51
|
Gu Y, Xiao M, Chen Z, Li Q. Advanced hepatocellular carcinoma with MET-amplified contained excellent response to crizotinib: a case report. Front Oncol 2023; 13:1196211. [PMID: 37655101 PMCID: PMC10467267 DOI: 10.3389/fonc.2023.1196211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Several novel therapeutic strategies have been developed to prolong the survival of patients with advanced HCC. However, therapeutic decision-making biomarkers owing to the extensive heterogeneity of HCC. Next-generation sequencing (NGS) is generally used in treatment decisions to help patients benefit from genome-directed targeting. Case presentation A 56 year-old male with type-B hepatitis for more than 20 years was admitted to our department and underwent laparoscopic left lateral hepatic lobectomy for hepatocellular carcinoma. Unfortunately, the tumor recurred 1 year later. Despite multiple treatments, the tumor continued to progress and invaded the patient's 5th thoracic vertebras, leading to hypoesthesia and hypokinesia below the nipple line plane 2 years later. NGS revealed MET amplification, and crizotinib, an inhibitor of MET, was recommended. After administration for a month, tumor marker levels decreased, and the tumor shrunk. The patient has remained in remission since that time. Conclusions We report that a patient with high MET amplification benefited from its inhibitor, which was recommended by NGS. This indicates the potential clinical decision support value of NGS and the satisfactory effect of MET inhibitors.
Collapse
Affiliation(s)
| | | | | | - Qiyong Li
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| |
Collapse
|
52
|
Foretz M, Guigas B, Viollet B. Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol 2023; 19:460-476. [PMID: 37130947 PMCID: PMC10153049 DOI: 10.1038/s41574-023-00833-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/04/2023]
Abstract
Currently, metformin is the first-line medication to treat type 2 diabetes mellitus (T2DM) in most guidelines and is used daily by >200 million patients. Surprisingly, the mechanisms underlying its therapeutic action are complex and are still not fully understood. Early evidence highlighted the liver as the major organ involved in the effect of metformin on reducing blood levels of glucose. However, increasing evidence points towards other sites of action that might also have an important role, including the gastrointestinal tract, the gut microbial communities and the tissue-resident immune cells. At the molecular level, it seems that the mechanisms of action vary depending on the dose of metformin used and duration of treatment. Initial studies have shown that metformin targets hepatic mitochondria; however, the identification of a novel target at low concentrations of metformin at the lysosome surface might reveal a new mechanism of action. Based on the efficacy and safety records in T2DM, attention has been given to the repurposing of metformin as part of adjunct therapy for the treatment of cancer, age-related diseases, inflammatory diseases and COVID-19. In this Review, we highlight the latest advances in our understanding of the mechanisms of action of metformin and discuss potential emerging novel therapeutic uses.
Collapse
Affiliation(s)
- Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France.
| |
Collapse
|
53
|
Shin JH, Bozadjieva-Kramer N, Seeley RJ. Reg3γ: current understanding and future therapeutic opportunities in metabolic disease. Exp Mol Med 2023; 55:1672-1677. [PMID: 37524871 PMCID: PMC10474034 DOI: 10.1038/s12276-023-01054-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 08/02/2023] Open
Abstract
Regenerating family member gamma, Reg3γ (the mouse homolog of human REG3A), belonging to the antimicrobial peptides (AMPs), functions as a part of the host immune system to maintain spatial segregation between the gut bacteria and the host in the intestine via bactericidal activity. There is emerging evidence that gut manipulations such as bariatric surgery, dietary supplementation or drug treatment to produce metabolic benefits alter the gut microbiome. In addition to changes in a wide range of gut hormones, these gut manipulations also induce the expression of Reg3γ in the intestine. Studies over the past decades have revealed that Reg3γ not only plays a role in the gut lumen but can also contribute to host physiology through interaction with the gut microbiota. Herein, we discuss the current knowledge regarding the biology of Reg3γ, its role in various metabolic functions, and new opportunities for therapeutic strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
54
|
Forteath C, Mordi I, Nisr R, Gutierrez-Lara EJ, Alqurashi N, Phair IR, Cameron AR, Beall C, Bahr I, Mohan M, Wong AKF, Dihoum A, Mohammad A, Palmer CNA, Lamont D, Sakamoto K, Viollet B, Foretz M, Lang CC, Rena G. Amino acid homeostasis is a target of metformin therapy. Mol Metab 2023; 74:101750. [PMID: 37302544 PMCID: PMC10328998 DOI: 10.1016/j.molmet.2023.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
OBJECTIVE Unexplained changes in regulation of branched chain amino acids (BCAA) during diabetes therapy with metformin have been known for years. Here we have investigated mechanisms underlying this effect. METHODS We used cellular approaches, including single gene/protein measurements, as well as systems-level proteomics. Findings were then cross-validated with electronic health records and other data from human material. RESULTS In cell studies, we observed diminished uptake/incorporation of amino acids following metformin treatment of liver cells and cardiac myocytes. Supplementation of media with amino acids attenuated known effects of the drug, including on glucose production, providing a possible explanation for discrepancies between effective doses in vivo and in vitro observed in most studies. Data-Independent Acquisition proteomics identified that SNAT2, which mediates tertiary control of BCAA uptake, was the most strongly suppressed amino acid transporter in liver cells following metformin treatment. Other transporters were affected to a lesser extent. In humans, metformin attenuated increased risk of left ventricular hypertrophy due to the AA allele of KLF15, which is an inducer of BCAA catabolism. In plasma from a double-blind placebo-controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin caused selective accumulation of plasma BCAA and glutamine, consistent with the effects in cells. CONCLUSIONS Metformin restricts tertiary control of BCAA cellular uptake. We conclude that modulation of amino acid homeostasis contributes to therapeutic actions of the drug.
Collapse
Affiliation(s)
- Calum Forteath
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Ify Mordi
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Raid Nisr
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Erika J Gutierrez-Lara
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Noor Alqurashi
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Iain R Phair
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Amy R Cameron
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK; Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Exeter, EX2 5DW, UK
| | - Craig Beall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Exeter, EX2 5DW, UK
| | - Ibrahim Bahr
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Mohapradeep Mohan
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Aaron K F Wong
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Adel Dihoum
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK; Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Anwar Mohammad
- Public Health and Epidemiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Colin N A Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Douglas Lamont
- Centre for Advanced Scientific Technologies, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK.
| | - Graham Rena
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK.
| |
Collapse
|
55
|
Fu D, Zhao H, Huang Y, Li J, Feng H, Li A, Liu Y, He L. Metformin regulates the effects of IR and IGF-1R methylation on mast cell activation and airway reactivity in diabetic rats with asthma through miR-152-3p/DNMT1 axis. Cell Biol Toxicol 2023; 39:1851-1872. [PMID: 36547818 DOI: 10.1007/s10565-022-09787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Metformin is a drug for treating type 2 diabetes mellitus (T2DM). Recently, metformin has been shown to reduce the risks of asthma-associated outcomes and asthma deterioration, thereby holding promise as a superior medicine for diabetic patients with asthma. However, the mechanism by which metformin reduces diabetic asthma is yet to be clarified. This study aimed at ascertaining the downstream molecules underlying the effect of metformin on the activation of mast cells (MCs) and airway reactivity in a concomitant diabetic and asthmatic rat model. METHODS A T2DM model was induced utilizing a high-fat diet and streptozotocin. Then, 10% ovalbumin was utilized to stimulate asthma-like pathology in the T2DM rats. RBL-2H3 cells were induced by anti-dinitrophenyl-specific immunoglobulin E for constructing an in vitro model. Luciferase assay and RNA immunoprecipitation (IP) assay were conducted to identify the interaction between microRNA-152-3p (miR-152-3p) and DNA methyltransferase 1 (DNMT1), while chromatin IP to identify the binding of DNMT1 to insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF-1R) promoters. The effects of metformin on both pathological changes in vivo and biological behaviors of cells were evaluated. Using gain- and loss-of-function approaches, we assessed the role of the two interactions in the metformin-induced effect. RESULTS It was suggested that metformin could impede the MC activation and airway resistance in the concomitant diabetic and asthmatic rats. Additionally, metformin downregulated IR and IGF-1R through DNMT1-dependent methylation to repress MC activation and airway resistance. DNMT1 was testified to be a target gene of miR-152-3p. Furthermore, miR-152-3p-induced silencing of DNMT1 was blocked by metformin, hence restraining MC activation and airway resistance. CONCLUSION The findings cumulatively demonstrate that metformin downregulates IR/IGF-1R to block MC activation and airway resistance via impairing the binding affinity between miR-152-3p and DNMT1.
Collapse
Affiliation(s)
- Dan Fu
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Hailu Zhao
- Diabetic Systems Center, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi, 541000, People's Republic of China
| | - Yan Huang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, No.566, Congcheng Ave, Guangzhou, Guangdong, 510900, People's Republic of China
| | - Jingjuan Li
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, No.566, Congcheng Ave, Guangzhou, Guangdong, 510900, People's Republic of China
| | - Huafeng Feng
- Department of Anesthesiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Aiguo Li
- Department of Anesthesiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Yefen Liu
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, No.566, Congcheng Ave, Guangzhou, Guangdong, 510900, People's Republic of China
| | - Liang He
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, No.566, Congcheng Ave, Guangzhou, Guangdong, 510900, People's Republic of China.
| |
Collapse
|
56
|
Barroso E, Montori-Grau M, Wahli W, Palomer X, Vázquez-Carrera M. Striking a gut-liver balance for the antidiabetic effects of metformin. Trends Pharmacol Sci 2023; 44:457-473. [PMID: 37188578 DOI: 10.1016/j.tips.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Metformin is the most prescribed drug for the treatment of type 2 diabetes mellitus (T2DM), but its mechanism of action has not yet been completely elucidated. Classically, the liver has been considered the major site of action of metformin. However, over the past few years, advances have unveiled the gut as an additional important target of metformin, which contributes to its glucose-lowering effect through new mechanisms of action. A better understanding of the mechanistic details of metformin action in the gut and the liver and its relevance in patients remains the challenge of present and future research and may impact drug development for the treatment of T2DM. Here, we offer a critical analysis of the current status of metformin-driven multiorgan glucose-lowering effects.
Collapse
Affiliation(s)
- Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Marta Montori-Grau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, 31300 Toulouse Cedex, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
57
|
Nishiyama K, Ono M, Tsuno T, Inoue R, Fukunaka A, Okuyama T, Kyohara M, Togashi Y, Fukushima S, Atsumi T, Sato A, Tsurumoto A, Sakai C, Fujitani Y, Terauchi Y, Ito S, Shirakawa J. Protective Effects of Imeglimin and Metformin Combination Therapy on β-Cells in db/db Male Mice. Endocrinology 2023; 164:bqad095. [PMID: 37314160 DOI: 10.1210/endocr/bqad095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Imeglimin and metformin act in metabolic organs, including β-cells, via different mechanisms. In the present study, we investigated the impacts of imeglimin, metformin, or their combination (Imeg + Met) on β-cells, the liver, and adipose tissues in db/db mice. Imeglimin, metformin, or Imeg + Met treatment had no significant effects on glucose tolerance, insulin sensitivity, respiratory exchange ratio, or locomotor activity in db/db mice. The responsiveness of insulin secretion to glucose was recovered by Imeg + Met treatment. Furthermore, Imeg + Met treatment increased β-cell mass by enhancing β-cell proliferation and ameliorating β-cell apoptosis in db/db mice. Hepatic steatosis, the morphology of adipocytes, adiposity assessed by computed tomography, and the expression of genes related to glucose or lipid metabolism and inflammation in the liver and fat tissues showed no notable differences in db/db mice. Global gene expression analysis of isolated islets indicated that the genes related to regulation of cell population proliferation and negative regulation of cell death were enriched by Imeg + Met treatment in db/db islets. In vitro culture experiments confirmed the protective effects of Imeg + Met against β-cell apoptosis. The expression of Snai1, Tnfrsf18, Pdcd1, Mmp9, Ccr7, Egr3, and Cxcl12, some of which have been linked to apoptosis, in db/db islets was attenuated by Imeg + Met. Treatment of a β-cell line with Imeg + Met prevented apoptosis induced by hydrogen peroxide or palmitate. Thus, the combination of imeglimin and metformin is beneficial for the maintenance of β-cell mass in db/db mice, probably through direct action on β-cells, suggesting a potential strategy for protecting β-cells in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masato Ono
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Takahiro Tsuno
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Tomoko Okuyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Mayu Kyohara
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Yu Togashi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Setsuko Fukushima
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Takuto Atsumi
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Aoi Sato
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Asuka Tsurumoto
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Chisato Sakai
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
58
|
Papadakos SP, Ferraro D, Carbone G, Frampton AE, Vennarecci G, Kykalos S, Schizas D, Theocharis S, Machairas N. The Emerging Role of Metformin in the Treatment of Hepatocellular Carcinoma: Is There Any Value in Repurposing Metformin for HCC Immunotherapy? Cancers (Basel) 2023; 15:3161. [PMID: 37370771 PMCID: PMC10295995 DOI: 10.3390/cancers15123161] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. There has been significant progress in understanding the risk factors and epidemiology of HCC during the last few decades, resulting in efficient preventative, diagnostic and treatment strategies. Type 2 diabetes mellitus (T2DM) has been demonstrated to be a major risk factor for developing HCC. Metformin is a widely used hypoglycemic agent for patients with T2DM and has been shown to play a potentially beneficial role in improving the survival of patients with HCC. Experimental and clinical studies evaluating the outcomes of metformin as an antineoplastic drug in the setting of HCC were reviewed. Pre-clinical evidence suggests that metformin may enhance the antitumor effects of immune checkpoint inhibitors (ICIs) and reverse the effector T cells' exhaustion. However, there is still limited clinical evidence regarding the efficacy of metformin in combination with ICIs for the treatment of HCC. We appraised and analyzed in vitro and animal studies that aimed to elucidate the mechanisms of action of metformin, as well as clinical studies that assessed its impact on the survival of HCC patients.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Daniele Ferraro
- HPB Surgery and Liver Transplant Unit, AORN A. Cardarelli, 80131 Naples, Italy; (D.F.); (G.V.)
| | - Gabriele Carbone
- Department of General Surgery and Organ Transplantation, University of Rome “Sapienza”, 00161 Rome, Italy;
| | - Adam Enver Frampton
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK;
- Oncology Section, Surrey Cancer Research Institute, Department of Clinical and Experimental Medicine, FHMS, University of Surrey, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK
- HPB Surgical Unit, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
| | - Giovanni Vennarecci
- HPB Surgery and Liver Transplant Unit, AORN A. Cardarelli, 80131 Naples, Italy; (D.F.); (G.V.)
| | - Stylianos Kykalos
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| |
Collapse
|
59
|
Yang WC, Li TT, Wan Q, Zhang X, Sun LY, Zhang YR, Lai PC, Li WZ. Molecular Hydrogen Mediates Neurorestorative Effects After Stroke in Diabetic Rats: the TLR4/NF-κB Inflammatory Pathway. J Neuroimmune Pharmacol 2023; 18:90-99. [PMID: 35895245 PMCID: PMC10485112 DOI: 10.1007/s11481-022-10051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Diabetes is an independent risk factor for stroke and amplifies inflammation. Diabetic stroke is associated with a higher risk of death and worse neural function. The identification of effective anti-inflammatory molecules with translational advantages is particularly important to promote perioperative neurorestorative effects. Applying molecular hydrogen, we measured blood glucose levels before and after middle cerebral artery occlusion (MCAO), 48-h cerebral oedema and infarct volumes, as well as 28-day weight, survival and neurological function. We also measured the levels of TLR4, NF-κB p65, phosphorylated NF-κB p65, catecholamines, acetylcholine and inflammatory factors. All measurements comprehensively showed the positive effect and translational advantage of molecular hydrogen on diabetic stroke. Molecular hydrogen improved the weight, survival and long-term neurological function of rats with diabetic stroke and alleviated changes in blood glucose levels before and after middle cerebral artery occlusion (MCAO), but no difference in circadian rhythm was observed. Molecular hydrogen inhibited the phosphorylation of NF-κB and significantly reduced inflammation. Molecular hydrogen mediates neurorestorative effects after stroke in diabetic rats. The effect is independent of circadian rhythms, indicating translational advantages. The molecular mechanism is related to the TLR4/NF-κB pathway and inflammation. Molecular hydrogen (H2) affects outcomes of ischemic stroke with diabetes mellitus (DM).
Collapse
Affiliation(s)
- Wan-Chao Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ting-ting Li
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Qiang Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xin Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Li-Ying Sun
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yu-Rong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Pei-Chen Lai
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, People’s Republic of China
- Asclepius Meditec Co., Ltd, Shanghai, China
| | - Wen-zhi Li
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
60
|
Masters MC, Granche J, Yang J, Overton ET, Letendre S, Koletar SL, Rubin LH, Brown TT, Tassiopoulos K, Erlandson KM, Palella F. Association Between Metformin Use and Cognitive and Physical Function in Persons with HIV and Diabetes. AIDS Res Hum Retroviruses 2023; 39:302-309. [PMID: 36792952 PMCID: PMC10278023 DOI: 10.1089/aid.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Older persons with HIV (PWH) experience high rates of cognitive impairment and frailty, and accelerated decline in physical function compared with the general population. Metformin use has been associated with beneficial effects on cognitive and physical function among older adults without HIV. The relationship between metformin use on these outcomes in PWH has not been evaluated. AIDS Clinical Trials Group (ACTG) A5322 is an observational cohort study of older PWH with annual assessments for cognition and frailty, including measures of physical function (e.g., gait speed and grip strength). Participants with diabetes who were prescribed antihyperglycemic medications were included in this analysis to evaluate the association between metformin and functional outcomes. Cross-sectional, longitudinal, and time-to-event models were used to evaluate the relationship between metformin exposure with cognitive, physical function, and frailty outcomes. Ninety-eight PWH met inclusion criteria and were included in at least one model. No significant associations between metformin use, frailty, physical, or cognitive function were noted in unadjusted or adjusted cross-sectional, longitudinal, or time-to-event models (p > .1 for all models). This study is the first to examine the association between metformin use on functional outcomes among older PWH. Although it did not ascertain significant associations between metformin use and functional outcomes, our small sample size, restriction to persons with diabetes, and lack of randomization to metformin therapy were limitations. Larger randomized studies are needed to determine whether metformin use has beneficial effects on cognitive or physical function in PWH. Clinical Trial Registration numbers: 02570672, 04221750, 00620191, and 03733132.
Collapse
Affiliation(s)
- Mary Clare Masters
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Janeway Granche
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jingyan Yang
- Institute for Social and Economic Research and Policy, Columbia University, New York, New York, USA
| | - Edgar T. Overton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Scott Letendre
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Susan L. Koletar
- Department of Internal Medicine, Ohio State University, Columbus, Ohio, USA
| | - Leah H. Rubin
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Todd T. Brown
- Department of Medicine, Johns Hopkins University, Maryland, USA
| | - Katherine Tassiopoulos
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Frank Palella
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
61
|
Zhang SY, Bruce K, Danaei Z, Li RJW, Barros DR, Kuah R, Lim YM, Mariani LH, Cherney DZ, Chiu JFM, Reich HN, Lam TKT. Metformin triggers a kidney GDF15-dependent area postrema axis to regulate food intake and body weight. Cell Metab 2023; 35:875-886.e5. [PMID: 37060902 DOI: 10.1016/j.cmet.2023.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/29/2022] [Accepted: 03/20/2023] [Indexed: 04/17/2023]
Abstract
Metformin, the most widely prescribed medication for obesity-associated type 2 diabetes (T2D), lowers plasma glucose levels, food intake, and body weight in rodents and humans, but the mechanistic site(s) of action remain elusive. Metformin increases plasma growth/differentiation factor 15 (GDF15) levels to regulate energy balance, while GDF15 administration activates GDNF family receptor α-like (GFRAL) that is highly expressed in the area postrema (AP) and the nucleus of the solitary tract (NTS) of the hindbrain to lower food intake and body weight. However, the tissue-specific contribution of plasma GDF15 levels after metformin treatment is still under debate. Here, we found that metformin increased plasma GDF15 levels in high-fat (HF) fed male rats through the upregulation of GDF15 synthesis in the kidney. Importantly, the kidney-specific knockdown of GDF15 expression as well as the AP-specific knockdown of GFRAL expression negated the ability of metformin to lower food intake and body weight gain. Taken together, we unveil the kidney as a target of metformin to regulate energy homeostasis through a kidney GDF15-dependent AP axis.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada
| | - Kyla Bruce
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Zahra Danaei
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Rosa J W Li
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Daniel R Barros
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Rachel Kuah
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Yu-Mi Lim
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Laura H Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Z Cherney
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, UHN, Toronto, ON M5G2C4, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Jennifer F M Chiu
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Heather N Reich
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, UHN, Toronto, ON M5G2C4, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G2C4, Canada.
| |
Collapse
|
62
|
Zhang D, Zhang Y, Wang Z, Lei L. Thymoquinone attenuates hepatic lipid accumulation by inducing autophagy via AMPK/mTOR/ULK1-dependent pathway in nonalcoholic fatty liver disease. Phytother Res 2023; 37:781-797. [PMID: 36479746 DOI: 10.1002/ptr.7662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022]
Abstract
Thymoquinone (TQ) has been proved to exert wide-ranging pharmacological activities, with anti-inflammatory, antioxidant, anticonvulsant, antimicrobial, anti-tumor, and antidiabetic properties. In this study, we investigated the beneficial effects of TQ on a high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) in C57BL/6 N mice in vivo and free fatty acid (FFA)-induced human hepatocellular carcinoma HepG2 cells in vitro. Further, the underlying mechanisms of TQ to promote hepatic autophagy were also discovered. Data showed that TQ caused (p < 0.01) body weight reduction, improved glucose homeostasis, alleviated hepatosteatosis, and decreased hepatic lipid accumulation related to the induction of autophagy in HFD-fed mice. In vitro, TQ obviously increased (p < 0.01) autophagic flux in FFA-induced HepG2 cells and consequently reduced the lipid accumulation in combination with activation of AMPK/mTOR/ULK1 signaling pathways. Moreover, pharmacological inhibition of the AMPK pathway by addition with AMPK inhibitor Compound C (CC) or silence of ULK1 by transfection with siRNA(ULK1) into HepG2 cells reversed these beneficial effects of TQ on triggering hepatic autophagy and reducing lipid accumulation (p < 0.01). Taken together, these results suggested that TQ alleviated hepatic lipid accumulation by triggering autophagy through the AMPK/mTOR/ULK1-dependent signaling pathway. Our study supports a potential role for TQ in ameliorating NAFLD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yinghui Zhang
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhilan Wang
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lei Lei
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
63
|
Harada M, Kondo Y, Sugiyama M, Ohira A, Ichikawa M, Akiyama T, Orime K, Takai T, Yamakawa T, Terauchi Y. The METRO study: a retrospective analysis of the efficacy of metformin for type 2 diabetes in Japan. Endocr J 2023; 70:121-128. [PMID: 36261368 DOI: 10.1507/endocrj.ej22-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Metformin monotherapy as first-line treatment for patients with type 2 diabetes (T2D) has been shown to effectively improve blood glucose levels and motivation to undergo treatment and prevent complications. However, no studies have reported its effect when combined with other drugs or compared the effect based on administration time. This study aimed to investigate the effect of metformin administration in Japanese patients with T2D, examine how the introduction line impacts the effect of metformin, and examine the characteristics of patients demonstrating improved blood glucose levels. Data on characteristics of patients who were newly prescribed metformin with no shifting of hypoglycemic agents in the subsequent 24-week observation period, and their age [mean, 56.8 years], body mass index [mean, 27.5 kg/m2], glycated hemoglobin [HbA1c] [mean, 8.1%], and duration of diabetes [mean, 3.0 years] were obtained from the medical records of 201 patients. The changes in HbA1c by introduction line after 24 weeks were -1.59%, -0.91%, -0.89%, and -0.65% in the first, second, third, and fourth induction lines, respectively; earlier introduction more significantly improved blood glucose. The factors significantly associated with HbA1c changes were early introduction, high baseline HbA1c, high estimated glomerular filtration rate, decreased insulin secretion, short estimated duration of diabetes, and increased metformin dose. Furthermore, factors contributing to the largest HbA1c improvement by metformin were high baseline HbA1c and early administration. Metformin is expected to lower blood glucose levels in Japanese patients with T2D, even in those with decreased insulin secretion, due to its early introduction as a first-line drug.
Collapse
Affiliation(s)
- Marina Harada
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Yoshinobu Kondo
- Tsunashima East Internal Medicine and Diabetes Clinic, Yokohama 223-0052, Japan
| | - Mai Sugiyama
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Akeo Ohira
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Masahiro Ichikawa
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Tomoaki Akiyama
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Kazuki Orime
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Takanori Takai
- Urafune Kanazawa Internal Medicine Clinic, Yokohama 232-0024, Japan
| | - Tadashi Yamakawa
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
64
|
Abstract
Metformin is the most prescribed drug for DM2, but its site and mechanism of action are still not well established. Here, we investigated the effects of metformin on basolateral intestinal glucose uptake (BIGU), and its consequences on hepatic glucose production (HGP). In diabetic patients and mice, the primary site of metformin action was the gut, increasing BIGU, evaluated through PET-CT. In mice and CaCo2 cells, this increase in BIGU resulted from an increase in GLUT1 and GLUT2, secondary to ATF4 and AMPK. In hyperglycemia, metformin increased the lactate (reducing pH and bicarbonate in portal vein) and acetate production in the gut, modulating liver pyruvate carboxylase, MPC1/2, and FBP1, establishing a gut-liver crosstalk that reduces HGP. In normoglycemia, metformin-induced increases in BIGU is accompanied by hypoglycemia in the portal vein, generating a counter-regulatory mechanism that avoids reductions or even increases HGP. In summary, metformin increases BIGU and through gut-liver crosstalk influences HGP.
Collapse
|
65
|
AMPK inhibits liver gluconeogenesis: fact or fiction? Biochem J 2023; 480:105-125. [PMID: 36637190 DOI: 10.1042/bcj20220582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Is there a role for AMPK in the control of hepatic gluconeogenesis and could targeting AMPK in liver be a viable strategy for treating type 2 diabetes? These are frequently asked questions this review tries to answer. After describing properties of AMPK and different small-molecule AMPK activators, we briefly review the various mechanisms for controlling hepatic glucose production, mainly via gluconeogenesis. The different experimental and genetic models that have been used to draw conclusions about the role of AMPK in the control of liver gluconeogenesis are critically discussed. The effects of several anti-diabetic drugs, particularly metformin, on hepatic gluconeogenesis are also considered. We conclude that the main effect of AMPK activation pertinent to the control of hepatic gluconeogenesis is to antagonize glucagon signalling in the short-term and, in the long-term, to improve insulin sensitivity by reducing hepatic lipid content.
Collapse
|
66
|
Ruigrok RAAA, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023; 15:2201155. [PMID: 37074215 PMCID: PMC10120449 DOI: 10.1080/19490976.2023.2201155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Renate A. A. A. Ruigrok
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
67
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
68
|
Xu P, Zheng Y, Liao J, Hu M, Yang Y, Zhang B, Kilby MD, Fu H, Liu Y, Zhang F, Xiong L, Liu X, Jin H, Wu Y, Huang J, Han T, Wen L, Gao R, Fu Y, Fan X, Qi H, Baker PN, Tong C. AMPK regulates homeostasis of invasion and viability in trophoblasts by redirecting glucose metabolism: Implications for pre-eclampsia. Cell Prolif 2022; 56:e13358. [PMID: 36480593 PMCID: PMC9890534 DOI: 10.1111/cpr.13358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/13/2022] Open
Abstract
Pre-eclampsia (PE) is deemed an ischemia-induced metabolic disorder of the placenta due to defective invasion of trophoblasts during placentation; thus, the driving role of metabolism in PE pathogenesis is largely ignored. Since trophoblasts undergo substantial glycolysis, this study aimed to investigate its function and regulatory mechanism by AMPK in PE development. Metabolomics analysis of PE placentas was performed by gas chromatography-mass spectrometry (GC-MS). Trophoblast-specific AMPKα1-deficient mouse placentas were generated to assess morphology. A mouse PE model was established by Reduced Uterine Perfusion Pressure, and placental AMPK was modulated by nanoparticle-delivered A769662. Trophoblast glucose uptake was measured by 2-NBDG and 2-deoxy-d-[3 H] glucose uptake assays. Cellular metabolism was investigated by the Seahorse assay and GC-MS.PE complicated trophoblasts are associated with AMPK hyperactivation due not to energy deficiency. Thereafter, AMPK activation during placentation exacerbated PE manifestations but alleviated cell death in the placenta. AMPK activation in trophoblasts contributed to GLUT3 translocation and subsequent glucose metabolism, which were redirected into gluconeogenesis, resulting in deposition of glycogen and accumulation of phosphoenolpyruvate; the latter enhanced viability but compromised trophoblast invasion. However, ablation of AMPK in the mouse placenta resulted in decreased glycogen deposition and structural malformation. These data reveal a novel homeostasis between invasiveness and viability in trophoblasts, which is mechanistically relevant for switching between the 'go' and 'grow' cellular programs.
Collapse
Affiliation(s)
- Ping Xu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina,Biochemistry and Molecular BiologyUniversity of Texas McGovern Medical SchoolHoustonTexasUSA
| | - Yangxi Zheng
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina,Department of Stem Cell Transplantation and Cell TherapyMD Anderson Cancer CenterHoustonTexasUSA
| | - Jiujiang Liao
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Mingyu Hu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Yike Yang
- Department of Gynecology and ObstetricsPeking University Third HospitalBeijingChina
| | - Baozhen Zhang
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| | - Mark D. Kilby
- Institute of Metabolism and System ResearchUniversity of BirminghamEdgbastonUK
| | - Huijia Fu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Yamin Liu
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Fumei Zhang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Liling Xiong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Xiyao Liu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Huili Jin
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Yue Wu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Jiayu Huang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Tingli Han
- Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Li Wen
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and ManagementChongqing Medical UniversityChongqingChina
| | - Yong Fu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Xiujun Fan
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina,Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | | | - Chao Tong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| |
Collapse
|
69
|
Huang Y, Lou X, Jiang C, Ji X, Tao X, Sun J, Bao Z. Gut microbiota is correlated with gastrointestinal adverse events of metformin in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:1044030. [PMID: 36465607 PMCID: PMC9714661 DOI: 10.3389/fendo.2022.1044030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
Aim Gastrointestinal discomfort is the most common adverse event in metformin treatment for type 2 diabetes. The mechanism of action of metformin is associated with gut microbiota. However, the gut microbial community structure related to metformin-induced gastrointestinal adverse events remains unclear. This study aimed to investigate it. Methods 50 patients with newly diagnosed diabetes were treated with metformin 1500mg/d for 12 weeks. The patients were divided into two groups according to whether gastrointestinal adverse events occurred (group B) or did not occur (group A) after treatment. The fecal bacterial communities and short-chain fatty acids (SCFAs) were sequenced and compared. 70 diabetes mice were randomly divided into 8 groups and treated with metformin (Met), clindamycin (Clin) and/or SCFA, which were the Met+/Clin+, Met+/Clin-, Met-/Clin+, Met-/Clin-, Met+/SCFA+, Met+/SCFA-, Met-/SCFA+ and Met-/SCFA- group. After 4 weeks of metformin treatment, blood glucose, food intake, fecal SCFAs, gut microbiota and gut hormones were measured. Results Metformin increased the abundance of Phascolarctobacterium, Intestinimonas and Clostridium III. Functional prediction analysis showed that the propanoate metabolism pathway was significantly up-regulated. The concentrations of acetic acid and propanoic acid in feces were significantly increased. The abundance of Clostridium sensu stricto, Streptococcus and Akkermansia induced by metformin in group B was higher than that in group A. The propanoate metabolism pathway and propanoic acid in feces were significantly up-regulated in group B. In the animal experiments, the food intake decreased and glucose control increased in metformin groups compared with those in the control groups. The total GLP-1 level in the Met+/Clin- group was significantly higher than that in the Met-/Clin- group, while there was no statistical difference between the Met-/Clin- and Met+/Clin+ group. The total GLP-1 level in the Met-/SCFA+ group was significantly higher than that in the Met-/SCFA-group, while the levels of total GLP-1 and active GLP-1 in the Met+/SCFA- group and the Met+/SCFA+ group were significantly higher than those in the Met-/SCFA-group. Conclusions Our data suggest that metformin promotes the secretion of intestinal hormones such as GLP-1 by increasing the abundance of SCFA-producing bacteria, which not only plays an anti-diabetic role, but also may causes gastrointestinal adverse events.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xudan Lou
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Cuiping Jiang
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueying Ji
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaoming Tao
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiao Sun
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
70
|
Yan Y, Li M, Lin J, Ji Y, Wang K, Yan D, Shen Y, Wang W, Huang Z, Jiang H, Sun H, Qi L. Adenosine monophosphate activated protein kinase contributes to skeletal muscle health through the control of mitochondrial function. Front Pharmacol 2022; 13:947387. [PMID: 36339617 PMCID: PMC9632297 DOI: 10.3389/fphar.2022.947387] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle is one of the largest organs in the body and the largest protein repository. Mitochondria are the main energy-producing organelles in cells and play an important role in skeletal muscle health and function. They participate in several biological processes related to skeletal muscle metabolism, growth, and regeneration. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor and regulator of systemic energy balance. AMPK is involved in the control of energy metabolism by regulating many downstream targets. In this review, we propose that AMPK directly controls several facets of mitochondrial function, which in turn controls skeletal muscle metabolism and health. This review is divided into four parts. First, we summarize the properties of AMPK signal transduction and its upstream activators. Second, we discuss the role of mitochondria in myogenesis, muscle atrophy, regeneration post-injury of skeletal muscle cells. Third, we elaborate the effects of AMPK on mitochondrial biogenesis, fusion, fission and mitochondrial autophagy, and discuss how AMPK regulates the metabolism of skeletal muscle by regulating mitochondrial function. Finally, we discuss the effects of AMPK activators on muscle disease status. This review thus represents a foundation for understanding this biological process of mitochondrial dynamics regulated by AMPK in the metabolism of skeletal muscle. A better understanding of the role of AMPK on mitochondrial dynamic is essential to improve mitochondrial function, and hence promote skeletal muscle health and function.
Collapse
Affiliation(s)
- Yan Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Jie Lin
- Department of Infectious Disease, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Dajun Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| |
Collapse
|
71
|
Synergistic anticancer effects of metformin and Achillea vermicularis Trin-loaded nanofibers on human pancreatic cancer cell line: An in vitro study. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
72
|
Chhunchha B, Kubo E, Singh DP. Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity. Cells 2022; 11:3021. [PMID: 36230981 PMCID: PMC9563310 DOI: 10.3390/cells11193021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Increasing levels of oxidative-stress due to deterioration of the Nrf2 (NFE2-related factor)/ARE (antioxidant response element) pathway is found to be a primary cause of aging pathobiology. Metformin having anti-aging effects can delay/halt aging-related diseases. Herein, using lens epithelial cell lines (LECs) of human (h) or mouse (m) and aging h/m primary LECs along with lenses as model systems, we demonstrated that Metformin could correct deteriorated Bmal1/Nrf2/ARE pathway by reviving AMPK-activation, and transcriptional activities of Bmal1/Nrf2, resulting in increased antioxidants enzymatic activity and expression of Phase II enzymes. This ensued reactive oxygen species (ROS) mitigation with cytoprotection and prevention of lens opacity in response to aging/oxidative stress. It was intriguing to observe that Metformin internalized lens/LECs and upregulated OCTs (Organic Cation Transporters). Mechanistically, we found that Metformin evoked AMPK activation-dependent increase of Bmal1, Nrf2, and antioxidants transcription by promoting direct E-Box and ARE binding of Bmal1 and Nrf2 to the promoters. Loss-of-function and disruption of E-Box/ARE identified that Metformin acted by increasing Bmal1/Nrf2-mediated antioxidant expression. Data showed that AMPK-activation was a requisite for Bmal1/Nrf2-antioxidants-mediated defense, as pharmacologically inactivating AMPK impeded the Metformin's effect. Collectively, the results for the first-time shed light on the hitherto incompletely uncovered crosstalk between the AMPK and Bmal1/Nrf2/antioxidants mediated by Metformin for blunting oxidative/aging-linked pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
73
|
Li M, Bao L, Zhu P, Wang S. Effect of metformin on the epigenetic age of peripheral blood in patients with diabetes mellitus. Front Genet 2022; 13:955835. [PMID: 36226195 PMCID: PMC9548538 DOI: 10.3389/fgene.2022.955835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Metformin has been proven to have an antiaging effect. However, studies on how metformin affects global epigenetic regulation and its effect on the epigenetic clock in diabetes mellitus (DM) patients are limited. This study aims to investigate the impact of metformin on the epigenetic age in subjects with type 2 DM. Results: We collected the peripheral blood of the metformin group and the no-metformin group of the 32 DM patients. Three previously established epigenetic clocks (Hannum, Horvath, and DNAmPhenoAge) were used to estimate the epigenetic age acceleration of the two groups. We defined biological age acceleration for each group by comparing the estimated biological age with the chronological age. Results were presented as follows: 1) all three epigenetic clocks were strongly correlated with chronological age. 2) We found a strong association between metformin intake and slower epigenetic aging by Horvath’s clock and Hannum’s clock. Conclusions: Here, we found an association between metformin intake and slower epigenetic aging.
Collapse
Affiliation(s)
- Man Li
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Litao Bao
- Institute of Gerontology, Second Medical Center, PLA General Hospital, Beijing, China
| | - Ping Zhu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Shuxia Wang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Shuxia Wang,
| |
Collapse
|
74
|
Han HF, Liu SZ, Zhang X, Wei M, Huang X, Yu WB. Duodenal-jejunal bypass increases intraduodenal bile acids and upregulates duodenal SIRT1 expression in high-fat diet and streptozotocin-induced diabetic rats. World J Gastroenterol 2022; 28:4338-4350. [PMID: 36159018 PMCID: PMC9453763 DOI: 10.3748/wjg.v28.i31.4338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The mechanisms underlying diabetes remission after duodenal-jejunal bypass (DJB) remain elusive. In DJB surgery, the duodenum is excluded. However, the duodenum has emerged as an important regulator of glucose homeostasis, and elevated duodenal SIRT1 leads to improved hepatic insulin sensitivity. After DJB, bile acids (BAs) in the duodenum are not mixed and diluted by the ingested food. And activation of BA receptors promotes SIRT1 expression in many tissues. We hypothesized that BA-mediated upregulation of SIRT1 may contribute to diabetic control after DJB.
AIM To investigate the surgical effects of DJB on duodenal SIRT1 expression and uncover the potential crosslinks between BAs and SIRT1.
METHODS Twenty diabetic rats were randomly allocated to the sham (n = 10) and DJB (n = 10) groups. Body weight, food intake, fasting blood glucose (FBG), serum and intraduodenal total BA (TBA) levels were measured accordingly. Oral glucose tolerance test (OGTT) and intraperitoneal pyruvate tolerance test (ipPTT) were performed to evaluate the effects of surgeries on systemic glucose disposal and hepatic gluconeogenesis. The key genes of BA signaling pathway in the duodenal mucosa, including farnesoid X receptor (FXR), small heterodimer partner (SHP), and Takeda G-protein-coupled receptor 5 (TGR5) were evaluated by real-time quantitative polymerase chain reaction 8 wk postoperatively. The duodenal SIRT1, AMPK, and phosphorylated AMPK (p-AMPK) levels were evaluated by western blotting. Rat small intestine epithelial IEC-6 cells were treated with GW4064 and INT-777 to verify the effects of BAs on SIRT1 expression in enterocytes.
RESULTS The DJB group exhibited body weight and food intake comparable to those of the sham group at all postoperative time points. The FBG level and area under the curve for the OGTT and ipPTT were significantly lower in the DJB group. The DJB group exhibited higher fasting and postprandial serum TBA levels than the sham group at both 2 and 8 wk postoperatively. At 8 wk after surgery, the DJB group showed higher intraluminal TBA concentration, upregulated mRNA expression of FXR and SHP, and elevated protein expression of SIRT1 and p-AMPK in the descending and horizontal segments of the duodenum. Activation of FXR and TGR5 receptors by GW4064 and INT-777 increased the mRNA and protein expression of SIRT1 and promoted the phosphorylation of AMPK in IEC-6 cells.
CONCLUSION DJB elevates intraduodenal BA levels and activates the duodenal BA signaling pathway, which may upregulate duodenal SIRT1 and further contribute to improved glucose homeostasis after DJB.
Collapse
Affiliation(s)
- Hai-Feng Han
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Shao-Zhuang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xin Huang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-Bin Yu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
75
|
Abot A, Fried S, Cani PD, Knauf C. Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxid Redox Signal 2022; 37:394-415. [PMID: 34714099 DOI: 10.1089/ars.2021.0100] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The role of reactive oxygen/nitrogen species as "friend" or "foe" messengers in the whole body is well characterized. Depending on the concentration in the tissue considered, these molecular actors exert beneficial or deleterious impacts leading to a pathological state, as observed in metabolic disorders such as type 2 diabetes and obesity. Recent Advances: Among the tissues impacted by oxidation and inflammation in this pathological state, the intestine is a site of dysfunction that can establish diabetic symptoms, such as alterations in the intestinal barrier, gut motility, microbiota composition, and gut/brain axis communication. In the intestine, reactive oxygen/nitrogen species (from the host and/or microbiota) are key factors that modulate the transition from physiological to pathological signaling. Critical Issues: Controlling the levels of intestinal reactive oxygen/nitrogen species is a complicated balance between positive and negative impacts that is in constant equilibrium. Here, we describe the synthesis and degradation of intestinal reactive oxygen/nitrogen species and their interactions with the host. The development of novel redox-based therapeutics that alter these processes could restore intestinal health in patients with metabolic disorders. Future Directions: Deciphering the mode of action of reactive oxygen/nitrogen species in the gut of obese/diabetic patients could result in a future therapeutic strategy that combines nutritional and pharmacological approaches. Consequently, preventive and curative treatments must take into account one of the first sites of oxidative and inflammatory dysfunctions in the body, that is, the intestine. Antioxid. Redox Signal. 37, 394-415.
Collapse
Affiliation(s)
- Anne Abot
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Steven Fried
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Patrice D Cani
- International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France.,UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Claude Knauf
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| |
Collapse
|
76
|
Actions of Metformin in the Brain: A New Perspective of Metformin Treatments in Related Neurological Disorders. Int J Mol Sci 2022; 23:ijms23158281. [PMID: 35955427 PMCID: PMC9368983 DOI: 10.3390/ijms23158281] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Metformin is a first-line drug for treating type 2 diabetes mellitus (T2DM) and one of the most commonly prescribed drugs in the world. Besides its hypoglycemic effects, metformin also can improve cognitive or mood functions in some T2DM patients; moreover, it has been reported that metformin exerts beneficial effects on many neurological disorders, including major depressive disorder (MDD), Alzheimer’s disease (AD) and Fragile X syndrome (FXS); however, the mechanism underlying metformin in the brain is not fully understood. Neurotransmission between neurons is fundamental for brain functions, and its defects have been implicated in many neurological disorders. Recent studies suggest that metformin appears not only to regulate synaptic transmission or plasticity in pathological conditions but also to regulate the balance of excitation and inhibition (E/I balance) in neural networks. In this review, we focused on and reviewed the roles of metformin in brain functions and related neurological disorders, which would give us a deeper understanding of the actions of metformin in the brain.
Collapse
|
77
|
Pharmacological Approaches to Decelerate Aging: A Promising Path. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201533. [PMID: 35860429 PMCID: PMC9293537 DOI: 10.1155/2022/4201533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
Biological aging or senescence is a course in which cellular function decreases over a period of time and is a consequence of altered signaling mechanisms that are triggered in stressed cells leading to cell damage. Aging is among the principal risk factors for many chronic illnesses such as cancer, cardiovascular disorders, and neurodegenerative diseases. Taking this into account, targeting fundamental aging mechanisms therapeutically may effectively impact numerous chronic illnesses. Selecting ideal therapeutic options in order to hinder the process of aging and decelerate the progression of age-related diseases is valuable. Along therapeutic options, life style modifications may well render the process of aging. The process of aging is affected by alteration in many cellular and signaling pathways amid which mTOR, SIRT1, and AMPK pathways are the most emphasized. Herein, we have discussed the mechanisms of aging focusing mainly on the mentioned pathways as well as the role of inflammation and autophagy in aging. Moreover, drugs and natural products with antiaging properties are discussed in detail.
Collapse
|
78
|
Adisa RA, Sulaimon LA, Okeke EG, Ariyo OC, Abdulkareem FB. Mitoquinol mesylate (MITOQ) attenuates diethyl nitrosamine-induced hepatocellular carcinoma through modulation of mitochondrial antioxidant defense systems. Toxicol Res 2022; 38:275-291. [PMID: 35874502 PMCID: PMC9247134 DOI: 10.1007/s43188-021-00105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/05/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Diethyl nitrosamine (DEN) induced cirrhosis-hepatocellular carcinoma (HCC) model associates cancer progression with oxidative stress and mitochondrial dysfunction. This study investigated the effects of mitoquinol mesylate (MitoQ), a mitochondrial-targeted antioxidant on DEN-induced oxidative damage in HCC Wistar rats. Fifty male Wistar rats were randomly divided into five groups. Healthy control, DEN, and MitoQ groups were orally administered exactly 10 mg/kg of distilled water, DEN, and MitoQ, respectively for 16 weeks. Animals in the MitoQ + DEN group were pre-treated with MitoQ for a week followed by co-administration of 10 mg/kg each of MitoQ and DEN. DEN + MitoQ group received DEN for 8 weeks, then co-administration of 10 mg/kg each of DEN and MitoQ till the end of 16th week. Survival index, tumour incidence, hematological profile, liver function indices, lipid profile, mitochondrial membrane composition, mitochondrial respiratory enzymes, and antioxidant defense status in both mitochondrial and post-mitochondrial fractions plus expression of antioxidant genes were assessed. In MitoQ + DEN and DEN + MitoQ groups, 80% survival occurred while tumour incidence decreased by 60% and 40% respectively, compared to the DEN-only treated group. Similarly, MitoQ-administered groups showed a significant (p < 0.05) decrease in the activities of liver function enzymes while hemoglobin concentration, red blood cell count, and packed cell volume were significantly elevated compared to the DEN-only treated group. Administration of MitoQ to the DEN-intoxicated groups successfully enhanced the activities of mitochondrial F1F0-ATPase and succinate dehydrogenase; and up-regulated the expression and activities of SOD2, CAT, and GPx1. Macroscopic and microscopic features indicated a reversal of DEN-induced hepatocellular degeneration in the MitoQ + DEN and DEN + MitoQ groups. These data revealed that MitoQ intervention attenuated DEN-induced oxidative stress through modulation of mitochondrial antioxidant defense systems and alleviated the burden of HCC as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Rahmat Adetutu Adisa
- Laboratories for Bio-membranes and Cancer Research, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine of University of Lagos, Idi-araba, Lagos, P.M.B. 12003 Nigeria
| | - Lateef Adegboyega Sulaimon
- Laboratories for Bio-membranes and Cancer Research, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine of University of Lagos, Idi-araba, Lagos, P.M.B. 12003 Nigeria
| | - Ebele Geraldine Okeke
- Laboratories for Bio-membranes and Cancer Research, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine of University of Lagos, Idi-araba, Lagos, P.M.B. 12003 Nigeria
| | - Olubukola Christianah Ariyo
- Laboratories for Bio-membranes and Cancer Research, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine of University of Lagos, Idi-araba, Lagos, P.M.B. 12003 Nigeria
| | - Fatimah B. Abdulkareem
- Department of Anatomic and Molecular Pathology, Faculty of Basic Medical Sciences,, College of Medicine of University of Lagos, Idi-araba, P.M.B. 12003 Lagos, Nigeria
| |
Collapse
|
79
|
The role of MicroRNA networks in tissue-specific direct and indirect effects of metformin and its application. Biomed Pharmacother 2022; 151:113130. [PMID: 35598373 DOI: 10.1016/j.biopha.2022.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Metformin is a first-line oral antidiabetic agent that results in clear benefits in relation to glucose metabolism and diabetes-related complications. The specific regulatory details and mechanisms underlying these benefits are still unclear and require further investigation. There is recent mounting evidence that metformin has pleiotropic effects on the target tissue development in metabolic organs, including adipose tissue, the gastrointestinal tract and the liver. The mechanism of actions of metformin are divided into direct effects on target tissues and indirect effects via non-targeted tissues. MicroRNAs (miRNAs) are a class of endogenous, noncoding, negative gene regulators that have emerged as important regulators of a number of diseases, including type 2 diabetes mellitus (T2DM). Metformin is involved in many aspects of miRNA regulation, and metformin treatment in T2DM should be associated with other miRNA targets. A large number of miRNAs regulation by metformin in target tissues with either direct or indirect effects has gradually been revealed in the context of numerous diseases and has gradually received increasing attention. This paper thoroughly reviews the current knowledge about the role of miRNA networks in the tissue-specific direct and indirect effects of metformin. Furthermore, this knowledge provides a novel theoretical basis and suggests therapeutic targets for the clinical treatment of metformin and miRNA regulators in the prevention and treatment of cancer, cardiovascular disorders, diabetes and its complications.
Collapse
|
80
|
Metabolic Action of Metformin. Pharmaceuticals (Basel) 2022; 15:ph15070810. [PMID: 35890109 PMCID: PMC9317619 DOI: 10.3390/ph15070810] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin, a cheap and safe biguanide derivative, due to its ability to influence metabolism, is widely used as a first-line drug for type 2 diabetes (T2DM) treatment. Therefore, the aim of this review was to present the updated biochemical and molecular effects exerted by the drug. It has been well explored that metformin suppresses hepatic glucose production in both AMPK-independent and AMPK-dependent manners. Substantial scientific evidence also revealed that its action is related to decreased secretion of lipids from intestinal epithelial cells, as well as strengthened oxidation of fatty acids in adipose tissue and muscles. It was recognized that metformin’s supra-therapeutic doses suppress mitochondrial respiration in intestinal epithelial cells, whereas its therapeutic doses elevate cellular respiration in the liver. The drug is also suggested to improve systemic insulin sensitivity as a result of alteration in gut microbiota composition, maintenance of intestinal barrier integrity, and alleviation of low-grade inflammation.
Collapse
|
81
|
Venkateswararao R, Arul B, Kothai R. Chemopreventive effects of Costus comosus Linn against diethylnitrosamine-induced hepatocellular carcinoma in rats. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Costus comosus is a potential medicinal plant used traditionally to treat various ailments. The present study aimed to evaluate antioxidant status, lipid peroxidation, and the ameliorative effect of its ethanolic leaf extract against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. Methods: HCC was induced by 0.01 % v/v DEN through the drinking water for 16 weeks. The animals were treated with ethanolic leaf extract of C. comosus (EECC) at 200 and 400 mg/kg for 16 weeks. In this study, tumour incidence, tumour volume, tumour burden, lipid peroxidation, antioxidant activity, liver marker enzymes, and histological responses were measured in the animals. At the end of the study, rats were sacrificed, their livers were removed and the levels of antioxidant enzymes were measured in the liver homogenate. Results: In DEN-treated animals, there were 100% tumour occurrences probably due to an imbalance in carcinogen metabolizing enzymes and cellular redox state. The oral administration of ethanolic leaf extract of C. comosus therapy at a dose of 200 and 400 mg/kg reduced lipid peroxide levels and restored the increased activities of liver marker enzymes and antioxidant status to near normal. The biochemical findings corroborate histological findings, indicating that the leaf extract has a significant hepatoprotective impact in a dose-dependent manner. Conclusion: The results of the present study showed the promising anti-carcinogenic effects of ethanolic leaf extract of C. comosus against the DEN-induced HCC in rats.
Collapse
Affiliation(s)
- Rachumallu Venkateswararao
- Department of Pharmacology, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem-636008, Tamilnadu, India
| | - Balasubramanian Arul
- Department of Pharmacology, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem-636008, Tamilnadu, India
| | - Ramalingam Kothai
- Department of Pharmacology, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem-636008, Tamilnadu, India
| |
Collapse
|
82
|
Hasanvand A. The role of AMPK-dependent pathways in cellular and molecular mechanisms of metformin: a new perspective for treatment and prevention of diseases. Inflammopharmacology 2022; 30:775-788. [PMID: 35419709 PMCID: PMC9007580 DOI: 10.1007/s10787-022-00980-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Metformin can suppress gluconeogenesis and reduce blood sugar by activating adenosine monophosphate-activated protein kinase (AMPK) and inducing small heterodimer partner (SHP) expression in the liver cells. The main mechanism of metformin's action is related to its activation of the AMPK enzyme and regulation of the energy balance. AMPK is a heterothermic serine/threonine kinase made of a catalytic alpha subunit and two subunits of beta and a gamma regulator. This enzyme can measure the intracellular ratio of AMP/ATP. If this ratio is high, the amino acid threonine 172 available in its alpha chain would be activated by the phosphorylated liver kinase B1 (LKB1), leading to AMPK activation. Several studies have indicated that apart from its significant role in the reduction of blood glucose level, metformin activates the AMPK enzyme that in turn has various efficient impacts on the regulation of various processes, including controlling inflammatory conditions, altering the differentiation pathway of immune and non-immune cell pathways, and the amelioration of various cancers, liver diseases, inflammatory bowel disease (IBD), kidney diseases, neurological disorders, etc. Metformin's activation of AMPK enables it to control inflammatory conditions, improve oxidative status, regulate the differentiation pathways of various cells, change the pathological process in various diseases, and finally have positive therapeutic effects on them. Due to the activation of AMPK and its role in regulating several subcellular signalling pathways, metformin can be effective in altering the cells' proliferation and differentiation pathways and eventually in the prevention and treatment of certain diseases.
Collapse
Affiliation(s)
- Amin Hasanvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
83
|
Metabolic regulation by the intestinal metformin-AMPK axis. Nat Commun 2022; 13:2851. [PMID: 35606343 PMCID: PMC9126964 DOI: 10.1038/s41467-022-30477-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
|
84
|
Eugenol alleviated nonalcoholic fatty liver disease in rat via a gut-brain-liver axis involving glucagon-like Peptide-1. Arch Biochem Biophys 2022; 725:109269. [PMID: 35508252 DOI: 10.1016/j.abb.2022.109269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
|
85
|
Liu YJ, McIntyre RL, Janssens GE. Considerations Regarding Public Use of Longevity Interventions. FRONTIERS IN AGING 2022; 3:903049. [PMID: 35821857 PMCID: PMC9261328 DOI: 10.3389/fragi.2022.903049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Public attention and interest for longevity interventions are growing. These can include dietary interventions such as intermittent fasting, physical interventions such as various exercise regimens, or through supplementation of nutraceuticals or administration of pharmaceutics. However, it is unlikely that most interventions identified in model organisms will translate to humans, or that every intervention will benefit each person equally. In the worst case, even detrimental health effects may occur. Therefore, identifying longevity interventions using human data and tracking the aging process in people is of paramount importance as we look towards longevity interventions for the public. In this work, we illustrate how to identify candidate longevity interventions using population data in humans, an approach we have recently employed. We consider metformin as a case-study for potential confounders that influence effectiveness of a longevity intervention, such as lifestyle, sex, genetics, age of administration and the microbiome. Indeed, metformin, like most other longevity interventions, may end up only benefitting a subgroup of individuals. Fortunately, technologies have emerged for tracking the rate of 'biological' aging in individuals, which greatly aids in assessing effectiveness. Recently, we have demonstrated that even wearable devices, accessible to everyone, can be used for this purpose. We therefore propose how to use such approaches to test interventions in the general population. In summary, we advocate that 1) not all interventions will be beneficial for each individual and therefore 2) it is imperative that individuals track their own aging rates to assess healthy aging interventions.
Collapse
Affiliation(s)
| | | | - Georges E. Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
86
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
87
|
Yan J, Fan YJ, Bao H, Li YG, Zhang SM, Yao QP, Huo YL, Jiang ZL, Qi YX, Han Y. Platelet-derived microvesicles regulate vascular smooth muscle cell energy metabolism via PRKAA after intimal injury. J Cell Sci 2022; 135:275043. [PMID: 35297486 DOI: 10.1242/jcs.259364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Vascular intimal injury initiates various cardiovascular disease processes. Exposure to subendothelial collagen can cause platelet activation, leading to platelet-derived microvesicles (aPMVs) secretion. In addition, vascular smooth muscle cells (VSMCs) exposed to large amounts of aPMVs undergo abnormal energy metabolism, they proliferate excessively and migrate after the loss of endothelium, eventually contributing to neointimal hyperplasia. However, the roles of aPMVs in VSMC energy metabolism are still unknown. Carotid artery intimal injury model indicated platelets adhered to injured blood vessels. In vitro, p-Pka content was increased in aPMVs. aPMVs significantly changed VSMC glycolysis and oxidative phosphorylation, and promoted VSMC migration and proliferation by upregulating p-PRKAA/p-FoxO1. Compound C, an inhibitor of PRKAA, effectively reversed the cell function and energy metabolism triggered by aPMVs in vitro and neointimal formation in vivo. Our data show that aPMVs can affect VSMC energy metabolism through the Pka/PRKAA/FoxO1 signaling pathway and ultimately affect VSMC function, indicating that VSMC metabolic phenotype shifted by aPMVs can be considered a potential target for the inhibition of hyperplasia and providing a new perspective for regulating the abnormal activity of VSMCs after injury.
Collapse
Affiliation(s)
- Jing Yan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Jing Fan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Guang Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shou-Min Zhang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Long Huo
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
88
|
Singhal S, Maheshwari P, Krishnamurthy PT, Patil VM. Drug Repurposing Strategies for Non-Cancer to Cancer Therapeutics. Anticancer Agents Med Chem 2022; 22:2726-2756. [PMID: 35301945 DOI: 10.2174/1871520622666220317140557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Global efforts invested for the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off patent noncancer drugs with known targets into newer indications. The literature review suggests key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs namely, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs have come out with interesting outcomes during preclinical and clinical phases. In the present article a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Priyal Maheshwari
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | | | - Vaishali M Patil
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| |
Collapse
|
89
|
García-Puga M, Saenz-Antoñanzas A, Matheu A, López de Munain A. Targeting Myotonic Dystrophy Type 1 with Metformin. Int J Mol Sci 2022; 23:ijms23052901. [PMID: 35270043 PMCID: PMC8910924 DOI: 10.3390/ijms23052901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder of genetic origin. Progressive muscular weakness, atrophy and myotonia are its most prominent neuromuscular features, while additional clinical manifestations in multiple organs are also common. Overall, DM1 features resemble accelerated aging. There is currently no cure or specific treatment for myotonic dystrophy patients. However, in recent years a great effort has been made to identify potential new therapeutic strategies for DM1 patients. Metformin is a biguanide antidiabetic drug, with potential to delay aging at cellular and organismal levels. In DM1, different studies revealed that metformin rescues multiple phenotypes of the disease. This review provides an overview of recent findings describing metformin as a novel therapy to combat DM1 and their link with aging.
Collapse
Affiliation(s)
- Mikel García-Puga
- Neuromuscular Diseases Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED-CIBER), Carlos III Institute, 28031 Madrid, Spain
| | - Ander Saenz-Antoñanzas
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Carlos III Institute, 28029 Madrid, Spain
- Correspondence: (A.M.); (A.L.d.M.); Tel.: +34-943-006-073 (A.M.); +34-943-006-294 (A.L.d.M.)
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED-CIBER), Carlos III Institute, 28031 Madrid, Spain
- Neurology Department, Donostia University Hospital, OSAKIDETZA, 20014 San Sebastian, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country, 20014 San Sebastian, Spain
- Correspondence: (A.M.); (A.L.d.M.); Tel.: +34-943-006-073 (A.M.); +34-943-006-294 (A.L.d.M.)
| |
Collapse
|
90
|
Intestinal AMPK modulation of microbiota mediates crosstalk with brown fat to control thermogenesis. Nat Commun 2022; 13:1135. [PMID: 35241650 PMCID: PMC8894485 DOI: 10.1038/s41467-022-28743-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/02/2022] [Indexed: 01/28/2023] Open
Abstract
The energy-dissipating capacity of brown adipose tissue through thermogenesis can be targeted to improve energy balance. Mammalian 5'-AMP-activated protein kinase, a key nutrient sensor for maintaining cellular energy status, is a known therapeutic target in Type II diabetes. Despite its well-established roles in regulating glucose metabolism in various tissues, the functions of AMPK in the intestine remain largely unexplored. Here we show that AMPKα1 deficiency in the intestine results in weight gain and impaired glucose tolerance under high fat diet feeding, while metformin administration fails to ameliorate these metabolic disorders in intestinal AMPKα1 knockout mice. Further, AMPKα1 in the intestine communicates with brown adipose tissue to promote thermogenesis. Mechanistically, we uncover a link between intestinal AMPKα1 activation and BAT thermogenic regulation through modulating anti-microbial peptide-controlled gut microbiota and the metabolites. Our findings identify AMPKα1-mediated mechanisms of intestine-BAT communication that may partially underlie the therapeutic effects of metformin.
Collapse
|
91
|
Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 2022; 603:159-165. [PMID: 35197629 PMCID: PMC8891018 DOI: 10.1038/s41586-022-04431-8] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Metformin, the most prescribed antidiabetic medicine, has shown other benefits such as anti-ageing and anticancer effects1-4. For clinical doses of metformin, AMP-activated protein kinase (AMPK) has a major role in its mechanism of action4,5; however, the direct molecular target of metformin remains unknown. Here we show that clinically relevant concentrations of metformin inhibit the lysosomal proton pump v-ATPase, which is a central node for AMPK activation following glucose starvation6. We synthesize a photoactive metformin probe and identify PEN2, a subunit of γ-secretase7, as a binding partner of metformin with a dissociation constant at micromolar levels. Metformin-bound PEN2 forms a complex with ATP6AP1, a subunit of the v-ATPase8, which leads to the inhibition of v-ATPase and the activation of AMPK without effects on cellular AMP levels. Knockout of PEN2 or re-introduction of a PEN2 mutant that does not bind ATP6AP1 blunts AMPK activation. In vivo, liver-specific knockout of Pen2 abolishes metformin-mediated reduction of hepatic fat content, whereas intestine-specific knockout of Pen2 impairs its glucose-lowering effects. Furthermore, knockdown of pen-2 in Caenorhabditis elegans abrogates metformin-induced extension of lifespan. Together, these findings reveal that metformin binds PEN2 and initiates a signalling route that intersects, through ATP6AP1, the lysosomal glucose-sensing pathway for AMPK activation. This ensures that metformin exerts its therapeutic benefits in patients without substantial adverse effects.
Collapse
|
92
|
Xiao Y, Li K, Bian J, Liu H, Zhai X, El‐Omar E, Han L, Gong L, Wang M. Urolithin A attenuates diabetes‐associated cognitive impairment by ameliorating intestinal barrier dysfunction via N‐glycan biosynthesis pathway. Mol Nutr Food Res 2022; 66:e2100863. [DOI: 10.1002/mnfr.202100863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/24/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yao Xiao
- College of Food Science and Engineering Northwest A & F University Yangling Shaanxi 712100 China
| | - Kailin Li
- College of Food Science and Engineering Northwest A & F University Yangling Shaanxi 712100 China
| | - Ji Bian
- Kolling Institute Sydney Medical School Royal North Shore Hospital University of Sydney St. Leonards NSW 2065 Australia
| | - Hang Liu
- School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai Center for Systems Biomedicine Shanghai 200240 China
| | - Xiaotong Zhai
- College of Food Science and Engineering Northwest A & F University Yangling Shaanxi 712100 China
- Academy of National Food and Strategic Reserves Administration No.11 Baiwanzhuang Street Beijing 100037 China
| | - Emad El‐Omar
- Microbiome Research Centre St George and Sutherland Clinical School University of New South Wales Sydney Australia
| | - Lin Han
- College of Food Science and Engineering Northwest A & F University Yangling Shaanxi 712100 China
| | - Lan Gong
- Microbiome Research Centre St George and Sutherland Clinical School University of New South Wales Sydney Australia
| | - Min Wang
- College of Food Science and Engineering Northwest A & F University Yangling Shaanxi 712100 China
| |
Collapse
|
93
|
Li TT, Wan Q, Zhang X, Xiao Y, Sun LY, Zhang YR, Liu XN, Yang WC. Stellate ganglion block reduces inflammation and improves neurological function in diabetic rats during ischemic stroke. Neural Regen Res 2022; 17:1991-1997. [PMID: 35142688 PMCID: PMC8848600 DOI: 10.4103/1673-5374.335162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diabetes mellitus is an independent risk factor for ischemic stroke. Both diabetes mellitus and stroke are linked to systemic inflammation that aggravates patient outcomes. Stellate ganglion block can effectively regulate the inflammatory response. Therefore, it is hypothesized that stellate ganglion block could be a potential therapy for ischemic stroke in diabetic subjects. In this study, we induced diabetes mellitus in rats by feeding them a high-fat diet for 4 successive weeks. The left middle cerebral artery was occluded to establish models of ischemic stroke in diabetic rats. Subsequently, we performed left stellate ganglion block with 1% lidocaine using the percutaneous posterior approach 15 minutes before reperfusion and again 20 and 44 hours after reperfusion. Our results showed that stellate ganglion block did not decrease the blood glucose level in diabetic rats with diabetes mellitus but did reduce the cerebral infarct volume and the cerebral water content. It also improved the recovery of neurological function, increased 28-day survival rate, inhibited Toll like receptor 4/nuclear factor kappa B signaling pathway and reduced inflammatory response in the plasma of rats. However, injection of Toll like receptor 4 agonist lipopolysaccharide 5 minutes before stellate ganglion block inhibited the effect of stellate ganglion block, whereas injection of Toll like receptor 4 inhibitor TAK242 had no such effect. We also found that stellate ganglion block performed at night had no positive effect on diabetic ischemic stroke. These findings suggest that stellate ganglion block is a potential therapy for diabetic ischemic stroke and that it may be mediated through the Toll like receptor 4/nuclear factor kappa B signaling pathway. We also found that the therapeutic effect of stellate ganglion block is affected by circadian rhythm.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qiang Wan
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xin Zhang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuan Xiao
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Li-Ying Sun
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu-Rong Zhang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiang-Nan Liu
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wan-Chao Yang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
94
|
Chen J, Zhou Z, Zheng C, Liu Y, Hao R, Ji X, Xi Q, Shen J, Li Z. Chitosan oligosaccharide regulates AMPK and STAT1 pathways synergistically to mediate PD-L1 expression for cancer chemoimmunotherapy. Carbohydr Polym 2022; 277:118869. [PMID: 34893274 DOI: 10.1016/j.carbpol.2021.118869] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023]
Abstract
After regular chemotherapy, the expression of programmed cell death ligand 1 (PD-L1) in almost all kinds of cancers is significantly increased, leading to reduced efficacy of T cell mediated immune killing in tumors. To solve this, a lot of PD-L1 antibodies were produced and used, but their high cost and serious toxic side effects still limit its usage. Recently, small molecule compounds that could effectively regulate PD-L1 expression possess the edges to solve the problems of PD-L1 antibodies. Chitosan oligosaccharide (COS), a biomaterial derived from the N-deacetylation product of chitin, has a broad spectrum of biological activities in treating tumors. However, the mechanism of its anti-cancer effect is still not well understood. Here, for the first time, we clearly identified that COS could inhibit the upregulated PD-L1 expression induced by interferon γ (IFN-γ) in various tumors via the AMPK activation and STAT1 inhibition. Besides, COS itself significantly restricted the growth of CT26 tumors by enhancing the T cell infiltration in tumors. Furthermore, we observed that combining COS with Gemcitabine (GEM), one of the typical chemotherapeutic drugs, leaded to a more remarkable tumor remission. Therefore, it was demonstrated that COS could be used as a useful way to improve the efficacy of existing chemotherapies by effective PD-L1 downregulation.
Collapse
Affiliation(s)
- Jiashe Chen
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Chunjuan Zheng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Ruiqi Hao
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaolin Ji
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiaoer Xi
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Zhiming Li
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
95
|
In Vivo and Ex Vivo Evaluation of 1,3-Thiazolidine-2,4-Dione Derivatives as Euglycemic Agents. PPAR Res 2022; 2021:5100531. [PMID: 35003235 PMCID: PMC8741387 DOI: 10.1155/2021/5100531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Thiazolidinediones (TZDs), used to treat type 2 diabetes mellitus, act as full agonists of the peroxisome proliferator-activated receptor gamma. Unfortunately, they produce adverse effects, including weight gain, hepatic toxicity, and heart failure. Our group previously reported the design, synthesis, in silico evaluation, and acute oral toxicity test of two TZD derivatives, compounds 40 (C40) and 81 (C81), characterized as category 5 and 4, respectively, under the Globally Harmonized System. The aim of this study was to determine whether C40, C81, and a new compound, C4, act as euglycemic and antioxidant agents in male Wistar rats with streptozotocin-induced diabetes. The animals were randomly divided into six groups (n = 7): the control, those with diabetes and untreated, and those with diabetes and treated with pioglitazone, C40, C81, or C4 (daily for 21 days). At the end of the experiment, tissue samples were collected to quantify the level of glucose, insulin, triglycerides, total cholesterol, and liver enzymes, as well as enzymatic and nonenzymatic antioxidant activity. C4, without a hypoglycemic effect, displayed the best antioxidant activity. Whereas C81 could only attenuate the elevated level of blood glucose, C40 generated euglycemia by the end of the treatment. All compounds produced a significant decrease in triglycerides.
Collapse
|
96
|
Song Z, Luo W, Huang B, Cao Y, Jiang R. A new predictive model for the concurrent risk of diabetic retinopathy in type 2 diabetes patients and the effect of metformin on amino acids. Front Endocrinol (Lausanne) 2022; 13:985776. [PMID: 36060930 PMCID: PMC9434554 DOI: 10.3389/fendo.2022.985776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study established a model to predict the risk of diabetic retinopathy (DR) with amino acids selected by partial least squares (PLS) method, and evaluated the effect of metformin on the effect of amino acids on DR in the model. METHODS In Jinzhou, Liaoning Province, China, we retrieved 1031 patients with type 2 diabetes (T2D) from the First Affiliated Hospital of Liaoning Medical University. After sorting the amino acids using the PLS method, the top 10 amino acids were included in the model. Multivariate logistic regression was used to analyze the relationship between different amino acids and DR. And then the effects of metformin on amino acids were explored through interaction. Finally, Spearman's rank correlation analysis was used to analyze the correlation between different amino acids. RESULTS After sorting by PLS, Gly, Pro, Leu, Lyr, Glu, Phe, Tyr, His, Val and Ser were finally included in the DR risk prediction model. The predictive model after adding amino acids was statistically different from the model that only included traditional risk factors (p=0.001). Metformin had a significant effect on the relationship between DR and 7 amino acids (Gly, Glu, Phe, Tyr, His, Val, Ser, p<0.05), and the population who are not using metformin and have high levels of Glu (OR: 0.44, 95%CI: 0.27-0.71) had an additive protection effect for the occurrence of DR. And the similar results can be seen in high levels of Gly (OR: 0.46, 95%CI: 0.29-0.75), Leu (OR: 0.48, 95%CI: 0.29-0.8), His (OR: 0.46, 95%CI: 0.29-0.75), Phe (OR: 0.24, 95%CI: 0.14-0.42) and Tyr (OR: 0.41, 95%CI: 0.24 -0.68) in population who are not using metformin. CONCLUSIONS We established a prediction model of DR by amino acids and found that the use of metformin reduced the protective effect of amino acids on DR developing, suggesting that amino acids as biomarkers for predicting DR would be affected by metformin use.
Collapse
Affiliation(s)
- Zicheng Song
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Weiming Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Bing Huang
- Research Department, Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian, China
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
- Research Department, Dalian Laboratory Medicine Mass Spectrometry Technology Development Innovation Team, Dalian, China
| | - Yunfeng Cao
- Department of Scientific Research, Shanghai Institute of Planned Parenthood Research, Shanghai, China
- Dalian Institute of Chemical Physics. Chinese Academy of Sciences, Dalian, China
- *Correspondence: Yunfeng Cao, ; Rongzhen Jiang,
| | - Rongzhen Jiang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Yunfeng Cao, ; Rongzhen Jiang,
| |
Collapse
|
97
|
Beneficial effects of metformin supplementation in hypothalamic paraventricular nucleus and arcuate nucleus of type 2 diabetic rats. Toxicol Appl Pharmacol 2022; 437:115893. [PMID: 35085591 DOI: 10.1016/j.taap.2022.115893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
|
98
|
Yin S, Ma M, Huang Z, Fan Y, Wang X, Song T, Lin T. Ameliorating Metabolic Profiles After Kidney Transplantation: A Protocol for an Open-Label, Prospective, Randomized, 3-Arm, Controlled Trial. Front Med (Lausanne) 2021; 8:800872. [PMID: 35004776 PMCID: PMC8733302 DOI: 10.3389/fmed.2021.800872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: High prevalence of metabolic disorders causes higher risk of cardiovascular diseases after kidney transplantation (KT), which remains the main burden impairing short-term and long-term survival. This open-label, prospective, randomized, 3-arm, controlled trial will evaluate the safety, tolerability and efficacy of metformin and empagliflozin in ameliorating metabolic profiles after KT. Methods: After a screening assessment, eligible patients with an estimated glomerular filtration rate (eGFR) >45 mL/min/1.73m2 are randomly assigned to standard triple immunosuppression alone, standard immunosuppression plus metformin (500 mg twice daily), standard immunosuppression plus empagliflozin (25 mg once daily) from discharge. The primary endpoint is the differences in the visceral-to-subcutaneous fat area ratio over 12 months, evaluated by magnetic resonance imaging (MRI). Secondary outcomes include kidney graft function, glycometabolism, lipid metabolism, and inflammatory parameters. The trial will enroll 105 kidney transplant recipients, providing 90% power to detect the difference at 5% significance.
Collapse
Affiliation(s)
- Saifu Yin
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Ma
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongli Huang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Fan
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianding Wang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, China
| | - Turun Song
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Turun Song
| | - Tao Lin
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Tao Lin
| |
Collapse
|
99
|
Chen Y, Wang M. New Insights of Anti-Hyperglycemic Agents and Traditional Chinese Medicine on Gut Microbiota in Type 2 Diabetes. Drug Des Devel Ther 2021; 15:4849-4863. [PMID: 34876807 PMCID: PMC8643148 DOI: 10.2147/dddt.s334325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a widespread metabolic disease characterized by chronic hyperglycemia. Human microbiota, which is regarded as a “hidden organ”, plays an important role in the initiation and development of T2DM. In addition, anti-hyperglycemic agents and traditional Chinese medicine may affect the composition of gut microbiota and consequently improve glucose metabolism. However, the relationship between gut microbiota, T2DM and anti-hyperglycemic agents or traditional Chinese medicine is poorly understood. In this review, we summarized pre-clinical and clinical studies to elucidate the possible underlying mechanism. Some anti-hyperglycemic agents and traditional Chinese medicine may partly exert hypoglycemic effects by altering the gut microbiota composition in ways that reduce metabolic endotoxemia, maintain the integrity of intestinal mucosal barrier, promote the production of short-chain fatty acids (SCFAs), decrease trimethylamine-N-oxide (TMAO) and regulate bile acid metabolism. In conclusion, gut microbiota may provide some new therapeutic targets for treatment of patients with diabetes mellitus.
Collapse
Affiliation(s)
- Yanxia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Mian Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| |
Collapse
|
100
|
Nieto-Torres JL, Hansen M. Macroautophagy and aging: The impact of cellular recycling on health and longevity. Mol Aspects Med 2021; 82:101020. [PMID: 34507801 PMCID: PMC8671213 DOI: 10.1016/j.mam.2021.101020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Aging is associated with many deleterious changes at the cellular level, including the accumulation of potentially toxic components that can have devastating effects on health. A key protective mechanism to this end is the cellular recycling process called autophagy. During autophagy, damaged or surplus cellular components are delivered to acidic vesicles called lysosomes, that secure degradation and recycling of the components. Numerous links between autophagy and aging exist. Autophagy declines with age, and increasing evidence suggests that this reduction plays important roles in both physiological aging and the development of age-associated disorders. Studies in pharmacologically and genetically manipulated model organisms indicate that defects in autophagy promote age-related diseases, and conversely, that enhancement of autophagy has beneficial effects on both healthspan and lifespan. Here, we review our current understanding of the role of autophagy in different physiological processes and their molecular links with aging and age-related diseases. We also highlight some recent advances in the field that could accelerate the development of autophagy-based therapeutic interventions.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Sanford Burnham Prebys Medical Discovery Institute. Program of Development, Aging, and Regeneration, La Jolla, CA, USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute. Program of Development, Aging, and Regeneration, La Jolla, CA, USA.
| |
Collapse
|