Pacheco J, Vaca L. STIM-TRP Pathways and Microdomain Organization: Auxiliary Proteins of the STIM/Orai Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:189-210. [DOI: 10.1007/978-3-319-57732-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
86
|
Pathophysiological Significance of Store-Operated Calcium Entry in Megakaryocyte Function: Opening New Paths for Understanding the Role of Calcium in Thrombopoiesis. Int J Mol Sci 2016; 17:ijms17122055. [PMID: 27941645 PMCID: PMC5187855 DOI: 10.3390/ijms17122055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Store-Operated Calcium Entry (SOCE) is a universal calcium (Ca2+) influx mechanism expressed by several different cell types. It is now known that Stromal Interaction Molecule (STIM), the Ca2+ sensor of the intracellular compartments, together with Orai and Transient Receptor Potential Canonical (TRPC), the subunits of Ca2+ permeable channels on the plasma membrane, cooperate in regulating multiple cellular functions as diverse as proliferation, differentiation, migration, gene expression, and many others, depending on the cell type. In particular, a growing body of evidences suggests that a tight control of SOCE expression and function is achieved by megakaryocytes along their route from hematopoietic stem cells to platelet production. This review attempts to provide an overview about the SOCE dynamics in megakaryocyte development, with a focus on most recent findings related to its involvement in physiological and pathological thrombopoiesis.
Collapse
|
87
|
Majewski Ł, Maciąg F, Boguszewski PM, Wasilewska I, Wiera G, Wójtowicz T, Mozrzymas J, Kuznicki J. Overexpression of STIM1 in neurons in mouse brain improves contextual learning and impairs long-term depression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1071-1087. [PMID: 27913207 DOI: 10.1016/j.bbamcr.2016.11.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
Abstract
STIM1 is an endoplasmic reticulum calcium sensor that is involved in several processes in neurons, including store-operated calcium entry. STIM1 also inhibits voltage-gated calcium channels, such as Cav1.2 and Cav3.1, and is thus considered a multifunctional protein. The aim of this work was to investigate the ways in which transgenic neuronal overexpression of STIM1 in FVB/NJ mice affects animal behavior and the electrophysiological properties of neurons in acute hippocampal slices. We overexpressed STIM1 from the Thy1.2 promoter and verified neuronal expression by quantitative reverse-transcription polymerase chain reaction, Western blot, and immunohistochemistry. Mature primary hippocampal cultures expressed STIM1 but exhibited no changes in calcium homeostasis. Basal synaptic transmission efficiency and short-term plasticity were comparable in slices that were isolated from transgenic mice, similarly as the magnitude of long-term potentiation. However, long-term depression that was induced by the glutamate receptor 1/5 agonist (S)-3,5-dihydroxyphenylglycine was impaired in STIM1 slices. Interestingly, transgenic mice exhibited a decrease in anxiety-like behavior and improvements in contextual learning. In summary, our data indicate that STIM1 overexpression in neurons in the brain perturbs metabotropic glutamate receptor signaling, leading to impairments in long-term depression and alterations in animal behavior. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Łukasz Majewski
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Filip Maciąg
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Iga Wasilewska
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Grzegorz Wiera
- Laboratory of Neuroscience, Dept. Biophysics, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland; Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, 30 Cybulskiego Str., 50-205 Wroclaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Neuroscience, Dept. Biophysics, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland
| | - Jerzy Mozrzymas
- Laboratory of Neuroscience, Dept. Biophysics, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368 Wroclaw, Poland; Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, 30 Cybulskiego Str., 50-205 Wroclaw, Poland
| | - Jacek Kuznicki
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland.
| |
Collapse
|
88
|
Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1064-1070. [PMID: 27865925 DOI: 10.1016/j.bbamcr.2016.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/07/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a major mechanism for the regulation of intracellular Ca2+ homeostasis and cellular function. Emerging evidence has revealed that altered expression and function of the molecular determinants of SOCE play a critical role in the development or maintenance of several cancer hallmarks, including enhanced proliferation and migration. Here we show that, in the acute myeloid leukemia cell line HL60, Orai2 is highly expressed at the transcript level, followed by the expression of Orai1. Using fluorescence Ca2+ imaging we found that Orai2 silencing significantly attenuated thapsigargin-induced SOCE, as well as knockdown of Orai1, while silencing the expression of both channels almost completely reduced SOCE, thus suggesting that SOCE in these cells is strongly dependent on Orai1 and Orai2. On the other hand, the expression of TRPC1, TRPC3 and TRPC6 is almost absent at the transcript and protein level. Bromodeoxyuridine cell proliferation assay revealed that Orai1 and Orai2 expression silencing significantly reduced HL60 cell proliferation. Furthermore, knockdown of Orai1 and Orai2 significantly attenuated the ability of HL60 to migrate in vitro as determined by transwell migration assay, probably due to the impairment of FAK tyrosine phosphorylation. These findings provide evidence for a role for Orai1 and Orai2, in SOCE and migration in the human HL60 promyeloblastic cell line. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
89
|
Bhardwaj R, Hediger MA, Demaurex N. Redox modulation of STIM-ORAI signaling. Cell Calcium 2016; 60:142-52. [DOI: 10.1016/j.ceca.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022]
|
90
|
Lopez JJ, Albarran L, Gómez LJ, Smani T, Salido GM, Rosado JA. Molecular modulators of store-operated calcium entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2037-43. [PMID: 27130253 DOI: 10.1016/j.bbamcr.2016.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/13/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022]
Abstract
Three decades ago, store-operated Ca(2+) entry (SOCE) was identified as a unique mechanism for Ca(2+) entry through plasma membrane (PM) Ca(2+)-permeable channels modulated by the intracellular Ca(2+) stores, mainly the endoplasmic reticulum (ER). Extensive analysis of the communication between the ER and the PM leads to the identification of the protein STIM1 as the ER-Ca(2+) sensor that gates the Ca(2+) channels in the PM. Further analysis on the biophysical, electrophysiological and biochemical properties of STIM1-dependent Ca(2+) channels has revealed the presence of a highly Ca(2+)-selective channel termed Ca(2+) release-activated Ca(2+) channel (CRAC), consisting of Orai1 subunits, and non-selective cation channels named store-operated channels (SOC), including both Orai1 and TRPC channel subunits. Since the identification of the key elements of CRAC and SOC channels a number of intracellular modulators have been reported to play essential roles in the stabilization of STIM-Orai interactions, collaboration with STIM1 conformational changes or mediating slow Ca(2+)-dependent inactivation. Here, we review our current understanding of some of the key modulators of STIM1-Orai1 interaction, including the proteins CRACR2A, STIMATE, SARAF, septins, golli and ORMDL3.
Collapse
Affiliation(s)
- Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Luis J Gómez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, Sevilla, Spain
| | - Gines M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
91
|
Abstract
Ca(2+)entry into the cell via store-operated Ca(2+)release-activated Ca(2+)(CRAC) channels triggers diverse signaling cascades that affect cellular processes like cell growth, gene regulation, secretion, and cell death. These store-operated Ca(2+)channels open after depletion of intracellular Ca(2+)stores, and their main features are fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM) and Orai. STIM represents an endoplasmic reticulum-located Ca(2+)sensor, while Orai forms a highly Ca(2+)-selective ion channel in the plasma membrane. Functional as well as mutagenesis studies together with structural insights about STIM and Orai proteins provide a molecular picture of the interplay of these two key players in the CRAC signaling cascade. This review focuses on the main experimental advances in the understanding of the STIM1-Orai choreography, thereby establishing a portrait of key mechanistic steps in the CRAC channel signaling cascade. The focus is on the activation of the STIM proteins, the subsequent coupling of STIM1 to Orai1, and the consequent structural rearrangements that gate the Orai channels into the open state to allow Ca(2+)permeation into the cell.
Collapse
Affiliation(s)
- Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria; and
| | - Isaac Jardin
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria; and
| |
Collapse
|
92
|
Stanisz H, Vultur A, Herlyn M, Roesch A, Bogeski I. The role of Orai-STIM calcium channels in melanocytes and melanoma. J Physiol 2016; 594:2825-35. [PMID: 26864956 DOI: 10.1113/jp271141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
Calcium signalling within normal and cancer cells regulates many important cellular functions such as migration, proliferation, differentiation and cytokine secretion. Store operated Ca(2+) entry (SOCE) via the Ca(2+) release activated Ca(2+) (CRAC) channels, which are composed of the plasma membrane based Orai channels and the endoplasmic reticulum stromal interaction molecules (STIMs), is a major Ca(2+) entry route in many cell types. Orai and STIM have been implicated in the growth and metastasis of multiple cancers; however, while their involvement in cancer is presently indisputable, how Orai-STIM-controlled Ca(2+) signals affect malignant transformation, tumour growth and invasion is not fully understood. Here, we review recent studies linking Orai-STIM Ca(2+) channels with cancer, with a particular focus on melanoma. We highlight and examine key molecular players and the signalling pathways regulated by Orai and STIM in normal and malignant cells, we expose discrepancies, and we reflect on the potential of Orai-STIMs as anticancer drug targets. Finally, we discuss the functional implications of future discoveries in the field of Ca(2+) signalling.
Collapse
Affiliation(s)
- Hedwig Stanisz
- Department of Dermatology, Venerology and Allergology, University Hospital of the Saarland, Homburg, Germany
| | - Adina Vultur
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
93
|
Fiorio Pla A, Kondratska K, Prevarskaya N. STIM and ORAI proteins: crucial roles in hallmarks of cancer. Am J Physiol Cell Physiol 2016; 310:C509-19. [DOI: 10.1152/ajpcell.00364.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intracellular Ca2+ signals play a central role in several cellular processes; therefore it is not surprising that altered Ca2+ homeostasis regulatory mechanisms lead to a variety of severe pathologies, including cancer. Stromal interaction molecules (STIM) and ORAI proteins have been identified as critical components of Ca2+ entry in both store-dependent (SOCE mechanism) and independent by intracellular store depletion and have been implicated in several cellular functions. In recent years, both STIMs and ORAIs have emerged as possible molecular targets for cancer therapeutics. In this review we focus on the role of STIM and ORAI proteins in cancer progression. In particular we analyze their role in the different hallmarks of cancer, which represent the organizing principle that describes the complex multistep process of neoplastic diseases.
Collapse
Affiliation(s)
- A. Fiorio Pla
- Université des Sciences et Technologies de Lille, Inserm, U1003 - PHYCELL - Physiologie Cellulaire, Lille, France; and
- Department of Life Science and Systems Biology, and Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino, Torino, Italy
| | - K. Kondratska
- Université des Sciences et Technologies de Lille, Inserm, U1003 - PHYCELL - Physiologie Cellulaire, Lille, France; and
| | - N. Prevarskaya
- Université des Sciences et Technologies de Lille, Inserm, U1003 - PHYCELL - Physiologie Cellulaire, Lille, France; and
| |
Collapse
|
94
|
Niemeyer BA. Changing calcium: CRAC channel (STIM and Orai) expression, splicing, and posttranslational modifiers. Am J Physiol Cell Physiol 2016; 310:C701-9. [PMID: 26911279 DOI: 10.1152/ajpcell.00034.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A wide variety of cellular function depends on the dynamics of intracellular Ca(2+) signals. Especially for relatively slow and lasting processes such as gene expression, cell proliferation, and often migration, cells rely on the store-operated Ca(2+) entry (SOCE) pathway, which is particularly prominent in immune cells. SOCE is initiated by the sensor proteins (STIM1, STIM2) located within the endoplasmic reticulum (ER) registering the Ca(2+) concentration within the ER, and upon its depletion, cluster and trap Orai (Orai1-3) proteins located in the plasma membrane (PM) into ER-PM junctions. These regions become sites of highly selective Ca(2+) entry predominantly through Orai1-assembled channels, which, among other effector functions, is necessary for triggering NFAT translocation into the nucleus. What is less clear is how the spatial and temporal spread of intracellular Ca(2+) is shaped and regulated by differential expression of the individual SOCE genes and their splice variants, their heteromeric combinations and pre- and posttranslational modifications. This review focuses on principle mechanisms regulating expression, splicing, and targeting of Ca(2+) release-activated Ca(2+) (CRAC) channels.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
95
|
Rosado JA, Diez R, Smani T, Jardín I. STIM and Orai1 Variants in Store-Operated Calcium Entry. Front Pharmacol 2016; 6:325. [PMID: 26793113 PMCID: PMC4710697 DOI: 10.3389/fphar.2015.00325] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is an ubiquitous mechanism for Ca2+ entry in eukaryotic cells. This route for Ca2+ influx is regulated by the filling state of the intracellular Ca2+ stores communicated to the plasma membrane channels by the proteins of the Stromal Interaction Molecule (STIM) family, STIM1, and STIM2. Store-dependent, STIM1-modulated, channels include the Ca2+ release-activated Ca2+ channels, comprised of subunits of Orai proteins, as well as the store-operated Ca2+ (SOC) channels, involving Orai1, and members of the canonical transient receptor potential family of proteins. Recent studies have revealed the expression of splice variants of STIM1, STIM2, and Orai1 in different cell types. While certain variants are ubiquitously expressed, others, such as STIM1L, show a more restricted expression. The splice variants for STIM and Orai1 proteins exhibit significant functional differences and reveal that alternative splicing enhance the functional diversity of STIM1, STIM2, and Orai1 genes to modulate the dynamics of Ca2+ signals.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology, Cell Physiology Research Group, University of Extremadura Cáceres, Spain
| | - Raquel Diez
- Department of Physiology, Cell Physiology Research Group, University of Extremadura Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville Sevilla, Spain
| | - Isaac Jardín
- Department of Physiology, Cell Physiology Research Group, University of Extremadura Cáceres, Spain
| |
Collapse
|
96
|
Shin DM, Son A, Park S, Kim MS, Ahuja M, Muallem S. The TRPCs, Orais and STIMs in ER/PM Junctions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:47-66. [PMID: 27161224 DOI: 10.1007/978-3-319-26974-0_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Ca(2+) second messenger is initiated at ER/PM junctions and propagates into the cell interior to convey the receptor information. The signal is maintained by Ca(2+) influx across the plasma membrane through the Orai and TRPC channels. These Ca(2+) influx channels form complexes at ER/PM junctions with the ER Ca(2+) sensor STIM1, which activates the channels. The function of STIM1 is modulated by other STIM isoforms like STIM1L, STIM2 and STIM2.1/STIM2β and by SARAF, which mediates the Ca(2+)-dependent inhibition of Orai channels. The ER/PM junctions are formed at membrane contact sites by tethering proteins that generate several types of ER/PM junctions, such as PI(4,5)P2-poor and PI(4,5)P2-rich domains. This chapter discusses several properties of the TRPC channels, the Orai channels and the STIMs, their key interacting proteins and how interaction of the STIMs with the channels gates their activity. The chapter closes by highlighting open questions and potential future directions in this field.
Collapse
Affiliation(s)
- Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, 120-752, South Korea.
| | - Aran Son
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | - Seonghee Park
- Department of Physiology, School of Medicine, EwhaWomans University, 911-1 Mok-6-dong, Yang Chun-gu, Seoul, 158-710, South Korea
| | - Min Seuk Kim
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, South Korea
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
97
|
Hoth M. CRAC channels, calcium, and cancer in light of the driver and passenger concept. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1408-17. [PMID: 26705695 DOI: 10.1016/j.bbamcr.2015.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Advances in next-generation sequencing allow very comprehensive analyses of large numbers of cancer genomes leading to an increasingly better characterization and classification of cancers. Comparing genomic data predicts candidate genes driving development, growth, or metastasis of cancer. Cancer driver genes are defined as genes whose mutations are causally implicated in oncogenesis whereas passenger mutations are defined as not being oncogenic. Currently, a list of several hundred cancer driver mutations is discussed including prominent members like TP53, BRAF, NRAS, or NF1. According to the vast literature on Ca(2+) and cancer, Ca(2+) signals and the underlying Ca(2+) channels and transporters certainly influence the development, growth, and metastasis of many cancers. In this review, I focus on the calcium release-activated calcium (CRAC) channel genes STIM and Orai and their role for cancer development, growth, and metastasis. STIM and Orai genes are being discussed in the context of current cancer concepts with a focus on the driver-passenger hypothesis. One result of this discussion is the hypothesis that a driver analysis of Ca(2+) homeostasis-related genes should not be carried out by looking at isolated genes. Rather a pool of “Ca(2+) genes” might be considered to act as one potential cancer driver. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Building 48, Saarland University, D-66421 Homburg, Germany.
| |
Collapse
|
98
|
Will T, Helms V. PPIXpress: construction of condition-specific protein interaction networks based on transcript expression. Bioinformatics 2015; 32:571-8. [PMID: 26508756 DOI: 10.1093/bioinformatics/btv620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Protein-protein interaction networks are an important component of modern systems biology. Yet, comparatively few efforts have been made to tailor their topology to the actual cellular condition being studied. Here, we present a network construction method that exploits expression data at the transcript-level and thus reveals alterations in protein connectivity not only caused by differential gene expression but also by alternative splicing. We achieved this by establishing a direct correspondence between individual protein interactions and underlying domain interactions in a complete but condition-unspecific protein interaction network. This knowledge was then used to infer the condition-specific presence of interactions from the dominant protein isoforms. When we compared contextualized interaction networks of matched normal and tumor samples in breast cancer, our transcript-based construction identified more significant alterations that affected proteins associated with cancerogenesis than a method that only uses gene expression data. The approach is provided as the user-friendly tool PPIXpress. AVAILABILITY AND IMPLEMENTATION PPIXpress is available at https://sourceforge.net/projects/ppixpress/.
Collapse
Affiliation(s)
- Thorsten Will
- Center for Bioinformatics and Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
99
|
Hui L, Geiger NH, Bloor-Young D, Churchill GC, Geiger JD, Chen X. Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: Evidence for acidic store-operated calcium entry in neurons. Cell Calcium 2015; 58:617-27. [PMID: 26475051 DOI: 10.1016/j.ceca.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 01/22/2023]
Abstract
Neurons possess an elaborate system of endolysosomes. Recently, endolysosomes were found to have readily releasable stores of intracellular calcium; however, relatively little is known about how such 'acidic calcium stores' affect calcium signaling in neurons. Here we demonstrated in primary cultured neurons that calcium released from acidic calcium stores triggered calcium influx across the plasma membrane, a phenomenon we have termed "acidic store-operated calcium entry (aSOCE)". aSOCE was functionally distinct from store-operated calcium release and calcium entry involving endoplasmic reticulum. aSOCE appeared to be governed by N-type calcium channels (NTCCs) because aSOCE was attenuated significantly by selectively blocking NTCCs or by siRNA knockdown of NTCCs. Furthermore, we demonstrated that NTCCs co-immunoprecipitated with the lysosome associated membrane protein 1 (LAMP1), and that aSOCE is accompanied by increased cell-surface expression levels of NTCC and LAMP1 proteins. Moreover, we demonstrated that siRNA knockdown of LAMP1 or Rab27a, both of which are key proteins involved in lysosome exocytosis, attenuated significantly aSOCE. Taken together our data suggest that aSOCE occurs in neurons, that aSOCE plays an important role in regulating the levels and actions of intraneuronal calcium, and that aSOCE is regulated at least in part by exocytotic insertion of N-type calcium channels into plasma membranes through LAMP1-dependent lysosome exocytosis.
Collapse
Affiliation(s)
- Liang Hui
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Nicholas H Geiger
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Duncan Bloor-Young
- Department of Pharmacology, University of Oxford, Mansfield Rd., Oxford OX1 3QT, UK
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Mansfield Rd., Oxford OX1 3QT, UK
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
100
|
Abstract
Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.
Collapse
Affiliation(s)
- Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| | - Richard S Lewis
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|