51
|
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. Diagnostics (Basel) 2019; 9:diagnostics9030091. [PMID: 31394725 PMCID: PMC6787585 DOI: 10.3390/diagnostics9030091] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease of unknown aetiology that is recognized by the World Health Organization (WHO) and the United States Center for Disease Control and Prevention (US CDC) as a disorder of the brain. The disease predominantly affects adults, with a peak age of onset of between 20 and 45 years with a female to male ratio of 3:1. Although the clinical features of the disease have been well established within diagnostic criteria, the diagnosis of ME/CFS is still of exclusion, meaning that other medical conditions must be ruled out. The pathophysiological mechanisms are unclear but the neuro-immuno-endocrinological pattern of CFS patients gleaned from various studies indicates that these three pillars may be the key point to understand the complexity of the disease. At the moment, there are no specific pharmacological therapies to treat the disease, but several studies' aims and therapeutic approaches have been described in order to benefit patients' prognosis, symptomatology relief, and the recovery of pre-existing function. This review presents a pathophysiological approach to understanding the essential concepts of ME/CFS, with an emphasis on the population, clinical, and genetic concepts associated with ME/CFS.
Collapse
|
52
|
Bahari Z, Meftahi GH, Meftahi MA. Dopamine effects on stress-induced working memory deficits. Behav Pharmacol 2019; 29:584-591. [PMID: 30215620 DOI: 10.1097/fbp.0000000000000429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The prefrontal cortex (PFC) plays a critical role in mediating executive functions and orchestrating the way in which we think, decide, and behave. Many studies have shown that PFC neurons not only play a major role in mediating behavioral responses to stress but are also sensitive to stress and undergo remodeling following stress exposure. Activation of the hypothalamic-pituitary-adrenal axis as a result of stress initiates a flood of alterations in prefrontal neurotransmitter release. Dopamine (DA) neurotransmission in the PFC is involved in the modulation of stress responsiveness. Compelling results show that stressful events are associated with increased DA concentrations in the medial PFC. Excessive DA-ergic activity in the medial prefrontal cortex following stress has a negative impact on working memory and executive functions in rodents, monkeys, and humans, making them unable to processing information selectively and impairing cognitive function. Therefore, an exact understanding of these mechanisms may provide important insights into the pathophysiology of executive dysfunction and novel treatment avenues. The present review provides a summary of the neuronal circuitry involved in alterations of PFC dopaminergic neurons under conditions of stress, and then addresses the interaction of PFC DA with glucocorticoids leading to impairment of working memory under conditions of stress.
Collapse
Affiliation(s)
- Zahra Bahari
- Department of Physiology and Medical Physic, Faculty of Medicine.,Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran
| | - Gholam H Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran
| | | |
Collapse
|
53
|
Tang C, Wang W, Shi M, Zhang N, Zhou X, Li X, Ma C, Chen G, Xiang J, Gao D. Meta-Analysis of the Effects of the Catechol-O-Methyltransferase Val158/108Met Polymorphism on Parkinson's Disease Susceptibility and Cognitive Dysfunction. Front Genet 2019; 10:644. [PMID: 31354790 PMCID: PMC6639434 DOI: 10.3389/fgene.2019.00644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/18/2019] [Indexed: 01/11/2023] Open
Abstract
Background: There is a continued debate and inconsistent findings in previous literature about the relationship of catechol-O-methyltransferase (COMT) and Parkinson’s disease (PD) susceptibility as well as cognitive dysfunction. To substantiate this existing gap, we comprehensively examine COMT genotype effects on the development of PD and test the hypothesis that the Met158 allele of the COMT gene is associated with cognitive dysfunction by conducting a meta-analysis review. Methods: PubMed/MEDLINE, Embase, Cochrane databases search (18/30/08) yielded 49 included studies. Data were extracted by two reviewers and included COMT genotype, publication year, diagnostic status, ancestry, the proportion of male participants, and whether genotype frequencies were consistent with Hardy–Weinberg equilibrium. Unadjusted odds ratios (ORs) were used to derive pooled estimates of PD risk overall and in subgroups defined by ethnicity, gender, and onset of disease. Moreover, the association of certain cognitive domains in PD and COMT gene type was explored. Meta-analyses were performed using random-effect models and p value–based methods. All statistical tests were two-sided. The present study was registered with PROSPERO (CRD42018087323). Results: In the current studies, we found no association between COMT Val158/108Met polymorphism and PD susceptibility. However, the gender-stratified analyses revealed marginally significant effects in heterozygote model analyses in women (P = 0.053). In addition, stratification according to onset of PD also shows significant effects of COMT Val158/108Met polymorphism on late-onset population both in recessive (P = 0.017) and allelic (P = 0.017) genetic models. For the intelligence quotient (IQ) score and Unified Parkinson Disease Rating Scale III (UPDRS III), there was no evidence for genetic association, except in subgroup analyses in Asian populations (IQ score, P = 0.016; UPDRS III, P < 0.001). Conclusion: The COMT Val158/108Met polymorphism is associated with the risk for PD in female or late-onset PD. Methionine/methionine carriers of Asian population performed significantly worse than the valine allele carriers in IQ score and UPDRS III.
Collapse
Affiliation(s)
- Chuanxi Tang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Wei Wang
- Medical Technology School, Xuzhou Medical University, Xuzhou, China.,Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingyu Shi
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Na Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xue Li
- School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Chengcheng Ma
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Gang Chen
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Xiang
- Medical Technology School, Xuzhou Medical University, Xuzhou, China.,Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
54
|
Kaar SJ, Natesan S, McCutcheon R, Howes OD. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 2019; 172:107704. [PMID: 31299229 DOI: 10.1016/j.neuropharm.2019.107704] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Antipsychotic drugs are central to the treatment of schizophrenia and other psychotic disorders but are ineffective for some patients and associated with side-effects and nonadherence in others. We review the in vitro, pre-clinical, clinical and molecular imaging evidence on the mode of action of antipsychotics and their side-effects. This identifies the key role of striatal dopamine D2 receptor blockade for clinical response, but also for endocrine and motor side-effects, indicating a therapeutic window for D2 blockade. We consider how partial D2/3 receptor agonists fit within this framework, and the role of off-target effects of antipsychotics, particularly at serotonergic, histaminergic, cholinergic, and adrenergic receptors for efficacy and side-effects such as weight gain, sedation and dysphoria. We review the neurobiology of schizophrenia relevant to the mode of action of antipsychotics, and for the identification of new treatment targets. This shows elevated striatal dopamine synthesis and release capacity in dorsal regions of the striatum underlies the positive symptoms of psychosis and suggests reduced dopamine release in cortical regions contributes to cognitive and negative symptoms. Current drugs act downstream of the major dopamine abnormalities in schizophrenia, and potentially worsen cortical dopamine function. We consider new approaches including targeting dopamine synthesis and storage, autoreceptors, and trace amine receptors, and the cannabinoid, muscarinic, GABAergic and glutamatergic regulation of dopamine neurons, as well as post-synaptic modulation through phosphodiesterase inhibitors. Finally, we consider treatments for cognitive and negative symptoms such dopamine agonists, nicotinic agents and AMPA modulators before discussing immunological approaches which may be disease modifying. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Stephen J Kaar
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom.
| | - Sridhar Natesan
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Robert McCutcheon
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Oliver D Howes
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom.
| |
Collapse
|
55
|
Vander Linden C, Verhelst H, Genbrugge E, Deschepper E, Caeyenberghs K, Vingerhoets G, Deblaere K. Is diffuse axonal injury on susceptibility weighted imaging a biomarker for executive functioning in adolescents with traumatic brain injury? Eur J Paediatr Neurol 2019; 23:525-536. [PMID: 31023628 DOI: 10.1016/j.ejpn.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/23/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023]
Abstract
Traumatic brain injury (TBI) is a heterogeneous disorder in which diffuse axonal injury (DAI) is an important component contributing to executive dysfunction. During adolescence, developing brain networks are especially vulnerable to acceleration-deceleration forces. We aimed to examine the correlation between DAI (number and localization) and executive functioning in adolescents with TBI. We recruited 18 adolescents with a mean age of 15y8m (SD = 1y7m), averaging 2.5 years after sustaining a moderate-to-severe TBI with documented DAI. Susceptibility Weighted Imaging sequence was administered to localize the DAI lesions. The adolescents performed a neurocognitive test-battery, addressing different aspects of executive functioning (working memory, attention, processing speed, planning ability) and their parents completed the Behavior Rating Inventory of Executive Function (BRIEF) - questionnaire. Executive performance of the TBI-group was compared with an age and gender matched control group of typically developing peers. Based on these results we focused on the Stockings of Cambridge test and the BRIEF to correlate with the total number and location of DAI. Results revealed that the anatomical distribution of DAI, especially in the corpus callosum and the deep brain nuclei, may have more implications for executive functioning than the total amount of DAI in adolescents. Results of this study may help guide targeted rehabilitation to redirect the disturbed development of executive function in adolescents with TBI.
Collapse
Affiliation(s)
- Catharine Vander Linden
- Ghent University Hospital, Child Rehabilitation Center K7, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Helena Verhelst
- Ghent University, Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Henri Dunantlaan 2, 9000, Ghent, Belgium.
| | - Eva Genbrugge
- Ghent University Hospital, Department of Neuroradiology, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Ellen Deschepper
- Ghent University, Biostatistics Unit, Department of Public Health, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Karen Caeyenberghs
- Australian Catholic University, Mary McKillop Institute for Health Research, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia.
| | - Guy Vingerhoets
- Ghent University, Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Henri Dunantlaan 2, 9000, Ghent, Belgium.
| | - Karel Deblaere
- Ghent University Hospital, Department of Neuroradiology, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
56
|
Ye J, Ji F, Jiang D, Lin X, Chen G, Zhang W, Shan P, Zhang L, Zhuo C. Polymorphisms in Dopaminergic Genes in Schizophrenia and Their Implications in Motor Deficits and Antipsychotic Treatment. Front Neurosci 2019; 13:355. [PMID: 31057354 PMCID: PMC6479209 DOI: 10.3389/fnins.2019.00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Dopaminergic system dysfunction is involved in schizophrenia (SCZ) pathogenesis and can mediate SCZ-related motor disorders. Recent studies have gradually revealed that SCZ susceptibility and the associated motor symptoms can be mediated by genetic factors, including dopaminergic genes. More importantly, polymorphisms in these genes are associated with both antipsychotic drug sensitivity and adverse effects. The study of genetic polymorphisms in the dopaminergic system may help to optimize individualized drug strategies for SCZ patients. This review summarizes the current progress about the involvement of the dopamine system in SCZ-associated motor disorders and the motor-related adverse effects after antipsychotic treatment, with a special focus on polymorphisms in dopaminergic genes. We hypothesize that the genetic profile of the dopaminergic system mediates both SCZ-associated motor deficits associated and antipsychotic drug-related adverse effects. The study of dopaminergic gene polymorphisms may help to predict drug efficacy and decrease adverse effects, thereby optimizing treatment strategies.
Collapse
Affiliation(s)
- Jiaen Ye
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Feng Ji
- Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China
| | - Deguo Jiang
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Wei Zhang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Peiwei Shan
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China.,Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China.,Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
57
|
Tardiff N, Graves KN, Thompson-Schill SL. The Role of Frontostriatal Systems in Instructed Reinforcement Learning: Evidence From Genetic and Experimentally-Induced Variation. Front Hum Neurosci 2019; 12:472. [PMID: 30618672 PMCID: PMC6304395 DOI: 10.3389/fnhum.2018.00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/12/2018] [Indexed: 01/16/2023] Open
Abstract
Instructions have a powerful effect on learning and decision-making, biasing choice even in the face of disconfirming feedback. Detrimental biasing effects have been reported in a number of studies in which instruction was given prior to trial-and-error learning. Previous work has attributed individual differences in instructional bias to variations in prefrontal and striatal dopaminergic genes, suggesting a role for prefrontally-mediated cognitive control processes in biasing learning. The current study replicates and extends these findings. Human subjects performed a probabilistic reinforcement learning task after receiving inaccurate instructions about the quality of one of the options. In order to establish a causal relationship between prefrontal cortical mechanisms and instructional bias, we applied transcranial direct current stimulation over dorsolateral prefrontal cortex (anodal, cathodal, or sham) while subjects performed the task. We additionally genotyped subjects for the COMT Val158Met genetic polymorphism, which influences the breakdown of prefrontal dopamine, and for the DAT1/SLC6A3 variable number tandem repeat, which affects expression of striatal dopamine transporter. We replicated the finding that the COMT Met allele is associated with increased instructional bias and further demonstrated that variation in DAT1 has similar effects to variation in COMT, with 9-repeat carriers demonstrating increased bias relative to 10-repeat homozygotes. Consistent with increased top-down regulation of reinforcement learning, anodal subjects demonstrated greater bias relative to sham, though this effect was present only early in training. In contrast, there was no effect of cathodal stimulation. Finally, we fit computational models to subjects' data to better characterize the mechanisms underlying instruction bias. A novel choice bias model, in which instructions influence decision-making rather than learning, was found to best account for subjects' behavior. Overall, these data provide further evidence for the role of frontostriatal interactions in biasing instructed reinforcement learning, which adds to the growing literature documenting both costs and benefits of cognitive control.
Collapse
Affiliation(s)
- Nathan Tardiff
- Department of Psychology, University of Pennsylvania Philadelphia, PA, United States
| | - Kathryn N Graves
- Department of Psychology, University of Pennsylvania Philadelphia, PA, United States
| | | |
Collapse
|
58
|
Abstract
Borderline personality disorder is associated with predominant insecure and unresolved attachment representations, linked history of trauma, impaired cognitive functioning and oxytocin levels, and higher limbic activations. Two randomized clinical trials on transference-focused psychotherapy assessed change of attachment representation and reflective functioning. The first showed that transference-focused psychotherapy was superior, demonstrating significant improvements toward attachment security and higher reflective functioning. The second randomized clinical trial study on transference-focused psychotherapy compared with therapy as usual replicated these results and additionally showed a significant shift from unresolved to organized attachment in the transference-focused psychotherapy group only, suggesting its effectiveness in traumatized patients.
Collapse
Affiliation(s)
- Anna Buchheim
- Institute of Psychology, University of Innsbruck, Innrain 52, Innsbruck 6020, Austria.
| | - Diana Diamond
- City University of New York, Personality Disorders Institute, Weill Medical Center of Cornell University, New York University, New York, NY, USA
| |
Collapse
|
59
|
Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res 2018; 265:25-38. [PMID: 29680514 DOI: 10.1016/j.psychres.2018.04.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022]
Abstract
Over the last decade, finding a reliable biomarker for the early detection of schizophrenia (Scz) has been a topic of interest. The main goal of the current review is to provide a comprehensive view of the brain, blood, cerebrospinal fluid (CSF), and serum biomarkers of Scz disease. Imaging studies have demonstrated that the volumes of the corpus callosum, thalamus, hippocampal formation, subiculum, parahippocampal gyrus, superior temporal gyrus, prefrontal and orbitofrontal cortices, and amygdala-hippocampal complex were reduced in patients diagnosed with Scz. It has been revealed that the levels of interleukin 1β (IL-1β), IL-6, IL-8, and TNF-α were increased in patients with Scz. Decreased mRNA levels of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), neurotrophin-3 (NT-3), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) genes have also been reported in Scz patients. Genes with known strong relationships with this disease include BDNF, catechol-O-methyltransferase (COMT), regulator of G-protein signaling 4 (RGS4), dystrobrevin-binding protein 1 (DTNBP1), neuregulin 1 (NRG1), Reelin (RELN), Selenium-binding protein 1 (SELENBP1), glutamic acid decarboxylase 67 (GAD 67), and disrupted in schizophrenia 1 (DISC1). The levels of dopamine, tyrosine hydroxylase (TH), serotonin or 5-hydroxytryptamine (5-HT) receptor 1A and B (5-HTR1A and 5-HTR1B), and 5-HT1B were significantly increased in Scz patients, while the levels of gamma-aminobutyric acid (GABA), 5-HT transporter (5-HTT), and 5-HT receptor 2A (5-HTR2A) were decreased. The increased levels of SELENBP1 and Glycogen synthase kinase 3 subunit α (GSK3α) genes in contrast with reduced levels of B-cell translocation gene 1 (BTG1), human leukocyte antigen DRB1 (HLA-DRB1), heterogeneous nuclear ribonucleoprotein A3 (HNRPA3), and serine/arginine-rich splicing factor 1 (SFRS1) genes have also been reported. This review covers various dysregulation of neurotransmitters and also highlights the strengths and weaknesses of studies attempting to identify candidate biomarkers.
Collapse
Affiliation(s)
- Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ehsan Rashidi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ghasem Amooeian
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
60
|
Polich G, Iaccarino MA, Kaptchuk TJ, Morales-Quezada L, Zafonte R. Placebo Effects in Traumatic Brain Injury. J Neurotrauma 2018; 35:1205-1212. [PMID: 29343158 PMCID: PMC6016098 DOI: 10.1089/neu.2017.5506] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In recent years, several randomized controlled trials evaluating pharmaceutical treatments for traumatic brain injury (TBI) have failed to demonstrate efficacy over placebo, with both active and placebo arms improving at comparable rates. These findings could be viewed in opposing ways, suggesting on the one hand failure of the tested outcome, but on the other, representing evidence of robust placebo effects in TBI. In this article, we examine several of the primary psychological processes driving placebo effects (verbal suggestion, cognitive re-framing, interpersonal interactions, conditioning, therapeutic alliance, anxiety reduction) as well as placebo neurobiology (top-down cortical regulation, reward system activation, dopaminergic and serotonergic neurotransmission). We then extrapolate from the literature to explore whether something inherent in TBI makes it particularly responsive to placebos. Viewed as such here, placebos may indeed represent a powerful and effective treatment for a variety of post-TBI complaints.
Collapse
Affiliation(s)
- Ginger Polich
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
| | - Mary Alexis Iaccarino
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
- MassGeneral Hospital for Children Sport Concussion Program, Boston, Massachusetts
- Red Sox Foundation and Massachusetts General Hospital Home Base Program, Boston, Massachusetts
| | - Ted J. Kaptchuk
- Program in Placebo Studies and Therapeutic Encounter, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Leon Morales-Quezada
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
- Red Sox Foundation and Massachusetts General Hospital Home Base Program, Boston, Massachusetts
| |
Collapse
|
61
|
Chechko N, Cieslik EC, Müller VI, Nickl-Jockschat T, Derntl B, Kogler L, Aleman A, Jardri R, Sommer IE, Gruber O, Eickhoff SB. Differential Resting-State Connectivity Patterns of the Right Anterior and Posterior Dorsolateral Prefrontal Cortices (DLPFC) in Schizophrenia. Front Psychiatry 2018; 9:211. [PMID: 29892234 PMCID: PMC5985714 DOI: 10.3389/fpsyt.2018.00211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/03/2018] [Indexed: 01/24/2023] Open
Abstract
In schizophrenia (SCZ), dysfunction of the dorsolateral prefrontal cortex (DLPFC) has been linked to the deficits in executive functions and attention. It has been suggested that, instead of considering the right DLPFC as a cohesive functional entity, it can be divided into two parts (anterior and posterior) based on its whole-brain connectivity patterns. Given these two subregions' differential association with cognitive processes, we investigated the functional connectivity (FC) profile of both subregions through resting-state data to determine whether they are differentially affected in SCZ. Resting-state magnetic resonance imaging (MRI) scans were obtained from 120 patients and 172 healthy controls (HC) at 6 different MRI sites. The results showed differential FC patterns for the anterior and posterior parts of the right executive control-related DLPFC in SCZ with the parietal, the temporal and the cerebellar regions, along with a convergent reduction of connectivity with the striatum and the occipital cortex. An increased psychopathology level was linked to a higher difference in posterior vs. anterior FC for the left IFG/anterior insula, regions involved in higher-order cognitive processes. In sum, the current analysis demonstrated that even between two neighboring clusters connectivity could be differentially disrupted in SCZ. Lacking the necessary anatomical specificity, such notions may in fact be detrimental to a proper understanding of SCZ pathophysiology.
Collapse
Affiliation(s)
- Natalia Chechko
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, RWTH Aachen University, Aachen, Germany
| | - Edna C. Cieslik
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Veronika I. Müller
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Birgit Derntl
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Tübingen, Germany
- Werner Reichardt Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- LEAD Graduate School and Research Network, University of Tübingen, Tübingen, Germany
| | - Lydia Kogler
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Tübingen, Germany
| | - André Aleman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Renaud Jardri
- Univ Lille, CNRS UMR 9193, SCALab and CHU Lille, Division of Psychiatry, CURE platform, Fontan Hospital, Lille, France
| | - Iris E. Sommer
- Neuroscience Division, University Medical Centre Utrecht and Rudolf Magnus Institute for Neuroscience, Utrecht, Netherlands
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
62
|
VAN DER Mee DJ, Fedko IO, Hottenga JJ, Ehli EA, VAN DER Zee MD, Ligthart L, VAN Beijsterveldt TCEM, Davies GE, Bartels M, Landers JG, DE Geus EJC. Dopaminergic Genetic Variants and Voluntary Externally Paced Exercise Behavior. Med Sci Sports Exerc 2018; 50:700-708. [PMID: 29135816 PMCID: PMC5856580 DOI: 10.1249/mss.0000000000001479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Most candidate gene studies on the neurobiology of voluntary exercise behavior have focused on the dopaminergic signaling pathway and its role in the mesolimbic reward system. We hypothesized that dopaminergic candidate genes may influence exercise behavior through additional effects on executive functioning and that these effects are only detected when the types of exercise activity are taken into account. METHODS Data on voluntary exercise behavior and at least one single-nucleotide polymorphism/variable number of tandem repeat (VNTR) were available for 12,929 participants of the Netherlands Twin Registry. Exercise activity was classified as externally paced if a high level of executive function skill was required. The total volume of voluntary exercise (minutes per week) as well as the volume specifically spent on externally paced activities were tested for association with nine functional dopaminergic polymorphisms (DRD1: rs265981, DRD2/ANKK1: rs1800497, DRD3: rs6280, DRD4: VNTR 48 bp, DRD5: VNTR 130-166 bp, DBH: rs2519152, DAT1: VNTR 40 bp, COMT: rs4680, MAOA: VNTR 30 bp), a polygenic score (PGS) based on nine alleles leading to lower dopamine responsiveness, and a PGS based on three alleles associated with both higher reward sensitivity and better executive functioning (DRD2/ANKK1: "G" allele, COMT: Met allele, DAT1: 440-bp allele). RESULTS No association with total exercise volume or externally paced exercise volume was found for individual alleles or the nine-allele PGS. The volume of externally paced exercise behavior was significantly associated with the reward and executive function congruent PGS. This association was driven by the DAT1 440-bp and COMT Met allele, which acted as increaser alleles for externally paced exercise behavior. CONCLUSIONS Taking into account the types of exercise activity may increase the success of identifying genetic variants and unraveling the neurobiology of voluntary exercise behavior.
Collapse
Affiliation(s)
- Denise J VAN DER Mee
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Iryna O Fedko
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Erik A Ehli
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Matthijs D VAN DER Zee
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Lannie Ligthart
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | | | - Gareth E Davies
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Meike Bartels
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Joseph G Landers
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Eco J C DE Geus
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| |
Collapse
|
63
|
Taylor S. Association between COMT Val158Met and psychiatric disorders: A comprehensive meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2018; 177:199-210. [PMID: 28608575 DOI: 10.1002/ajmg.b.32556] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/08/2017] [Accepted: 05/05/2017] [Indexed: 01/26/2023]
Abstract
Catechol-O-methyltransferase (COMT) Val158Met is widely regarded as potentially important for understanding the genetic etiology of many different psychiatric disorders. The present study appears to be the first comprehensive meta-analysis of COMT genetic association studies to cover all psychiatric disorders for which there were available data, published in any language, and with an emphasis on investigating disorder subtypes (defined clinically or by demographic or other variables). Studies were included if they reported one or more datasets (i.e., some studies examined more than one clinical group) in which there were sufficient information to compute effect sizes. A total of 363 datasets were included, consisting of 56,998 cases and 74,668 healthy controls from case control studies, and 2,547 trios from family based studies. Fifteen disorders were included. Attention-deficit hyperactivity disorder and panic disorder were associated with the Val allele for Caucasian samples. Substance-use disorder, defined by DSM-IV criteria, was associated with the Val allele for Asian samples. Bipolar disorder was associated with the Met allele in Asian samples. Obsessive-compulsive disorder tended to be associated with the Met allele only for males. There was suggestive evidence that the Met allele is associated with an earlier age of onset of schizophrenia. Results suggest pleiotropy and underscore the importance of examining subgroups-defined by variables such as age of onset, sex, ethnicity, and diagnostic system-rather than examining disorders as monolithic constructs.
Collapse
Affiliation(s)
- Steven Taylor
- University of British Columbia, British Columbia, Canada
| |
Collapse
|
64
|
The Impact of COMT and Childhood Maltreatment on Suicidal Behaviour in Affective Disorders. Sci Rep 2018; 8:692. [PMID: 29330410 PMCID: PMC5766555 DOI: 10.1038/s41598-017-19040-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/14/2017] [Indexed: 12/02/2022] Open
Abstract
The inconsistent findings on the association between COMT (catecholamine-O-methyl-transferase) and suicidal behaviour gave reason to choose a clear phenotype description of suicidal behaviour and take childhood maltreatment as environmental factor into account. The aim of this candidate-gene-association study was to eliminate heterogeneity within the sample by only recruiting affective disorder patients and find associations between COMT polymorphisms and defined suicidal phenotypes. In a sample of 258 affective disorder patients a detailed clinical assessment (e.g. CTQ, SCAN, HAMD, SBQ-R, VI-SURIAS, LPC) was performed. DNA of peripheral blood samples was genotyped using TaqMan® SNP Genotyping Assays. We observed that the haplotype GAT of rs737865, rs6269, rs4633 is significantly associated with suicide attempt (p = 0.003 [pcorr = 0.021]), and that there is a tendency towards self-harming behaviour (p = 0.02 [pcorr = 0.08]) and also NSSI (p = 0.03 [pcorr = 0.08]), though the p values did not resist multiple testing correction. The same effect we observed with the 4-marker slide window haplotype, GATA of rs737865, rs6269, rs4633, rs4680 (p = 0.009 [pcorr = 0.045]). The findings support an association between the COMT gene and suicidal behaviour phenotypes with and without childhood maltreatment as environmental factor.
Collapse
|
65
|
Kim BR, Kim HY, Chun YI, Yun YM, Kim H, Choi DH, Lee J. Association between genetic variation in the dopamine system and motor recovery after stroke. Restor Neurol Neurosci 2018; 34:925-934. [PMID: 27689550 DOI: 10.3233/rnn-160667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The dopamine system plays a key role in motor learning and neuroplasticity. Several studies have studied the efficacy of dopaminergic drugs in enhancing motor recovery after stroke, but the effects are controversial. Although genetic variations in plasticity-related genes influence each individual's capacity for recovery after stroke, limited studies have investigated the effects of polymorphism of dopamine-related genes. OBJECTIVE We aimed to investigate the association between motor recovery in stroke patients and polymorphisms in the dopamine-related genes catechol-O-methyltransferase (COMT), dopamine receptor D1 (DRD1), DRD2, and DRD3. METHODS We enrolled 74 patients with first-ever stroke (42 males, 32 females, mean age: 61.4±14.1 y). During admission, blood samples were collected, and the genotypes of COMT, DRD1, DRD2, and DRD3 were analyzed. The primary outcome was assessed with Fugl-Meyer Assessment (FMA) at 1 week, 3 months, and 6 months after stroke; secondary outcomes were assessed with Functional Independence Measure (FIM) and mini-mental state examination at 3 and 6 months after stroke. The association between polymorphisms and functional outcome was analyzed. RESULTS There were no significant associations between COMT polymorphisms and FMA or FIM scores at 1 week after stroke or between DRD1, DRD2, or DRD3 genotypes and FMA or FIM scores at any point. COMT genotypes were significantly associated with FMA and FIM at 3 months (p < 0.01 and p < 0.05, respectively) and at 6 months (p < 0.01 and p < 0.05, respectively). CONCLUSION These data suggest that genetic variation of dopamine-related genes may affect motor recovery after stroke and that COMT polymorphism could be useful for predicting motor recovery.
Collapse
Affiliation(s)
- Bo-Ram Kim
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Medical Center, Seoul, Korea
| | - Hahn Young Kim
- Department of Neurology, Konkuk University School of Medicine and Medical Center, Seoul, Korea
| | - Young Il Chun
- Department of Neurosurgery, Konkuk University School of Medicine and Medical Center, Seoul, Korea
| | - Yeo-Min Yun
- Department of Laboratory Medicine, Konkuk University School of Medicine and Medical Center, Seoul, Korea
| | - Hyuntae Kim
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Medical Center, Seoul, Korea
| | - Dong-Hee Choi
- Department of Medical Science, Konkuk University School of Medicine, Seoul, Korea.,Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | - Jongmin Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Medical Center, Seoul, Korea.,Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| |
Collapse
|
66
|
Dauvermann MR, Moorhead TW, Watson AR, Duff B, Romaniuk L, Hall J, Roberts N, Lee GL, Hughes ZA, Brandon NJ, Whitcher B, Blackwood DH, McIntosh AM, Lawrie SM. Verbal working memory and functional large-scale networks in schizophrenia. Psychiatry Res Neuroimaging 2017; 270:86-96. [PMID: 29111478 DOI: 10.1016/j.pscychresns.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/16/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to test whether bilinear and nonlinear effective connectivity (EC) measures of working memory fMRI data can differentiate between patients with schizophrenia (SZ) and healthy controls (HC). We applied bilinear and nonlinear Dynamic Causal Modeling (DCM) for the analysis of verbal working memory in 16 SZ and 21 HC. The connection strengths with nonlinear modulation between the dorsolateral prefrontal cortex (DLPFC) and the ventral tegmental area/substantia nigra (VTA/SN) were evaluated. We used Bayesian Model Selection at the group and family levels to compare the optimal bilinear and nonlinear models. Bayesian Model Averaging was used to assess the connection strengths with nonlinear modulation. The DCM analyses revealed that SZ and HC used different bilinear networks despite comparable behavioral performance. In addition, the connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area showed differences between SZ and HC. The adoption of different functional networks in SZ and HC indicated neurobiological alterations underlying working memory performance, including different connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area. These novel findings may increase our understanding of connectivity in working memory in schizophrenia.
Collapse
Affiliation(s)
- Maria R Dauvermann
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK; School of Psychology, National University of Ireland Galway, University Road, Galway, Ireland; McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA.
| | - Thomas Wj Moorhead
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Andrew R Watson
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Barbara Duff
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Liana Romaniuk
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Jeremy Hall
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Neil Roberts
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK; British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Graham L Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Zoë A Hughes
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Nicholas J Brandon
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA, USA; IMED Neuroscience Unit, AstraZeneca, Waltham, MA, USA
| | - Brandon Whitcher
- Clinical and Translational Imaging, Pfizer Inc., Cambridge, MA, USA
| | - Douglas Hr Blackwood
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| |
Collapse
|
67
|
Zekioglu A, Çam FS, Mutlutürk N, Berdeli A, Çolakoglu M. Analysis of Physical Activity Intensity, Alexithymia, and the COMT Val 158 Met Gene Polymorphism. INT J HUM GENET 2017. [DOI: 10.1080/09723757.2014.11886226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aylin Zekioglu
- Celal Bayar University School of Medicine, Department of Genetics, Manisa Turkey
| | - Fethi Sirri Çam
- Celal Bayar University School of Medicine, Department of Genetics, Manisa Turkey
| | - Nevzat Mutlutürk
- Celal Bayar University School of Medicine, Department of Genetics, Manisa Turkey
| | - Afig Berdeli
- Ege University School of Physical Education and Sports, Department of Pediatrics, Izmir Turkey
| | - Muzaffer Çolakoglu
- Ege University School of Physical Education and Sports, Department of Pediatrics, Izmir Turkey
| |
Collapse
|
68
|
Comprehensive review: Computational modelling of schizophrenia. Neurosci Biobehav Rev 2017; 83:631-646. [PMID: 28867653 DOI: 10.1016/j.neubiorev.2017.08.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/08/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
Computational modelling has been used to address: (1) the variety of symptoms observed in schizophrenia using abstract models of behavior (e.g. Bayesian models - top-down descriptive models of psychopathology); (2) the causes of these symptoms using biologically realistic models involving abnormal neuromodulation and/or receptor imbalance (e.g. connectionist and neural networks - bottom-up realistic models of neural processes). These different levels of analysis have been used to answer different questions (i.e. understanding behavioral vs. neurobiological anomalies) about the nature of the disorder. As such, these computational studies have mostly supported diverging hypotheses of schizophrenia's pathophysiology, resulting in a literature that is not always expanding coherently. Some of these hypotheses are however ripe for revision using novel empirical evidence. Here we present a review that first synthesizes the literature of computational modelling for schizophrenia and psychotic symptoms into categories supporting the dopamine, glutamate, GABA, dysconnection and Bayesian inference hypotheses respectively. Secondly, we compare model predictions against the accumulated empirical evidence and finally we identify specific hypotheses that have been left relatively under-investigated.
Collapse
|
69
|
Sivanesan E, Gitlin MC, Candiotti KA. Opioid-induced Hallucinations: A Review of the Literature, Pathophysiology, Diagnosis, and Treatment. Anesth Analg 2017; 123:836-43. [PMID: 27258073 DOI: 10.1213/ane.0000000000001417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite their association with multiple adverse effects, opioid prescription continues to increase. Opioid-induced hallucination is an uncommon yet significant adverse effect of opioid treatment. The practitioner may encounter patient reluctance to volunteer the occurrence of this phenomenon because of fears of being judged mentally unsound. The majority of the literature concerning opioid-induced hallucinations arises from treatment during end-of-life care and cancer pain. Because the rate of opioid prescriptions continues to increase in the population, the rate of opioid-associated hallucinations may also conceivably increase. With a forecasted increase in the patient-to-physician ratio, opioid therapy is predicted to be provided by practitioners of varying backgrounds and medical specialties. Hence, knowledge of the pharmacology and potential adverse effects of these agents is required. This review seeks to increase awareness of this potential complication through a discussion of the literature, potential mechanisms of action, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- Eellan Sivanesan
- From the Department of Anesthesiology, Perioperative Medicine, and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| | | | | |
Collapse
|
70
|
Bi X, Yang L, Li T, Wang B, Zhu H, Zhang H. Genome-wide mediation analysis of psychiatric and cognitive traits through imaging phenotypes. Hum Brain Mapp 2017; 38:4088-4097. [PMID: 28544218 DOI: 10.1002/hbm.23650] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Heritability is well documented for psychiatric disorders and cognitive abilities which are, however, complex, involving both genetic and environmental factors. Hence, it remains challenging to discover which and how genetic variations contribute to such complex traits. In this article, they propose to use mediation analysis to bridge this gap, where neuroimaging phenotypes were utilized as intermediate variables. The Philadelphia Neurodevelopmental Cohort was investigated using genome-wide association studies (GWAS) and mediation analyses. Specifically, 951 participants were included with age ranging from 8 to 21 years. Two hundred and four neuroimaging measures were extracted from structural magnetic resonance imaging scans. GWAS were conducted for each measure to evaluate the SNP-based heritability. Furthermore, mediation analyses were employed to understand the mechanisms in which genetic variants have influence on pathological behaviors implicitly through neuroimaging phenotypes, and identified SNPs that would not be detected otherwise. Our analyses found that rs10494561, located in the intron region within NMNAT2, was associated with the severity of the prodromal symptoms of psychosis implicitly, mediated through the volume of the left hemisphere of the superior frontal region ( P=2.38×10-8). The gene NMNAT2 is known to be associated with brainstem degeneration, and produce cytoplasmic enzyme which is mainly expressed in the brain. Another SNP rs2285351 was found in the intron region of gene IFT122 which may be potentially associated with human spatial orientation ability through the area of the left hemisphere of the isthmuscingulate region ( P=3.70×10-8). Hum Brain Mapp 38:4088-4097, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xuan Bi
- Department of Biostatistics, Yale University, New Haven, Connecticut
| | - Liuqing Yang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tengfei Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Baisong Wang
- Department of Pharmacology and Biostatistics, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongtu Zhu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heping Zhang
- Department of Biostatistics, Yale University, New Haven, Connecticut
| |
Collapse
|
71
|
Boot N, Baas M, van Gaal S, Cools R, De Dreu CKW. Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda. Neurosci Biobehav Rev 2017; 78:13-23. [PMID: 28419830 DOI: 10.1016/j.neubiorev.2017.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 03/28/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Creative cognition is key to human functioning yet the underlying neurobiological mechanisms are sparsely addressed and poorly understood. Here we address the possibility that creative cognition is a function of dopaminergic modulation in fronto-striatal brain circuitries. It is proposed that (i) creative cognition benefits from both flexible and persistent processing, (ii) striatal dopamine and the integrity of the nigrostriatal dopaminergic pathway is associated with flexible processing, while (iii) prefrontal dopamine and the integrity of the mesocortical dopaminergic pathway is associated with persistent processing. We examine this possibility in light of studies linking creative ideation, divergent thinking, and creative problem-solving to polymorphisms in dopamine receptor genes, indirect markers and manipulations of the dopaminergic system, and clinical populations with dysregulated dopaminergic activity. Combined, studies suggest a functional differentiation between striatal and prefrontal dopamine: moderate (but not low or high) levels of striatal dopamine benefit creative cognition by facilitating flexible processes, and moderate (but not low or high) levels of prefrontal dopamine enable persistence-driven creativity.
Collapse
Affiliation(s)
- Nathalie Boot
- Department of Psychology, University of Amsterdam, The Netherlands.
| | - Matthijs Baas
- Department of Psychology, University of Amsterdam, The Netherlands
| | - Simon van Gaal
- Department of Psychology, University of Amsterdam, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Centre for Cognitive Neuroimaging, The Netherlands
| | - Roshan Cools
- Donders Institute for Brain, Cognition, and Behavior, Centre for Cognitive Neuroimaging, The Netherlands; Department of Psychiatry, Radboud University Medical Center, The Netherlands
| | - Carsten K W De Dreu
- Department of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands; Center for Experimental Economics and Political Decision Making (CREED), University of Amsterdam, The Netherlands
| |
Collapse
|
72
|
Eisenstein SA, Bogdan R, Chen L, Moerlein SM, Black KJ, Perlmutter JS, Hershey T, Barch DM. Preliminary evidence that negative symptom severity relates to multilocus genetic profile for dopamine signaling capacity and D2 receptor binding in healthy controls and in schizophrenia. J Psychiatr Res 2017; 86:9-17. [PMID: 27886638 PMCID: PMC5272837 DOI: 10.1016/j.jpsychires.2016.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/07/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
Deficits in central, subcortical dopamine (DA) signaling may underlie negative symptom severity, particularly anhedonia, in healthy individuals and in schizophrenia. To investigate these relationships, we assessed negative symptoms with the Schedule for the Assessment of Negative Symptoms and the Brief Negative Symptom Scale (BNSS) and self-reported anhedonia with the Scales for Physical and Social Anhedonia (SPSA), Temporal Experience of Pleasure Scale, and Snaith-Hamilton Pleasure Scale in 36 healthy controls (HC), 27 siblings (SIB) of individuals with schizophrenia, and 66 individuals with schizophrenia or schizoaffective disorder (SCZ). A subset of participants (N = 124) were genotyped for DA-related polymorphisms in genes for DRD4, DRD2/ANKK1, DAT1, and COMT, which were used to construct biologically-informed multi-locus genetic profile (MGP) scores reflective of subcortical dopaminergic signaling. DA receptor type 2 (D2R) binding was assessed among a second subset of participants (N = 23) using PET scans with the D2R-selective, non-displaceable radioligand (N-[11C]methyl)benperidol. Higher MGP scores, reflecting elevated subcortical dopaminergic signaling capacity, were associated with less negative symptom severity, as measured by the BNSS, across all participants. In addition, higher striatal D2R binding was associated with less physical and social anhedonia, as measured by the SPSA, across HC, SIB, and SCZ. The current preliminary findings support the hypothesis that subcortical DA function may contribute to negative symptom severity and self-reported anhedonia, independent of diagnostic status.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Corresponding author, Sarah A. Eisenstein, Psychiatry Department, Campus Box 8225, Washington University School of Medicine, St. Louis, MO 63110, Phone: (314) 362-7107, Fax: (314) 362-0168,
| | - Ryan Bogdan
- Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Stephen M. Moerlein
- Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Biochemistry Department, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin J. Black
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Neurology Department, Washington University School of Medicine, St. Louis, MO, USA,Neuroscience Department, Washington University School of Medicine, MO, USA
| | - Joel S. Perlmutter
- Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Biochemistry Department, Washington University School of Medicine, St. Louis, MO, USA,Programs in Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara Hershey
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA; Radiology Department, Washington University School of Medicine, St. Louis, MO, USA; Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA; Neurology Department, Washington University School of Medicine, St. Louis, MO, USA.
| | - Deanna M. Barch
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
73
|
Corral-Frías NS, Pizzagalli DA, Carré JM, Michalski LJ, Nikolova YS, Perlis RH, Fagerness J, Lee MR, Conley ED, Lancaster TM, Haddad S, Wolf A, Smoller JW, Hariri AR, Bogdan R. COMT Val(158) Met genotype is associated with reward learning: a replication study and meta-analysis. GENES BRAIN AND BEHAVIOR 2017; 15:503-13. [PMID: 27138112 DOI: 10.1111/gbb.12296] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/25/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
Abstract
Identifying mechanisms through which individual differences in reward learning emerge offers an opportunity to understand both a fundamental form of adaptive responding as well as etiological pathways through which aberrant reward learning may contribute to maladaptive behaviors and psychopathology. One candidate mechanism through which individual differences in reward learning may emerge is variability in dopaminergic reinforcement signaling. A common functional polymorphism within the catechol-O-methyl transferase gene (COMT; rs4680, Val(158) Met) has been linked to reward learning, where homozygosity for the Met allele (linked to heightened prefrontal dopamine function and decreased dopamine synthesis in the midbrain) has been associated with relatively increased reward learning. Here, we used a probabilistic reward learning task to asses response bias, a behavioral form of reward learning, across three separate samples that were combined for analyses (age: 21.80 ± 3.95; n = 392; 268 female; European-American: n = 208). We replicate prior reports that COMT rs4680 Met allele homozygosity is associated with increased reward learning in European-American participants (β = 0.20, t = 2.75, P < 0.01; ΔR(2) = 0.04). Moreover, a meta-analysis of 4 studies, including the current one, confirmed the association between COMT rs4680 genotype and reward learning (95% CI -0.11 to -0.03; z = 3.2; P < 0.01). These results suggest that variability in dopamine signaling associated with COMT rs4680 influences individual differences in reward which may potentially contribute to psychopathology characterized by reward dysfunction.
Collapse
Affiliation(s)
- N S Corral-Frías
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, USA.,BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - D A Pizzagalli
- Center For Depression, Anxiety and Stress Research and Neuroimaging Center, McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | - J M Carré
- Nipissing University, North Bay, Ontario, Canada
| | - L J Michalski
- BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - Y S Nikolova
- Centre for Addiction and Mental Health Toronto, Ontario, Canada
| | - R H Perlis
- Massachusetts General Hospital and Harvard Medical School, Cambridge, MA, USA.,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - J Fagerness
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - M R Lee
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | | | - T M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - S Haddad
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - A Wolf
- Department of Psychiatry Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - J W Smoller
- Massachusetts General Hospital and Harvard Medical School, Cambridge, MA, USA.,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - A R Hariri
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - R Bogdan
- BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA.,Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
74
|
Pergola G, Di Carlo P, D'Ambrosio E, Gelao B, Fazio L, Papalino M, Monda A, Scozia G, Pietrangelo B, Attrotto M, Apud JA, Chen Q, Mattay VS, Rampino A, Caforio G, Weinberger DR, Blasi G, Bertolino A. DRD2 co-expression network and a related polygenic index predict imaging, behavioral and clinical phenotypes linked to schizophrenia. Transl Psychiatry 2017; 7:e1006. [PMID: 28094815 PMCID: PMC5545721 DOI: 10.1038/tp.2016.253] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/28/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
Genetic risk for schizophrenia (SCZ) is determined by many genetic loci whose compound biological effects are difficult to determine. We hypothesized that co-expression pathways of SCZ risk genes are associated with system-level brain function and clinical phenotypes of SCZ. We examined genetic variants related to the dopamine D2 receptor gene DRD2 co-expression pathway and associated them with working memory (WM) behavior, the related brain activity and treatment response. Using two independent post-mortem prefrontal messenger RNA (mRNA) data sets (total N=249), we identified a DRD2 co-expression pathway enriched for SCZ risk genes. Next, we identified non-coding single-nucleotide polymorphisms (SNPs) associated with co-expression of this pathway. These SNPs were associated with regulatory genetic loci in the dorsolateral prefrontal cortex (P<0.05). We summarized their compound effect on co-expression into a Polygenic Co-expression Index (PCI), which predicted DRD2 pathway co-expression in both mRNA data sets (all P<0.05). We associated the PCI with brain activity during WM performance in two independent samples of healthy individuals (total N=368) and 29 patients with SCZ who performed the n-back task. Greater predicted DRD2 pathway prefrontal co-expression was associated with greater prefrontal activity and longer WM reaction times (all corrected P<0.05), thus indicating inefficient WM processing. Blind prediction of treatment response to antipsychotics in two independent samples of patients with SCZ suggested better clinical course of patientswith greater PCI (total N=87; P<0.05). The findings on this DRD2 co-expression pathway are a proof of concept that gene co-expression can parse SCZ risk genes into biological pathways associated with intermediate phenotypes as well as with clinically meaningful information.
Collapse
Affiliation(s)
- G Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - P Di Carlo
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - E D'Ambrosio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - B Gelao
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - L Fazio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - M Papalino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - A Monda
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - G Scozia
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - B Pietrangelo
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - M Attrotto
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - J A Apud
- National Institutes of Health, National Institute of Mental Health, Clinical and Translational Neuroscience Branch, NIMH, Bethesda, MD, USA
| | - Q Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - V S Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Departments of Neurology and Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - G Caforio
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - D R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Departments of Psychiatry, Neurology, Neuroscience and The Mckusick-Nathans Institute of Genomic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - G Blasi
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - A Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| |
Collapse
|
75
|
ZNF804A rs1344706 interacts with COMT rs4680 to affect prefrontal volume in healthy adults. Brain Imaging Behav 2017; 12:13-19. [DOI: 10.1007/s11682-016-9671-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
76
|
Lopez-Garcia P, Cristobal-Huerta A, Young Espinoza L, Molero P, Ortuño Sanchez-Pedreño F, Hernández-Tamames JA. The influence of the COMT genotype in the underlying functional brain activity of context processing in schizophrenia and in relatives. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:176-82. [PMID: 27421706 DOI: 10.1016/j.pnpbp.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/18/2022]
Abstract
UNLABELLED Context processing deficits have been shown to be present in chronic and first episode schizophrenia patients and in their relatives. This cognitive process is linked to frontal functioning and is highly dependent on dopamine levels in the prefrontal cortex (PFC). The catechol-O-methyltransferase (COMT) enzyme plays a prominent role in regulating dopamine levels in PFC. Genotypic variations in the functional polymorphism Val(158)Met COMT appear to have an impact in dopamine signaling in the PFC of healthy subjects and schizophrenia patients. We aimed to explore the effect of the Val(158)Met COMT polymorphism on brain activation during the performance of a context processing task in healthy subjects, schizophrenia spectrum patients and their healthy relatives. METHODS 56 participants performed the Dot Probe Expectancy task (DPX) during the fMRI session. Subjects were genotyped and only the Val and Met homozygotes participated in the study. RESULTS Schizophrenia spectrum patients and their relatives showed worse performance on context processing measures than healthy control subjects. The Val allele was associated with more context processing errors in healthy controls and in relatives compared to patients. There was a greater recruitment of frontal areas (supplementary motor area/cingulate gyrus) during context processing in patients relative to healthy controls. Met homozygotes subjects activated more frontal areas than Val homozygotes subjects. CONCLUSIONS The Val(158)Met COMT polymorphism influences context processing and on its underlying brain activation, showing less recruitment of frontal areas in the subjects with the genotype associated to lower dopamine availability in PFC.
Collapse
Affiliation(s)
- Pilar Lopez-Garcia
- Department of Psychiatry, School of Medicine, University Autonoma of Madrid, CIBERSAM, C/Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | | | - Leslie Young Espinoza
- Department of Psychiatry and Medical Psychology, University Hospital, School of Medicine, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pio XII s/n, 31009 Pamplona, Spain
| | - Patricio Molero
- Department of Psychiatry and Medical Psychology, University Hospital, School of Medicine, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pio XII s/n, 31009 Pamplona, Spain
| | - Felipe Ortuño Sanchez-Pedreño
- Department of Psychiatry and Medical Psychology, University Hospital, School of Medicine, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pio XII s/n, 31009 Pamplona, Spain
| | | |
Collapse
|
77
|
Chen W, Chen C, Xia M, Wu K, Chen C, He Q, Xue G, Wang W, He Y, Dong Q. Interaction Effects of BDNF and COMT Genes on Resting-State Brain Activity and Working Memory. Front Hum Neurosci 2016; 10:540. [PMID: 27853425 PMCID: PMC5091010 DOI: 10.3389/fnhum.2016.00540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
Catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) genes have been found to interactively influence working memory (WM) as well as brain activation during WM tasks. However, whether the two genes have interactive effects on resting-state activities of the brain and whether these spontaneous activations correlate with WM are still unknown. This study included behavioral data from WM tasks and genetic data (COMT rs4680 and BDNF Val66Met) from 417 healthy Chinese adults and resting-state fMRI data from 298 of them. Significant interactive effects of BDNF and COMT were found for WM performance as well as for resting-state regional homogeneity (ReHo) in WM-related brain areas, including the left medial frontal gyrus (lMeFG), left superior frontal gyrus (lSFG), right superior and medial frontal gyrus (rSMFG), right medial orbitofrontal gyrus (rMOFG), right middle frontal gyrus (rMFG), precuneus, bilateral superior temporal gyrus, left superior occipital gyrus, right middle occipital gyrus, and right inferior parietal lobule. Simple effects analyses showed that compared to other genotypes, subjects with COMT-VV/BDNF-VV had higher WM and lower ReHo in all five frontal brain areas. The results supported the hypothesis that COMT and BDNF polymorphisms influence WM performance and spontaneous brain activity (i.e., ReHo).
Collapse
Affiliation(s)
- Wen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Karen Wu
- Department of Psychology and Social Behavior, University of CaliforniaIrvine, CA, USA
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of CaliforniaIrvine, CA, USA
| | - Qinghua He
- Faculty of Psychology, Southwest UniversityChongqing, China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Wenjing Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| |
Collapse
|
78
|
Fallon SJ, van der Schaaf ME, Ter Huurne N, Cools R. The Neurocognitive Cost of Enhancing Cognition with Methylphenidate: Improved Distractor Resistance but Impaired Updating. J Cogn Neurosci 2016; 29:652-663. [PMID: 27779907 DOI: 10.1162/jocn_a_01065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A balance has to be struck between supporting distractor-resistant representations in working memory and allowing those representations to be updated. Catecholamine, particularly dopamine, transmission has been proposed to modulate the balance between the stability and flexibility of working memory representations. However, it is unclear whether drugs that increase catecholamine transmission, such as methylphenidate, optimize this balance in a task-dependent manner or bias the system toward stability at the expense of flexibility (or vice versa). Here we demonstrate, using pharmacological fMRI, that methylphenidate improves the ability to resist distraction (cognitive stability) but impairs the ability to flexibly update items currently held in working memory (cognitive flexibility). These behavioral effects were accompanied by task-general effects in the striatum and opposite and task-specific effects on neural signal in the pFC. This suggests that methylphenidate exerts its cognitive enhancing and impairing effects through acting on the pFC, an effect likely associated with methylphenidate's action on the striatum. These findings highlight that methylphenidate acts as a double-edged sword, improving one cognitive function at the expense of another, while also elucidating the neurocognitive mechanisms underlying these paradoxical effects.
Collapse
Affiliation(s)
- Sean James Fallon
- Radboud University Donders Institute of Brain, Cognition, and Behavior.,University of Oxford
| | - Marieke E van der Schaaf
- Radboud University Donders Institute of Brain, Cognition, and Behavior.,Radboud University Nijmegen Medical Centre
| | | | - Roshan Cools
- Radboud University Donders Institute of Brain, Cognition, and Behavior.,Radboud University Nijmegen Medical Centre
| |
Collapse
|
79
|
Del Hoyo L, Xicota L, Langohr K, Sánchez-Benavides G, de Sola S, Cuenca-Royo A, Rodriguez J, Rodríguez-Morató J, Farré M, Dierssen M, de la Torre R. VNTR-DAT1 and COMTVal158Met Genotypes Modulate Mental Flexibility and Adaptive Behavior Skills in Down Syndrome. Front Behav Neurosci 2016; 10:193. [PMID: 27799900 PMCID: PMC5065956 DOI: 10.3389/fnbeh.2016.00193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/26/2016] [Indexed: 02/02/2023] Open
Abstract
Down syndrome (DS) is an aneuploidy syndrome that is caused by trisomy for human chromosome 21 resulting in a characteristic cognitive and behavioral phenotype, which includes executive functioning and adaptive behavior difficulties possibly due to prefrontal cortex (PFC) deficits. DS also present a high risk for early onset of Alzheimer Disease-like dementia. The dopamine (DA) system plays a neuromodulatory role in the activity of the PFC. Several studies have implicated trait differences in DA signaling on executive functioning based on genetic polymorphisms in the genes encoding for the catechol-O-methyltransferase (COMTVal158Met) and the dopamine transporter (VNTR-DAT1). Since it is known that the phenotypic consequences of genetic variants are modulated by the genetic background in which they occur, we here explore whether these polymorphisms variants interact with the trisomic genetic background to influence gene expression, and how this in turn mediates DS phenotype variability regarding PFC cognition. We genotyped 69 young adults of both genders with DS, and found that VNTR-DAT1 was in Hardy-Weinberg equilibrium but COMTVal158Met had a reduced frequency of Met allele homozygotes. In our population, genotypes conferring higher DA availability, such as Met allele carriers and VNTR-DAT1 10-repeat allele homozygotes, resulted in improved performance in executive function tasks that require mental flexibility. Met allele carriers showed worse adaptive social skills and self-direction, and increased scores in the social subscale of the Dementia Questionnaire for People with Intellectual Disabilities than Val allele homozygotes. The VNTR-DAT1 was not involved in adaptive behavior or early dementia symptoms. Our results suggest that genetic variants of COMTVal158Met and VNTR-DAT1 may contribute to PFC-dependent cognition, while only COMTVal158Met is involved in behavioral phenotypes of DS, similar to euploid population.
Collapse
Affiliation(s)
- Laura Del Hoyo
- Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain; Departament de Farmacologia, de Terapèutica i de Toxicologia, Universidad Autónoma de BarcelonaBarcelona, Spain
| | - Laura Xicota
- Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain; Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Department of Experimental and Health Sciences, Universidad Pompeu FabraBarcelona, Spain
| | - Klaus Langohr
- Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain; Department of Statistics and Operations Research, Universidad Politècnica de Cataluña/BarcelonaTechBarcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute Barcelona, Spain
| | - Susana de Sola
- Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain; Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain
| | - Aida Cuenca-Royo
- Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute Barcelona, Spain
| | - Joan Rodriguez
- Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute Barcelona, Spain
| | - Jose Rodríguez-Morató
- Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain; Department of Experimental and Health Sciences, Universidad Pompeu FabraBarcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición, Instituto Salud Carlos IIIMadrid, Spain
| | - Magí Farré
- Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain; Departament de Farmacologia, de Terapèutica i de Toxicologia, Universidad Autónoma de BarcelonaBarcelona, Spain
| | - Mara Dierssen
- Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Department of Experimental and Health Sciences, Universidad Pompeu FabraBarcelona, Spain; CIBER de Enfermedades Raras, Instituto Salud Carlos IIIMadrid, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain; Department of Experimental and Health Sciences, Universidad Pompeu FabraBarcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición, Instituto Salud Carlos IIIMadrid, Spain
| | | |
Collapse
|
80
|
Hall KT, Kossowsky J, Oberlander TF, Kaptchuk TJ, Saul JP, Wyller VB, Fagermoen E, Sulheim D, Gjerstad J, Winger A, Mukamal KJ. Genetic variation in catechol-O-methyltransferase modifies effects of clonidine treatment in chronic fatigue syndrome. THE PHARMACOGENOMICS JOURNAL 2016; 16:454-60. [PMID: 27457818 PMCID: PMC5028250 DOI: 10.1038/tpj.2016.53] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/11/2016] [Accepted: 05/18/2016] [Indexed: 12/19/2022]
Abstract
Clonidine, an α2-adrenergic receptor agonist, decreases circulating norepinephrine and epinephrine, attenuating sympathetic activity. Although catechol-O-methyltransferase (COMT) metabolizes catecholamines, main effectors of sympathetic function, COMT genetic variation effects on clonidine treatment are unknown. Chronic fatigue syndrome (CFS) is hypothesized to result in part from dysregulated sympathetic function. A candidate gene analysis of COMT rs4680 effects on clinical outcomes in the Norwegian Study of Chronic Fatigue Syndrome in Adolescents: Pathophysiology and Intervention Trial (NorCAPITAL), a randomized double-blinded clonidine versus placebo trial, was conducted (N=104). Patients homozygous for rs4680 high-activity allele randomized to clonidine took 2500 fewer steps compared with placebo (Pinteraction=0.04). There were no differences between clonidine and placebo among patients with COMT low-activity alleles. Similar gene-drug interactions were observed for sleep (Pinteraction=0.003) and quality of life (Pinteraction=0.018). Detrimental effects of clonidine in the subset of CFS patients homozygous for COMT high-activity allele warrant investigation of potential clonidine-COMT interaction effects in other conditions.
Collapse
Affiliation(s)
- Kathryn T. Hall
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Harvard Medical School, Boston MA
| | - Joe Kossowsky
- Harvard Medical School, Boston MA
- Department of Anesthesiology Perioperative and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Clinical Psychology & Psychotherapy, University of Basel, Switzerland
| | - Tim F. Oberlander
- Child and Family Research Institute, Department of Pediatrics, and School of Population and Public Health, University of British Columbia BC
| | - Ted J. Kaptchuk
- Harvard Medical School, Boston MA
- Division of General Medicine and Primary Care, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Boston, MA
| | - J. Philip Saul
- Department of Pediatrics, Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina
| | - Vegard Bruun Wyller
- Department of Paediatrics, Akershus University Hospital, N-1478 Lørenskog, Norway
| | - Even Fagermoen
- Dept. of Anesthesiology and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Dag Sulheim
- Dept. of Pediatrics, Lillehammer County Hospital, Brumunddal, Norway
| | | | - Anette Winger
- Department of Nursing and Health Promotion, Faculty of Health, Oslo University College of Applied Sciences, Norway
| | - Kenneth J. Mukamal
- Harvard Medical School, Boston MA
- Division of General Medicine and Primary Care, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
81
|
The COMT Val158Met polymorphism moderates the association between cognitive functions and white matter microstructure in schizophrenia. Psychiatr Genet 2016; 26:193-202. [DOI: 10.1097/ypg.0000000000000130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
82
|
Gallagher CL, Bell B, Palotti M, Oh J, Christian BT, Okonkwo O, Sojkova J, Buyan-Dent L, Nickles RJ, Harding SJ, Stone CK, Johnson SC, Holden JE. Anterior cingulate dopamine turnover and behavior change in Parkinson's disease. Brain Imaging Behav 2016; 9:821-7. [PMID: 25511521 DOI: 10.1007/s11682-014-9338-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Subtle cognitive and behavioral changes are common in early Parkinson's disease. The cause of these symptoms is probably multifactorial but may in part be related to extra-striatal dopamine levels. 6-[(18) F]-Fluoro-L-dopa (FDOPA) positron emission tomography has been widely used to quantify dopamine metabolism in the brain; the most frequently measured kinetic parameter is the tissue uptake rate constant, Ki. However, estimates of dopamine turnover, which also account for the small rate of FDOPA loss from areas of specific trapping, may be more sensitive than Ki for early disease-related changes in dopamine biosynthesis. The purpose of the present study was to compare effective distribution volume ratio (eDVR), a metric for dopamine turnover, to cognitive and behavioral measures in Parkinson's patients. We chose to focus the investigation on anterior cingulate cortex, which shows highest FDOPA uptake within frontal regions and has known roles in executive function. Fifteen non-demented early-stage PD patients were pretreated with carbidopa and tolcapone, a central catechol-O-methyl transferase (COMT) inhibitor, and then underwent extended imaging with FDOPA PET. Anterior cingulate eDVR was compared with composite scores for language, memory, and executive function measured by neuropsychological testing, and behavior change measured using two informant-based questionnaires, the Cambridge Behavioral Inventory and the Behavior Rating Inventory of Executive Function-Adult Version. Lower mean eDVR (thus higher dopamine turnover) in anterior cingulate cortex was related to lower (more impaired) behavior scores. We conclude that subtle changes in anterior cingulate dopamine metabolism may contribute to dysexecutive behaviors in Parkinson's disease.
Collapse
Affiliation(s)
- Catherine L Gallagher
- William S. Middleton Veterans Hospital, Madison, WI, USA.
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave., Madison, WI, 53705-2281, USA.
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Brian Bell
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave., Madison, WI, 53705-2281, USA
| | - Matthew Palotti
- William S. Middleton Veterans Hospital, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave., Madison, WI, 53705-2281, USA
| | - Jen Oh
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bradley T Christian
- University of Wisconsin Department of Medical Physics, Madison, WI, USA
- Waisman Laboratory for Brain Imaging and Behavior, Madison, WI, USA
| | - Ozioma Okonkwo
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jitka Sojkova
- William S. Middleton Veterans Hospital, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave., Madison, WI, 53705-2281, USA
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Buyan-Dent
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave., Madison, WI, 53705-2281, USA
| | - Robert J Nickles
- University of Wisconsin Department of Medical Physics, Madison, WI, USA
| | - Sandra J Harding
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Charles K Stone
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- William S. Middleton Veterans Hospital, Madison, WI, USA
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James E Holden
- University of Wisconsin Department of Medical Physics, Madison, WI, USA
| |
Collapse
|
83
|
Buchheim A, Erk S, George C, Kächele H, Martius P, Pokorny D, Spitzer M, Walter H. Neural Response during the Activation of the Attachment System in Patients with Borderline Personality Disorder: An fMRI Study. Front Hum Neurosci 2016; 10:389. [PMID: 27531977 PMCID: PMC4969290 DOI: 10.3389/fnhum.2016.00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Individuals with borderline personality disorder (BPD) are characterized by emotional instability, impaired emotion regulation and unresolved attachment patterns associated with abusive childhood experiences. We investigated the neural response during the activation of the attachment system in BPD patients compared to healthy controls using functional magnetic resonance imaging (fMRI). Eleven female patients with BPD without posttraumatic stress disorder (PTSD) and 17 healthy female controls matched for age and education were telling stories in the scanner in response to the Adult Attachment Projective Picture System (AAP), an eight-picture set assessment of adult attachment. The picture set includes theoretically-derived attachment scenes, such as separation, death, threat and potential abuse. The picture presentation order is designed to gradually increase the activation of the attachment system. Each picture stimulus was presented for 2 min. Analyses examine group differences in attachment classifications and neural activation patterns over the course of the task. Unresolved attachment was associated with increasing amygdala activation over the course of the attachment task in patients as well as controls. Unresolved controls, but not patients, showed activation in the right dorsolateral prefrontal cortex (DLPFC) and the rostral cingulate zone (RCZ). We interpret this as a neural signature of BPD patients’ inability to exert top-down control under conditions of attachment distress. These findings point to possible neural mechanisms for underlying affective dysregulation in BPD in the context of attachment trauma and fear.
Collapse
Affiliation(s)
- Anna Buchheim
- Institute of Psychology, University of Innsbruck Innsbruck, Austria
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, University Hospital Charité Berlin, Germany
| | - Carol George
- Department of Psychology, Mills College Oakland, CA, USA
| | - Horst Kächele
- International Psychoanalytic University Berlin Berlin, Germany
| | | | - Dan Pokorny
- Department of Psychosomatic Medicine and Psychotherapy, University of Ulm Ulm, Germany
| | - Manfred Spitzer
- Department of Psychiatry III, University of Ulm Ulm, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, University Hospital Charité Berlin, Germany
| |
Collapse
|
84
|
Tuvblad C, Narusyte J, Comasco E, Andershed H, Andershed AK, Colins OF, Fanti KA, Nilsson KW. Physical and verbal aggressive behavior and COMT genotype: Sensitivity to the environment. Am J Med Genet B Neuropsychiatr Genet 2016; 171:708-18. [PMID: 26888414 DOI: 10.1002/ajmg.b.32430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 02/01/2016] [Indexed: 01/11/2023]
Abstract
Catechol-O-methyltransferase (COMT) genotype has been implicated as a vulnerability factor for several psychiatric diseases as well as aggressive behavior, either directly, or in interaction with an adverse environment. The present study aimed at investigating the susceptibility properties of COMT genotype to adverse and favorable environment in relation to physical and verbal aggressive behavior. The COMT Val158Met polymorphism was genotyped in a Swedish population-based cohort including 1,783 individuals, ages 20-24 years (47% males). A significant three-way interaction was found, after correction for multiple testing, between COMT genotype, exposure to violence, and parent-child relationship in association with physical but not verbal aggressive behavior. Homozygous for the Val allele reported lower levels of physical aggressive behavior when they were exposed to violence and at the same time experienced a positive parent-child relationship compared to Met carriers. Thus, susceptibility properties of COMT genotype were observed in relation to physical aggressive behavior supporting the hypothesis that COMT genotypes are modifying the sensitivity to environment that confers either risk or protection for aggressive behavior. As these are novel findings, they warrant further investigation and replication in independent samples. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Catherine Tuvblad
- School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden.,Department of Psychology, University of Southern California, Los Angeles, California
| | - Jurgita Narusyte
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Erika Comasco
- Department of Neuroscience, Uppsala University, BMC, Uppsala, Sweden
| | - Henrik Andershed
- School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | | | - Olivier F Colins
- School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden.,Department of Child and Adolescent Psychiatry, Curium-Leiden University Medical Center, Leiden, The Netherlands
| | - Kostas A Fanti
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Kent W Nilsson
- Center for Clinical Research, Uppsala University, County Hospital, Västerås, Sweden
| |
Collapse
|
85
|
Brain white matter structure and COMT gene are linked to second-language learning in adults. Proc Natl Acad Sci U S A 2016; 113:7249-54. [PMID: 27298360 DOI: 10.1073/pnas.1606602113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype.
Collapse
|
86
|
Jenkins PO, Mehta MA, Sharp DJ. Catecholamines and cognition after traumatic brain injury. Brain 2016; 139:2345-71. [PMID: 27256296 PMCID: PMC4995357 DOI: 10.1093/brain/aww128] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/20/2016] [Indexed: 01/11/2023] Open
Abstract
Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner.
Collapse
Affiliation(s)
- Peter O Jenkins
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| | - Mitul A Mehta
- 2 Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - David J Sharp
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| |
Collapse
|
87
|
COMT val158met moderation of dopaminergic drug effects on cognitive function: a critical review. THE PHARMACOGENOMICS JOURNAL 2016; 16:430-8. [PMID: 27241058 PMCID: PMC5028240 DOI: 10.1038/tpj.2016.43] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
The relationship between dopamine (DA) tone in the prefrontal cortex (PFC) and PFC-dependent cognitive functions (for example, working memory, selective attention, executive function) may be described by an inverted-U-shaped function, in which both excessively high and low DA is associated with impairment. In the PFC, the COMT val158met single nucleotide polymorphism (rs4680) confers differences in catechol-O-methyltransferase (COMT) efficacy and DA tone, and individuals homozygous for the val allele display significantly reduced cortical DA. Many studies have investigated whether val158met genotype moderates the effects of dopaminergic drugs on PFC-dependent cognitive functions. A review of 25 such studies suggests evidence for this pharmacogenetic effect is mixed for stimulants and COMT inhibitors, which have greater effects on D1 receptors, and strong for antipsychotics, which have greater effects on D2 receptors. Overall, COMT val158met genotype represents an enticing target for identifying individuals who are more likely to respond positively to dopaminergic drugs.
Collapse
|
88
|
Kaplan CM, Saha D, Molina JL, Hockeimer WD, Postell EM, Apud JA, Weinberger DR, Tan HY. Estimating changing contexts in schizophrenia. Brain 2016; 139:2082-95. [PMID: 27217338 DOI: 10.1093/brain/aww095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/14/2016] [Indexed: 01/21/2023] Open
Abstract
SEE STEPHAN ET AL DOI101093/AWW120 FOR A SCIENTIFIC COMMENTARY ON THIS WORK: Real world information is often abstract, dynamic and imprecise. Deciding if changes represent random fluctuations, or alterations in underlying contexts involve challenging probability estimations. Dysfunction may contribute to erroneous beliefs, such as delusions. Here we examined brain function during inferences about context change from noisy information. We examined cortical-subcortical circuitry engaging anterior and dorsolateral prefrontal cortex, and midbrain. We hypothesized that schizophrenia-related deficits in prefrontal function might overestimate context change probabilities, and that this more chaotic worldview may subsequently gain familiarity and be over-reinforced, with implications for delusions. We then examined these opposing information processing biases against less expected versus familiar information patterns in relation to genetic risk for schizophrenia in unaffected siblings. In one experiment, 17 patients with schizophrenia and 24 normal control subjects were presented in 3 T magnetic resonance imaging with numerical information varying noisily about a context integer, which occasionally shifted up or down. Subjects were to indicate when the inferred numerical context had changed. We fitted Bayesian models to estimate probabilities associated with change inferences. Dynamic causal models examined cortical-subcortical circuitry interactions at context change inference, and at subsequent reduced uncertainty. In a second experiment, genetic risk for schizophrenia associated with similar cortical-subcortical findings were explored in an independent sample of 36 normal control subjects and 35 unaffected siblings during processing of intuitive number sequences along the number line, or during the inverse, less familiar, sequence. In the first experiment, reduced Bayesian models fitting subject behaviour suggest that patients with schizophrenia overestimated context change probabilities. Here, patients engaged anterior prefrontal cortex relatively less than healthy controls, in part driven by reduced effective connectivity from dorsolateral prefrontal cortex to anterior prefrontal cortex. In processing subsequent information indicating reduced uncertainty of their predictions, patients engaged relatively increased mid-brain activation, driven in part by increased dorsolateral prefrontal cortex to midbrain connectivity. These dissociable reduced and exaggerated prefrontal and subcortical circuit functions were accentuated in patients with delusions. In the second experiment, analogous dissociable reduced anterior prefrontal cortex and exaggerated midbrain engagement occurred in unaffected siblings when processing less expected versus more familiar number sequences. In conclusion, patients overestimated ambiguous context change probabilities with relatively reduced anterior frontal engagement. Subsequent reduced uncertainty about contextual state appeared over-reinforced, potentially contributing to confirmation bias and a cascade of aberrant belief processing about a more chaotic world relevant to delusions. These opposing cortical-subcortical effects relate in part to genetic risk for schizophrenia, with analogous imbalances in neural processing of less expected versus familiar information patterns.
Collapse
Affiliation(s)
- Claire M Kaplan
- 1 Lieber Institute for Brain Development, Baltimore, Maryland, USA 2 Clinical Brain Disorders Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Debjani Saha
- 1 Lieber Institute for Brain Development, Baltimore, Maryland, USA
| | - Juan L Molina
- 2 Clinical Brain Disorders Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | | | | | - Jose A Apud
- 2 Clinical Brain Disorders Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Daniel R Weinberger
- 1 Lieber Institute for Brain Development, Baltimore, Maryland, USA 2 Clinical Brain Disorders Branch, National Institute of Mental Health, Bethesda, Maryland, USA 3 Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 4 Neurology, Neuroscience, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Yang Tan
- 1 Lieber Institute for Brain Development, Baltimore, Maryland, USA 2 Clinical Brain Disorders Branch, National Institute of Mental Health, Bethesda, Maryland, USA 3 Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
89
|
Congdon E, Canli T. The Endophenotype of Impulsivity: Reaching Consilience Through Behavioral, Genetic, and Neuroimaging Approaches. ACTA ACUST UNITED AC 2016; 4:262-81. [PMID: 16585800 DOI: 10.1177/1534582305285980] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Impulsivity is a multidimensional construct with implications for understanding the etiology and treatment of multiple forms of psychopathology. As a multidimensional construct, however, the processes underlying impulsivity, particularly behavioral inhibition, must be separated to allow for investigations into its neurogenetic bases. Evidence from both animal and human studies supports the role of dopamine in impulsivity, and neuroimaging research is elucidating brain regions involved in behavioral inhibition. Evidence is now emerging that suggests an interaction between dopamine system genes and frontal brain regions in underlying individual differences in behavioral inhibition. However, to reach a comprehensive understanding of the neurogenetic bases of behavioral inhibition, an appropriate framework is required. Therefore, it is proposed that by identifying intervening variables more sensitive to the effects of genetic variation, known as an endophenotype approach, we will be able to overcome many of the methodological limitations that prevent a better understanding at present.
Collapse
Affiliation(s)
- Eliza Congdon
- Department of Psychology, Stony Brook University, NY, USA
| | | |
Collapse
|
90
|
Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex 2016; 86:186-204. [PMID: 27251123 DOI: 10.1016/j.cortex.2016.04.023] [Citation(s) in RCA: 960] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/13/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Executive functions (EFs) are high-level cognitive processes, often associated with the frontal lobes, that control lower level processes in the service of goal-directed behavior. They include abilities such as response inhibition, interference control, working memory updating, and set shifting. EFs show a general pattern of shared but distinct functions, a pattern described as "unity and diversity". We review studies of EF unity and diversity at the behavioral and genetic levels, focusing on studies of normal individual differences and what they reveal about the functional organization of these cognitive abilities. In particular, we review evidence that across multiple ages and populations, commonly studied EFs (a) are robustly correlated but separable when measured with latent variables; (b) are not the same as general intelligence or g; (c) are highly heritable at the latent level and seemingly also highly polygenic; and (d) activate both common and specific neural areas and can be linked to individual differences in neural activation, volume, and connectivity. We highlight how considering individual differences at the behavioral and neural levels can add considerable insight to the investigation of the functional organization of the brain, and conclude with some key points about individual differences to consider when interpreting neuropsychological patterns of dissociation.
Collapse
|
91
|
Huang E, Zai CC, Lisoway A, Maciukiewicz M, Felsky D, Tiwari AK, Bishop JR, Ikeda M, Molero P, Ortuno F, Porcelli S, Samochowiec J, Mierzejewski P, Gao S, Crespo-Facorro B, Pelayo-Terán JM, Kaur H, Kukreti R, Meltzer HY, Lieberman JA, Potkin SG, Müller DJ, Kennedy JL. Catechol-O-Methyltransferase Val158Met Polymorphism and Clinical Response to Antipsychotic Treatment in Schizophrenia and Schizo-Affective Disorder Patients: a Meta-Analysis. Int J Neuropsychopharmacol 2016; 19:pyv132. [PMID: 26745992 PMCID: PMC4886669 DOI: 10.1093/ijnp/pyv132] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/19/2015] [Accepted: 12/02/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The catechol-O-methyltransferase (COMT) enzyme plays a crucial role in dopamine degradation, and the COMT Val158Met polymorphism (rs4680) is associated with significant differences in enzymatic activity and consequently dopamine concentrations in the prefrontal cortex. Multiple studies have analyzed the COMT Val158Met variant in relation to antipsychotic response. Here, we conducted a meta-analysis examining the relationship between COMT Val158Met and antipsychotic response. METHODS Searches using PubMed, Web of Science, and PsycInfo databases (03/01/2015) yielded 23 studies investigating COMT Val158Met variation and antipsychotic response in schizophrenia and schizo-affective disorder. Responders/nonresponders were defined using each study's original criteria. If no binary response definition was used, authors were asked to define response according to at least 30% Positive and Negative Syndrome Scale score reduction (or equivalent in other scales). Analysis was conducted under a fixed-effects model. RESULTS Ten studies met inclusion criteria for the meta-analysis. Five additional antipsychotic-treated samples were analyzed for Val158Met and response and included in the meta-analysis (ntotal=1416). Met/Met individuals were significantly more likely to respond than Val-carriers (P=.039, ORMet/Met=1.37, 95% CI: 1.02-1.85). Met/Met patients also experienced significantly greater improvement in positive symptoms relative to Val-carriers (P=.030, SMD=0.24, 95% CI: 0.024-0.46). Posthoc analyses on patients treated with atypical antipsychotics (n=1207) showed that Met/Met patients were significantly more likely to respond relative to Val-carriers (P=.0098, ORMet/Met=1.54, 95% CI: 1.11-2.14), while no difference was observed for typical-antipsychotic-treated patients (n=155) (P=.65). CONCLUSIONS Our findings suggest that the COMT Val158Met polymorphism is associated with response to antipsychotics in schizophrenia and schizo-affective disorder patients. This effect may be more pronounced for atypical antipsychotics.
Collapse
Affiliation(s)
- Eric Huang
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Clement C Zai
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Amanda Lisoway
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Malgorzata Maciukiewicz
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Daniel Felsky
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Arun K Tiwari
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Jeffrey R Bishop
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Masashi Ikeda
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Patricio Molero
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Felipe Ortuno
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Stefano Porcelli
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Jerzy Samochowiec
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Pawel Mierzejewski
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Shugui Gao
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Benedicto Crespo-Facorro
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - José M Pelayo-Terán
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Harpreet Kaur
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Ritushree Kukreti
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Herbert Y Meltzer
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Jeffrey A Lieberman
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Steven G Potkin
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Daniel J Müller
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - James L Kennedy
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin).
| |
Collapse
|
92
|
Sutcliffe G, Harneit A, Tost H, Meyer-Lindenberg A. Neuroimaging Intermediate Phenotypes of Executive Control Dysfunction in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:218-229. [DOI: 10.1016/j.bpsc.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 01/10/2023]
|
93
|
Udina M, Navinés R, Egmond E, Oriolo G, Langohr K, Gimenez D, Valdés M, Gómez-Gil E, Grande I, Gratacós M, Kapczinski F, Artigas F, Vieta E, Solà R, Martín-Santos R. Glucocorticoid Receptors, Brain-Derived Neurotrophic Factor, Serotonin and Dopamine Neurotransmission are Associated with Interferon-Induced Depression. Int J Neuropsychopharmacol 2016; 19:pyv135. [PMID: 26721949 PMCID: PMC4851270 DOI: 10.1093/ijnp/pyv135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/24/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The role of inflammation in mood disorders has received increased attention. There is substantial evidence that cytokine therapies, such as interferon alpha (IFN-alpha), can induce depressive symptoms. Indeed, proinflammatory cytokines change brain function in several ways, such as altering neurotransmitters, the glucocorticoid axis, and apoptotic mechanisms. This study aimed to evaluate the impact on mood of initiating IFN-alpha and ribavirin treatment in a cohort of patients with chronic hepatitis C. We investigated clinical, personality, and functional genetic variants associated with cytokine-induced depression. METHODS We recruited 344 Caucasian outpatients with chronic hepatitis C, initiating IFN-alpha and ribavirin therapy. All patients were euthymic at baseline according to DSM-IV-R criteria. Patients were assessed at baseline and 4, 12, 24, and 48 weeks after treatment initiation using the Patient Health Questionnaire (PHQ), the Hospital Anxiety and Depression Scale (HADS), and the Temperament and Character Inventory (TCI). We genotyped several functional polymorphisms of interleukin-28 (IL28B), indoleamine 2,3-dioxygenase (IDO-1), serotonin receptor-1A (HTR1A), catechol-O-methyl transferase (COMT), glucocorticoid receptors (GCR1 and GCR2), brain-derived neurotrophic factor (BDNF), and FK506 binding protein 5 (FKBP5) genes. A survival analysis was performed, and the Cox proportional hazards model was used for the multivariate analysis. RESULTS The cumulative incidence of depression was 0.35 at week 24 and 0.46 at week 48. The genotypic distributions were in Hardy-Weinberg equilibrium. Older age (p = 0.018, hazard ratio [HR] per 5 years = 1.21), presence of depression history (p = 0.0001, HR = 2.38), and subthreshold depressive symptoms at baseline (p = 0.005, HR = 1.13) increased the risk of IFN-induced depression. So too did TCI personality traits, with high scores on fatigability (p = 0.0037, HR = 1.17), impulsiveness (p = 0.0200 HR = 1.14), disorderliness (p = 0.0339, HR = 1.11), and low scores on extravagance (p = 0.0040, HR = 0.85). An interaction between HTR1A and COMT genes was found. Patients carrying the G allele of HTR1A plus the Met substitution of the COMT polymorphism had a greater risk for depression during antiviral treatment (HR = 3.83) than patients with the CC (HTR1A) and Met allele (COMT) genotypes. Patients carrying the HTR1A CC genotype and the COMT Val/Val genotype (HR = 3.25) had a higher risk of depression than patients with the G allele (HTR1A) and the Val/Val genotype. Moreover, functional variants of the GCR1 (GG genotype: p = 0.0436, HR = 1.88) and BDNF genes (Val/Val genotype: p = 0.0453, HR = 0.55) were associated with depression. CONCLUSIONS The results of the study support the theory that IFN-induced depression is associated with a complex pathophysiological background, including serotonergic and dopaminergic neurotransmission as well as glucocorticoid and neurotrophic factors. These findings may help to improve the management of patients on antiviral treatment and broaden our understanding of the pathogenesis of mood disorders.
Collapse
MESH Headings
- Adult
- Antiviral Agents/therapeutic use
- Brain-Derived Neurotrophic Factor/genetics
- Catechol O-Methyltransferase/genetics
- Depression/chemically induced
- Depression/epidemiology
- Depression/genetics
- Depression/immunology
- Female
- Genetic Predisposition to Disease
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/epidemiology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/psychology
- Humans
- Incidence
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Interferon-alpha/adverse effects
- Interferon-alpha/therapeutic use
- Interferons
- Interleukins/genetics
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Prospective Studies
- Receptor, Serotonin, 5-HT1A/genetics
- Receptors, Glucocorticoid/genetics
- Ribavirin/therapeutic use
- Tacrolimus Binding Proteins/genetics
- Treatment Outcome
- White People/genetics
Collapse
Affiliation(s)
- M Udina
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - R Navinés
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - E Egmond
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - G Oriolo
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - K Langohr
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - D Gimenez
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - M Valdés
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - E Gómez-Gil
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - I Grande
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - M Gratacós
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - F Kapczinski
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - F Artigas
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - E Vieta
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - R Solà
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - R Martín-Santos
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| |
Collapse
|
94
|
Holmes RD, Tiwari AK, Kennedy JL. Mechanisms of the placebo effect in pain and psychiatric disorders. THE PHARMACOGENOMICS JOURNAL 2016; 16:491-500. [PMID: 27001122 DOI: 10.1038/tpj.2016.15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/17/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023]
Abstract
Placebo effect research over the past 15 years has improved our understanding of how placebo treatments reduce patient symptoms. The expectation of symptom improvement is the primary factor underlying the placebo effect. Such expectations are shaped by past experiences, contextual cues and biological traits, which ultimately modulate one's degree of response to a placebo. The body of evidence that describes the physiology of the placebo effect has been derived from mechanistic studies primarily restricted to the setting of pain. Imaging findings support the role of endogenous opioid and dopaminergic networks in placebo analgesia in both healthy patients as well as patients with painful medical conditions. In patients with psychiatric illnesses such as anxiety disorders or depression, a vast overlap in neurological changes is observed in drug responders and placebo responders supporting the role of serotonergic networks in placebo response. Molecular techniques have been relatively underutilized in understanding the placebo effect until recently. We present an overview of the placebo responder phenotypes and genetic markers that have been associated with the placebo effect in pain, schizophrenia, anxiety disorders and depression.
Collapse
Affiliation(s)
- R D Holmes
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - A K Tiwari
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - J L Kennedy
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
95
|
Interactive effects of age and multi-gene profile on motor learning and sensorimotor adaptation. Neuropsychologia 2016; 84:222-34. [PMID: 26926580 DOI: 10.1016/j.neuropsychologia.2016.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/29/2023]
Abstract
The interactive association of age and dopaminergic polymorphisms on cognitive function has been studied extensively. However, there is limited research on whether age interacts with the association between genetic polymorphisms and motor learning. We examined a group of young and older adults' performance in three motor tasks: explicit sequence learning, visuomotor adaptation, and grooved pegboard. We assessed whether individuals' motor learning and performance were associated with their age and genotypes. We selected three genetic polymorphisms: Catechol-O-Methyl Transferase (COMT val158met) and Dopamine D2 Receptor (DRD2 G>T), which are involved with dopaminergic regulation, and Brain Derived Neurotrophic Factor (BDNF val66met) that modulates neuroplasticity and has been shown to interact with dopaminergic genes. Although the underlying mechanisms of the function of these three genotypes are different, the high performance alleles of each have been linked to better learning and performance. We created a composite polygene score based on the Number of High Performance Alleles (NHPA) that each individual carried. We found several associations between genetic profile, motor performance, and sensorimotor adaptation. More importantly, we found that this association varies with age, task type, and engagement of implicit versus explicit learning processes.
Collapse
|
96
|
Byrne KA, Davis T, Worthy DA. Dopaminergic Genetic Polymorphisms Predict Rule-based Category Learning. J Cogn Neurosci 2016; 28:959-70. [PMID: 26918585 DOI: 10.1162/jocn_a_00942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Dopaminergic genes play an important role in cognitive function. DRD2 and DARPP-32 dopamine receptor gene polymorphisms affect striatal dopamine binding potential, and the Val158Met single-nucleotide polymorphism of the COMT gene moderates dopamine availability in the pFC. Our study assesses the role of these gene polymorphisms on performance in two rule-based category learning tasks. Participants completed unidimensional and conjunctive rule-based tasks. In the unidimensional task, a rule along a single stimulus dimension can be used to distinguish category members. In contrast, a conjunctive rule utilizes a combination of two dimensions to distinguish category members. DRD2 C957T TT homozygotes outperformed C allele carriers on both tasks, and DARPP-32 AA homozygotes outperformed G allele carriers on both tasks. However, we found an interaction between COMT and task type where Met allele carriers outperformed Val homozygotes in the conjunctive rule task, but both groups performed equally well in the unidimensional task. Thus, striatal dopamine binding may play a critical role in both types of rule-based tasks, whereas prefrontal dopamine binding is important for learning more complex conjunctive rule tasks. Modeling results suggest that striatal dopaminergic genes influence selective attention processes whereas cortical genes mediate the ability to update complex rule representations.
Collapse
|
97
|
Kohno M, Nurmi EL, Laughlin CP, Morales AM, Gail EH, Hellemann GS, London ED. Functional Genetic Variation in Dopamine Signaling Moderates Prefrontal Cortical Activity During Risky Decision Making. Neuropsychopharmacology 2016; 41:695-703. [PMID: 26119471 PMCID: PMC4707816 DOI: 10.1038/npp.2015.192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023]
Abstract
Brain imaging has revealed links between prefrontal activity during risky decision-making and striatal dopamine receptors. Specifically, striatal dopamine D2-like receptor availability is correlated with risk-taking behavior and sensitivity of prefrontal activation to risk in the Balloon Analogue Risk Task (BART). The extent to which these associations, involving a single neurochemical measure, reflect more general effects of dopaminergic functioning on risky decision making, however, is unknown. Here, 65 healthy participants provided genotypes and performed the BART during functional magnetic resonance imaging. For each participant, dopamine function was assessed using a gene composite score combining known functional variation across five genes involved in dopaminergic signaling: DRD2, DRD3, DRD4, DAT1, and COMT. The gene composite score was negatively related to dorsolateral prefrontal cortical function during risky decision making, and nonlinearly related to earnings on the task. Iterative permutations of all possible allelic variations (7777 allelic combinations) was tested on brain function in an independently defined region of the prefrontal cortex and confirmed empirical validity of the composite score, which yielded stronger association than 95% of all other possible combinations. The gene composite score also accounted for a greater proportion of variability in neural and behavioral measures than the independent effects of each gene variant, indicating that the combined effects of functional dopamine pathway genes can provide a robust assessment, presumably reflecting the cumulative and potentially interactive effects on brain function. Our findings support the view that the links between dopaminergic signaling, prefrontal function, and decision making vary as a function of dopamine signaling capacity.
Collapse
Affiliation(s)
- Milky Kohno
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Erika L Nurmi
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher P Laughlin
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Angelica M Morales
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Emma H Gail
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Gerhard S Hellemann
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA,Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA,Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA,Semel Institute of Neuroscience and Human Behavior, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA, Tel: +310 825 0606, Fax: +310 825 0812, E-mail:
| |
Collapse
|
98
|
Zabelina DL, Colzato L, Beeman M, Hommel B. Dopamine and the Creative Mind: Individual Differences in Creativity Are Predicted by Interactions between Dopamine Genes DAT and COMT. PLoS One 2016; 11:e0146768. [PMID: 26783754 PMCID: PMC4718590 DOI: 10.1371/journal.pone.0146768] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/22/2015] [Indexed: 01/20/2023] Open
Abstract
The dopaminergic (DA) system may be involved in creativity, however results of past studies are mixed. We attempted to clarify this putative relation by considering the mediofrontal and the nigrostriatal DA pathways, uniquely and in combination, and their contribution to two different measures of creativity–an abbreviated version of the Torrance Test of Creative Thinking, assessing divergent thinking, and a real-world creative achievement index. We found that creativity can be predicted from interactions between genetic polymorphisms related to frontal (COMT) and striatal (DAT) DA pathways. Importantly, the Torrance test and the real-world creative achievement index related to different genetic patterns, suggesting that these two measures tap into different aspects of creativity, and depend on distinct, but interacting, DA sub-systems. Specifically, we report that successful performance on the Torrance test is linked with dopaminergic polymorphisms associated with good cognitive flexibility and medium top-down control, or with weak cognitive flexibility and strong top-down control. The latter is particularly true for the originality factor of divergent thinking. High real-world creative achievement, on the other hand, as assessed by the Creative Achievement Questionnaire, is linked with dopaminergic polymorphisms associated with weak cognitive flexibility and weak top-down control. Taken altogether, our findings support the idea that human creativity relies on dopamine, and on the interaction between frontal and striatal dopaminergic pathways in particular. This interaction may help clarify some apparent inconsistencies in the prior literature, especially if the genes and/or creativity measures were analyzed separately.
Collapse
Affiliation(s)
- Darya L. Zabelina
- Medical Social Sciences, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| | - Lorenza Colzato
- Leiden University, Institute for Psychological Research & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Mark Beeman
- Psychology Department, Northwestern University, Evanston, IL, United States of America
| | - Bernhard Hommel
- Leiden University, Institute for Psychological Research & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
99
|
Sharot T, Garrett N. Forming Beliefs: Why Valence Matters. Trends Cogn Sci 2016; 20:25-33. [PMID: 26704856 DOI: 10.1016/j.tics.2015.11.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 11/26/2022]
|
100
|
Interneuronal DISC1 regulates NRG1-ErbB4 signalling and excitatory-inhibitory synapse formation in the mature cortex. Nat Commun 2015; 6:10118. [PMID: 26656849 PMCID: PMC4682104 DOI: 10.1038/ncomms10118] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Neuregulin-1 (NRG1) and its receptor ErbB4 influence several processes of neurodevelopment, but the mechanisms regulating this signalling in the mature brain are not well known. DISC1 is a multifunctional scaffold protein that mediates many cellular processes. Here we present a functional relationship between DISC1 and NRG1-ErbB4 signalling in mature cortical interneurons. By cell type-specific gene modulation in vitro and in vivo including in a mutant DISC1 mouse model, we demonstrate that DISC1 inhibits NRG1-induced ErbB4 activation and signalling. This effect is likely mediated by competitive inhibition of binding of ErbB4 to PSD95. Finally, we show that interneuronal DISC1 affects NRG1-ErbB4-mediated phenotypes in the fast spiking interneuron-pyramidal neuron circuit. Post-mortem brain analyses and some genetic studies have reported interneuronal deficits and involvement of the DISC1, NRG1 and ErbB4 genes in schizophrenia, respectively. Our results suggest a mechanism by which cross-talk between DISC1 and NRG1-ErbB4 signalling may contribute to these deficits. Neuregulin-1 and DISC1 signalling pathways have both been linked to neurodevelopment and schizophrenia. Here, Seshadri et al. demonstrate that DISC1 negatively regulates NRG1-induced ErbB4 signalling in adult cortical interneurons both in vitro and in vivo, possibly via competitive binding to PSD95.
Collapse
|