51
|
A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun 2017; 8:14659. [PMID: 28337975 PMCID: PMC5376670 DOI: 10.1038/ncomms14659] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
Mutations in the RYR1 gene cause severe myopathies. Mice with an I4895T mutation in the type 1 ryanodine receptor/Ca2+ release channel (RyR1) display muscle weakness and atrophy, but the underlying mechanisms are unclear. Here we show that the I4895T mutation in RyR1 decreases the amplitude of the sarcoplasmic reticulum (SR) Ca2+ transient, resting cytosolic Ca2+ levels, muscle triadin content and calsequestrin (CSQ) localization to the junctional SR, and increases endoplasmic reticulum (ER) stress/unfolded protein response (UPR) and mitochondrial ROS production. Treatment of mice carrying the I4895T mutation with a chemical chaperone, sodium 4-phenylbutyrate (4PBA), reduces ER stress/UPR and improves muscle function, but does not restore SR Ca2+ transients in I4895T fibres to wild type levels, suggesting that decreased SR Ca2+ release is not the major driver of the myopathy. These findings suggest that 4PBA, an FDA-approved drug, has potential as a therapeutic intervention for RyR1 myopathies that are associated with ER stress. Mutations in the RyR1 channel cause core myopathies. Here the authors show that ER stress and the unfolded protein response underlie the pathology caused by a common RyR1 channel mutation, and show that treatment with a chemical chaperone restores muscle function in mice.
Collapse
|
52
|
Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13:133-148. [PMID: 27739515 DOI: 10.1038/nrendo.2016.162] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Skeletal muscle extracts glucose from the blood to maintain demand for carbohydrates as an energy source during exercise. Such uptake involves complex molecular signalling processes that are distinct from those activated by insulin. Exercise-stimulated glucose uptake is preserved in insulin-resistant muscle, emphasizing exercise as a therapeutic cornerstone among patients with metabolic diseases such as diabetes mellitus. Exercise increases uptake of glucose by up to 50-fold through the simultaneous stimulation of three key steps: delivery, transport across the muscle membrane and intracellular flux through metabolic processes (glycolysis and glucose oxidation). The available data suggest that no single signal transduction pathway can fully account for the regulation of any of these key steps, owing to redundancy in the signalling pathways that mediate glucose uptake to ensure maintenance of muscle energy supply during physical activity. Here, we review the molecular mechanisms that regulate the movement of glucose from the capillary bed into the muscle cell and discuss what is known about their integrated regulation during exercise. Novel developments within the field of mass spectrometry-based proteomics indicate that the known regulators of glucose uptake are only the tip of the iceberg. Consequently, many exciting discoveries clearly lie ahead.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
53
|
Raffaello A, Mammucari C, Gherardi G, Rizzuto R. Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends Biochem Sci 2016; 41:1035-1049. [PMID: 27692849 DOI: 10.1016/j.tibs.2016.09.001] [Citation(s) in RCA: 379] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/29/2022]
Abstract
In recent years, rapid discoveries have been made relating to Ca2+ handling at specific organelles that have important implications for whole-cell Ca2+ homeostasis. In particular, the structures of the endoplasmic reticulum (ER) Ca2+ channels revealed by electron cryomicroscopy (cryo-EM), continuous updates on the structure, regulation, and role of the mitochondrial calcium uniporter (MCU) complex, and the analysis of lysosomal Ca2+ signaling are milestones on the route towards a deeper comprehension of the complexity of global Ca2+ signaling. In this review we summarize recent discoveries on the regulation of interorganellar Ca2+ homeostasis and its role in pathophysiology.
Collapse
Affiliation(s)
- Anna Raffaello
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; Neuroscience Institute, National Research Council, 35131 Padua, Italy.
| |
Collapse
|
54
|
Murayama T, Kurebayashi N, Ogawa H, Yamazawa T, Oyamada H, Suzuki J, Kanemaru K, Oguchi K, Iino M, Sakurai T. Genotype-Phenotype Correlations of Malignant Hyperthermia and Central Core Disease Mutations in the Central Region of the RYR1 Channel. Hum Mutat 2016; 37:1231-1241. [PMID: 27586648 DOI: 10.1002/humu.23072] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023]
Abstract
Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in some muscle diseases, including malignant hyperthermia (MH) and central core disease (CCD). Over 200 mutations associated with these diseases have been identified, and most mutations accelerate Ca2+ -induced Ca2+ release (CICR), resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, it remains largely unknown how specific mutations cause different phenotypes. In this study, we investigated the CICR activity of 14 mutations at 10 different positions in the central region of RYR1 (10 MH and four MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging, the mutant channels exhibited an enhanced sensitivity to caffeine, a reduced endoplasmic reticulum Ca2+ content, and an increased resting cytoplasmic Ca2+ level. The three parameters for CICR (Ca2+ sensitivity for activation, Ca2+ sensitivity for inactivation, and attainable maximum activity, i.e., gain) were obtained by [3 H]ryanodine binding and fitting analysis. The mutant channels showed increased gain and Ca2+ sensitivity for activation in a site-specific manner. Genotype-phenotype correlations were explained well by the near-atomic structure of RYR1. Our data suggest that divergent CICR activity may cause various disease phenotypes by specific mutations.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruo Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, Jikei University School of Medicine, Tokyo, Japan
| | - Hideto Oyamada
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Junji Suzuki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kanemaru
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuji Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
55
|
Jungbluth H, Dowling JJ, Ferreiro A, Muntoni F, Bönnemann C, Dirksen R, Faure J, Hamilton S, Hopkins P, Marks A, Marty I, Meilleur K, Riazi S, Sewry C, Treves S, Voermans N, Zorzato F. 217th ENMC International Workshop: RYR1-related myopathies, Naarden, The Netherlands, 29–31 January 2016. Neuromuscul Disord 2016; 26:624-33. [DOI: 10.1016/j.nmd.2016.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022]
|
56
|
Jungbluth H, Ochala J, Treves S, Gautel M. Current and future therapeutic approaches to the congenital myopathies. Semin Cell Dev Biol 2016; 64:191-200. [PMID: 27515125 DOI: 10.1016/j.semcdb.2016.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022]
Abstract
The congenital myopathies - including Central Core Disease (CCD), Multi-minicore Disease (MmD), Centronuclear Myopathy (CNM), Nemaline Myopathy (NM) and Congenital Fibre Type Disproportion (CFTD) - are a genetically heterogeneous group of early-onset neuromuscular conditions characterized by distinct histopathological features, and associated with a substantial individual and societal disease burden. Appropriate supportive management has substantially improved patient morbidity and mortality but there is currently no cure. Recent years have seen an exponential increase in the genetic and molecular understanding of these conditions, leading to the identification of underlying defects in proteins involved in calcium homeostasis and excitation-contraction coupling, thick/thin filament assembly and function, redox regulation, membrane trafficking and/or autophagic pathways. Based on these findings, specific therapies are currently being developed, or are already approaching the clinical trial stage. Despite undeniable progress, therapy development faces considerable challenges, considering the rarity and diversity of specific conditions, and the size and complexity of some of the genes and proteins involved. The present review will summarize the key genetic, histopathological and clinical features of specific congenital myopathies, and outline therapies already available or currently being developed in the context of known pathogenic mechanisms. The relevance of newly discovered molecular mechanisms and novel gene editing strategies for future therapy development will be discussed.
Collapse
Affiliation(s)
- Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section Biophysics and Cardiovascular Division, King's College BHF Centre of Research Excellence, United Kingdom; Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, United Kingdom.
| | - Julien Ochala
- Centre of Human and Aerospace Physiological Sciences, King's College London, United Kingdom
| | - Susan Treves
- Departments of Biomedicine and Anaesthesia, Basel University Hospital, 4031 Basel, Switzerland
| | - Mathias Gautel
- Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section Biophysics and Cardiovascular Division, King's College BHF Centre of Research Excellence, United Kingdom
| |
Collapse
|
57
|
Kumar A, Giri S, Kumar A. 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis. Cell Microbiol 2016; 18:1815-1830. [PMID: 27264993 DOI: 10.1111/cmi.12625] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/25/2016] [Accepted: 05/27/2016] [Indexed: 12/14/2022]
Abstract
The retina is considered to be the most metabolically active tissue in the body. However, the link between energy metabolism and retinal inflammation, as incited by microbial infection such as endophthalmitis, remains unexplored. In this study, using a mouse model of Staphylococcus aureus (SA) endophthalmitis, we demonstrate that the activity (phosphorylation) of 5' adenosine monophosphate-activated protein kinase alpha (AMPKα), a cellular energy sensor and its endogenous substrate; acetyl-CoA carboxylase is down-regulated in the SA-infected retina. Intravitreal administration of an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), restored AMPKα and acetyl-CoA carboxylase phosphorylation. AICAR treatment reduced both the bacterial burden and intraocular inflammation in SA-infected eyes by inhibiting NF-kB and MAP kinases (p38 and JNK) signalling. The anti-inflammatory effects of AICAR were diminished in eyes pretreated with AMPK inhibitor, Compound C. The bioenergetics (Seahorse) analysis of SA-infected microglia and bone marrow-derived macrophages revealed an increase in glycolysis, which was reinstated by AICAR treatment. AICAR also reduced the expression of SA-induced glycolytic genes, including hexokinase 2 and glucose transporter 1 in microglia, bone marrow-derived macrophages and the mouse retina. Interestingly, AICAR treatment enhanced the bacterial phagocytic and intracellular killing activities of cultured microglia, macrophages and neutrophils. Furthermore, AMPKα1 global knockout mice exhibited increased susceptibility towards SA endophthalmitis, as evidenced by increased inflammatory mediators and bacterial burden and reduced retinal function. Together, these findings provide the first evidence that AMPK activation promotes retinal innate defence in endophthalmitis by modulating energy metabolism and that it can be targeted therapeutically to treat ocular infections.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University, Detroit, MI, USA.,Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA.,Department of Immunology and Microbiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
58
|
Cheng AJ, Yamada T, Rassier DE, Andersson DC, Westerblad H, Lanner JT. Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery. J Physiol 2016; 594:5149-60. [PMID: 26857536 DOI: 10.1113/jp270650] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023] Open
Abstract
The production of reactive oxygen/nitrogen species (ROS/RNS) is generally considered to increase during physical exercise. Nevertheless, direct measurements of ROS/RNS often show modest increases in ROS/RNS in muscle fibres even during intensive fatiguing stimulation, and the major source(s) of ROS/RNS during exercise is still being debated. In rested muscle fibres, mild and acute exposure to exogenous ROS/RNS generally increases myofibrillar submaximal force, whereas stronger or prolonged exposure has the opposite effect. Endogenous production of ROS/RNS seems to preferentially decrease submaximal force and positive effects of antioxidants are mainly observed during fatigue induced by submaximal contractions. Fatigued muscle fibres frequently enter a prolonged state of reduced submaximal force, which is caused by a ROS/RNS-dependent decrease in sarcoplasmic reticulum Ca(2+) release and/or myofibrillar Ca(2+) sensitivity. Increased ROS/RNS production during exercise can also be beneficial and recent human and animal studies show that antioxidant supplementation can hamper the beneficial effects of endurance training. In conclusion, increased ROS/RNS production have both beneficial and detrimental effects on skeletal muscle function and the outcome depends on a combination of factors: the type of ROS/RNS; the magnitude, duration and location of ROS/RNS production; and the defence systems, including both endogenous and exogenous antioxidants.
Collapse
Affiliation(s)
| | | | - Dilson E Rassier
- McGill University, 475 Pine Avenue West, Montreal, QC, Canada, H2W1S4
| | | | | | | |
Collapse
|
59
|
Furuhashi T, Sakamoto K. Central nervous system promotes thermotolerance via FoxO/DAF-16 activation through octopamine and acetylcholine signaling in Caenorhabditis elegans. Biochem Biophys Res Commun 2016; 472:114-7. [PMID: 26903298 DOI: 10.1016/j.bbrc.2016.02.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
The autonomic nervous system (ANS) responds to many kinds of stressors to maintain homeostasis. Although the ANS is believed to regulate stress tolerance, the exact mechanism underlying this is not well understood. To understand this, we focused on longevity genes, which have functions such as lifespan extension and promotion of stress tolerance. To understand the relationship between ANS and longevity genes, we analyzed stress tolerance of Caenorhabditis elegans treated with octopamine, which has an affinity to noradrenaline in insects, and acetylcholine. Octopamine and acetylcholine did not show resistance against H2O2, but the neurotransmitters promoted thermotolerance via DAF-16. However, chronic treatment with octopamine and acetylcholine did not extend the lifespan, although DAF-16 plays an important role in longevity. In conclusion, our results show that octopamine and acetylcholine activate DAF-16 in response to stress, but chronic induction of octopamine and acetylcholine is not beneficial for increasing longevity.
Collapse
Affiliation(s)
- Tsubasa Furuhashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan.
| |
Collapse
|
60
|
Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise. Proc Natl Acad Sci U S A 2015; 112:15492-7. [PMID: 26575622 DOI: 10.1073/pnas.1507176112] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca(2+) release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca(2+) leak at rest, and depressed force production due to impaired SR Ca(2+) release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca(2+)-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group.
Collapse
|
61
|
Yamada T, Fedotovskaya O, Cheng AJ, Cornachione AS, Minozzo FC, Aulin C, Fridén C, Turesson C, Andersson DC, Glenmark B, Lundberg IE, Rassier DE, Westerblad H, Lanner JT. Nitrosative modifications of the Ca2+ release complex and actin underlie arthritis-induced muscle weakness. Ann Rheum Dis 2015; 74:1907-14. [PMID: 24854355 PMCID: PMC4602262 DOI: 10.1136/annrheumdis-2013-205007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/15/2014] [Accepted: 05/01/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Skeletal muscle weakness is a prominent clinical feature in patients with rheumatoid arthritis (RA), but the underlying mechanism(s) is unknown. Here we investigate the mechanisms behind arthritis-induced skeletal muscle weakness with special focus on the role of nitrosative stress on intracellular Ca(2+) handling and specific force production. METHODS Nitric oxide synthase (NOS) expression, degree of nitrosative stress and composition of the major intracellular Ca(2+) release channel (ryanodine receptor 1, RyR1) complex were measured in muscle. Changes in cytosolic free Ca(2+) concentration ([Ca(2+)]i) and force production were assessed in single-muscle fibres and isolated myofibrils using atomic force cantilevers. RESULTS The total neuronal NOS (nNOS) levels were increased in muscles both from collagen-induced arthritis (CIA) mice and patients with RA. The nNOS associated with RyR1 was increased and accompanied by increased [Ca(2+)]i during contractions of muscles from CIA mice. A marker of peroxynitrite-derived nitrosative stress (3-nitrotyrosine, 3-NT) was increased on the RyR1 complex and on actin of muscles from CIA mice. Despite increased [Ca(2+)]i, individual CIA muscle fibres were weaker than in healthy controls, that is, force per cross-sectional area was decreased. Furthermore, force and kinetics were impaired in CIA myofibrils, hence actin and myosin showed decreased ability to interact, which could be a result of increased 3-NT content on actin. CONCLUSIONS Arthritis-induced muscle weakness is linked to nitrosative modifications of the RyR1 protein complex and actin, which are driven by increased nNOS associated with RyR1 and progressively increasing Ca(2+) activation.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Olga Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anabelle S Cornachione
- Department of Kinesiology and Physical Education and Department of Physics and Physiology, McGill University, Montreal, Canada
| | - Fabio C Minozzo
- Department of Kinesiology and Physical Education and Department of Physics and Physiology, McGill University, Montreal, Canada
| | - Cecilia Aulin
- Department of Medicine, Rheumatology Unit, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Fridén
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Carl Turesson
- Department of Clinical Sciences, Section of Rheumatology, Lund University, Malmö, Sweden
| | - Daniel C Andersson
- Department of Medicine, Cardiology Unit, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Glenmark
- Department of Clinical Science and Education, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid E Lundberg
- Department of Medicine, Rheumatology Unit, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education and Department of Physics and Physiology, McGill University, Montreal, Canada
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
62
|
Michelucci A, Paolini C, Canato M, Wei-Lapierre L, Pietrangelo L, De Marco A, Reggiani C, Dirksen RT, Protasi F. Antioxidants protect calsequestrin-1 knockout mice from halothane- and heat-induced sudden death. Anesthesiology 2015; 123:603-17. [PMID: 26132720 PMCID: PMC4543432 DOI: 10.1097/aln.0000000000000748] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mice lacking calsequestrin-1 (CASQ1-null), a Ca-binding protein that modulates the activity of Ca release in the skeletal muscle, exhibit lethal hypermetabolic episodes that resemble malignant hyperthermia in humans when exposed to halothane or heat stress. METHODS Because oxidative species may play a critical role in malignant hyperthermia crises, we treated CASQ1-null mice with two antioxidants, N-acetylcysteine (NAC, Sigma-Aldrich, Italy; provided ad libitum in drinking water) and (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox, Sigma-Aldrich; administered by intraperitoneal injection), before exposure to halothane (2%, 1 h) or heat (41°C, 1 h). RESULTS NAC and Trolox significantly protected CASQ1-null mice from lethal episodes, with mortality being 79% (n = 14), 25% (n = 16), and 20% (n = 5) during halothane exposure and 86% (n = 21), 29% (n = 21), and 33% (n = 6) during heat stress in untreated, NAC-treated, and Trolox-treated mice, respectively. During heat challenge, an increase in core temperature in CASQ1-null mice (42.3° ± 0.1°C, n=10) was significantly reduced by both NAC and Trolox (40.6° ± 0.3°C, n = 6 and 40.5° ± 0.2°C, n = 6). NAC treatment of CASQ1-null muscles/mice normalized caffeine sensitivity during in vitro contracture tests, Ca transients in single fibers, and significantly reduced the percentage of fibers undergoing rhabdomyolysis (37.6 ± 2.5%, 38/101 fibers in 3 mice; 11.6 ± 1.1%, 21/186 fibers in 5 mice). The protective effect of antioxidant treatment likely resulted from mitigation of oxidative stress, because NAC reduced mitochondrial superoxide production, superoxide dismutase type-1 expression, and 3-nitrotyrosine expression, and increased both reduced glutathione and reduced glutathione/oxidized glutathione ratio. CONCLUSION These studies provide a deeper understanding of the mechanisms that underlie hyperthermic crises in CASQ1-deficient muscle and demonstrate that antioxidant pretreatment may prevent them.
Collapse
Affiliation(s)
- Antonio Michelucci
- Postdoctoral Fellow, CeSI - Center for Research on Ageing & DNICS – Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti, I-66100 Chieti, Italy
| | - Cecilia Paolini
- Assistant Professor, CeSI - Center for Research on Ageing & DNICS – Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti, I-66100 Chieti, Italy
| | - Marta Canato
- Research Assistant, Department of Biomedical Sciences, University of Padova, I-35131 Italy
| | - Lan Wei-Lapierre
- Research Assistant Professor, Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Laura Pietrangelo
- Postdoctoral Fellow, CeSI - Center for Research on Ageing & DNICS – Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti, I-66100 Chieti, Italy
| | - Alessandro De Marco
- Postdoctoral fellow, CeSI - Center for Research on Ageing & DNICS – Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti, I-66100 Chieti, Italy
| | - Carlo Reggiani
- Professor, Department of Biomedical Sciences, University of Padova, I-35131 Italy
| | - Robert T. Dirksen
- Professor, Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Feliciano Protasi
- Professor, CeSI - Center for Research on Ageing & DNICS – Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti, I-66100 Chieti, Italy
| |
Collapse
|
63
|
Geyer N, Diszházi G, Csernoch L, Jóna I, Almássy J. Bile acids activate ryanodine receptors in pancreatic acinar cells via a direct allosteric mechanism. Cell Calcium 2015; 58:160-70. [DOI: 10.1016/j.ceca.2015.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/10/2015] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
|
64
|
Murayama T, Kurebayashi N, Yamazawa T, Oyamada H, Suzuki J, Kanemaru K, Oguchi K, Iino M, Sakurai T. Divergent Activity Profiles of Type 1 Ryanodine Receptor Channels Carrying Malignant Hyperthermia and Central Core Disease Mutations in the Amino-Terminal Region. PLoS One 2015; 10:e0130606. [PMID: 26115329 PMCID: PMC4482644 DOI: 10.1371/journal.pone.0130606] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/21/2015] [Indexed: 11/25/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in several diseases, including malignant hyperthermia (MH) and central core disease (CCD). Most MH and CCD mutations cause accelerated Ca2+ release, resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, how specific mutations affect the channel to produce different phenotypes is not well understood. In this study, we have investigated 11 mutations at 7 different positions in the amino (N)-terminal region of RyR1 (9 MH and 2 MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging at room temperature (~25 °C), cells expressing mutant channels exhibited alterations in Ca2+ homeostasis, i.e., an enhanced sensitivity to caffeine, a depletion of Ca2+ in the ER and an increase in resting cytoplasmic Ca2+. RyR1 channel activity was quantitatively evaluated by [3H]ryanodine binding and three parameters (sensitivity to activating Ca2+, sensitivity to inactivating Ca2+ and attainable maximum activity, i.e., gain) were obtained by fitting analysis. The mutations increased the gain and the sensitivity to activating Ca2+ in a site-specific manner. The gain was consistently higher in both MH and MH/CCD mutations. Sensitivity to activating Ca2+ was markedly enhanced in MH/CCD mutations. The channel activity estimated from the three parameters provides a reasonable explanation to the pathological phenotype assessed by Ca2+ homeostasis. These properties were also observed at higher temperatures (~37 °C). Our data suggest that divergent activity profiles may cause varied disease phenotypes by specific mutations. This approach should be useful for diagnosis and treatment of diseases with mutations in RyR1.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113–8421, Japan
- * E-mail:
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113–8421, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, Jikei University School of Medicine, Tokyo 105–8461, Japan
| | - Hideto Oyamada
- Department of Pharmacology, School of Medicine, Showa University, Tokyo 142–8555, Japan
| | - Junji Suzuki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113–0033, Japan
| | - Kazunori Kanemaru
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113–0033, Japan
| | - Katsuji Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo 142–8555, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113–0033, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113–8421, Japan
| |
Collapse
|
65
|
ElAzzouny MA, Evans CR, Burant CF, Kennedy RT. Metabolomics Analysis Reveals that AICAR Affects Glycerolipid, Ceramide and Nucleotide Synthesis Pathways in INS-1 Cells. PLoS One 2015; 10:e0129029. [PMID: 26107620 PMCID: PMC4480354 DOI: 10.1371/journal.pone.0129029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/03/2015] [Indexed: 12/31/2022] Open
Abstract
AMPK regulates many metabolic pathways including fatty acid and glucose metabolism, both of which are closely associated with insulin secretion in pancreatic β-cells. Insulin secretion is regulated by metabolic coupling factors such as ATP/ADP ratio and other metabolites generated by the metabolism of nutrients such as glucose, fatty acid and amino acids. However, the connection between AMPK activation and insulin secretion in β-cells has not yet been fully elucidated at a metabolic level. To study the effect of AMPK activation on glucose stimulated insulin secretion, we applied the pharmacological activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to an INS-1 (832/13) β-cell line. We measured the change in 66 metabolites in the presence or absence of AICAR using different stable isotopic labeled nutrients to probe selected pathways. AMPK activation by AICAR increased basal insulin secretion and reduced the glucose stimulation index. Although ATP/ADP ratios were not strongly affected by AICAR, several other metabolites and pathways important for insulin secretion were affected by AICAR treatment including long-chain CoAs, malonyl-CoA, 3-hydroxy-3 methylglutaryl CoA, diacylglycerol, and farnesyl pyrophosphate. Tracer studies using 13C-glucose revealed lower glucose flux in the purine and pyrimidine pathway and in the glycerolipid synthesis pathway. Untargeted metabolomics revealed reduction in ceramides caused by AICAR that may explain the beneficial role of AMPK in protecting β-cells from lipotoxicity. Taken together, the results provide an overall picture of the metabolic changes associated with AICAR treatment and how it modulates insulin secretion and β-cell survival.
Collapse
Affiliation(s)
- Mahmoud A. ElAzzouny
- The Department of Chemistry, University of Michigan, Ann Arbor, United States of America
- The Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Charles R. Evans
- The Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Charles F Burant
- The Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Robert T. Kennedy
- The Department of Chemistry, University of Michigan, Ann Arbor, United States of America
- The Department of Pharmacology, University of Michigan, Ann Arbor, United States of America
- * E-mail:
| |
Collapse
|
66
|
Vincze J, Jenes Á, Füzi M, Almássy J, Németh R, Szigeti G, Dienes B, Gaál Z, Szentesi P, Jóna I, Kertai P, Paragh G, Csernoch L. Effects of fluvastatin and coenzyme Q10 on skeletal muscle in normo- and hypercholesterolaemic rats. J Muscle Res Cell Motil 2015; 36:263-74. [PMID: 25920381 DOI: 10.1007/s10974-015-9413-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Myalgia and muscle weakness may appreciably contribute to the poor adherence to statin therapy. Although the pathomechanism of statin-induced myopathy is not completely understood, changes in calcium homeostasis and reduced coenzyme Q10 levels are hypothesized to play important roles. In our experiments, fluvastatin and/or coenzyme Q10 was administered chronically to normocholesterolaemic or hypercholaestherolaemic rats, and the modifications of the calcium homeostasis and the strength of their muscles were investigated. While hypercholesterolaemia did not change the frequency of sparks, fluvastatin increased it on muscles both from normocholesterolaemic and from hypercholesterolaemic rats. This effect, however, was not mediated by a chronic modification of the ryanodine receptor as shown by the unchanged ryanodine binding in the latter group. While coenzyme Q10 supplementation significantly reduced the frequency of the spontaneous calcium release events, it did not affect their amplitude and spatial spread in muscles from fluvastatin-treated rats. This indicates that coenzyme Q10 supplementation prevented the spark frequency increasing effect of fluvastatin without having a major effect on the amount of calcium released during individual sparks. In conclusion, we have found that fluvastatin, independently of the cholesterol level in the blood, consistently and specifically increased the frequency of calcium sparks in skeletal muscle cells, an effect which could be prevented by the addition of coenzyme Q10 to the diet. These results support theories favouring the role of calcium handling in the pathophysiology of statin-induced myopathy and provide a possible pathway for the protective effect of coenzyme Q10 in statin treated patients symptomatic of this condition.
Collapse
Affiliation(s)
- J Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, P.O. Box 22, Debrecen, 4012, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Paolini C, Quarta M, Wei-LaPierre L, Michelucci A, Nori A, Reggiani C, Dirksen RT, Protasi F. Oxidative stress, mitochondrial damage, and cores in muscle from calsequestrin-1 knockout mice. Skelet Muscle 2015; 5:10. [PMID: 26075051 PMCID: PMC4464246 DOI: 10.1186/s13395-015-0035-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Background Mutations in the gene encoding ryanodine receptor type-1 (RYR1), the calcium ion (Ca2+) release channel in the sarcoplasmic reticulum (SR) of skeletal muscle, are linked to central core disease (CCD) and malignant hyperthermia (MH) susceptibility. We recently reported that mice lacking the skeletal isoform of calsequestrin (CASQ1-null), the primary Ca2+ buffer in the SR of skeletal muscle and a modulator of RYR1 activity, exhibit lethal heat- and anesthetic-induced hypermetabolic episodes that resemble MH events in humans. Methods We compared ultrastructure, oxidative status, and contractile function in skeletal fibers of extensor digitorum longus (EDL) muscles in wild type (WT) and CASQ1-null mice at different ages (from 4 to 27 months) using structural, biochemical, and functional assays. Results About 25% of fibers in EDL muscles from CASQ1-null mice of 14 to 27 months of age exhibited large areas of structural disarray (named core-like regions), which were rarely observed in muscle from age-matched WT mice. To determine early events that may lead to the formation of cores, we analyzed EDL muscles from adult mice: at 4 to 6 months of age, CASQ1-null mice (compared to WT) displayed significantly reduced grip strength (40 ± 1 vs. 86 ± 1 mN/gr) and exhibited an increase in the percentage of damaged mitochondria (15.1% vs. 2.6%) and a decrease in average cross-sectional fiber area (approximately 37%) in EDL fibers. Finally, oxidative stress was also significantly increased (25% reduction in ratio between reduced and oxidized glutathione, or GSH/GSSG, and 35% increase in production of mitochondrial superoxide flashes). Providing ad libitum access to N-acetylcysteine in the drinking water for 2 months normalized GSH/GSSG ratio, reduced mitochondrial damage (down to 8.9%), and improved grip strength (from 46 ± 3 to 59 ± 2 mN/gr) in CASQ1-null mice. Conclusions Our findings: 1) demonstrate that ablation of CASQ1 leads to enhanced oxidative stress, mitochondrial damage, and the formation of structural cores in skeletal muscle; 2) provide new insights in the pathogenic mechanisms that lead to damage/disappearance of mitochondria in cores; and 3) suggest that antioxidants may provide some therapeutic benefit in reducing mitochondrial damage, limiting the development of cores, and improving muscle function. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0035-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cecilia Paolini
- CeSI - Center for Research on Ageing & DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Via L. Polacchi, 11, I-66013 Chieti, Italy
| | - Marco Quarta
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy ; Department of Neurology and Neurological Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305 USA
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642 USA
| | - Antonio Michelucci
- CeSI - Center for Research on Ageing & DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Via L. Polacchi, 11, I-66013 Chieti, Italy
| | - Alessandra Nori
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642 USA
| | - Feliciano Protasi
- CeSI - Center for Research on Ageing & DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Via L. Polacchi, 11, I-66013 Chieti, Italy
| |
Collapse
|
68
|
Kim PB, Nelson JW, Breaker RR. An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism. Mol Cell 2015; 57:317-28. [PMID: 25616067 DOI: 10.1016/j.molcel.2015.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/23/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022]
Abstract
Over 30 years ago, ZTP (5-aminoimidazole-4-carboxamide riboside 5'-triphosphate), a modified purine biosynthetic intermediate, was proposed to signal 10-formyl-tetrahydrofolate (10f-THF) deficiency in bacteria. However, the mechanisms by which this putative alarmone or its precursor ZMP (5-aminoimidazole-4-carboxamide ribonucleotide, also known as AICAR) brings about any metabolic changes remain unexplained. Herein, we report the existence of a widespread riboswitch class that is most commonly associated with genes related to de novo purine biosynthesis and one-carbon metabolism. Biochemical data confirm that members of this riboswitch class selectively bind ZMP and ZTP with nanomolar affinity while strongly rejecting numerous natural analogs. Indeed, increases in the ZMP/ZTP pool, caused by folate stress in bacterial cells, trigger changes in the expression of a reporter gene fused to representative ZTP riboswitches in vivo. The wide distribution of this riboswitch class suggests that ZMP/ZTP signaling is important for species in numerous bacterial lineages.
Collapse
Affiliation(s)
- Peter B Kim
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103, USA
| | - James W Nelson
- Department of Chemistry, Yale University, Box 208103, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
69
|
Stallings JD, Ippolito DL, Rakesh V, Baer CE, Dennis WE, Helwig BG, Jackson DA, Leon LR, Lewis JA, Reifman J. Patterns of gene expression associated with recovery and injury in heat-stressed rats. BMC Genomics 2014; 15:1058. [PMID: 25471284 PMCID: PMC4302131 DOI: 10.1186/1471-2164-15-1058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/24/2014] [Indexed: 02/08/2023] Open
Abstract
Background The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model. Results We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response. Conclusions Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1058) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan D Stallings
- Environmental Health Program, U,S, Army Center for Environmental Health Research, Bldg, 568 Doughten Drive, MD 21702-5010 Fort Detrick, Maryland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Lipopolysaccharide-induced loss of cultured rat myenteric neurons - role of AMP-activated protein kinase. PLoS One 2014; 9:e114044. [PMID: 25462874 PMCID: PMC4252081 DOI: 10.1371/journal.pone.0114044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/03/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Intestinal barrier function is vital for homeostasis. Conditions where the mucosal barrier is compromised lead to increased plasma content of lipopolysaccharide (LPS). LPS acts on Toll-like receptor 4 (TLR4) and initiates cellular inflammatory responses. TLR4 receptors have been identified on enteric neurons and LPS exposure causes neuronal loss, counteracted by vasoactive intestinal peptide (VIP), by unknown mechanisms. In addition AMP activated protein kinase (AMPK) stimulation causes loss of enteric neurons. This study investigated a possible role of AMPK activation in LPS-induced neuronal loss. DESIGN Primary cultures of myenteric neurons isolated from rat small intestine were used. Cultures were treated with LPS (0.2-20 µg/mL) with and without TAK1-inhibitor (5Z)-7-Oxozeaenol (10-6 M) or AMPK inhibitor compound C (10-5 M). AMPK-induced neuronal loss was verified treating cultures with three different AMPK activators, AICAR (10-4-3×10-3 M), metformin (0.2-20 µg/mL) and A-769662 (10-5-3×10-4 M) with or without the presence of compound C (10-5 M). Upstream activation of AMPK-induced neuronal loss was tested by treating cultures with AICAR (10-3 M) in the presence of TAK1 inhibitor (5Z)-7-Oxozeaenol (10-6 M). Neuronal survival and relative numbers of neurons immunoreactive (IR) for VIP were evaluated using immunocytochemistry. RESULTS LPS caused a concentration dependent loss of neurons. All AMPK activators induced loss of myenteric neurons in a concentration dependent manner. LPS-, AICAR- and metformin-,but not A-769662-, induced neuronal losses were inhibited by presence of compound C. LPS, AICAR or metformin exposure increased the relative number of VIP-IR neurons; co-treatment with (5Z)-7-Oxozeaenol or compound C reversed the relative increase in VIP-IR neurons induced by LPS. (5Z)-7-Oxozeaenol, compound C or A-769662 did not per se change neuronal survival or relative numbers of VIP-IR neurons. CONCLUSION AMPK activation mimics LPS-induced loss of cultured myenteric neurons and LPS-induced neuronal loss is counteracted by TAK1 and AMPK inhibition. This suggests enteric neuroimmune interactions involving AMPK regulation.
Collapse
|
71
|
The disorders of the calcium release unit of skeletal muscles: what have we learned from mouse models? J Muscle Res Cell Motil 2014; 36:61-9. [PMID: 25424378 DOI: 10.1007/s10974-014-9396-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/29/2014] [Indexed: 01/01/2023]
Abstract
Calcium storage, release, and reuptake are essential for normal physiological function of muscle. Several human skeletal muscle disorders can arise from dysfunction in the control and coordination of these three critical processes. The release from the Sarcoplasmic Reticulum stores (SR) is handled by a multiprotein complex called Calcium Release Unit and composed of DiHydroPyridine Receptor or DHPR, Ryanodine Receptor or RYR, Calsequestrin or CASQ, junctin, Triadin, Junctophilin and Mitsugumin 29. Malignant hyperthermia (MH), Central Core Disease (CCD), Exertional/environmental Heat Stroke (EHS) and Multiminicore disease (MmD) are inherited disorders of calcium homeostasis in skeletal muscles directly related to mutations of genes coding for proteins of the CRU, primarily ryanodine receptor (RYR1). To understand the pathophysiology of MH and CCD, four murine lines carrying point mutations of human RYR1 have been developed: Y524S, R163C, I4898T and T4826I. Mice carrying those mutations show a phenotype with the traits of MH and/or CCD. Interestingly, also ablation of skeletal muscle calsequestrin (CASQ1) leads to a phenotype with MH-like lethal episodes in response to halothane and heat stress and development of central cores. In this review, we aim to describe the murine lines with RYR mutations or CASQ ablation, which show a phenotype similar to human MH or CCD, to underline their specific phenotypes and their differences and to discuss their contribution to the understanding of the pathophysiology of the disorders and the development of therapeutic strategies.
Collapse
|
72
|
Pauly M, Chabi B, Favier FB, Vanterpool F, Matecki S, Fouret G, Bonafos B, Vernus B, Feillet-Coudray C, Coudray C, Bonnieu A, Ramonatxo C. Combined Strategies for Maintaining Skeletal Muscle Mass and Function in Aging: Myostatin Inactivation and AICAR-Associated Oxidative Metabolism Induction. J Gerontol A Biol Sci Med Sci 2014; 70:1077-87. [PMID: 25227129 DOI: 10.1093/gerona/glu147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/21/2014] [Indexed: 11/13/2022] Open
Abstract
Myostatin (mstn) blockade, resulting in muscle hypertrophy, is a promising therapy to counteract age-related muscle loss. However, oxidative and mitochondrial deficit observed in young mice with myostatin inhibition could be detrimental with aging. The aim of this study was (a) to bring original data on metabolic and mitochondrial consequences of mstn inhibition in old mice, and (b) to examine whether 4-weeks of AICAR treatment, a pharmacological compound known to upregulate oxidative metabolism, may be useful to improve exercise capacity and mitochondrial deficit of 20-months mstn KO versus wild-type (WT) mice. Our results show that despite the enlarged muscle mass, the oxidative and mitochondrial deficit associated with reduced endurance running capacity is maintained in old mstn KO mice but not worsened by aging. Importantly, AICAR treatment induced a significant beneficial effect on running limit time only in old mstn KO mice, with a marked increase in PGC-1α expression and slight beneficial effects on mitochondrial function. We showed that AICAR effects were autophagy-independent. This study underlines the relevance of aged muscle remodelling by complementary approaches that impact both muscle mass and function, and suggest that mstn inhibition and aerobic metabolism activators should be co-developed for delaying age-related deficits in skeletal muscle.
Collapse
Affiliation(s)
- Marion Pauly
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France INSERM U1046, Physiology and Experimental Medicine Heart-Muscle Unit, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Béatrice Chabi
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - François Bertrand Favier
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Frankie Vanterpool
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Stefan Matecki
- INSERM U1046, Physiology and Experimental Medicine Heart-Muscle Unit, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Gilles Fouret
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Béatrice Bonafos
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Barbara Vernus
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Christine Feillet-Coudray
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Charles Coudray
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Anne Bonnieu
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Christelle Ramonatxo
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| |
Collapse
|
73
|
Riazi S, Kraeva N, Muldoon SM, Dowling J, Ho C, Petre MA, Parness J, Dirksen RT, Rosenberg H. Malignant hyperthermia and the clinical significance of type-1 ryanodine receptor gene (RYR1) variants: proceedings of the 2013 MHAUS Scientific Conference. Can J Anaesth 2014; 61:1040-9. [PMID: 25189431 DOI: 10.1007/s12630-014-0227-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/11/2014] [Indexed: 01/07/2023] Open
Abstract
The Malignant Hyperthermia Association of the United States and the Department of Anesthesia at the University of Toronto sponsored a Scientific Conference on November 1-2, 2013 in Toronto, ON, Canada. The multidisciplinary group of experts, including clinicians, geneticists, and physiologists involved in research related to malignant hyperthermia (MH), shared new insights into the pathophysiology of diseases linked to the type-1 ryanodine receptor gene (RYR1) as well as the relationship between MH and "awake MH" conditions, such as exertional rhabdomyolysis and exertional heat illness. In addition, the molecular genetics of MH and clinical issues related to the diagnosis and management of disorders linked to RYR1 were presented. The conference also honoured Dr. David H. MacLennan for his contributions to our understanding of the genetics, pathogenesis, and treatment of MH and other RYR1-related myopathies. This report represents a summary of the proceedings of this conference.
Collapse
Affiliation(s)
- Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Toronto General Hospital, UHN, 200 Elizabeth Street, Eaton 3-323, Toronto, ON, M5G 2C4, Canada,
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Chen KH, Hsu HH, Lee CC, Yen TH, Ko YC, Yang CW, Hung CC. The AMPK agonist AICAR inhibits TGF-β1 induced activation of kidney myofibroblasts. PLoS One 2014; 9:e106554. [PMID: 25188319 PMCID: PMC4154690 DOI: 10.1371/journal.pone.0106554] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/08/2014] [Indexed: 01/07/2023] Open
Abstract
Activation of interstitial myofibroblasts and excessive production of extracellular matrix proteins are common pathways that contribute to chronic kidney disease. In a number of tissues, AMP-activated kinase (AMPK) activation has been shown to inhibit fibrosis. Here, we examined the inhibitory effect of the AMPK activator, 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR), on renal fibrosis invivo and TGF-β1-induced renal fibroblasts activation invitro. A unilateral ureteral obstruction (UUO) model was induced in male BALB/c mice. Mice with UUO were administered AICAR (500 mg/Kg/day) or saline intraperitoneally 1 day before UUO surgery and daily thereafter. Both kidneys were harvested 7 days after surgery for further analysis. For the in vitro studies, NRK-49F rat fibroblasts were pre-incubated with AICAR before TGF-β1 stimulation. The inhibitory effects of AICAR on signaling pathways down-stream of TGF-β1 were analyzed. In UUO model mice, administration of AICAR attenuated extracellular matrix protein deposition and the expression of α-smooth muscle actin (α-SMA), type I collagen and fibronectin. Pre-incubation of NRK-49F cells with AICAR inhibited TGF-β1-induced myofibroblast activation. Silencing of AMPKα1 by siRNA or by blocking AMPK activation with Compound C diminished the inhibitory effect of AICAR. Moreover, the inhibitory effects of AICAR on TGF-β1-mediated myofibroblast activation were associated with down-regulation of ERK 1/2 and STAT3. Our results suggest that AICAR reduces tubulointerstitial fibrosis in UUO mice and inhibits TGF-β1-induced kidney myofibroblast activation. AMPK activation by AICAR may have therapeutic potential for the treatment of renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Tzu-Hai Yen
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
75
|
Lee CS, Georgiou DK, Dagnino-Acosta A, Xu J, Ismailov II, Knoblauch M, Monroe TO, Ji R, Hanna AD, Joshi AD, Long C, Oakes J, Tran T, Corona BT, Lorca S, Ingalls CP, Narkar VA, Lanner JT, Bayle JH, Durham WJ, Hamilton SL. Ligands for FKBP12 increase Ca2+ influx and protein synthesis to improve skeletal muscle function. J Biol Chem 2014; 289:25556-70. [PMID: 25053409 DOI: 10.1074/jbc.m114.586289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rapamycin at high doses (2-10 mg/kg body weight) inhibits mammalian target of rapamycin complex 1 (mTORC1) and protein synthesis in mice. In contrast, low doses of rapamycin (10 μg/kg) increase mTORC1 activity and protein synthesis in skeletal muscle. Similar changes are found with SLF (synthetic ligand for FKBP12, which does not inhibit mTORC1) and in mice with a skeletal muscle-specific FKBP12 deficiency. These interventions also increase Ca(2+) influx to enhance refilling of sarcoplasmic reticulum Ca(2+) stores, slow muscle fatigue, and increase running endurance without negatively impacting cardiac function. FKBP12 deficiency or longer treatments with low dose rapamycin or SLF increase the percentage of type I fibers, further adding to fatigue resistance. We demonstrate that FKBP12 and its ligands impact multiple aspects of muscle function.
Collapse
Affiliation(s)
- Chang Seok Lee
- From the Baylor College of Medicine, Houston, Texas 77030
| | | | | | - Jianjun Xu
- From the Baylor College of Medicine, Houston, Texas 77030
| | | | - Mark Knoblauch
- From the Baylor College of Medicine, Houston, Texas 77030
| | | | - RuiRui Ji
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Amy D Hanna
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Aditya D Joshi
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Cheng Long
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Joshua Oakes
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Ted Tran
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Benjamin T Corona
- the Muscle Biology Laboratory, Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia 30302
| | - Sabina Lorca
- the Center for Metabolic and Degenerative Disease, University of Texas Health Science Center, Houston, Texas 77030, and
| | - Christopher P Ingalls
- the Muscle Biology Laboratory, Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia 30302
| | - Vihang A Narkar
- the Center for Metabolic and Degenerative Disease, University of Texas Health Science Center, Houston, Texas 77030, and
| | | | - J Henri Bayle
- From the Baylor College of Medicine, Houston, Texas 77030
| | - William J Durham
- the Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1041
| | | |
Collapse
|
76
|
Sid B, Glorieux C, Valenzuela M, Rommelaere G, Najimi M, Dejeans N, Renard P, Verrax J, Calderon PB. AICAR induces Nrf2 activation by an AMPK-independent mechanism in hepatocarcinoma cells. Biochem Pharmacol 2014; 91:168-80. [PMID: 25058527 DOI: 10.1016/j.bcp.2014.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is one of the most frequent tumor types worldwide and oxidative stress represents a major risk factor in pathogenesis of liver diseases leading to HCC. Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor activated by oxidative stress that governs the expression of many genes which constitute the antioxidant defenses of the cell. In addition, oxidative stress activates AMP-activated protein kinase (AMPK), which has emerged in recent years as a kinase that controls the redox-state of the cell. Since both AMPK and Nrf2 are involved in redox homeostasis, we investigated whether there was a crosstalk between the both signaling systems in hepatocarcinoma cells. Here, we demonstrated that AMPK activator AICAR, in contrary to the A769662 allosteric activator, induces Nrf2 activation and concomitantly modulates the basal redox state of the hepatocarcinoma cells. When the expression of Nrf2 is knocked down, AICAR failed to induce its effect on redox state. These data highlight a major role of Nrf2 signaling pathway in mediating the AICAR effect on basal oxidative state. Furthermore, we demonstrated that AICAR metabolization by the cell is required to induce Nrf2 activation while, the silencing of AMPK does not have any effect on Nrf2 activation. This suggests that AICAR-induced Nrf2 activation is independent of AMPK activity. In conclusion, we identified AICAR as a potent modulator of the redox state of human hepatocarcinoma cells, via the Nrf2 signaling pathway and in an AMPK-independent mechanism.
Collapse
Affiliation(s)
- Brice Sid
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Glorieux
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Manuel Valenzuela
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Guillaume Rommelaere
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (NAmur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Dejeans
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (NAmur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Julien Verrax
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pedro Buc Calderon
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium; Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile.
| |
Collapse
|
77
|
Abstract
UNLABELLED Creation of lethal and synthetic lethal mutations in an experimental organism is a cornerstone of genetic dissection of gene function, and is related to the concept of an essential gene. Common inbred mouse strains carry background mutations, which can act as genetic modifiers, interfering with the assignment of gene essentiality. The inbred strain C57BL/6J, commonly known as "Black Six", stands out, as it carries a spontaneous homozygous deletion in the nicotinamide nucleotide transhydrogenase (Nnt) gene [GenBank: AH009385.2], resulting in impairment of steroidogenic mitochondria of the adrenal gland, and a multitude of indirect modifier effects, coming from alteration of glucocorticoid-regulated processes. Over time, the popular strain has been used, by means of gene targeting technology, to assign "essential" and "redundant" qualifiers to numerous genes, thus creating an internally consistent "parallel universe" of knowledge. It is unrealistic to suggest phasing-out of this strain, given the scope of shared resources built around it, however, continuing on the road of "strain-unawareness" will result in profound waste of effort, particularly where translational research is concerned. The review analyzes the historical roots of this phenomenon and proposes that building of "parallel universes" should be urgently made visible to a critical reader by obligatory use of unambiguous and persistent tags in publications and databases, such as hypertext links, pointing to a vendor's strain description web page, or to a digital object identifier (d.o.i.) of the original publication, so that any research done exclusively in C57BL/6J, could be easily identified. REVIEWERS This article was reviewed by Dr. Neil Smalheiser and Dr. Miguel Andrade-Navarro.
Collapse
Affiliation(s)
- Alexander Kraev
- Charles H, Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada.
| |
Collapse
|
78
|
FoxO/Daf-16 restored thrashing movement reduced by heat stress in Caenorhabditis elegans. Comp Biochem Physiol B Biochem Mol Biol 2014; 170:26-32. [DOI: 10.1016/j.cbpb.2014.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 01/08/2023]
|
79
|
Yang CS, Kim JJ, Lee HM, Jin HS, Lee SH, Park JH, Kim SJ, Kim JM, Han YM, Lee MS, Kweon GR, Shong M, Jo EK. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy 2014; 10:785-802. [PMID: 24598403 DOI: 10.4161/auto.28072] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a crucial energy sensor and plays a key role in integration of cellular functions to maintain homeostasis. Despite this, it is largely unknown whether targeting the AMPK pathway can be used as a therapeutic strategy for infectious diseases. Herein, we show that AMPK activation robustly induces antibacterial autophagy, which contributes to antimicrobial defense against Mycobacterium tuberculosis (Mtb). AMPK activation led to inhibition of Mtb-induced phosphorylation of the mechanistic target of rapamycin (MTOR) in macrophages. In addition, AMPK activation increased the genes involved in oxidative phosphorylation, mitochondrial ATP production, and biogenesis in Mtb-infected macrophages. Notably, peroxisome proliferator-activated receptor-gamma, coactivator 1α (PPARGC1A) was required for AMPK-mediated antimicrobial activity, as well as enhancement of mitochondrial function and biogenesis, in macrophages. Further, the AMPK-PPARGC1A pathway was involved in the upregulation of multiple autophagy-related genes via CCAAT/enhancer binding protein (C/EBP), β (CEBPB). PPARGC1A knockdown inhibited the AMPK-mediated induction of autophagy and impaired the fusion of phagosomes with MAP1LC3B (LC3B) autophagosomes in Mtb-infected macrophages. The link between autophagy, mitochondrial function, and antimicrobial activity was further demonstrated by studying LysMCre-mediated knockout of atg7, demonstrating mitochondrial ultrastructural defects and dysfunction, as well as blockade of antimicrobial activity against mycobacteria. Collectively, our results identify the AMPK-PPARGC1A axis as contributing to autophagy activation leading to an antimicrobial response, as a novel host defense mechanism.
Collapse
Affiliation(s)
- Chul-Su Yang
- Department of Microbiology; Chungnam National University School of Medicine; Daejeon, Korea; Infection Signaling Network Research Center; Chungnam National University School of Medicine; Daejeon, Korea
| | - Jwa-Jin Kim
- Department of Microbiology; Chungnam National University School of Medicine; Daejeon, Korea; Infection Signaling Network Research Center; Chungnam National University School of Medicine; Daejeon, Korea
| | - Hye-Mi Lee
- Department of Microbiology; Chungnam National University School of Medicine; Daejeon, Korea; Infection Signaling Network Research Center; Chungnam National University School of Medicine; Daejeon, Korea
| | - Hyo Sun Jin
- Department of Microbiology; Chungnam National University School of Medicine; Daejeon, Korea; Infection Signaling Network Research Center; Chungnam National University School of Medicine; Daejeon, Korea
| | - Sang-Hee Lee
- BioMedical Research Center; Korea Advanced Institute of Science and Technology; Daejeon, Korea
| | - Ji-Hoon Park
- Infection Signaling Network Research Center; Chungnam National University School of Medicine; Daejeon, Korea; Department of Biochemistry; Chungnam National University School of Medicine; Daejeon, Korea
| | - Soung Jung Kim
- Department of Internal Medicine and Research Center for Endocrine and Metabolic Diseases; Chungnam National University School of Medicine; Daejeon, Korea
| | - Jin-Man Kim
- Infection Signaling Network Research Center; Chungnam National University School of Medicine; Daejeon, Korea; Department of Pathology; Chungnam National University School of Medicine; Daejeon, Korea
| | - Yong-Mahn Han
- Department of Biological Sciences and Center for Stem Cell Differentiation; Korea Advanced Institute of Science and Technology; Daejeon, Korea
| | - Myung-Shik Lee
- Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Korea
| | - Gi Ryang Kweon
- Infection Signaling Network Research Center; Chungnam National University School of Medicine; Daejeon, Korea; Department of Biochemistry; Chungnam National University School of Medicine; Daejeon, Korea
| | - Minho Shong
- Department of Internal Medicine and Research Center for Endocrine and Metabolic Diseases; Chungnam National University School of Medicine; Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology; Chungnam National University School of Medicine; Daejeon, Korea; Infection Signaling Network Research Center; Chungnam National University School of Medicine; Daejeon, Korea
| |
Collapse
|
80
|
Lalic H, Dembitz V, Lukinovic-Skudar V, Banfic H, Visnjic D. 5-Aminoimidazole-4-carboxamide ribonucleoside induces differentiation of acute myeloid leukemia cells. Leuk Lymphoma 2014; 55:2375-83. [PMID: 24359245 DOI: 10.3109/10428194.2013.876633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adenosine monophosphate (AMP)-activated kinase (AMPK) modulators have been shown to exert cytotoxic activity in hematological malignancies, but their role in the differentiation of acute myeloid leukemia (AML) is less explored. In this study, the effects of AMPK agonists on all-trans retinoic acid (ATRA)-mediated differentiation of acute promyelocytic leukemia (APL) and non-APL AML cell lines were investigated. The results show that AMPK agonists inhibit the growth of myeloblastic HL-60, promyelocytic NB4 and monocytic U937 cells. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator, enhances ATRA-mediated differentiation of NB4 cells. In U937 cells, AICAR alone induces the expression of cell surface markers associated with mature monocytes and macrophages. In both cell lines, AICAR increases the activity of mitogen-activated protein kinase (MAPK), and the presence of a MAPK inhibitor reduces the expression of differentiation markers. These results reveal beneficial effects of AICAR in AML, including differentiation of non-APL AML cells.
Collapse
Affiliation(s)
- Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb , Croatia
| | | | | | | | | |
Collapse
|
81
|
Guerrero-Hernández A, Ávila G, Rueda A. Ryanodine receptors as leak channels. Eur J Pharmacol 2013; 739:26-38. [PMID: 24291096 DOI: 10.1016/j.ejphar.2013.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/21/2013] [Indexed: 01/18/2023]
Abstract
Ryanodine receptors are Ca(2+) release channels of internal stores. This review focuses on those situations and conditions that transform RyRs from a finely regulated ion channel to an unregulated Ca(2+) leak channel and the pathological consequences of this alteration. In skeletal muscle, mutations in either CaV1.1 channel or RyR1 results in a leaky behavior of the latter. In heart cells, RyR2 functions normally as a Ca(2+) leak channel during diastole within certain limits, the enhancement of this activity leads to arrhythmogenic situations that are tackled with different pharmacological strategies. In smooth muscle, RyRs are involved more in reducing excitability than in stimulating contraction so the leak activity of RyRs in the form of Ca(2+) sparks, locally activates Ca(2+)-dependent potassium channels to reduce excitability. In neurons the enhanced activity of RyRs is associated with the development of different neurodegenerative disorders such as Alzheimer and Huntington diseases. It appears then that the activity of RyRs as leak channels can have both physiological and pathological consequences depending on the cell type and the metabolic condition.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Departamento de Bioquímica, Cinvestav, Mexico city, México
| |
Collapse
|
82
|
Knoblauch M, Dagnino-Acosta A, Hamilton SL. Mice with RyR1 mutation (Y524S) undergo hypermetabolic response to simvastatin. Skelet Muscle 2013; 3:22. [PMID: 24004537 PMCID: PMC3846650 DOI: 10.1186/2044-5040-3-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Statins are widely used drugs for the treatment of hyperlipidemia. Though relatively safe, some individuals taking statins experience rhabdymyolysis, muscle pain, and cramping, a condition termed statin-induced myopathy (SIM). To determine if mutations in the skeletal muscle calcium (Ca2+) release channel, ryanodine receptor type 1 (RyR1), enhance the sensitivity to SIM we tested the effects of simvastatin, the statin that produces the highest incidence of SIM in humans, in mice with a mutation (Y524S, 'YS') in RyR1. This mutation is associated with malignant hyperthermia in humans. Exposure of mice with the YS mutation to mild elevations in environmental temperature produces a life-threatening hypermetabolic response (HMR) that is characterized by increased oxygen consumption (VO2), sustained muscle contractures, rhabdymyolysis, and elevated core body temperature. METHODS We assessed the ability of simvastatin to induce a hypermetabolic response in the YS mice using indirect calorimetry and to alter Ca2+ release via RyR1 in isolated flexor digitorum brevis (FDB) fibers from WT and YS mice using fluorescent Ca2+ indicators. We also tested the ability of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) to protect against the simvastatin effects. RESULTS An acute dose of simvastatin triggers a hypermetabolic response in YS mice. In isolated YS muscle fibers, simvastatin triggers an increase in cytosolic Ca2+ levels by increasing Ca2+ leak from the sarcoplasmic reticulum (SR). With higher simvastatin doses, a similar cytosolic Ca2+ increase occurs in wild type (WT) muscle fibers. Pre-treatment of YS and WT mice with AICAR prevents the response to simvastatin. CONCLUSIONS A mutation in RyR1 associated with malignant hyperthermia increases susceptibility to an adverse response to simvastatin due to enhanced Ca2+ release from the sarcoplasmic reticulum, suggesting that RyR1 mutations may underlie enhanced susceptibility to statin-induced myopathies. Our data suggest that AICAR may be useful for treating statin myopathies.
Collapse
Affiliation(s)
- Mark Knoblauch
- Department of Molecular Biology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Adan Dagnino-Acosta
- Department of Molecular Biology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Susan L Hamilton
- Department of Molecular Biology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
83
|
Kourtis N, Nikoletopoulou V, Tavernarakis N. Heat shock response and ionstasis: axis against neurodegeneration. Aging (Albany NY) 2013; 4:856-8. [PMID: 23257629 PMCID: PMC3615152 DOI: 10.18632/aging.100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
84
|
D’Errico S, Oliviero G, Borbone N, Amato J, Piccialli V, Varra M, Mayol L, Piccialli G. Synthesis of new acadesine (AICA-riboside) analogues having acyclic D-ribityl or 4-hydroxybutyl chains in place of the ribose. Molecules 2013; 18:9420-31. [PMID: 23924994 PMCID: PMC6269997 DOI: 10.3390/molecules18089420] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/19/2013] [Accepted: 08/01/2013] [Indexed: 01/15/2023] Open
Abstract
The antiviral activity of certain acyclic nucleosides drew our attention to the fact that the replacement of the furanose ring by an alkyl group bearing hydroxyl(s) could be a useful structural modification to modulate the biological properties of those nucleosides. Herein, we report on the synthesis of some novel acadesine analogues, where the ribose moiety is mimicked by a D-ribityl or by a hydroxybutyl chain.
Collapse
Affiliation(s)
- Stefano D’Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy; E-Mails: (S.D.); (N.B.); (J.A.); (M.P.); (L.M.); (G.P.)
| | - Giorgia Oliviero
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy; E-Mails: (S.D.); (N.B.); (J.A.); (M.P.); (L.M.); (G.P.)
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy; E-Mails: (S.D.); (N.B.); (J.A.); (M.P.); (L.M.); (G.P.)
| | - Jussara Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy; E-Mails: (S.D.); (N.B.); (J.A.); (M.P.); (L.M.); (G.P.)
| | - Vincenzo Piccialli
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia 21, Napoli 80126, Italy; E-Mail:
| | - Michela Varra
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy; E-Mails: (S.D.); (N.B.); (J.A.); (M.P.); (L.M.); (G.P.)
| | - Luciano Mayol
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy; E-Mails: (S.D.); (N.B.); (J.A.); (M.P.); (L.M.); (G.P.)
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy; E-Mails: (S.D.); (N.B.); (J.A.); (M.P.); (L.M.); (G.P.)
| |
Collapse
|
85
|
AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends Mol Med 2013; 19:614-24. [PMID: 23891277 DOI: 10.1016/j.molmed.2013.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022]
Abstract
Recent studies have highlighted the potential of adenosine monophosphate-activated protein kinase (AMPK) to act as a central therapeutic target in Duchenne muscular dystrophy (DMD). Here, we review the role of AMPK as an important integrator of cell signaling pathways that mediate phenotypic plasticity within the context of dystrophic skeletal muscle. Pharmacological AMPK activation remodels skeletal muscle towards a slower, more oxidative phenotype, which is more pathologically resistant to the lack of dystrophin. Moreover, recent studies suggest that AMPK-activated autophagy may be beneficial for myofiber structure and function in mice with muscular dystrophy. Thus, AMPK may represent an ideal target for intervention because clinically approved pharmacological agonists exist, and because benefits can be derived via two independent yet, complementary biological pathways. The availability of several AMPK activators could therefore lead to the rapid development and implementation of novel and highly effective therapeutics aimed at altering the relentless progression of DMD.
Collapse
|
86
|
Liu Y, Oh SJ, Chang KH, Kim YG, Lee MY. Antiplatelet effect of AMP-activated protein kinase activator and its potentiation by the phosphodiesterase inhibitor dipyridamole. Biochem Pharmacol 2013; 86:914-25. [PMID: 23876340 DOI: 10.1016/j.bcp.2013.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK) activates endothelial nitric oxide synthase (eNOS) via phosphorylation at the activating site. The eNOS-nitric oxide (NO)/soluble guanylate cyclase (sGC)-cGMP/cGMP-dependent protein kinase (PKG) signaling axis is a major antiaggregatory mechanism residing in platelets. Based on the hypothesis that direct activation of AMPK might be a potential strategy to inhibit platelet aggregation, the antiplatelet effect of AMPK activators was investigated. Treatment of isolated platelets with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) resulted in AMPK activation and a decrease in aggregation, which was abolished by pretreatment with the AMPK inhibitors compound C (CC) and ara-A. Such an AMPK-dependent antiaggregatory effect was also observed with other AMPK activators such as A-769662 and PT1. AICAR induced eNOS activation was followed by NO synthesis, cGMP production, and subsequent phosphorylation of vasodilator-stimulated phosphoprotein (VASP), a PKG substrate. All these events were blocked by CC or ara-A pretreatment, and each event was inhibited by the eNOS inhibitor L-NAME, the sGC inhibitor ODQ, and the PKG inhibitor Rp-8-pCPT-cGMPS. Simultaneous treatment of dipyridamole, a phosphodiesterase (PDE) inhibitor, with AICAR potentiated the antiaggregatory effect by enhancing the cGMP elevation. Administration of AICAR increased platelet cGMP and prolonged FeCl3-induced arterial occlusion time in rats, which further increased in combination with dipyridamole. In conclusion, AMPK activators inhibited platelet aggregation by stimulating the eNOS-NO/sGC-cGMP/PKG signaling pathway. The antiplatelet effect of AMPK activators could be potentiated in combination with a PDE inhibitor through the common mechanism of elevating cGMP. Thus, AMPK may serve as a potential target for antiplatelet therapy.
Collapse
Affiliation(s)
- Yingqiu Liu
- College of Pharmacy, Dongguk University, Gyeonggi-do, Goyang 410-820, Republic of Korea
| | | | | | | | | |
Collapse
|
87
|
Spangenburg EE, Jackson KC, Schuh RA. AICAR inhibits oxygen consumption by intact skeletal muscle cells in culture. J Physiol Biochem 2013; 69:909-17. [PMID: 23813470 DOI: 10.1007/s13105-013-0269-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 06/14/2013] [Indexed: 11/30/2022]
Abstract
Activation of 5' adenosine monophosphate-activated protein kinase (AMPK) with aminoimidazole carboxamide ribonucleotide (AICAR) increases skeletal muscle glucose uptake and fatty acid oxidation. The purpose of these experiments was to utilize AICAR to enhance palmitate consumption by mitochondria in cultured skeletal muscle cells. In these experiments, we treated C2C12 myotubes or adult single skeletal muscle fibers with varying concentrations of AICAR for different lengths of time. Surprisingly, acute AICAR exposure at most concentrations (0.25-1.5 mM), but not all (0.1 mM), modestly inhibited oxygen consumption even though AICAR increased AMPK phosphorylation. The data suggest that AICAR inhibited oxygen consumption by the cultured muscle in a non-specific manner. The results of these experiments are expected to provide valuable information to investigators interested in using AICAR in cell culture studies.
Collapse
Affiliation(s)
- Espen E Spangenburg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, 21045, USA,
| | | | | |
Collapse
|
88
|
Manno C, Figueroa L, Royer L, Pouvreau S, Lee CS, Volpe P, Nori A, Zhou J, Meissner G, Hamilton SL, Ríos E. Altered Ca2+ concentration, permeability and buffering in the myofibre Ca2+ store of a mouse model of malignant hyperthermia. J Physiol 2013; 591:4439-57. [PMID: 23798496 DOI: 10.1113/jphysiol.2013.259572] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Malignant hyperthermia (MH) is linked to mutations in the type 1 ryanodine receptor, RyR1, the Ca2+ channel of the sarcoplasmic reticulum (SR) of skeletal muscle. The Y522S MH mutation was studied for its complex presentation, which includes structurally and functionally altered cell 'cores'. Imaging cytosolic and intra-SR [Ca2+] in muscle cells of heterozygous YS mice we determined Ca2+ release flux activated by clamp depolarization, permeability (P) of the SR membrane (ratio of flux and [Ca2+] gradient) and SR Ca2+ buffering power (B). In YS cells resting [Ca2+]SR was 45% of the value in normal littermates (WT). P was more than doubled, so that initial flux was normal. Measuring [Ca2+]SR(t) revealed dynamic changes in B(t). The alterations were similar to those caused by cytosolic BAPTA, which promotes release by hampering Ca2+-dependent inactivation (CDI). The [Ca2+] transients showed abnormal 'breaks', decaying phases after an initial rise, traced to a collapse in flux and P. Similar breaks occurred in WT myofibres with calsequestrin reduced by siRNA; calsequestrin content, however, was normal in YS muscle. Thus, the Y522S mutation causes greater openness of the RyR1, lowers resting [Ca2+]SR and alters SR Ca2+ buffering in a way that copies the functional instability observed upon reduction of calsequestrin content. The similarities with the effects of BAPTA suggest that the mutation, occurring near the cytosolic vestibule of the channel, reduces CDI as one of its primary effects. The unstable SR buffering, mimicked by silencing of calsequestrin, may help precipitate the loss of Ca2+ control that defines a fulminant MH event.
Collapse
Affiliation(s)
- Carlo Manno
- S. L. Hamilton: ; E. Ríos: Rush University School of Medicine, Department of Molecular Biophysics and Physiology, 1750 West Harrison St., Suite 1279JS, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Exercise-induced rhabdomyolysis and stress-induced malignant hyperthermia events, association with malignant hyperthermia susceptibility, and RYR1 gene sequence variations. ScientificWorldJournal 2013; 2013:531465. [PMID: 23476141 PMCID: PMC3582168 DOI: 10.1155/2013/531465] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/16/2013] [Indexed: 02/03/2023] Open
Abstract
Exertional rhabdomyolysis (ER) and stress-induced malignant hyperthermia (MH) events are syndromes that primarily afflict military recruits in basic training and athletes. Events similar to those occurring in ER and in stress-induced MH events are triggered after exposure to anesthetic agents in MH-susceptible (MHS) patients. MH is an autosomal dominant hypermetabolic condition that occurs in genetically predisposed subjects during general anesthesia, induced by commonly used volatile anesthetics and/or the neuromuscular blocking agent succinylcholine. Triggering agents cause an altered intracellular calcium regulation. Mutations in RYR1 gene have been found in about 70% of MH families. The RYR1 gene encodes the skeletal muscle calcium release channel of the sarcoplasmic reticulum, commonly known as ryanodine receptor type 1 (RYR1). The present work reviews the documented cases of ER or of stress-induced MH events in which RYR1 sequence variations, associated or possibly associated to MHS status, have been identified.
Collapse
|
90
|
Nivoche Y, Bruneau B, Dahmani S. [Anesthetic malignant hyperthermia: what's new in 2012?]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2013; 32:e43-e47. [PMID: 23290613 DOI: 10.1016/j.annfar.2012.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder of anesthesia. Recent advances dealing with epidemiology of MH and the safe anesthetic course of MH susceptible patients are shortly presented here with a special insight into the preparation of modern anesthesia workstations, which they will share in operating room.
Collapse
Affiliation(s)
- Y Nivoche
- Département d'anesthésiologie et réanimation, hôpital Robert-Debré, AP-HP, 48, boulevard Sérurier, 75019 Paris, France.
| | | | | |
Collapse
|
91
|
Allele-specific gene silencing in two mouse models of autosomal dominant skeletal myopathy. PLoS One 2012; 7:e49757. [PMID: 23152933 PMCID: PMC3495761 DOI: 10.1371/journal.pone.0049757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/17/2012] [Indexed: 12/16/2022] Open
Abstract
We explored the potential of mutant allele-specific gene silencing (ASGS) in providing therapeutic benefit in two established mouse models of the autosomal dominantly-inherited muscle disorders, Malignant Hyperthermia (MH) and Central Core Disease (CCD). Candidate ASGS siRNAs were designed and validated for efficacy and specificity on ryanodine receptor (RyR1) cDNA mini-constructs expressed in HEK293 cells using RT-PCR- and confocal microscopy-based assays. In vivo delivery of the most efficacious identified siRNAs into flexor digitorum brevis (FDB) muscles was achieved by injection/electroporation of footpads of 4–6 month old heterozygous Ryr1Y524S/+ (YS/+) and Ryr1I4895T/+ (IT/+) knock-in mice, established mouse models of MH with cores and CCD, respectively. Treatment of IT/+ mice resulted in a modest rescue of deficits in the maximum rate (∼38% rescue) and magnitude (∼78%) of ligand-induced Ca2+ release that occurred in the absence of a change in the magnitude of electrically-evoked Ca2+ release. Compared to the difference between the caffeine sensitivity of Ca2+ release in FDB fibers from YS/+ and WT mice treated with SCR siRNA (EC50: 1.1 mM versus 4.4 mM, respectively), caffeine sensitivity was normalized in FDB fibers from YS/+ mice following 2 (EC50: 2.8 mM) and 4 week (EC50: 6.6 mM) treatment with YS allele-specific siRNA. Moreover, the temperature-dependent increase in resting Ca2+ observed in FDB fibers from YS/+ mice was normalized to WT levels after 2 weeks of treatment with YS allele-specific siRNA. As determined by quantitative real time PCR, the degree of functional rescue in YS/+ and IT/+ mice correlated well with the relative increase in fractional WT allele expression.
Collapse
|
92
|
D’Errico S, Oliviero G, Borbone N, Amato J, D’Alonzo D, Piccialli V, Mayol L, Piccialli G. A facile synthesis of 5'-fluoro-5'-deoxyacadesine (5'-F-AICAR): a novel non-phosphorylable AICAR analogue. Molecules 2012; 17:13036-44. [PMID: 23124472 PMCID: PMC6268913 DOI: 10.3390/molecules171113036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022] Open
Abstract
The substitution of a hydroxyl group by a fluorine atom in a potential drug is an efficient reaction that can, in principle, improve its pharmacological properties. Herein, the synthesis of the novel compound 5'-fluoro-5'-deoxyacadesine (5'-F-AICAR), a strict analogue of AICAR that cannot be 5'-phosphorylated to ZMP by cellular kinases, is reported.
Collapse
Affiliation(s)
- Stefano D’Errico
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Giorgia Oliviero
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Nicola Borbone
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Jussara Amato
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Daniele D’Alonzo
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Vincenzo Piccialli
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Luciano Mayol
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Gennaro Piccialli
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
93
|
Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature 2012; 490:213-8. [PMID: 22972192 DOI: 10.1038/nature11417] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/16/2012] [Indexed: 01/20/2023]
Abstract
Heat stroke is a life-threatening condition, characterized by catastrophic collapse of thermoregulation and extreme hyperthermia. In recent years, intensification of heat waves has caused a surge of heat-stroke fatalities. The mechanisms underlying heat-related pathology are poorly understood. Here we show that heat stroke triggers pervasive necrotic cell death and neurodegeneration in Caenorhabditis elegans. Preconditioning of animals at a mildly elevated temperature strongly protects from heat-induced necrosis. The heat-shock transcription factor HSF-1 and the small heat-shock protein HSP-16.1 mediate cytoprotection by preconditioning. HSP-16.1 localizes to the Golgi, where it functions with the Ca(2+)- and Mn(2+)-transporting ATPase PMR-1 to maintain Ca(2+) homeostasis under heat stroke. Preconditioning also suppresses cell death inflicted by diverse insults, and protects mammalian neurons from heat cytotoxicity. These findings reveal an evolutionarily conserved mechanism that defends against diverse necrotic stimuli, and may be relevant to heat stroke and other pathological conditions involving necrosis in humans.
Collapse
|
94
|
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-Monophosphate (AICAR), a Highly Conserved Purine Intermediate with Multiple Effects. Metabolites 2012; 2:292-302. [PMID: 24957512 PMCID: PMC3901205 DOI: 10.3390/metabo2020292] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 12/25/2022] Open
Abstract
AICAR (5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate) is a natural metabolic intermediate of purine biosynthesis that is present in all organisms. In yeast, AICAR plays important regulatory roles under physiological conditions, notably through its direct interactions with transcription factors. In humans, AICAR accumulates in several metabolic diseases, but its contribution to the symptoms has not yet been elucidated. Further, AICAR has highly promising properties which have been recently revealed. Indeed, it enhances endurance of sedentary mice. In addition, it has antiproliferative effects notably by specifically inducing apoptosis of aneuploid cells. Some of the effects of AICAR are due to its ability to stimulate the AMP-activated protein kinase but some others are not. It is consequently clear that AICAR affects multiple targets although only few of them have been identified so far. This review proposes an overview of the field and suggests future directions.
Collapse
|
95
|
Harrison C. A way to prevent heat-induced sudden death? Nat Rev Drug Discov 2012. [DOI: 10.1038/nrd3691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|