51
|
Rees E, Carrera N, Morgan J, Hambridge K, Escott-Price V, Pocklington AJ, Richards AL, Pardiñas AF, McDonald C, Donohoe G, Morris DW, Kenny E, Kelleher E, Gill M, Corvin A, Kirov G, Walters JTR, Holmans P, Owen MJ, O'Donovan MC. Targeted Sequencing of 10,198 Samples Confirms Abnormalities in Neuronal Activity and Implicates Voltage-Gated Sodium Channels in Schizophrenia Pathogenesis. Biol Psychiatry 2019; 85:554-562. [PMID: 30420267 PMCID: PMC6428681 DOI: 10.1016/j.biopsych.2018.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sequencing studies have pointed to the involvement in schizophrenia of rare coding variants in neuronally expressed genes, including activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-D-aspartate receptor (NMDAR) complexes; however, larger samples are required to reveal novel genes and specific biological mechanisms. METHODS We sequenced 187 genes, selected for prior evidence of association with schizophrenia, in a new dataset of 5207 cases and 4991 controls. Included among these genes were members of ARC and NMDAR postsynaptic protein complexes, as well as voltage-gated sodium and calcium channels. We performed a rare variant meta-analysis with published sequencing data for a total of 11,319 cases, 15,854 controls, and 1136 trios. RESULTS While no individual gene was significantly associated with schizophrenia after genome-wide correction for multiple testing, we strengthen the evidence that rare exonic variants in the ARC (p = 4.0 × 10-4) and NMDAR (p = 1.7 × 10-5) synaptic complexes are risk factors for schizophrenia. In addition, we found that loss-of-function variants and missense variants at paralog-conserved sites were enriched in voltage-gated sodium channels, particularly the alpha subunits (p = 8.6 × 10-4). CONCLUSIONS In one of the largest sequencing studies of schizophrenia to date, we provide novel evidence that multiple voltage-gated sodium channels are involved in schizophrenia pathogenesis and confirm the involvement of ARC and NMDAR postsynaptic complexes.
Collapse
Affiliation(s)
- Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Noa Carrera
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Joanne Morgan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kirsty Hambridge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Escott-Price
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andrew J Pocklington
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alexander L Richards
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Elaine Kenny
- Department of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Eric Kelleher
- Department of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Department of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Aiden Corvin
- Department of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
52
|
Wray NR, Wijmenga C, Sullivan PF, Yang J, Visscher PM. Common Disease Is More Complex Than Implied by the Core Gene Omnigenic Model. Cell 2019; 173:1573-1580. [PMID: 29906445 DOI: 10.1016/j.cell.2018.05.051] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/19/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
The evidence that most adult-onset common diseases have a polygenic genetic architecture fully consistent with robust biological systems supported by multiple back-up mechanisms is now overwhelming. In this context, we consider the recent "omnigenic" or "core genes" model. A key assumption of the model is that there is a relatively small number of core genes relevant to any disease. While intuitively appealing, this model may underestimate the biological complexity of common disease, and therefore, the goal to discover core genes should not guide experimental design. We consider other implications of polygenicity, concluding that a focus on patient stratification is needed to achieve the goals of precision medicine.
Collapse
Affiliation(s)
- Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, P.O. Box 30001, 9700 RB Groningen, Netherlands
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
53
|
Grozeva D, Saad S, Menzies GE, Sims R. Benefits and Challenges of Rare Genetic Variation in Alzheimer's Disease. CURRENT GENETIC MEDICINE REPORTS 2019; 7:53-62. [PMID: 39649954 PMCID: PMC7617023 DOI: 10.1007/s40142-019-0161-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Purpose of Review It is well established that sporadic Alzheimer's disease (AD) is polygenic with common and rare genetic variation alongside environmental factors contributing to disease. Here, we review our current understanding of the genetic architecture of disease, paying specific attention to rare susceptibility variants, and explore some of the limitations in rare variant detection and analysis. Recent Findings Rare variation has been shown to robustly associate with disease. These include potentially damaging and loss of function mutations that are easily modelled in silico, in vitro and in vivo, and represent potentially druggable targets. A number of risk genes, including TREM2, SORL1 and ABCA7 show multiple independent associations suggesting that they may influence disease via multiple mechanisms. With transcriptional regulation, inflammatory response and modification of protein production suggested to be of primary importance. Summary We are at the beginning of our journey of rare variant detection in AD. Whole exome sequencing has been the predominant technology of choice. While fruitful, this has introduced a number of challenges with regard to data integration. Ultimately the future of disease-associated rare variant identification lies in whole genome sequencing projects that will allow the testing of the full range of genomic variation.
Collapse
Affiliation(s)
- Detelina Grozeva
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Salha Saad
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Georgina E. Menzies
- UK Dementia Research Institute at Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
- UK Dementia Research Institute at Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
54
|
New insights into the pathogenicity of non-synonymous variants through multi-level analysis. Sci Rep 2019; 9:1667. [PMID: 30733553 PMCID: PMC6367327 DOI: 10.1038/s41598-018-38189-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
Precise classification of non-synonymous single nucleotide variants (SNVs) is a fundamental goal of clinical genetics. Next-generation sequencing technology is effective for establishing the basis of genetic diseases. However, identification of variants that are causal for genetic diseases remains a challenge. We analyzed human non-synonymous SNVs from a multilevel perspective to characterize pathogenicity. We showed that computational tools, though each having its own strength and weakness, tend to be overly dependent on the degree of conservation. For the mutations at non-degenerate sites, the amino acid sites of pathogenic substitutions show a distinct distribution in the classes of protein domains compared with the sites of benign substitutions. Overlooked disease susceptibility of genes explains in part the failures of computational tools. The more pathogenic sites observed, the more likely the gene is expressed in a high abundance or in a high tissue-specific manner, and have a high node degree of protein-protein interaction. The destroyed functions due to some false-negative mutations may arise because of a reprieve from the epigenetic repressed state which shouldn't happen in multiple biological conditions, instead of the defective protein. Our work adds more to our knowledge of non-synonymous SNVs' pathogenicity, thus will benefit the field of clinical genetics.
Collapse
|
55
|
Rhoades R, Jackson F, Teng S. Discovery of rare variants implicated in schizophrenia using next-generation sequencing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2019; 3:1-20. [PMID: 33981965 PMCID: PMC8112455 DOI: 10.20517/jtgg.2018.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Schizophrenia is a highly heritable psychiatric disorder that affects 1% of the population. Genome-wide association studies have identified common variants in candidate genes associated with schizophrenia, but the genetics mechanisms of this disorder have not yet been elucidated. The discovery of rare genetic variants that contribute to schizophrenia symptoms promises to help explain the missing heritability of the disease. Next generation sequencing techniques are revolutionizing the field of psychiatric genetics. Various statistical approaches have been developed for rare variant association testing in case-control and family studies. Targeted resequencing, whole exome sequencing and whole genome sequencing combined with these computational tools are used for the discovery of rare genetic variations in schizophrenia. The findings provide useful information for characterizing the rare mutations and elucidating the genetic mechanisms by which the variants cause schizophrenia.
Collapse
Affiliation(s)
- Raina Rhoades
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Fatimah Jackson
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
56
|
Abstract
Tourette syndrome (TS) is a complex disorder characterized by repetitive, sudden, and involuntary movements or vocalizations, called tics. Tics usually appear in childhood, and their severity varies over time. In addition to frequent tics, people with TS are at risk for associated problems including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, depression, and problems with sleep. TS occurs in most populations and ethnic groups worldwide, and it is more common in males than in females. Previous family and twin studies have shown that the majority of cases of TS are inherited. TS was previously thought to have an autosomal dominant pattern of inheritance. However, several decades of research have shown that this is unlikely the case. Instead, TS most likely results from a variety of genetic and environmental factors, not changes in a single gene. In the past decade, there has been a rapid development of innovative genetic technologies and methodologies, as well as significant progress in genetic studies of psychiatric disorders. In this review, we will briefly summarize previous genetic epidemiological studies of TS and related disorders. We will also review previous genetic studies based on genome-wide linkage analyses and candidate gene association studies to comment on problems of previous methodological and strategic issues. Our main purpose for this review will be to summarize the new genetic discoveries of TS based on novel genetic methods and strategies, such as genome-wide association studies (GWASs), whole exome sequencing (WES), and whole genome sequencing (WGS). We will also compare the new genetic discoveries of TS with other major psychiatric disorders in order to understand the current status of TS genetics and its relationship with other psychiatric disorders.
Collapse
|
57
|
Whole exome sequencing for the identification of CYP3A7 variants associated with tacrolimus concentrations in kidney transplant patients. Sci Rep 2018; 8:18064. [PMID: 30584253 PMCID: PMC6305386 DOI: 10.1038/s41598-018-36085-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to identify genotypes associated with dose-adjusted tacrolimus trough concentrations (C0/D) in kidney transplant recipients using whole-exome sequencing (WES). This study included 147 patients administered tacrolimus, including seventy-five patients in the discovery set and seventy-two patients in the replication set. The patient genomes in the discovery set were sequenced using WES. Also, known tacrolimus pharmacokinetics-related intron variants were genotyped. Tacrolimus C0/D was log-transformed. Sixteen variants were identified including novel CYP3A7 rs12360 and rs10211 by ANOVA. CYP3A7 rs2257401 was found to be the most significant variant among the periods by ANOVA. Seven variants including CYP3A7 rs2257401, rs12360, and rs10211 were analyzed by SNaPshot in the replication set and the effects on tacrolimus C0/D were verified. A linear mixed model (LMM) was further performed to account for the effects of the variants and clinical factors. The combined set LMM showed that only CYP3A7 rs2257401 was associated with tacrolimus C0/D after adjusting for patient age, albumin, and creatinine. The CYP3A7 rs2257401 genotype variant showed a significant difference on the tacrolimus C0/D in those expressing CYP3A5, showing its own effect. The results suggest that CYP3A7 rs2257401 may serve as a significant genetic marker for tacrolimus pharmacokinetics in kidney transplantation.
Collapse
|
58
|
Cuna A, George L, Sampath V. Genetic predisposition to necrotizing enterocolitis in premature infants: Current knowledge, challenges, and future directions. Semin Fetal Neonatal Med 2018; 23:387-393. [PMID: 30292709 PMCID: PMC6626706 DOI: 10.1016/j.siny.2018.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of genetics in the pathogenesis of necrotizing enterocolitis (NEC) was initially informed by epidemiological data indicating differences in prevalence among different ethnic groups as well as concordance in twins. These early observations, together with major advances in genomic research, paved the way for studies that begin to reveal the contribution of genetics to NEC. Using the candidate gene or pathway approach, several potential pathogenic variants for NEC in premature infants have already been identified. More recently, genome-wide association studies and exome-sequencing based studies for NEC have been reported. These advances, however, are tempered by the lack of adequately powered replication cohorts to validate the accuracy of these discoveries. Despite many challenges, genetic research in NEC is expected to increase, providing new insights into its pathogenesis and bringing the promise of personalized care closer to reality. In this review we provide a summary of genetic studies in NEC along with defining the challenges and possible future approaches.
Collapse
Affiliation(s)
| | | | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA.
| |
Collapse
|
59
|
Detecting Rare Mutations with Heterogeneous Effects Using a Family-Based Genetic Random Field Method. Genetics 2018; 210:463-476. [PMID: 30104420 DOI: 10.1534/genetics.118.301266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/29/2018] [Indexed: 01/19/2023] Open
Abstract
The genetic etiology of many complex diseases is highly heterogeneous. A complex disease can be caused by multiple mutations within the same gene or mutations in multiple genes at various genomic loci. Although these disease-susceptibility mutations can be collectively common in the population, they are often individually rare or even private to certain families. Family-based studies are powerful for detecting rare variants enriched in families, which is an important feature for sequencing studies due to the heterogeneous nature of rare variants. In addition, family designs can provide robust protection against population stratification. Nevertheless, statistical methods for analyzing family-based sequencing data are underdeveloped, especially those accounting for heterogeneous etiology of complex diseases. In this article, we introduce a random field framework for detecting gene-phenotype associations in family-based sequencing studies, referred to as family-based genetic random field (FGRF). Similar to existing family-based association tests, FGRF could utilize within-family and between-family information separately or jointly to test an association. We demonstrate that FGRF has comparable statistical power with existing methods when there is no genetic heterogeneity, but can improve statistical power when there is genetic heterogeneity across families. The proposed method also shares the same advantages with the conventional family-based association tests (e.g., being robust to population stratification). Finally, we applied the proposed method to a sequencing data from the Minnesota Twin Family Study, and revealed several genes, including SAMD14, potentially associated with alcohol dependence.
Collapse
|
60
|
Rhee JK, Kim SJ, Zhang BT. Identifying DNA Methylation Modules Associated with a Cancer by Probabilistic Evolutionary Learning. IEEE COMPUT INTELL M 2018. [DOI: 10.1109/mci.2018.2840659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
61
|
Park S, Supek F, Lehner B. Systematic discovery of germline cancer predisposition genes through the identification of somatic second hits. Nat Commun 2018; 9:2601. [PMID: 29973584 PMCID: PMC6031629 DOI: 10.1038/s41467-018-04900-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
The genetic causes of cancer include both somatic mutations and inherited germline variants. Large-scale tumor sequencing has revolutionized the identification of somatic driver alterations but has had limited impact on the identification of cancer predisposition genes (CPGs). Here we present a statistical method, ALFRED, that tests Knudson's two-hit hypothesis to systematically identify CPGs from cancer genome data. Applied to ~10,000 tumor exomes the approach identifies known and putative CPGs - including the chromatin modifier NSD1 - that contribute to cancer through a combination of rare germline variants and somatic loss-of-heterozygosity (LOH). Rare germline variants in these genes contribute substantially to cancer risk, including to ~14% of ovarian carcinomas, ~7% of breast tumors, ~4% of uterine corpus endometrial carcinomas, and to a median of 2% of tumors across 17 cancer types.
Collapse
Affiliation(s)
- Solip Park
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Fran Supek
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain.,Institut de Recerca Biomedica (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,Division of Electronics, Rudjer Boskovic Institute, 10000, Zagreb, Croatia.,Institut de Recerca Biomedica (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Luis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
62
|
Lyu XM, Zhu XW, Zhao M, Zuo XB, Huang ZX, Liu X, Jiang T, Yang XX, Li X, Long XB, Wang JG, Li JB, Han MY, Wang S, Liu TF, Zhang B, Sun T, Cheng Z, Qiu MC, Dong L, Zheng L, Zhang LC, Wang JH, Wei GG, Yao K, Wang Q, Zheng HF, Li X. A regulatory mutant on TRIM26 conferring the risk of nasopharyngeal carcinoma by inducing low immune response. Cancer Med 2018; 7:3848-3861. [PMID: 29956500 PMCID: PMC6089173 DOI: 10.1002/cam4.1537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
The major histocompatibility complex (MHC) is most closely associated with nasopharyngeal carcinoma (NPC), but the complexity of its genome structure has proven challenging for the discovery of causal MHC loci or genes. We conducted a targeted MHC sequencing in 40 Cantonese NPC patients followed by a two‐stage replication in 1065 NPC cases and 2137 controls of Southern Chinese descendent. Quantitative RT‐PCR analysis (qRT‐PCR) was used to detect gene expression status in 108 NPC and 43 noncancerous nasopharyngeal (NP) samples. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) were used to assess the transcription factor binding site. We discovered that a novel SNP rs117565607_A at TRIM26 displayed the strongest association (OR = 1.909, Pcombined = 2.750 × 10−19). We also observed that TRIM26 was significantly downregulated in NPC tissue samples with genotype AA/AT than TT. Immunohistochemistry (IHC) test also found the TRIM26 protein expression in NPC tissue samples with the genotype AA/AT was lower than TT. According to computational prediction, rs117565607 locus was a binding site for the transcription factor Yin Yang 1 (YY1). We observed that the luciferase activity of YY1 which is binding to the A allele of rs117565607 was suppressed. ChIP data showed that YY1 was binding with T not A allele. Significance analysis of microarray suggested that TRIM26 downregulation was related to low immune response in NPC. We have identified a novel gene TRIM26 and a novel SNP rs117565607_A associated with NPC risk by regulating transcriptional process and established a new functional link between TRIM26 downregulation and low immune response in NPC.
Collapse
Affiliation(s)
- Xiao-Ming Lyu
- Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Wei Zhu
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.,Institute of Aging Research and the Affiliated Hospital, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Manli Zhao
- Department of Pathology, School of Medicine, The Children Hospital of Zhejiang University, Hangzhou, China
| | - Xian-Bo Zuo
- Institute of Dermatology and Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Zhong-Xi Huang
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, China
| | - Xiao Liu
- Beijing Genome Institute (BGI), Shenzhen, China
| | - Tao Jiang
- Beijing Genome Institute (BGI), Shenzhen, China
| | - Xue-Xi Yang
- School of Biotechnology of Southern Medical University, Guangzhou, China
| | - Xin Li
- Clinical Laboratory, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiao-Bing Long
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Guo Wang
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jin-Bang Li
- Department of Pathology, Qingyuan People's Hospital, Qingyuan, China
| | - Ming-Yu Han
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Shuang Wang
- Department of Pathology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Teng-Fei Liu
- Department of Pathology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Bo Zhang
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tao Sun
- Suzhou Science& Technology Town Hospital, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhi Cheng
- Suzhou Science& Technology Town Hospital, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mo-Chang Qiu
- Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lu Zheng
- Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Long-Cheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, 303 Hospital of People's Liberation Army of China, Nanning, China
| | - Jia-Hong Wang
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, China
| | - Gan-Guan Wei
- Department of Otolaryngology-Head and Neck Surgery, 303 Hospital of People's Liberation Army of China, Nanning, China
| | - Kaitai Yao
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hou-Feng Zheng
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.,Institute of Aging Research and the Affiliated Hospital, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
63
|
Teng S, Thomson PA, McCarthy S, Kramer M, Muller S, Lihm J, Morris S, Soares DC, Hennah W, Harris S, Camargo LM, Malkov V, McIntosh AM, Millar JK, Blackwood DH, Evans KL, Deary IJ, Porteous DJ, McCombie WR. Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia. Mol Psychiatry 2018; 23:1270-1277. [PMID: 28630456 PMCID: PMC5984079 DOI: 10.1038/mp.2017.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWERacross), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWERacross P=0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWERacross P=0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.
Collapse
Affiliation(s)
- S Teng
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Biology, Howard University, Washington DC, USA
| | - P A Thomson
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Muller
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J Lihm
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Morris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D C Soares
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - W Hennah
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - S Harris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - L M Camargo
- UCB New Medicines, One Broadway, Cambridge, MA, USA
| | - V Malkov
- Genetics and Pharmacogenomics, MRL, Merck & Co, Boston, MA, USA
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J K Millar
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - K L Evans
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - D J Porteous
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
64
|
High-depth whole genome sequencing of an Ashkenazi Jewish reference panel: enhancing sensitivity, accuracy, and imputation. Hum Genet 2018; 137:343-355. [PMID: 29705978 DOI: 10.1007/s00439-018-1886-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/21/2018] [Indexed: 12/31/2022]
Abstract
While increasingly large reference panels for genome-wide imputation have been recently made available, the degree to which imputation accuracy can be enhanced by population-specific reference panels remains an open question. Here, we sequenced at full-depth (≥ 30×), across two platforms (Illumina X Ten and Complete Genomics, Inc.), a moderately large (n = 738) cohort of samples drawn from the Ashkenazi Jewish population. We developed a series of quality control steps to optimize sensitivity, specificity, and comprehensiveness of variant calls in the reference panel, and then tested the accuracy of imputation against target cohorts drawn from the same population. Quality control (QC) thresholds for the Illumina X Ten platform were identified that permitted highly accurate calling of single nucleotide variants across 94% of the genome. QC procedures also identified numerous regions that are poorly mapped using current reference or alternate assemblies. After stringent QC, the population-specific reference panel produced more accurate and comprehensive imputation results relative to publicly available, large cosmopolitan reference panels, especially in the range of rare variants that may be most critical to further progress in mapping of complex phenotypes. The population-specific reference panel also permitted enhanced filtering of clinically irrelevant variants from personal genomes.
Collapse
|
65
|
Corominas J, Colijn JM, Geerlings MJ, Pauper M, Bakker B, Amin N, Lores Motta L, Kersten E, Garanto A, Verlouw JAM, van Rooij JGJ, Kraaij R, de Jong PTVM, Hofman A, Vingerling JR, Schick T, Fauser S, de Jong EK, van Duijn CM, Hoyng CB, Klaver CCW, den Hollander AI. Whole-Exome Sequencing in Age-Related Macular Degeneration Identifies Rare Variants in COL8A1, a Component of Bruch's Membrane. Ophthalmology 2018; 125:1433-1443. [PMID: 29706360 PMCID: PMC6104593 DOI: 10.1016/j.ophtha.2018.03.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/19/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Genome-wide association studies and targeted sequencing studies of candidate genes have identified common and rare variants that are associated with age-related macular degeneration (AMD). Whole-exome sequencing (WES) studies allow a more comprehensive analysis of rare coding variants across all genes of the genome and will contribute to a better understanding of the underlying disease mechanisms. To date, the number of WES studies in AMD case-control cohorts remains scarce and sample sizes are limited. To scrutinize the role of rare protein-altering variants in AMD cause, we performed the largest WES study in AMD to date in a large European cohort consisting of 1125 AMD patients and 1361 control participants. DESIGN Genome-wide case-control association study of WES data. PARTICIPANTS One thousand one hundred twenty-five AMD patients and 1361 control participants. METHODS A single variant association test of WES data was performed to detect variants that are associated individually with AMD. The cumulative effect of multiple rare variants with 1 gene was analyzed using a gene-based CMC burden test. Immunohistochemistry was performed to determine the localization of the Col8a1 protein in mouse eyes. MAIN OUTCOME MEASURES Genetic variants associated with AMD. RESULTS We detected significantly more rare protein-altering variants in the COL8A1 gene in patients (22/2250 alleles [1.0%]) than in control participants (11/2722 alleles [0.4%]; P = 7.07×10-5). The association of rare variants in the COL8A1 gene is independent of the common intergenic variant (rs140647181) near the COL8A1 gene previously associated with AMD. We demonstrated that the Col8a1 protein localizes at Bruch's membrane. CONCLUSIONS This study supported a role for protein-altering variants in the COL8A1 gene in AMD pathogenesis. We demonstrated the presence of Col8a1 in Bruch's membrane, further supporting the role of COL8A1 variants in AMD pathogenesis. Protein-altering variants in COL8A1 may alter the integrity of Bruch's membrane, contributing to the accumulation of drusen and the development of AMD.
Collapse
Affiliation(s)
- Jordi Corominas
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna M Colijn
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maartje J Geerlings
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc Pauper
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bjorn Bakker
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Najaf Amin
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Laura Lores Motta
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost A M Verlouw
- Department Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen G J van Rooij
- Department Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert Kraaij
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands; Netherlands Consortium for Healthy Ageing (NCHA), Rotterdam, The Netherlands
| | - Paulus T V M de Jong
- Netherlands Institute of Neurosciences (NIN), Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Departments of Ophthalmology, Amsterdam Medical Center, Amsterdam, and Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Tina Schick
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
| | - Sascha Fauser
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany; Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelia M van Duijn
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
66
|
IMSindel: An accurate intermediate-size indel detection tool incorporating de novo assembly and gapped global-local alignment with split read analysis. Sci Rep 2018; 8:5608. [PMID: 29618752 PMCID: PMC5884821 DOI: 10.1038/s41598-018-23978-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/23/2018] [Indexed: 11/23/2022] Open
Abstract
Insertions and deletions (indels) have been implicated in dozens of human diseases through the radical alteration of gene function by short frameshift indels as well as long indels. However, the accurate detection of these indels from next-generation sequencing data is still challenging. This is particularly true for intermediate-size indels (≥50 bp), due to the short DNA sequencing reads. Here, we developed a new method that predicts intermediate-size indels using BWA soft-clipped fragments (unmatched fragments in partially mapped reads) and unmapped reads. We report the performance comparison of our method, GATK, PINDEL and ScanIndel, using whole exome sequencing data from the same samples. False positive and false negative counts were determined through Sanger sequencing of all predicted indels across these four methods. The harmonic mean of the recall and precision, F-measure, was used to measure the performance of each method. Our method achieved the highest F-measure of 0.84 in one sample, compared to 0.56 for GATK, 0.52 for PINDEL and 0.46 for ScanIndel. Similar results were obtained in additional samples, demonstrating that our method was superior to the other methods for detecting intermediate-size indels. We believe that this methodology will contribute to the discovery of intermediate-size indels associated with human disease.
Collapse
|
67
|
Zhang B, Chen MY, Shen YJ, Zhuo XB, Gao P, Zhou FS, Liang B, Zu J, Zhang Q, Suleman S, Xu YH, Xu MG, Xu JK, Liu CC, Giannareas N, Xia JH, Zhao Y, Huang ZL, Yang Z, Cheng HD, Li N, Hong YY, Li W, Zhang MJ, Yu KD, Li G, Sun MH, Chen ZD, Wei GH, Shao ZM. A Large-Scale, Exome-Wide Association Study of Han Chinese Women Identifies Three Novel Loci Predisposing to Breast Cancer. Cancer Res 2018; 78:3087-3097. [PMID: 29572226 DOI: 10.1158/0008-5472.can-17-1721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/25/2017] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Bo Zhang
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China.
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Men-Yun Chen
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Jun Shen
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Xian-Bo Zhuo
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Ping Gao
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Fu-Sheng Zhou
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Bo Liang
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Jun Zu
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Qin Zhang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sufyan Suleman
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Yi-Hui Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Min-Gui Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jin-Kai Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Chen-Cheng Liu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Nikolaos Giannareas
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ji-Han Xia
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Yuan Zhao
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Zhong-Lian Huang
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Zhen Yang
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Huai-Dong Cheng
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Na Li
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Yan-Yan Hong
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Wei Li
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Min-Jun Zhang
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, China
| | - Guoliang Li
- Bio-Medical Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Meng-Hong Sun
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, China
| | - Zhen-Dong Chen
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, China.
| |
Collapse
|
68
|
Abel L, Fellay J, Haas DW, Schurr E, Srikrishna G, Urbanowski M, Chaturvedi N, Srinivasan S, Johnson DH, Bishai WR. Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives. THE LANCET. INFECTIOUS DISEASES 2018; 18:e64-e75. [DOI: 10.1016/s1473-3099(17)30623-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
|
69
|
Fry AE, Fawcett KA, Zelnik N, Yuan H, Thompson BAN, Shemer-Meiri L, Cushion TD, Mugalaasi H, Sims D, Stoodley N, Chung SK, Rees MI, Patel CV, Brueton LA, Layet V, Giuliano F, Kerr MP, Banne E, Meiner V, Lerman-Sagie T, Helbig KL, Kofman LH, Knight KM, Chen W, Kannan V, Hu C, Kusumoto H, Zhang J, Swanger SA, Shaulsky GH, Mirzaa GM, Muir AM, Mefford HC, Dobyns WB, Mackenzie AB, Mullins JGL, Lemke JR, Bahi-Buisson N, Traynelis SF, Iago HF, Pilz DT. De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain 2018; 141:698-712. [PMID: 29365063 PMCID: PMC5837214 DOI: 10.1093/brain/awx358] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/17/2017] [Accepted: 11/14/2017] [Indexed: 11/14/2022] Open
Abstract
Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria.
Collapse
Affiliation(s)
- Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Katherine A Fawcett
- MRC Computational Genomics Analysis and Training Programme (CGAT), MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Nathanel Zelnik
- Pediatric Neurology Unit, Carmel Medical Center, Haifa, Israel
- Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Belinda A N Thompson
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | - Thomas D Cushion
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Hood Mugalaasi
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - David Sims
- MRC Computational Genomics Analysis and Training Programme (CGAT), MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Neil Stoodley
- Department of Neuroradiology, North Bristol NHS Trust, Frenchay Hospital, Bristol BS16 1LE, UK
| | - Seo-Kyung Chung
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Mark I Rees
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Brisbane, Queensland 4029, Australia
| | - Louise A Brueton
- West Midlands Regional Genetics Service, Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham B15 2TG, UK
| | - Valérie Layet
- Service de Génétique Médicale, Groupe Hospitalier du Havre, Hôpital Jacques Monod, Le Havre, France
| | - Fabienne Giuliano
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Michael P Kerr
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
- Learning Disabilities Directorate, Abertawe Bro Morgannwg University NHS Trust, Treseder Way, Caerau, Cardiff CF5 5WF, UK
| | - Ehud Banne
- Clinical Genetics Institute, Kaplan Medical Centre, Rehovot, Israel
| | - Vardiella Meiner
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Tally Lerman-Sagie
- Pediatric Neurology Unit, Wolfson Medical Centre, Holon, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Katherine L Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura H Kofman
- Kaiser Permanente Mid-Atlantic States, McLean, VA 22102, USA
| | | | - Wenjuan Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Varun Kannan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chun Hu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hirofumi Kusumoto
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jin Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, the First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Sharon A Swanger
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gil H Shaulsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ghayda M Mirzaa
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98195, USA
| | - Alison M Muir
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - William B Dobyns
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98195, USA
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Amanda B Mackenzie
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Jonathan G L Mullins
- Genome and Structural Bioinformatics Group, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Johannes R Lemke
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig 04103, Germany
| | - Nadia Bahi-Buisson
- Imagine Institute, INSERM UMR-1163, Laboratory Genetics and Embryology of Congenital Malformations, Paris Descartes University, Paris, France
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Heledd F Iago
- Genome and Structural Bioinformatics Group, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Daniela T Pilz
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
70
|
Morimoto Y, Shimada-Sugimoto M, Otowa T, Yoshida S, Kinoshita A, Mishima H, Yamaguchi N, Mori T, Imamura A, Ozawa H, Kurotaki N, Ziegler C, Domschke K, Deckert J, Umekage T, Tochigi M, Kaiya H, Okazaki Y, Tokunaga K, Sasaki T, Yoshiura KI, Ono S. Whole-exome sequencing and gene-based rare variant association tests suggest that PLA2G4E might be a risk gene for panic disorder. Transl Psychiatry 2018; 8:41. [PMID: 29391400 PMCID: PMC5804028 DOI: 10.1038/s41398-017-0088-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/09/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022] Open
Abstract
Panic disorder (PD) is characterized by recurrent and unexpected panic attacks, subsequent anticipatory anxiety, and phobic avoidance. Recent epidemiological and genetic studies have revealed that genetic factors contribute to the pathogenesis of PD. We performed whole-exome sequencing on one Japanese family, including multiple patients with panic disorder, which identified seven rare protein-altering variants. We then screened these genes in a Japanese PD case-control group (384 sporadic PD patients and 571 controls), resulting in the detection of three novel single nucleotide variants as potential candidates for PD (chr15: 42631993, T>C in GANC; chr15: 42342861, G>T in PLA2G4E; chr20: 3641457, G>C in GFRA4). Statistical analyses of these three genes showed that PLA2G4E yielded the lowest p value in gene-based rare variant association tests by Efficient and Parallelizable Association Container Toolbox algorithms; however, the p value did not reach the significance threshold in the Japanese. Likewise, in a German case-control study (96 sporadic PD patients and 96 controls), PLA2G4E showed the lowest p value but again did not reach the significance threshold. In conclusion, we failed to find any significant variants or genes responsible for the development of PD. Nonetheless, our results still leave open the possibility that rare protein-altering variants in PLA2G4E contribute to the risk of PD, considering the function of this gene.
Collapse
Affiliation(s)
- Yoshiro Morimoto
- 0000 0000 8902 2273grid.174567.6Department of Neuropsychiatry, Unit of Translation Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan ,0000 0000 8902 2273grid.174567.6Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mihoko Shimada-Sugimoto
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Otowa
- grid.440938.2Graduate School of Clinical Psychology, Professional Degree Program in Clinical Psychology, Teikyo Heisei University, Tokyo, Japan
| | - Shintaro Yoshida
- 0000 0000 8902 2273grid.174567.6Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akira Kinoshita
- 0000 0000 8902 2273grid.174567.6Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Mishima
- 0000 0000 8902 2273grid.174567.6Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naohiro Yamaguchi
- 0000 0000 8902 2273grid.174567.6Department of Neuropsychiatry, Unit of Translation Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Akira Imamura
- 0000 0000 8902 2273grid.174567.6Department of Neuropsychiatry, Unit of Translation Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroki Ozawa
- 0000 0000 8902 2273grid.174567.6Department of Neuropsychiatry, Unit of Translation Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naohiro Kurotaki
- 0000 0000 8902 2273grid.174567.6Department of Neuropsychiatry, Unit of Translation Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Christiane Ziegler
- 0000 0001 1958 8658grid.8379.5Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany ,grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- 0000 0001 1958 8658grid.8379.5Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany ,grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Deckert
- 0000 0001 1958 8658grid.8379.5Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tadashi Umekage
- 0000 0001 2151 536Xgrid.26999.3dDivision for Environment, Health and Safety, The University of Tokyo, Tokyo, Japan
| | - Mamoru Tochigi
- 0000 0000 9239 9995grid.264706.1Department of Neuropsychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Hisanobu Kaiya
- Panic Disorder Research Center, Warakukai Med. Corp, Tokyo, Japan
| | - Yuji Okazaki
- Department of Psychiatry, Koseikai Michino-o Hospital, Nagasaki, Japan
| | - Katsushi Tokunaga
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Sasaki
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Koh-ichiro Yoshiura
- 0000 0000 8902 2273grid.174567.6Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinji Ono
- Department of Neuropsychiatry, Unit of Translation Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan. .,Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan. .,Aino-Ariake Hospital, Unzen, Nagasaki, Japan.
| |
Collapse
|
71
|
Lata S, Marasa M, Li Y, Fasel DA, Groopman E, Jobanputra V, Rasouly H, Mitrotti A, Westland R, Verbitsky M, Nestor J, Slater LM, D'Agati V, Zaniew M, Materna-Kiryluk A, Lugani F, Caridi G, Rampoldi L, Mattoo A, Newton CA, Rao MK, Radhakrishnan J, Ahn W, Canetta PA, Bomback AS, Appel GB, Antignac C, Markowitz GS, Garcia CK, Kiryluk K, Sanna-Cherchi S, Gharavi AG. Whole-Exome Sequencing in Adults With Chronic Kidney Disease: A Pilot Study. Ann Intern Med 2018; 168:100-109. [PMID: 29204651 PMCID: PMC5947852 DOI: 10.7326/m17-1319] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The utility of whole-exome sequencing (WES) for the diagnosis and management of adult-onset constitutional disorders has not been adequately studied. Genetic diagnostics may be advantageous in adults with chronic kidney disease (CKD), in whom the cause of kidney failure often remains unknown. OBJECTIVE To study the diagnostic utility of WES in a selected referral population of adults with CKD. DESIGN Observational cohort. SETTING A major academic medical center. PATIENTS 92 adults with CKD of unknown cause or familial nephropathy or hypertension. MEASUREMENTS The diagnostic yield of WES and its potential effect on clinical management. RESULTS Whole-exome sequencing provided a diagnosis in 22 of 92 patients (24%), including 9 probands with CKD of unknown cause and encompassing 13 distinct genetic disorders. Among these, loss-of-function mutations were identified in PARN in 2 probands with tubulointerstitial fibrosis. PARN mutations have been implicated in a short telomere syndrome characterized by lung, bone marrow, and liver fibrosis; these findings extend the phenotype of PARN mutations to renal fibrosis. In addition, review of the American College of Medical Genetics actionable genes identified a pathogenic BRCA2 mutation in a proband who was diagnosed with breast cancer on follow-up. The results affected clinical management in most identified cases, including initiation of targeted surveillance, familial screening to guide donor selection for transplantation, and changes in therapy. LIMITATION The small sample size and recruitment at a tertiary care academic center limit generalizability of findings among the broader CKD population. CONCLUSION Whole-exome sequencing identified diagnostic mutations in a substantial number of adults with CKD of many causes. Further study of the utility of WES in the evaluation and care of patients with CKD in additional settings is warranted. PRIMARY FUNDING SOURCE New York State Empire Clinical Research Investigator Program, Renal Research Institute, and National Human Genome Research Institute of the National Institutes of Health.
Collapse
Affiliation(s)
- Sneh Lata
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Maddalena Marasa
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Yifu Li
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - David A Fasel
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Emily Groopman
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Vaidehi Jobanputra
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Hila Rasouly
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Adele Mitrotti
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Rik Westland
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Miguel Verbitsky
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Jordan Nestor
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Lindsey M Slater
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Vivette D'Agati
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Marcin Zaniew
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Anna Materna-Kiryluk
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Francesca Lugani
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Gianluca Caridi
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Luca Rampoldi
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Aditya Mattoo
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Chad A Newton
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Maya K Rao
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Jai Radhakrishnan
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Wooin Ahn
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Pietro A Canetta
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Andrew S Bomback
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Gerald B Appel
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Corinne Antignac
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Glen S Markowitz
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Christine K Garcia
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Krzysztof Kiryluk
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Simone Sanna-Cherchi
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| | - Ali G Gharavi
- From Columbia University, New York, New York; VU University Medical Center, Amsterdam, the Netherlands; Nephrology Associates, Newark, Delaware; Krysiewicza Children's Hospital, Poznań, Poland; Poznań University of Medical Sciences and Center for Medical Genetics GENESIS, Poznań, Poland; IRCCS Giannina Gaslini Children's Hospital, Genova, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; New York University School of Medicine, New York, New York; University of Texas Southwestern Medical Center, Dallas, Texas; and French Institute of Health and Medical Research (INSERM) U1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and Necker Hospital, Paris, France
| |
Collapse
|
72
|
Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, Guo X, Hendricks AE, Karaderi T, Lempradl A, Locke AE, Mahajan A, Marouli E, Sivapalaratnam S, Young KL, Alfred T, Feitosa MF, Masca NGD, Manning AK, Medina-Gomez C, Mudgal P, Ng MCY, Reiner AP, Vedantam S, Willems SM, Winkler TW, Abecasis G, Aben KK, Alam DS, Alharthi SE, Allison M, Amouyel P, Asselbergs FW, Auer PL, Balkau B, Bang LE, Barroso I, Bastarache L, Benn M, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Brumat M, Burt AA, Butterworth AS, Campbell PT, Cappellani S, Carey DJ, Catamo E, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Cocca M, Collins FS, Cook JP, Corley J, Corominas Galbany J, Cox AJ, Crosslin DS, Cuellar-Partida G, D'Eustacchio A, Danesh J, Davies G, Bakker PIW, Groot MCH, Mutsert R, Deary IJ, Dedoussis G, Demerath EW, Heijer M, Hollander AI, Ruijter HM, Dennis JG, Denny JC, Di Angelantonio E, Drenos F, Du M, Dubé MP, Dunning AM, Easton DF, et alTurcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, Guo X, Hendricks AE, Karaderi T, Lempradl A, Locke AE, Mahajan A, Marouli E, Sivapalaratnam S, Young KL, Alfred T, Feitosa MF, Masca NGD, Manning AK, Medina-Gomez C, Mudgal P, Ng MCY, Reiner AP, Vedantam S, Willems SM, Winkler TW, Abecasis G, Aben KK, Alam DS, Alharthi SE, Allison M, Amouyel P, Asselbergs FW, Auer PL, Balkau B, Bang LE, Barroso I, Bastarache L, Benn M, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Brumat M, Burt AA, Butterworth AS, Campbell PT, Cappellani S, Carey DJ, Catamo E, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Cocca M, Collins FS, Cook JP, Corley J, Corominas Galbany J, Cox AJ, Crosslin DS, Cuellar-Partida G, D'Eustacchio A, Danesh J, Davies G, Bakker PIW, Groot MCH, Mutsert R, Deary IJ, Dedoussis G, Demerath EW, Heijer M, Hollander AI, Ruijter HM, Dennis JG, Denny JC, Di Angelantonio E, Drenos F, Du M, Dubé MP, Dunning AM, Easton DF, Edwards TL, Ellinghaus D, Ellinor PT, Elliott P, Evangelou E, Farmaki AE, Farooqi IS, Faul JD, Fauser S, Feng S, Ferrannini E, Ferrieres J, Florez JC, Ford I, Fornage M, Franco OH, Franke A, Franks PW, Friedrich N, Frikke-Schmidt R, Galesloot TE, Gan W, Gandin I, Gasparini P, Gibson J, Giedraitis V, Gjesing AP, Gordon-Larsen P, Gorski M, Grabe HJ, Grant SFA, Grarup N, Griffiths HL, Grove ML, Gudnason V, Gustafsson S, Haessler J, Hakonarson H, Hammerschlag AR, Hansen T, Harris KM, Harris TB, Hattersley AT, Have CT, Hayward C, He L, Heard-Costa NL, Heath AC, Heid IM, Helgeland Ø, Hernesniemi J, Hewitt AW, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Huang PL, Huffman JE, Ikram MA, Ingelsson E, Jackson AU, Jansson JH, Jarvik GP, Jensen GB, Jia Y, Johansson S, Jørgensen ME, Jørgensen T, Jukema JW, Kahali B, Kahn RS, Kähönen M, Kamstrup PR, Kanoni S, Kaprio J, Karaleftheri M, Kardia SLR, Karpe F, Kathiresan S, Kee F, Kiemeney LA, Kim E, Kitajima H, Komulainen P, Kooner JS, Kooperberg C, Korhonen T, Kovacs P, Kuivaniemi H, Kutalik Z, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange EM, Lange LA, Langenberg C, Larson EB, Lee NR, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin H, Lin KH, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Liu Y, Lo KS, Lophatananon A, Lotery AJ, Loukola A, Luan J, Lubitz SA, Lyytikäinen LP, Männistö S, Marenne G, Mazul AL, McCarthy MI, McKean-Cowdin R, Medland SE, Meidtner K, Milani L, Mistry V, Mitchell P, Mohlke KL, Moilanen L, Moitry M, Montgomery GW, Mook-Kanamori DO, Moore C, Mori TA, Morris AD, Morris AP, Müller-Nurasyid M, Munroe PB, Nalls MA, Narisu N, Nelson CP, Neville M, Nielsen SF, Nikus K, Njølstad PR, Nordestgaard BG, Nyholt DR, O'Connel JR, O'Donoghue ML, Olde Loohuis LM, Ophoff RA, Owen KR, Packard CJ, Padmanabhan S, Palmer CNA, Palmer ND, Pasterkamp G, Patel AP, Pattie A, Pedersen O, Peissig PL, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Person TN, Peters A, Petersen ERB, Peyser PA, Pirie A, Polasek O, Polderman TJ, Puolijoki H, Raitakari OT, Rasheed A, Rauramaa R, Reilly DF, Renström F, Rheinberger M, Ridker PM, Rioux JD, Rivas MA, Roberts DJ, Robertson NR, Robino A, Rolandsson O, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Sapkota Y, Sattar N, Schoen RE, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe MP, Shah SH, Sheu WHH, Sim X, Slater AJ, Small KS, Smith AV, Southam L, Spector TD, Speliotes EK, Starr JM, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swift AJ, Tada H, Tansey KE, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Tromp G, Trompet S, Tsafantakis E, Tuomilehto J, Tybjaerg-Hansen A, Tyrer JP, Uher R, Uitterlinden AG, Uusitupa M, Laan SW, Duijn CM, Leeuwen N, van Setten J, Vanhala M, Varbo A, Varga TV, Varma R, Velez Edwards DR, Vermeulen SH, Veronesi G, Vestergaard H, Vitart V, Vogt TF, Völker U, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wang Y, Ware EB, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Witte DR, Wood AR, Wu Y, Yaghootkar H, Yao J, Yao P, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zhao W, Zhou W, Zondervan KT, Rotter JI, Pospisilik JA, Rivadeneira F, Borecki IB, Deloukas P, Frayling TM, Lettre G, North KE, Lindgren CM, Hirschhorn JN, Loos RJF. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet 2018; 50:26-41. [PMID: 29273807 PMCID: PMC5945951 DOI: 10.1038/s41588-017-0011-x] [Show More Authors] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/15/2017] [Indexed: 02/02/2023]
Abstract
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
Collapse
Affiliation(s)
- Valérie Turcot
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Human Genetics Center, University of Texas School of Public Health, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudia Schurmann
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca S Fine
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan P Bradfield
- Center for Applied Genomics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Quantinuum Research, LLC, San Diego, CA, USA
| | - Tõnu Esko
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Audrey E Hendricks
- Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, CO, USA
| | - Tugce Karaderi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Adelheid Lempradl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Adam E Locke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Suthesh Sivapalaratnam
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
- Massachusetts General Hospital, Boston, MA, USA
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Tamuno Alfred
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Alisa K Manning
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Poorva Mudgal
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie C Y Ng
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sailaja Vedantam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Gonçalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Katja K Aben
- Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dewan S Alam
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Sameer E Alharthi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Matthew Allison
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Philippe Amouyel
- INSERM U1167, Lille, France
- Institut Pasteur de Lille, U1167, Lille, France
- Université de Lille, U1167, RID-AGE, Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Beverley Balkau
- INSERM U1018, Centre de Recherche en Épidémiologie et Santé des Populations (CESP), Villejuif, France
| | - Lia E Bang
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Hinxton, UK
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Marianne Benn
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Blüher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Eric Boerwinkle
- School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Gerome Breen
- MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, UK
| | | | - Linda Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marco Brumat
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Amber A Burt
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Peter T Campbell
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Stefania Cappellani
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - David J Carey
- Weis Center for Research, Geisinger Health System, Danville, PA, USA
| | - Eulalia Catamo
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John C Chambers
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Daniel I Chasman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Audrey Y Chu
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Genetics and Pharmacogenomics, Merck, Sharp & Dohme, Boston, MA, USA
| | - Massimiliano Cocca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Jordi Corominas Galbany
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amanda J Cox
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - David S Crosslin
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | - Gabriel Cuellar-Partida
- Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Angela D'Eustacchio
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - John Danesh
- Wellcome Trust Sanger Institute, Hinxton, UK
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gail Davies
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Paul I W Bakker
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark C H Groot
- Department of Clinical Chemistry and Haematology, Division of Laboratory and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Division Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Renée Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian J Deary
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Martin Heijer
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Anneke I Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hester M Ruijter
- Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joe G Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Josh C Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Emanuele Di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Fotios Drenos
- Institute of Cardiovascular Science, University College London, London, UK
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Mengmeng Du
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Patrick T Ellinor
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Sascha Fauser
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Shuang Feng
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ele Ferrannini
- CNR Institute of Clinical Physiology, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jean Ferrieres
- Toulouse University School of Medicine, Toulouse, France
| | - Jose C Florez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
| | - Ian Ford
- University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmo, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå, Sweden
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ruth Frikke-Schmidt
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tessel E Galesloot
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wei Gan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Jane Gibson
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | | | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Penny Gordon-Larsen
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Struan F A Grant
- Center for Applied Genomics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helen L Griffiths
- Vision Sciences, Clinical Neurosciences Research Group, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Megan L Grove
- School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anke R Hammerschlag
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kathleen Mullan Harris
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Sociology, University of North Carolina, Chapel Hill, NC, USA
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, US National Institutes of Health, Bethesda, MD, USA
| | | | - Christian T Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Nancy L Heard-Costa
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Øyvind Helgeland
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jussi Hernesniemi
- Department of Cardiology, Heart Center, Tampere University Hospital and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Ophthalmology and Vision Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - Oddgeir L Holmen
- KG Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - G Kees Hovingh
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
| | - Joanna M M Howson
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Yao Hu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | | | - Jennifer E Huffman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jan-Håkan Jansson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Research Unit Skellefteå, Skellefteå, Sweden
| | - Gail P Jarvik
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gorm B Jensen
- Copenhagen City Heart Study, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Yucheng Jia
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stefan Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marit E Jørgensen
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Torben Jørgensen
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Bratati Kahali
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mika Kähönen
- Department of Clinical Physiology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Pia R Kamstrup
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Sekar Kathiresan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health Research, Queens University Belfast, Belfast, UK
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric Kim
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hidetoshi Kitajima
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Jaspal S Kooner
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tellervo Korhonen
- Department of Public Health, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Peter Kovacs
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Helena Kuivaniemi
- Weis Center for Research, Geisinger Health System, Danville, PA, USA
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Kari Kuulasmaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - David Lamparter
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ethan M Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Leslie A Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Nanette R Lee
- Department of Anthropology, Sociology and History, University of San Carlos, Cebu City, Philippines
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Cora E Lewis
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huaixing Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Jin Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Honghuang Lin
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Keng-Hung Lin
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-An Lin
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xu Lin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Jaana Lindström
- National Institute for Health and Welfare, Helsinki, Finland
| | - Allan Linneberg
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yongmei Liu
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ken S Lo
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK
| | - Andrew J Lotery
- Vision Sciences, Clinical Neurosciences Research Group, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anu Loukola
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Steven A Lubitz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | | | - Angela L Mazul
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Roberta McKean-Cowdin
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Vanisha Mistry
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Paul Mitchell
- Westmead Millennium Institute of Medical Research, Centre for Vision Research and Department of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Leena Moilanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Marie Moitry
- Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France
- Department of Public Health, University Hospital of Strasbourg, Strasbourg, France
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Carmel Moore
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Trevor A Mori
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Andrew D Morris
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Großhadern, Ludwig-Maximilians-Universitat, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, US National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Sune F Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Pål R Njølstad
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dale R Nyholt
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jeffrey R O'Connel
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle L O'Donoghue
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roel A Ophoff
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | | | | | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, UK
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Clinical Chemistry and Hematology, Division of Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aniruddh P Patel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Craig E Pennell
- School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| | - Markus Perola
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
| | - James A Perry
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Annette Peters
- German Center for Diabetes Research, Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Eva R B Petersen
- Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ailith Pirie
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ozren Polasek
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- School of Medicine, University of Split, Split, Croatia
| | - Tinca J Polderman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Hannu Puolijoki
- Central Hospital of Southern Ostrobothnia, Seinäjoki, Finland
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck, Sharp & Dohme, Boston, MA, USA
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmo, Sweden
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | - Myriam Rheinberger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John D Rioux
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Manuel A Rivas
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - David J Roberts
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant-Oxford Centre, Oxford, UK
- BRC Haematology Theme and Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Public Health and Clinical Medicine, Unit of Family Medicine, Umeå University, Umeå, Sweden
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Danish Saleheen
- Centre for Non-Communicable Diseases, Karachi, Pakistan
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Yadav Sapkota
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Robert E Schoen
- Departments of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Marcelo P Segura-Lepe
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Svati H Shah
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Wayne H-H Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
| | - Andrew J Slater
- Genetics, Target Sciences, GlaxoSmithKline, Research Triangle Park, NC, USA
- OmicSoft at Qiagen Company, Cary, NC, USA
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Albert V Smith
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Lorraine Southam
- Wellcome Trust Sanger Institute, Hinxton, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Elizabeth K Speliotes
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Kari Stefansson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | | | - Kathleen E Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Stumvoll
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Liang Sun
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Amy J Swift
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Hayato Tada
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Kanazawa University, Kanazawa, Japan
| | - Katherine E Tansey
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Unnur Thorsteinsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | - Betina H Thuesen
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | - Anke Tönjes
- Center for Pediatric Research, Department for Women's and Child Health, University of Leipzig, Leipzig, Germany
| | - Gerard Tromp
- Weis Center for Research, Geisinger Health System, Danville, PA, USA
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jaakko Tuomilehto
- National Institute for Health and Welfare, Helsinki, Finland
- Centre for Vascular Prevention, Danube University Krems, Krems, Austria
- Dasman Diabetes Institute, Dasman, Kuwait
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anne Tybjaerg-Hansen
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Sander W Laan
- Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelia M Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nienke Leeuwen
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica van Setten
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mauno Vanhala
- Primary Health Care Unit, Central Hospital of Central Finland, Jyväskylä, Finland
- Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland
| | - Anette Varbo
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmo, Sweden
| | - Rohit Varma
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Digna R Velez Edwards
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Sita H Vermeulen
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giovanni Veronesi
- Research Center on Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Thomas F Vogt
- Cardiometabolic Disease, Merck, Sharp & Dohme, Kenilworth, NJ, USA
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Walker
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle, UK
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Feijie Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Carol A Wang
- School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yiqin Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Erin B Ware
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dawn M Waterworth
- Genetics, Target Sciences, GlaxoSmithKline, King of Prussia, PA, USA
| | - Jennifer Wessel
- Departments of Epidemiology and Medicine, Diabetes Translational Research Center, Fairbanks School of Public Health and School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Harvey D White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniel R Witte
- Danish Diabetes Academy, Odense, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Pang Yao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Laura M Yerges-Armstrong
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- GlaxoSmithKline, King of Prussia, PA, USA
| | - Robin Young
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- University of Glasgow, Glasgow, UK
| | | | - Xiaowei Zhan
- Department of Clinical Sciences, Quantitative Biomedical Research Center, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weihua Zhang
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Krina T Zondervan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Endometriosis CaRe Centre, Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - John A Pospisilik
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ingrid B Borecki
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Guillaume Lettre
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Kari E North
- Department of Epidemiology and Carolina Center of Genome Sciences, Chapel Hill, NC, USA
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford, UK
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
73
|
Lin JR, Zhang Q, Cai Y, Morrow BE, Zhang ZD. Integrated rare variant-based risk gene prioritization in disease case-control sequencing studies. PLoS Genet 2017; 13:e1007142. [PMID: 29281626 PMCID: PMC5760082 DOI: 10.1371/journal.pgen.1007142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/09/2018] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Rare variants of major effect play an important role in human complex diseases and can be discovered by sequencing-based genome-wide association studies. Here, we introduce an integrated approach that combines the rare variant association test with gene network and phenotype information to identify risk genes implicated by rare variants for human complex diseases. Our data integration method follows a 'discovery-driven' strategy without relying on prior knowledge about the disease and thus maintains the unbiased character of genome-wide association studies. Simulations reveal that our method can outperform a widely-used rare variant association test method by 2 to 3 times. In a case study of a small disease cohort, we uncovered putative risk genes and the corresponding rare variants that may act as genetic modifiers of congenital heart disease in 22q11.2 deletion syndrome patients. These variants were missed by a conventional approach that relied on the rare variant association test alone. Case-control sequencing studies are a promising design to uncover risk genes of human complex diseases implicated by rare variants. The recent development of different types of rare variant association tests has improved the statistical power to identify disease genes that harbor risk rare variants. However, none of the recent sequencing-based genome-wide association studies identified robust disease association of rare variants or genes based on them. Due to limited sample sizes that can be feasibly achieved in real applications, current rare variant association tests can only generate marginal association signals for most risk genes. Here we proposed an integrated method that combined association signals with orthogonal biological evidence to uncover risk genes in sequencing studies. Designed to address the lack-of-power issue, our method was shown to effectively uncover risk genes with marginal association signals in data simulation. Indeed, in a real application demonstrated in our case study our method disclosed important risk genes of congenital heart disease in 22q11.2 deletion syndrome that were missed by the previous study.
Collapse
Affiliation(s)
- Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ying Cai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
74
|
Thistlethwaite FR, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr MU, El-Kassaby YA. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genomics 2017; 18:930. [PMID: 29197325 PMCID: PMC5712148 DOI: 10.1186/s12864-017-4258-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/01/2017] [Indexed: 11/11/2022] Open
Abstract
Background Genomic selection (GS) can offer unprecedented gains, in terms of cost efficiency and generation turnover, to forest tree selective breeding; especially for late expressing and low heritability traits. Here, we used: 1) exome capture as a genotyping platform for 1372 Douglas-fir trees representing 37 full-sib families growing on three sites in British Columbia, Canada and 2) height growth and wood density (EBVs), and deregressed estimated breeding values (DEBVs) as phenotypes. Representing models with (EBVs) and without (DEBVs) pedigree structure. Ridge regression best linear unbiased predictor (RR-BLUP) and generalized ridge regression (GRR) were used to assess their predictive accuracies over space (within site, cross-sites, multi-site, and multi-site to single site) and time (age-age/ trait-trait). Results The RR-BLUP and GRR models produced similar predictive accuracies across the studied traits. Within-site GS prediction accuracies with models trained on EBVs were high (RR-BLUP: 0.79–0.91 and GRR: 0.80–0.91), and were generally similar to the multi-site (RR-BLUP: 0.83–0.91, GRR: 0.83–0.91) and multi-site to single-site predictive accuracies (RR-BLUP: 0.79–0.92, GRR: 0.79–0.92). Cross-site predictions were surprisingly high, with predictive accuracies within a similar range (RR-BLUP: 0.79–0.92, GRR: 0.78–0.91). Height at 12 years was deemed the earliest acceptable age at which accurate predictions can be made concerning future height (age-age) and wood density (trait-trait). Using DEBVs reduced the accuracies of all cross-validation procedures dramatically, indicating that the models were tracking pedigree (family means), rather than marker-QTL LD. Conclusions While GS models’ prediction accuracies were high, the main driving force was the pedigree tracking rather than LD. It is likely that many more markers are needed to increase the chance of capturing the LD between causal genes and markers.
Collapse
Affiliation(s)
- Frances R Thistlethwaite
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Blaise Ratcliffe
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.,Scion (New Zealand Forest Research Institute Ltd.), 49 Sala Street, Whakarewarewa, Rotorua, 3046, New Zealand.,Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Praha 6, Czech Republic
| | - Ilga Porth
- Département des sciences du bois et de la forêt, Université Laval, QC, Québec, G1V 0A6, Canada
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078-3035, USA
| | - Michael U Stoehr
- British Columbia Ministry of Forests, Lands and Natural Resource Operations, Victoria, BC, V8W 9C2, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
75
|
Jansen IE, Gibbs JR, Nalls MA, Price TR, Lubbe S, van Rooij J, Uitterlinden AG, Kraaij R, Williams NM, Brice A, Hardy J, Wood NW, Morris HR, Gasser T, Singleton AB, Heutink P, Sharma M. Establishing the role of rare coding variants in known Parkinson's disease risk loci. Neurobiol Aging 2017; 59:220.e11-220.e18. [DOI: 10.1016/j.neurobiolaging.2017.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/13/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
|
76
|
Abstract
PURPOSE OF REVIEW In this paper, we review the progress made thus far in research related to the genetics of peripheral arterial disease (PAD) by detailing efforts to date in heritability, linkage analyses, and candidate gene studies. We further summarize more contemporary genome-wide association studies (GWAS) and epigenetic studies of PAD. Finally, we review current challenges and future avenues of advanced research in PAD genetics including whole genome sequencing studies. RECENT FINDINGS Studies have estimated the heritability of PAD to be moderate, though the contribution to this heritability that is independent of traditional cardiovascular risk factors remains unclear. Recent efforts have identified SNPs associated with PAD in GWAS analyses, but these have yet to be replicated in independent studies. Much remains to be discovered in the field of PAD genetics. An improved understanding of the genetic foundation for PAD will allow for earlier diagnosis of disease and a more complete pathophysiological understanding of the mechanisms of the disease leading to novel therapeutic interventions. Future avenues for success will likely arise from very large-scale GWAS, whole genome sequencing, and epigenetic studies involving very well-characterized cohorts.
Collapse
Affiliation(s)
- Nathan Belkin
- Division of Vascular and Endovascular Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Maloney, Philadelphia, PA, 19104, USA
| | - Scott M Damrauer
- Division of Vascular and Endovascular Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Maloney, Philadelphia, PA, 19104, USA. .,Department of Surgery, Corporal Michael Crescenz VA Medical Center, 3900 Woodland Ave., Philadelphia, PA, 19104, USA.
| |
Collapse
|
77
|
Qi Y, Zheng Y, Li Z, Xiong L. Progress in Genetic Studies of Tourette's Syndrome. Brain Sci 2017; 7:E134. [PMID: 29053637 PMCID: PMC5664061 DOI: 10.3390/brainsci7100134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Tourette's Syndrome (TS) is a complex disorder characterized by repetitive, sudden, and involuntary movements or vocalizations, called tics. Tics usually appear in childhood, and their severity varies over time. In addition to frequent tics, people with TS are at risk for associated problems including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, depression, and problems with sleep. TS occurs in most populations and ethnic groups worldwide, and it is more common in males than in females. Previous family and twin studies have shown that the majority of cases of TS are inherited. TS was previously thought to have an autosomal dominant pattern of inheritance. However, several decades of research have shown that this is unlikely the case. Instead TS most likely results from a variety of genetic and environmental factors, not changes in a single gene. In the past decade, there has been a rapid development of innovative genetic technologies and methodologies, as well as significant progresses in genetic studies of psychiatric disorders. In this review, we will briefly summarize previous genetic epidemiological studies of TS and related disorders. We will also review previous genetic studies based on genome-wide linkage analyses and candidate gene association studies to comment on problems of previous methodological and strategic issues. Our main purpose for this review will be to summarize the new genetic discoveries of TS based on novel genetic methods and strategies, such as genome-wide association studies (GWASs), whole exome sequencing (WES) and whole genome sequencing (WGS). We will also compare the new genetic discoveries of TS with other major psychiatric disorders in order to understand the current status of TS genetics and its relationship with other psychiatric disorders.
Collapse
Affiliation(s)
- Yanjie Qi
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| | - Yi Zheng
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Zhanjiang Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Lan Xiong
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
78
|
Abstract
Understanding the genetic risk factors for stroke is an essential step to decipher the underlying mechanisms, facilitate the identification of novel therapeutic targets, and optimize the design of prevention strategies. A very small proportion of strokes are attributable to monogenic conditions, the vast majority being multifactorial, with multiple genetic and environmental risk factors of small effect size. Genome-wide association studies and large international consortia have been instrumental in finding genetic risk factors for stroke. While initial studies identified risk loci for specific stroke subtypes, more recent studies also revealed loci associated with all stroke and all ischemic stroke. Risk loci for ischemic stroke and its subtypes have been implicated in atrial fibrillation (PITX2 and ZFHX3), coronary artery disease (ABO, chr9p21, HDAC9, and ALDH2), blood pressure (ALDH2 and HDAC9), pericyte and smooth muscle cell development (FOXF2), coagulation (HABP2), carotid plaque formation (MMP12), and neuro-inflammation (TSPAN2). For hemorrhagic stroke, two loci (APOE and PMF1) have been identified.
Collapse
Affiliation(s)
- Ganesh Chauhan
- Inserm U1219 Bordeaux Population Health Research Center, 146, rue Léo Saignat, 33000, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Stéphanie Debette
- Inserm U1219 Bordeaux Population Health Research Center, 146, rue Léo Saignat, 33000, Bordeaux, France. .,University of Bordeaux, Bordeaux, France. .,Department of Neurology, Bordeaux University Hospital, Bordeaux, France.
| |
Collapse
|
79
|
Moss DJH, Pardiñas AF, Langbehn D, Lo K, Leavitt BR, Roos R, Durr A, Mead S, Holmans P, Jones L, Tabrizi SJ. Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study. Lancet Neurol 2017; 16:701-711. [PMID: 28642124 DOI: 10.1016/s1474-4422(17)30161-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/20/2017] [Accepted: 04/13/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. METHODS We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008-11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003-13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. FINDINGS Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10-10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10-8DHFR p=8·37 × 10-7 MTRNR2L2 p=2·15 × 10-9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10-4DHFR p=8·45 × 10-4MTRNR2L2 p=1·20 × 10-3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10-8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16-0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06-0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. INTERPRETATION The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation. FUNDING The European Commission FP7 NeurOmics project; CHDI Foundation; the Medical Research Council UK; the Brain Research Trust; and the Guarantors of Brain.
Collapse
Affiliation(s)
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Douglas Langbehn
- Carver College of Medicine, Department of Psychiatry and Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Kitty Lo
- UCL Institute of Neurology, Department of Neurodegenerative Disease and UCL Genetics Institute, Division of Biosciences, University College London, London, UK
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Raymund Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Alexandra Durr
- ICM, Inserm U 1127, CNRS UMR 7225, UPMC Univ Paris 06 UMR S 1127, Sorbonne Universités, Paris, France; Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Simon Mead
- MRC Prion Unit, University College London, London, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, University College London, London, UK.
| |
Collapse
|
80
|
Pal LR, Kundu K, Yin Y, Moult J. CAGI4 Crohn's exome challenge: Marker SNP versus exome variant models for assigning risk of Crohn disease. Hum Mutat 2017; 38:1225-1234. [PMID: 28512778 PMCID: PMC5576730 DOI: 10.1002/humu.23256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
Understanding the basis of complex trait disease is a fundamental problem in human genetics. The CAGI Crohn's Exome challenges are providing insight into the adequacy of current disease models by requiring participants to identify which of a set of individuals has been diagnosed with the disease, given exome data. For the CAGI4 round, we developed a method that used the genotypes from exome sequencing data only to impute the status of genome wide association studies marker SNPs. We then used the imputed genotypes as input to several machine learning methods that had been trained to predict disease status from marker SNP information. We achieved the best performance using Naïve Bayes and with a consensus machine learning method, obtaining an area under the curve of 0.72, larger than other methods used in CAGI4. We also developed a model that incorporated the contribution from rare missense variants in the exome data, but this performed less well. Future progress is expected to come from the use of whole genome data rather than exomes.
Collapse
Affiliation(s)
- Lipika R. Pal
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850
| | - Kunal Kundu
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850
- Computational Biology, Bioinformatics and Genomics, Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Yizhou Yin
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850
- Computational Biology, Bioinformatics and Genomics, Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - John Moult
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
81
|
Lin X, Chen Z, Gao P, Gao Z, Chen H, Qi J, Liu F, Ye D, Jiang H, Na R, Yu H, Shi R, Lu D, Zheng SL, Mo Z, Sun Y, Ding Q, Xu J. TEX15: A DNA repair gene associated with prostate cancer risk in Han Chinese. Prostate 2017; 77:1271-1278. [PMID: 28730685 DOI: 10.1002/pros.23387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/22/2017] [Indexed: 11/12/2022]
Abstract
BACKGROUND Both common and rare genetic variants may contribute to risk of developing prostate cancer. Genome-wide association studies (GWASs) have identified ∼100 independent, common variants associated with prostate cancer risk. However, little is known about the association of rare variants (minor allele frequency [MAF] <1%) in the genome with prostate cancer risk. METHODS A two-stage study was used to test the association of rare, deleterious coding variants, annotated using predictive algorithms, with prostate cancer risk in Chinese men. Predicted rare, deleterious coding variants in the Illumina HumanExome-12 v1.1 beadchip were first evaluated in 1343 prostate cancer patients and 1008 controls. Significant variants were then validated in an additional 1816 prostate cancer patients and 1549 controls. RESULTS In the discovery stage, 14 predicted rare, deleterious coding variants were significantly associated with prostate cancer risk (P < 0.01). In the confirmation stage, Q1631H in TEX15 (rs142485241), a DNA repair gene, was significantly associated with prostate cancer risk (P = 0.0069). The estimated odds ratio (OR) of the variant in the combined analysis was 3.24 (95% Confidence Interval 1.85-6.06), P = 8.81 × 10-5 . Additionally, rs28756990 (V741F) at MLH3 (P = 0.06) and rs2961144 (I126V) at OR2A5 (P = 0.065) were marginally associated with prostate cancer risk in the replication stage. CONCLUSIONS Our study provided preliminary evidence that the rare variant Q1631H in DNA repair gene TEX15 is associated with prostate cancer risk. This finding complements known common prostate cancer risk-associated variants and suggests the possible role of DNA repair genes in prostate cancer development.
Collapse
Affiliation(s)
- Xiaoling Lin
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhongzhong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Gao
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhimei Gao
- Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Haitao Chen
- Center for Genomic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
| | - Jun Qi
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fang Liu
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haowen Jiang
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Na
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongjie Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Rong Shi
- School of Public Health, Shanghai Jiaotong University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Siqun Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Qiang Ding
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Xu
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
82
|
MIP-MAP: High-Throughput Mapping of Caenorhabditis elegans Temperature-Sensitive Mutants via Molecular Inversion Probes. Genetics 2017; 207:447-463. [PMID: 28827289 PMCID: PMC5629315 DOI: 10.1534/genetics.117.300179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/30/2017] [Indexed: 11/18/2022] Open
Abstract
Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans. Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2. We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures.
Collapse
|
83
|
Pedram P, Zhai G, Gulliver W, Zhang H, Sun G. Two novel candidate genes identified in adults from the Newfoundland population with addictive tendencies towards food. Appetite 2017; 115:71-79. [DOI: 10.1016/j.appet.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/06/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023]
|
84
|
Hemnes AR, Zhao M, West J, Newman JH, Rich S, Archer SL, Robbins IM, Blackwell TS, Cogan J, Loyd JE, Zhao Z, Gaskill C, Jetter C, Kropski JA, Majka SM, Austin ED. Critical Genomic Networks and Vasoreactive Variants in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 194:464-75. [PMID: 26926454 DOI: 10.1164/rccm.201508-1678oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Idiopathic pulmonary arterial hypertension (IPAH) is usually without an identified genetic cause, despite clinical and molecular similarity to bone morphogenetic protein receptor type 2 mutation-associated heritable pulmonary arterial hypertension (PAH). There is phenotypic heterogeneity in IPAH, with a minority of patients showing long-term improvement with calcium channel-blocker therapy. OBJECTIVES We sought to identify gene variants (GVs) underlying IPAH and determine whether GVs differ in vasodilator-responsive IPAH (VR-PAH) versus vasodilator-nonresponsive IPAH (VN-PAH). METHODS We performed whole-exome sequencing (WES) on 36 patients with IPAH: 17 with VR-PAH and 19 with VN-PAH. Wnt pathway differences were explored in human lung fibroblasts. MEASUREMENTS AND MAIN RESULTS We identified 1,369 genes with 1,580 variants unique to IPAH. We used a gene ontology approach to analyze variants and identified overrepresentation of several pathways, including cytoskeletal function and ion binding. By mapping WES data to prior genome-wide association study data, Wnt pathway genes were highlighted. Using the connectivity map to define genetic differences between VR-PAH and VN-PAH, we found enrichment in vascular smooth muscle cell contraction pathways and greater genetic variation in VR-PAH versus VN-PAH. Using human lung fibroblasts, we found increased stimulated Wnt activity in IPAH versus controls. CONCLUSIONS A pathway-based analysis of WES data in IPAH demonstrated multiple rare GVs that converge on key biological pathways, such as cytoskeletal function and Wnt signaling pathway. Vascular smooth muscle contraction-related genes were enriched in VR-PAH, suggesting a potentially different genetic predisposition for VR-PAH. This pathway-based approach may be applied to next-generation sequencing data in other diseases to uncover the contribution of unexpected or multiple GVs to a phenotype.
Collapse
Affiliation(s)
- Anna R Hemnes
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Min Zhao
- 2 Department of Biomedical Informatics
| | - James West
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine
| | - John H Newman
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Stuart Rich
- 3 Division of Cardiology, University of Chicago, Chicago, Illinois; and
| | - Stephen L Archer
- 4 Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ivan M Robbins
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine
| | | | - Joy Cogan
- 5 Department of Pediatric Medical Genetics, and
| | - James E Loyd
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine
| | | | | | | | | | | | - Eric D Austin
- 6 Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
85
|
Guey S, Kraemer M, Hervé D, Ludwig T, Kossorotoff M, Bergametti F, Schwitalla JC, Choi S, Broseus L, Callebaut I, Genin E, Tournier-Lasserve E. Rare RNF213 variants in the C-terminal region encompassing the RING-finger domain are associated with moyamoya angiopathy in Caucasians. Eur J Hum Genet 2017. [PMID: 28635953 DOI: 10.1038/ejhg.2017.92] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Moyamoya angiopathy (MMA) is a cerebral angiopathy affecting the terminal part of internal carotid arteries. Its prevalence is 10 times higher in Japan and Korea than in Europe. In East Asian countries, moyamoya is strongly associated to the R4810K variant in the RNF213 gene that encodes for a protein containing a RING-finger and two AAA+ domains. This variant has never been detected in Caucasian MMA patients, but several rare RNF213 variants have been reported in Caucasian cases. Using a collapsing test based on exome data from 68 European MMA probands and 573 ethnically matched controls, we showed a significant association between rare missense RNF213 variants and MMA in European patients (odds ratio (OR)=2.24, 95% confidence interval (CI)=(1.19-4.11), P=0.01). Variants specific to cases had higher pathogenicity predictive scores (median of 24.2 in cases versus 9.4 in controls, P=0.029) and preferentially clustered in a C-terminal hotspot encompassing the RING-finger domain of RNF213 (P<10-3). This association was even stronger when restricting the analysis to childhood-onset and familial cases (OR=4.54, 95% CI=(1.80-11.34), P=1.1 × 10-3). All clinically affected relatives who were genotyped were carriers. However, the need for additional factors to develop MMA is strongly suggested by the fact that only 25% of mutation carrier relatives were clinically affected.
Collapse
Affiliation(s)
- Stéphanie Guey
- Inserm UMR-S1161, Génétique et Physiopathologie des Maladies Cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Markus Kraemer
- Department of Neurology, Alfried-Krupp-Hospital, Essen, Germany
| | - Dominique Hervé
- Inserm UMR-S1161, Génétique et Physiopathologie des Maladies Cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP-HP, Groupe Hospitalier Saint-Louis Lariboisière, Service de Neurologie, Paris, France
| | - Thomas Ludwig
- Inserm U1078, Génétique, Génomique Fonctionnelle et Biotechnologies, Université de Bretagne Occidentale, CHU Brest, Brest, France
| | - Manoëlle Kossorotoff
- AP-HP, French Center for Pediatric Stroke and Pediatric Neurology Department, University Hospital Necker-Enfants malades, Paris, France
| | - Françoise Bergametti
- Inserm UMR-S1161, Génétique et Physiopathologie des Maladies Cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Simone Choi
- Inserm UMR-S1161, Génétique et Physiopathologie des Maladies Cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Lucile Broseus
- Inserm UMR-S1161, Génétique et Physiopathologie des Maladies Cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Isabelle Callebaut
- IMPMC, Sorbonne Universités-UMR CNRS 7590, UPMC Univ Paris 06, Museum d'Histoire Naturelle, IRD UMR 206, Paris, France
| | - Emmanuelle Genin
- Inserm U1078, Génétique, Génomique Fonctionnelle et Biotechnologies, Université de Bretagne Occidentale, CHU Brest, Brest, France
| | - Elisabeth Tournier-Lasserve
- Inserm UMR-S1161, Génétique et Physiopathologie des Maladies Cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP-HP, Service de Génétique Moléculaire Neurovasculaire, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'œil, Groupe Hospitalier Saint-Louis Lariboisière, Paris, France
| | | |
Collapse
|
86
|
Exome Analysis of Rare and Common Variants within the NOD Signaling Pathway. Sci Rep 2017; 7:46454. [PMID: 28422189 PMCID: PMC5396125 DOI: 10.1038/srep46454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/20/2017] [Indexed: 02/06/2023] Open
Abstract
Pediatric inflammatory bowel disease (pIBD) is a chronic heterogeneous disorder. This study looks at the burden of common and rare coding mutations within 41 genes comprising the NOD signaling pathway in pIBD patients. 136 pIBD and 106 control samples underwent whole-exome sequencing. We compared the burden of common, rare and private mutation between these two groups using the SKAT-O test. An independent replication cohort of 33 cases and 111 controls was used to validate significant findings. We observed variation in 40 of 41 genes comprising the NOD signaling pathway. Four genes were significantly associated with disease in the discovery cohort (BIRC2 p = 0.004, NFKB1 p = 0.005, NOD2 p = 0.029 and SUGT1 p = 0.047). Statistical significance was replicated for BIRC2 (p = 0.041) and NOD2 (p = 0.045) in an independent validation cohort. A gene based test on the combined discovery and replication cohort confirmed association for BIRC2 (p = 0.030). We successfully applied burden of mutation testing that jointly assesses common and rare variants, identifying two previously implicated genes (NFKB1 and NOD2) and confirmed a possible role in disease risk in a previously unreported gene (BIRC2). The identification of this novel gene provides a wider role for the inhibitor of apoptosis gene family in IBD pathogenesis.
Collapse
|
87
|
Estimating the selective effects of heterozygous protein-truncating variants from human exome data. Nat Genet 2017; 49:806-810. [PMID: 28369035 PMCID: PMC5618255 DOI: 10.1038/ng.3831] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/07/2017] [Indexed: 12/14/2022]
Abstract
The dispensability of individual genes for viability has interested generations of geneticists. For some genes it is essential to maintain two functional chromosomal copies, while others may tolerate the loss of one or both copies. Exome sequence data from 60,706 individuals provide sufficient observations of rare protein truncating variants (PTVs) to make genome-wide estimates of selection against heterozygous loss of gene function. The cumulative frequency of rare deleterious PTVs is primarily determined by the balance between incoming mutations and purifying selection rather than genetic drift. This enables the estimation of the genome-wide distribution of selection coefficients for heterozygous PTVs and corresponding Bayesian estimates for individual genes. The strength of selection can discriminate the severity, age of onset, and mode of inheritance in Mendelian exome sequencing cases. We find that genes under the strongest selection are enriched in embryonic lethal mouse knockouts, putatively cell-essential genes, Mendelian disease genes, and regulators of transcription. Screening by essentiality, we find a large set of genes under strong selection that likely have critical function but have not yet been extensively annotated in published literature.
Collapse
|
88
|
Hawi Z, Cummins TDR, Tong J, Arcos-Burgos M, Zhao Q, Matthews N, Newman DP, Johnson B, Vance A, Heussler HS, Levy F, Easteal S, Wray NR, Kenny E, Morris D, Kent L, Gill M, Bellgrove MA. Rare DNA variants in the brain-derived neurotrophic factor gene increase risk for attention-deficit hyperactivity disorder: a next-generation sequencing study. Mol Psychiatry 2017; 22:580-584. [PMID: 27457811 DOI: 10.1038/mp.2016.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/14/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a prevalent and highly heritable disorder of childhood with negative lifetime outcomes. Although candidate gene and genome-wide association studies have identified promising common variant signals, these explain only a fraction of the heritability of ADHD. The observation that rare structural variants confer substantial risk to psychiatric disorders suggests that rare variants might explain a portion of the missing heritability for ADHD. Here we believe we performed the first large-scale next-generation targeted sequencing study of ADHD in 152 child and adolescent cases and 188 controls across an a priori set of 117 genes. A multi-marker gene-level analysis of rare (<1% frequency) single-nucleotide variants (SNVs) revealed that the gene encoding brain-derived neurotrophic factor (BDNF) was associated with ADHD at Bonferroni corrected levels. Sanger sequencing confirmed the existence of all novel rare BDNF variants. Our results implicate BDNF as a genetic risk factor for ADHD, potentially by virtue of its critical role in neurodevelopment and synaptic plasticity.
Collapse
Affiliation(s)
- Z Hawi
- School of Psychological Sciences and Monash Institute for Cognitive and Clinical Neurosciences (MICCN), Monash University, Melbourne, VIC, Australia
| | - T D R Cummins
- School of Psychological Sciences and Monash Institute for Cognitive and Clinical Neurosciences (MICCN), Monash University, Melbourne, VIC, Australia
| | - J Tong
- School of Psychological Sciences and Monash Institute for Cognitive and Clinical Neurosciences (MICCN), Monash University, Melbourne, VIC, Australia
| | - M Arcos-Burgos
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Q Zhao
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - N Matthews
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - D P Newman
- School of Psychological Sciences and Monash Institute for Cognitive and Clinical Neurosciences (MICCN), Monash University, Melbourne, VIC, Australia
| | - B Johnson
- School of Psychological Sciences and Monash Institute for Cognitive and Clinical Neurosciences (MICCN), Monash University, Melbourne, VIC, Australia
| | - A Vance
- Academic Child Psychiatry Unit, Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
| | - H S Heussler
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - F Levy
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Child and Family East, Prince of Wales Hospital, Randwick, NSW, Australia
| | - S Easteal
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - N R Wray
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - E Kenny
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - D Morris
- Department of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - L Kent
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| | - M Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - M A Bellgrove
- School of Psychological Sciences and Monash Institute for Cognitive and Clinical Neurosciences (MICCN), Monash University, Melbourne, VIC, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
89
|
Heck A, Milnik A, Vukojevic V, Petrovska J, Egli T, Singer J, Escobar P, Sengstag T, Coynel D, Freytag V, Fastenrath M, Demougin P, Loos E, Hartmann F, Schicktanz N, Delarue Bizzini B, Vogler C, Kolassa IT, Wilker S, Elbert T, Schwede T, Beisel C, Beerenwinkel N, de Quervain DJF, Papassotiropoulos A. Exome sequencing of healthy phenotypic extremes links TROVE2 to emotional memory and PTSD. Nat Hum Behav 2017. [DOI: 10.1038/s41562-017-0081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
90
|
Whole-exome sequencing in individuals with multiple cardiovascular risk factors and normal coronary arteries. Coron Artery Dis 2017; 27:257-66. [PMID: 26905423 DOI: 10.1097/mca.0000000000000357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Most studies on the genes involved in coronary artery disease (CAD) targeted individuals with angiographically or clinically proven CAD. Focusing on high-risk individuals with normal coronary arteries (NCA) may offer novel insights into the pathogenesis of CAD. We aimed to identify genes putatively protective for development of CAD. METHODS Pooled whole-exome sequencing (WES) was performed on 17 patients with multiple cardiovascular risk factors and NCA and on 17 controls with multivessel CAD. Rare NCA-unique sequence variants were subsequently individually validated using the Fluidigm platform in 100 additional CAD controls and 100 general population controls. RESULTS In total, 555 100 variants were detected in at least one WES pool in the study group and in none of the control WES pools. For second phase validation, we focused on rare, nonsynonymous variants, resulting in a total of 144 variants in 40 genes, of which 96 were selected for subsequent genotyping. Validation phase genotyping resulted in 19 variants in 16 genes that were found in the NCA group and in none of the CAD controls. The SPTBN5, NID2, and ADAMTSL4 genes harbored sequence variants in more than one CAD-protected patient and none of the 117 CAD controls. CONCLUSION Applying WES technology and focusing on individuals seemingly protected from developing CAD successfully identified 19 variants that may offer protection from CAD by undetermined mechanisms. Studying the genetics of high-risk individuals apparently protected from CAD may provide novel insights into the pathogenesis of CAD.
Collapse
|
91
|
Laroussi N, Messaoud O, Chargui M, Ben Fayala C, Elahlafi A, Mokni M, Bashamboo A, McElreavey K, Boubaker MS, Yacoub Youssef H, Abdelhak S. Identification of a Novel Mutation of LAMB3 Gene in a Lybian Patient with Hereditary Epidermolysis Bullosa by Whole Exome Sequencing. Ann Dermatol 2017; 29:243-246. [PMID: 28392661 PMCID: PMC5383759 DOI: 10.5021/ad.2017.29.2.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Nadia Laroussi
- Biomedical Genomics and Oncogenetics Laboratory LR11IPT05, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Olfa Messaoud
- Biomedical Genomics and Oncogenetics Laboratory LR11IPT05, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mariem Chargui
- Biomedical Genomics and Oncogenetics Laboratory LR11IPT05, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Chaima Ben Fayala
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | | | - Mourad Mokni
- Department of Dermatology and Research Unit on Keratinization Disorders, La Rabta Hospital, Tunis, Tunisia
| | - Anu Bashamboo
- Unit of Genetics of Human Development, Institut Pasteur, Paris, France
| | | | - Mohamed Samir Boubaker
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Houda Yacoub Youssef
- Biomedical Genomics and Oncogenetics Laboratory LR11IPT05, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Biomedical Genomics and Oncogenetics Laboratory LR11IPT05, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
92
|
Whole-exome sequencing of 228 patients with sporadic Parkinson's disease. Sci Rep 2017; 7:41188. [PMID: 28117402 PMCID: PMC5259721 DOI: 10.1038/srep41188] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting 1% of the population over 65 years characterized clinically by both motor and non-motor symptoms accompanied by the preferential loss of dopamine neurons in the substantia nigra pars compacta. Here, we sequenced the exomes of 244 Parkinson's patients selected from the Oxford Parkinson's Disease Centre Discovery Cohort and, after quality control, 228 exomes were available for analyses. The PD patient exomes were compared to 884 control exomes selected from the UK10K datasets. No single non-synonymous (NS) single nucleotide variant (SNV) nor any gene carrying a higher burden of NS SNVs was significantly associated with PD status after multiple-testing correction. However, significant enrichments of genes whose proteins have roles in the extracellular matrix were amongst the top 300 genes with the most significantly associated NS SNVs, while regions associated with PD by a recent Genome Wide Association (GWA) study were enriched in genes containing PD-associated NS SNVs. By examining genes within GWA regions possessing rare PD-associated SNVs, we identified RAD51B. The protein-product of RAD51B interacts with that of its paralogue RAD51, which is associated with congenital mirror movements phenotypes, a phenotype also comorbid with PD.
Collapse
|
93
|
Kaur P, Gaikwad K. From Genomes to GENE-omes: Exome Sequencing Concept and Applications in Crop Improvement. FRONTIERS IN PLANT SCIENCE 2017; 8:2164. [PMID: 29312405 PMCID: PMC5742236 DOI: 10.3389/fpls.2017.02164] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/08/2017] [Indexed: 05/13/2023]
Abstract
Exome sequencing represents targeted capture and sequencing of 1-2% of 'high-value genomic regions' (subset of the genome) which are enriched for functional variants and harbors low level of repetitive regions. We discuss here an overview of exome sequencing, ways to approach plant exomes, and advantages and applicability of this powerful approach in deciphering functional regions of genomes. Though initially this approach was developed as an alternative to whole genome sequencing (WGS), but the multitude of benefits conferred by sequence capture via hybridization approaches created a niche for itself to solve many of biological riddles, particularly for resolving phylogenetic distances. The technique has also proved to be successful in understanding the basis of natural and induced molecular variation, marker development and developing genomic resources for complex, wild and non-model species, which are still intractable for WGS efforts. Thus, with profound applications of this powerful sequencing strategy, near future is expected to witness a collective expansion of both techniques, i.e., sequence capture via hybridization for evolutionary and ecological research and WGS approaches for its universal accessibility.
Collapse
|
94
|
Wu M, Chen T, Jiang R. Global inference of disease-causing single nucleotide variants from exome sequencing data. BMC Bioinformatics 2016; 17:468. [PMID: 28155632 PMCID: PMC5260102 DOI: 10.1186/s12859-016-1325-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Whole exome sequencing (WES) has recently emerged as an effective approach for identifying genetic variants underlying human diseases. However, considerable time and labour is needed for careful investigation of candidate variants. Although filtration based on population frequencies and functional prediction scores could effectively remove common and neutral variants, hundreds or even thousands of rare deleterious variants still remain. In addition, current WES platforms also provide variant information in flanking noncoding regions, such as promoters, introns and splice sites. Despite of being recognized to harbour causal variants, these regions are usually ignored by current analysis pipelines. Results We present a novel computational method, called Glints, to overcome the above limitations. Glints is capable of identifying disease-causing SNVs in both coding and flanking noncoding regions from exome sequencing data. The principle behind Glints is that disease-causing variants should manifest their effect at both variant and gene levels. Specifically, Glints integrates 14 types of functional scores, including predictions for both coding and noncoding variants, and 9 types of association scores, which help identifying disease relevant genes. We conducted a large-scale simulation studies based on 1000 Genomes Project data and demonstrated the effectiveness of our method in both coding and flanking noncoding regions. We also applied Glints in two real exome sequencing and demonstrated its effectiveness for uncovering disease-causing SNVs. Both standalone software and web server are available at our website http://bioinfo.au.tsinghua.edu.cn/jianglab/glints. Conclusions Glints is effective for uncovering disease-causing SNVs in coding and flanking noncoding regions, which is supported by both simulation and real case studies. Glints is expected to be a useful tool for human genetics research based on exome sequencing data. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1325-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengmeng Wu
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, Tsinghua National Laboratory for Information Science and Technology, Beijing, China.,Department of Computer Science, Tsinghua University, Beijing, China
| | - Ting Chen
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, Tsinghua National Laboratory for Information Science and Technology, Beijing, China.,Department of Computer Science, Tsinghua University, Beijing, China
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, Tsinghua National Laboratory for Information Science and Technology, Beijing, China. .,Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
95
|
Pulit SL, de With SAJ, de Bakker PIW. Resetting the bar: Statistical significance in whole-genome sequencing-based association studies of global populations. Genet Epidemiol 2016; 41:145-151. [PMID: 27990689 DOI: 10.1002/gepi.22032] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
Abstract
Genome-wide association studies (GWAS) of common disease have been hugely successful in implicating loci that modify disease risk. The bulk of these associations have proven robust and reproducible, in part due to community adoption of statistical criteria for claiming significant genotype-phenotype associations. As the cost of sequencing continues to drop, assembling large samples in global populations is becoming increasingly feasible. Sequencing studies interrogate not only common variants, as was true for genotyping-based GWAS, but variation across the full allele frequency spectrum, yielding many more (independent) statistical tests. We sought to empirically determine genome-wide significance thresholds for various analysis scenarios. Using whole-genome sequence data, we simulated sequencing-based disease studies of varying sample size and ancestry. We determined that future sequencing efforts in >2,000 samples of European, Asian, or admixed ancestry should set genome-wide significance at approximately P = 5 × 10-9 , and studies of African samples should apply a more stringent genome-wide significance threshold of P = 1 × 10-9 . Adoption of a revised multiple test correction will be crucial in avoiding irreproducible claims of association.
Collapse
Affiliation(s)
- Sara L Pulit
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sera A J de With
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul I W de Bakker
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
96
|
Kao PYP, Leung KH, Chan LWC, Yip SP, Yap MKH. Pathway analysis of complex diseases for GWAS, extending to consider rare variants, multi-omics and interactions. Biochim Biophys Acta Gen Subj 2016; 1861:335-353. [PMID: 27888147 DOI: 10.1016/j.bbagen.2016.11.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 11/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) is a major method for studying the genetics of complex diseases. Finding all sequence variants to explain fully the aetiology of a disease is difficult because of their small effect sizes. To better explain disease mechanisms, pathway analysis is used to consolidate the effects of multiple variants, and hence increase the power of the study. While pathway analysis has previously been performed within GWAS only, it can now be extended to examining rare variants, other "-omics" and interaction data. SCOPE OF REVIEW 1. Factors to consider in the choice of software for GWAS pathway analysis. 2. Examples of how pathway analysis is used to analyse rare variants, other "-omics" and interaction data. MAJOR CONCLUSIONS To choose appropriate software tools, factors for consideration include covariate compatibility, null hypothesis, one- or two-step analysis required, curation method of gene sets, size of pathways, and size of flanking regions to define gene boundaries. For rare variants, analysis performance depends on consistency between assumed and actual effect distribution of variants. Integration of other "-omics" data and interaction can better explain gene functions. GENERAL SIGNIFICANCE Pathway analysis methods will be more readily used for integration of multiple sources of data, and enable more accurate prediction of phenotypes.
Collapse
Affiliation(s)
- Patrick Y P Kao
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kim Hung Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Maurice K H Yap
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
97
|
Natarajan P, Bis JC, Bielak LF, Cox AJ, Dörr M, Feitosa MF, Franceschini N, Guo X, Hwang SJ, Isaacs A, Jhun MA, Kavousi M, Li-Gao R, Lyytikäinen LP, Marioni RE, Schminke U, Stitziel NO, Tada H, van Setten J, Smith AV, Vojinovic D, Yanek LR, Yao J, Yerges-Armstrong LM, Amin N, Baber U, Borecki IB, Carr JJ, Chen YDI, Cupples LA, de Jong PA, de Koning H, de Vos BD, Demirkan A, Fuster V, Franco OH, Goodarzi MO, Harris TB, Heckbert SR, Heiss G, Hoffmann U, Hofman A, Išgum I, Jukema JW, Kähönen M, Kardia SLR, Kral BG, Launer LJ, Massaro J, Mehran R, Mitchell BD, Mosley TH, de Mutsert R, Newman AB, Nguyen KD, North KE, O'Connell JR, Oudkerk M, Pankow JS, Peloso GM, Post W, Province MA, Raffield LM, Raitakari OT, Reilly DF, Rivadeneira F, Rosendaal F, Sartori S, Taylor KD, Teumer A, Trompet S, Turner ST, Uitterlinden AG, Vaidya D, van der Lugt A, Völker U, Wardlaw JM, Wassel CL, Weiss S, Wojczynski MK, Becker DM, Becker LC, Boerwinkle E, Bowden DW, Deary IJ, Dehghan A, Felix SB, Gudnason V, Lehtimäki T, Mathias R, Mook-Kanamori DO, Psaty BM, Rader DJ, Rotter JI, Wilson JG, van Duijn CM, Völzke H, Kathiresan S, Peyser PA, O'Donnell CJ. Multiethnic Exome-Wide Association Study of Subclinical Atherosclerosis. ACTA ACUST UNITED AC 2016; 9:511-520. [PMID: 27872105 DOI: 10.1161/circgenetics.116.001572] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND The burden of subclinical atherosclerosis in asymptomatic individuals is heritable and associated with elevated risk of developing clinical coronary heart disease. We sought to identify genetic variants in protein-coding regions associated with subclinical atherosclerosis and the risk of subsequent coronary heart disease. METHODS AND RESULTS We studied a total of 25 109 European ancestry and African ancestry participants with coronary artery calcification (CAC) measured by cardiac computed tomography and 52 869 participants with common carotid intima-media thickness measured by ultrasonography within the CHARGE Consortium (Cohorts for Heart and Aging Research in Genomic Epidemiology). Participants were genotyped for 247 870 DNA sequence variants (231 539 in exons) across the genome. A meta-analysis of exome-wide association studies was performed across cohorts for CAC and carotid intima-media thickness. APOB p.Arg3527Gln was associated with 4-fold excess CAC (P=3×10-10). The APOE ε2 allele (p.Arg176Cys) was associated with both 22.3% reduced CAC (P=1×10-12) and 1.4% reduced carotid intima-media thickness (P=4×10-14) in carriers compared with noncarriers. In secondary analyses conditioning on low-density lipoprotein cholesterol concentration, the ε2 protective association with CAC, although attenuated, remained strongly significant. Additionally, the presence of ε2 was associated with reduced risk for coronary heart disease (odds ratio 0.77; P=1×10-11). CONCLUSIONS Exome-wide association meta-analysis demonstrates that protein-coding variants in APOB and APOE associate with subclinical atherosclerosis. APOE ε2 represents the first significant association for multiple subclinical atherosclerosis traits across multiple ethnicities, as well as clinical coronary heart disease.
Collapse
|
98
|
Xu C, Wu K, Zhang JG, Shen H, Deng HW. Low-, high-coverage, and two-stage DNA sequencing in the design of the genetic association study. Genet Epidemiol 2016; 41:187-197. [PMID: 27813156 DOI: 10.1002/gepi.22015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/22/2016] [Accepted: 09/19/2016] [Indexed: 12/29/2022]
Abstract
Next-generation sequencing-based genetic association study (GAS) is a powerful tool to identify candidate disease variants and genomic regions. Although low-coverage sequencing offers low cost but inadequacy in calling rare variants, high coverage is able to detect essentially every variant but at a high cost. Two-stage sequencing may be an economical way to conduct GAS without losing power. In two-stage sequencing, an affordable number of samples are sequenced at high coverage as the reference panel, then to impute in a larger sample is sequenced at low coverage. As unit sequencing costs continue to decrease, investigators can now conduct GAS with more flexible sequencing depths. Here, we systematically evaluate the effect of the read depth and sample size on the variant discovery power and association power for study designs using low-coverage, high-coverage, and two-stage sequencing. We consider 12 low-coverage, 12 high-coverage, and 51 two-stage design scenarios with the read depth varying from 0.5× to 80×. With state-of-the-art simulation and analysis packages and in-house scripts, we simulate the complete study process from DNA sequencing to SNP (single nucleotide polymorphism) calling and association testing. Our results show that with appropriate allocation of sequencing effort, two-stage sequencing is an effective approach for conducting GAS. We provide practical guidelines for investigators to plan the optimum sequencing-based GAS including two-stage sequencing design given their specific constraints of sequencing investment.
Collapse
Affiliation(s)
- Chao Xu
- Department of Biostatistics and Bioinformatics, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Kehao Wu
- Department of Biostatistics and Bioinformatics, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Ji-Gang Zhang
- Department of Biostatistics and Bioinformatics, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Hui Shen
- Department of Biostatistics and Bioinformatics, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
99
|
Auer PL, Reiner AP, Wang G, Kang HM, Abecasis GR, Altshuler D, Bamshad MJ, Nickerson DA, Tracy RP, Rich SS, Leal SM, Leal SM. Guidelines for Large-Scale Sequence-Based Complex Trait Association Studies: Lessons Learned from the NHLBI Exome Sequencing Project. Am J Hum Genet 2016; 99:791-801. [PMID: 27666372 DOI: 10.1016/j.ajhg.2016.08.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Massively parallel whole-genome sequencing (WGS) data have ushered in a new era in human genetics. These data are now being used to understand the role of rare variants in complex traits and to advance the goals of precision medicine. The technological and computing advances that have enabled us to generate WGS data on thousands of individuals have also outpaced our ability to perform analyses in scientifically and statistically rigorous and thoughtful ways. The past several years have witnessed the application of whole-exome sequencing (WES) to complex traits and diseases. From our analysis of NHLBI Exome Sequencing Project (ESP) data, not only have a number of important disease and complex trait association findings emerged, but our collective experience offers some valuable lessons for WGS initiatives. These include caveats associated with generating automated pipelines for quality control and analysis of rare variants; the importance of studying minority populations; sample size requirements and efficient study designs for identifying rare-variant associations; and the significance of incidental findings in population-based genetic research. With the ESP as an example, we offer guidance and a framework on how to conduct a large-scale association study in the era of WGS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
100
|
Increasing Generality and Power of Rare-Variant Tests by Utilizing Extended Pedigrees. Am J Hum Genet 2016; 99:846-859. [PMID: 27666371 DOI: 10.1016/j.ajhg.2016.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 08/17/2016] [Indexed: 11/24/2022] Open
Abstract
Recently, multiple studies have performed whole-exome or whole-genome sequencing to identify groups of rare variants associated with complex traits and diseases. They have primarily utilized case-control study designs that often require thousands of individuals to reach acceptable statistical power. Family-based studies can be more powerful because a rare variant can be enriched in an extended pedigree and segregate with the phenotype. Although many methods have been proposed for using family data to discover rare variants involved in a disease, a majority of them focus on a specific pedigree structure and are designed to analyze either binary or continuously measured outcomes. In this article, we propose RareIBD, a general and powerful approach to identifying rare variants involved in disease susceptibility. Our method can be applied to large extended families of arbitrary structure, including pedigrees with only affected individuals. The method accommodates both binary and quantitative traits. A series of simulation experiments suggest that RareIBD is a powerful test that outperforms existing approaches. In addition, our method accounts for individuals in top generations, which are not usually genotyped in extended families. In contrast to available statistical tests, RareIBD generates accurate p values even when genetic data from these individuals are missing. We applied RareIBD, as well as other methods, to two extended family datasets generated by different genotyping technologies and representing different ethnicities. The analysis of real data confirmed that RareIBD is the only method that properly controls type I error.
Collapse
|