51
|
Luo Z, Weiss DE, Liu Q, Tian B. Biomimetic Approaches Toward Smart Bio-hybrid Systems. NANO RESEARCH 2018; 11:3009-3030. [PMID: 30906509 PMCID: PMC6430233 DOI: 10.1007/s12274-018-2004-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 05/30/2023]
Abstract
Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics and engineered nanostructures, with close interactions with biology at the cellular or tissue levels, have already yielded a spectrum of new applications. Many new designs emerge, including those of organ-on-a-chip systems, biodegradable implants, electroceutical devices, minimally invasive neuro-prosthetic tools, and soft robotics. In this review, we highlight a few recent advances on the fabrication and application of the smart bio-hybrid systems, with a particular emphasis on the three-dimensional (3D) bio-integrated devices that mimick the 3D feature of tissue scaffolds. Moreover, neurons integrated with engineered nanostructures for wireless neuromodulation and dynamic neural output will be briefly discussed. We will also go over the progress in the construction of cell-enabled soft robotics, where a tight coupling of the synthetic and biological parts is crucial for efficient functions. Finally, we summarize the approaches for enhancing bio-integration with biomimetic micro- and nanostructures.
Collapse
Affiliation(s)
- Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Dara E. Weiss
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Qingyun Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
52
|
Gul JZ, Sajid M, Rehman MM, Siddiqui GU, Shah I, Kim KH, Lee JW, Choi KH. 3D printing for soft robotics - a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:243-262. [PMID: 29707065 PMCID: PMC5917433 DOI: 10.1080/14686996.2018.1431862] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/21/2018] [Accepted: 01/21/2018] [Indexed: 05/23/2023]
Abstract
Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose.
Collapse
Affiliation(s)
- Jahan Zeb Gul
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| | - Memoon Sajid
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| | - Muhammad Muqeet Rehman
- Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering and Technology, Topi, Pakistan
| | | | - Imran Shah
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| | - Kyung-Hwan Kim
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| | - Jae-Wook Lee
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| |
Collapse
|
53
|
Hookway TA. Engineering Biology by Controlling Tissue Folding. Trends Biotechnol 2018; 36:341-343. [PMID: 29478676 DOI: 10.1016/j.tibtech.2018.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 11/26/2022]
Abstract
Achieving complex self-organization in vitro has remained a fundamental challenge in tissue engineering. A recent study in Developmental Cell by Hughes and colleagues uses computational and experimental approaches to understand and control the morphogenic process of tissue folding. These approaches provide an engineering framework to reproducibly control tissue shape.
Collapse
Affiliation(s)
- Tracy A Hookway
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA.
| |
Collapse
|
54
|
3D Bioprinted Muscle-Based Bio-Actuators: Force Adaptability Due to Training. BIOMIMETIC AND BIOHYBRID SYSTEMS 2018. [DOI: 10.1007/978-3-319-95972-6_33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
55
|
Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK, Bashir R, Sitti M, Martel S, Dario P, Menciassi A. Biohybrid actuators for robotics: A review of devices actuated by living cells. Sci Robot 2017; 2:2/12/eaaq0495. [PMID: 33157905 DOI: 10.1126/scirobotics.aaq0495] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Actuation is essential for artificial machines to interact with their surrounding environment and to accomplish the functions for which they are designed. Over the past few decades, there has been considerable progress in developing new actuation technologies. However, controlled motion still represents a considerable bottleneck for many applications and hampers the development of advanced robots, especially at small length scales. Nature has solved this problem using molecular motors that, through living cells, are assembled into multiscale ensembles with integrated control systems. These systems can scale force production from piconewtons up to kilonewtons. By leveraging the performance of living cells and tissues and directly interfacing them with artificial components, it should be possible to exploit the intricacy and metabolic efficiency of biological actuation within artificial machines. We provide a survey of important advances in this biohybrid actuation paradigm.
Collapse
Affiliation(s)
- Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy.
| | - Barry Trimmer
- Department of Biology, Tufts University, Medford, MA 02153, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ritu Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Metin Sitti
- Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Sylvain Martel
- NanoRobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| |
Collapse
|
56
|
Webster-Wood VA, Akkus O, Gurkan UA, Chiel HJ, Quinn RD. Organismal Engineering: Towards a Robotic Taxonomic Key for Devices Using Organic Materials. Sci Robot 2017; 2:eaap9281. [PMID: 31360812 PMCID: PMC6663099 DOI: 10.1126/scirobotics.aap9281] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Can we create robots with the behavioral flexibility and robustness of animals? Engineers often use bio-inspiration to mimic animals. Recent advances in tissue engineering now allow the use of components from animals. By integrating organic and synthetic components, researchers are moving towards the development of engineered organisms whose structural framework, actuation, sensing, and control are partially or completely organic. This review discusses recent exciting work demonstrating how organic components can be used for all facets of robot development. Based on this analysis, we propose a Robotic Taxonomic Key to guide the field towards a unified lexicon for device description.
Collapse
Affiliation(s)
| | - Ozan Akkus
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Umut A. Gurkan
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Hillel J. Chiel
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Roger D. Quinn
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
57
|
Raman R, Bashir R. Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design. Adv Healthc Mater 2017; 6. [PMID: 28881469 DOI: 10.1002/adhm.201700496] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/26/2017] [Indexed: 01/15/2023]
Abstract
The discipline of biological design has a relatively short history, but has undergone very rapid expansion and development over that time. This Progress Report outlines the evolution of this field from biomimicry to biofabrication to biohybrid systems' design, showcasing how each subfield incorporates bioinspired dynamic adaptation into engineered systems. Ethical implications of biological design are discussed, with an emphasis on establishing responsible practices for engineering non-natural or hypernatural functional behaviors in biohybrid systems. This report concludes with recommendations for implementing biological design into educational curricula, ensuring effective and responsible practices for the next generation of engineers and scientists.
Collapse
Affiliation(s)
- Ritu Raman
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02142 USA
| | - Rashid Bashir
- Department of Bioengineering Carle Illinois College of Medicine Micro and Nanotechnology Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| |
Collapse
|
58
|
Cvetkovic C, Ferrall-Fairbanks MC, Ko E, Grant L, Kong H, Platt MO, Bashir R. Investigating the Life Expectancy and Proteolytic Degradation of Engineered Skeletal Muscle Biological Machines. Sci Rep 2017; 7:3775. [PMID: 28630410 PMCID: PMC5476614 DOI: 10.1038/s41598-017-03723-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
A combination of techniques from 3D printing, tissue engineering and biomaterials has yielded a new class of engineered biological robots that could be reliably controlled via applied signals. These machines are powered by a muscle strip composed of differentiated skeletal myofibers in a matrix of natural proteins, including fibrin, that provide physical support and cues to the cells as an engineered basement membrane. However, maintaining consistent results becomes challenging when sustaining a living system in vitro. Skeletal muscle must be preserved in a differentiated state and the system is subject to degradation by proteolytic enzymes that can break down its mechanical integrity. Here we examine the life expectancy, breakdown, and device failure of engineered skeletal muscle bio-bots as a result of degradation by three classes of proteases: plasmin, cathepsin L, and matrix metalloproteinases (MMP-2 and MMP-9). We also demonstrate the use of gelatin zymography to determine the effects of differentiation and inhibitor concentration on protease expression. With this knowledge, we are poised to design the next generation of complex biological machines with controllable function, specific life expectancy and greater consistency. These results could also prove useful for the study of disease-specific models, treatments of myopathies, and other tissue engineering applications.
Collapse
Affiliation(s)
- Caroline Cvetkovic
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Meghan C Ferrall-Fairbanks
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, Georgia, USA
| | - Eunkyung Ko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lauren Grant
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, Georgia, USA.
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
59
|
Raman R, Grant L, Seo Y, Cvetkovic C, Gapinske M, Palasz A, Dabbous H, Kong H, Pinera PP, Bashir R. Damage, Healing, and Remodeling in Optogenetic Skeletal Muscle Bioactuators. Adv Healthc Mater 2017; 6:10.1002/adhm.201700030. [PMID: 28489332 PMCID: PMC8257561 DOI: 10.1002/adhm.201700030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/09/2017] [Indexed: 12/31/2022]
Abstract
A deeper understanding of biological materials and the design principles that govern them, combined with the enabling technology of 3D printing, has given rise to the idea of "building with biology." Using these materials and tools, bio-hybrid robots or bio-bots, which adaptively sense and respond to their environment, can be manufactured. Skeletal muscle bioactuators are developed to power these bio-bots, and an approach is presented to make them dynamically responsive to changing environmental loads and robustly resilient to induced damage. Specifically, since the predominant cause of skeletal muscle loss of function is mechanical damage, the underlying mechanisms of damage are investigated in vitro, and an in vivo inspired healing strategy is developed to counteract this damage. The protocol that is developed yields complete recovery of healthy tissue functionality within two days of damage, setting the stage for a more robust, resilient, and adaptive bioactuator technology than previously demonstrated. Understanding and exploiting the adaptive response behaviors inherent within biological systems in this manner is a crucial step forward in designing bio-hybrid machines that are broadly applicable to grand engineering challenges.
Collapse
Affiliation(s)
- Ritu Raman
- Department of Mechanical Science and Engineering, Micro and Nano Technology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lauren Grant
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongbeom Seo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Caroline Cvetkovic
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael Gapinske
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alexandra Palasz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Howard Dabbous
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pablo Perez Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|