51
|
Chen C, Huang Z, Mo X, Song Y, Li X, Li X, Zhang M. The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:91. [PMID: 32430042 PMCID: PMC7236474 DOI: 10.1186/s13046-020-01594-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors globally. Angiogenesis is a key event maintaining tumor cell survival and aggressiveness. The expression of vascular endothelial growth factor A (VEGFA), one of the most significant tumor cell-secreted proangiogenic factors, is frequently upregulated in CRC. Methods The MTT assay was used to detect the viability of CRC cells. Transwell assays were performed to detect the invasion capacity of target cells. Relative protein levels were determined by immunoblotting. Pathological characteristics of tissues were detected by H&E staining and immunohistochemical (IHC) staining. A RIP assay was conducted to validate the predicted binding between genes. Results We observed that circ-001971 expression was dramatically increased in CRC tissue samples and cells. Circ-001971 knockdown suppressed the capacity of CRC cells to proliferate and invade and HUVEC tube formation in vitro, as well as tumor growth in mice bearing SW620 cell-derived tumors in vivo. The expression of circ-001971 and VEGFA was dramatically increased whereas the expression of miR-29c-3p was reduced in tumor tissue samples. Circ-001971 relieved miR-29c-3p-induced inhibition of VEGFA by acting as a ceRNA, thereby aggravating the proliferation, invasion and angiogenesis of CRC. Consistent with the above findings, the expression of VEGFA was increased, whereas the expression of miR-29c-3p was decreased in tumor tissue samples. miR-29c-3p had a negative correlation with both circ-001971 and VEGFA, while circ-001971 was positively correlated with VEGFA. Conclusions In conclusion, the circ-001971/miR-29c-3p axis modulated CRC cell proliferation, invasion, and angiogenesis by targeting VEGFA.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhiguo Huang
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yanmin Song
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiangmin Li
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaogang Li
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mu Zhang
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
52
|
Rizzuto I, Otter SJ, Bharathan R, Stewart A. Vascular endothelial growth factor (VEGF) inhibitors for the treatment of metastatic and recurrent cervical cancer. Hippokratia 2020. [DOI: 10.1002/14651858.cd013605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ivana Rizzuto
- Department of Gynaecological Oncology; Royal Brisbane and Women’s Hospital; Brisbane Australia
| | | | - Rasiah Bharathan
- Department of Gynaecological Oncology; University Hospitals of Leicester NHS Trust, Leicester General Hospital; Leicester UK
| | | |
Collapse
|
53
|
Xu Z, Xiang W, Chen W, Sun Y, Qin F, Wei J, Yuan L, Zheng L, Li S. Circ-IGF1R inhibits cell invasion and migration in non-small cell lung cancer. Thorac Cancer 2020; 11:875-887. [PMID: 32107851 PMCID: PMC7113055 DOI: 10.1111/1759-7714.13329] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA) is a novel molecular marker and target candidate that is closely associated with tumor invasion and migration. The mechanism of action of hsa_circ_0005035 (circ-IGF1R) in non-small cell lung cancer remains unclear. In this study, we aimed to study the mechanism of action of circ-IGF1R in lung cancer. METHODS We screened circ-IGF1R, one of the most notable differential expressions, from the Gene Expression Omnibus database, GSE104854, for further research. The expression level of circ-IGF1R was examined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in five different lung cancer cell lines and 50 pairs of lung cancer and adjacent tissues. Wound-healing and Transwell assays were used for verifying the biological function of circ-IGF1R. The effect of overexpressing circ-IGF1R on the transcriptome of whole lung cancer cells was explored in lung cancer cell lines using RNA-seq. RESULTS The expression level of circ-IGF1R was notably lower in lung cancer tissues and lung cancer cell lines than in the adjacent normal tissues and cells (P < 0.0001). In addition, the expression level of circ-IGF1R was associated with larger tumors (T2/T3/T4) and lymph node metastasis (N1/ N2/N3) (P < 0.05). The overexpression of circ-IGF1R significantly inhibited the invasion and migration of the lung cancer cells. The potential network of circ-IGF1R-miR-1270-VANGL2 was preliminarily determined, and the expression patterns of miR-1270 and VANGL2 were verified in lung cancer cell lines. CONCLUSION Circ-IGF1R may inhibit lung cancer invasion and migration through a potential network of circ-IGF1R-miR-1270-VANGL2.
Collapse
Affiliation(s)
- Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwei Xiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenjie Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanglu Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiangbo Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liping Zheng
- Department of Anesthesia Catheter Room, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
54
|
SETD3 acts as a prognostic marker in breast cancer patients and modulates the viability and invasion of breast cancer cells. Sci Rep 2020; 10:2262. [PMID: 32042016 PMCID: PMC7010743 DOI: 10.1038/s41598-020-59057-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
In several carcinomas, the SET Domain Containing 3, Actin Histidine Methyltransferase (SETD3) is associated with oncogenesis. However, there is little knowledge about the role of SETD3 in the progression and prognosis of breast cancer. In this study, we first analyzed the prognostic value of SETD3 in breast cancer patients using the database of the public Kaplan-Meier plotter. Moreover, in vitro assays were performed to assess the role of SETD3 in the viability and capacity of invasion of human breast cancer cell lines. We observed that the high expression of SETD3 was associated with better relapse-free survival (RFS) of the whole collective of 3,951 patients, of Estrogen Receptor-positive, and of Luminal A-type breast cancer patients. However, in patients lacking expression of estrogen-, progesterone- and HER2-receptor, and those affected by a p53-mutation, SETD3 was associated with poor RFS. In vitro analysis showed that SETD3 siRNA depletion affects the viability of triple-negative cells as well as the cytoskeletal function and capacity of invasion of highly invasive MDA-MB-231 cells. Interestingly, SETD3 regulates the expression of other genes associated with cancer such as β-actin, FOXM1, FBXW7, Fascin, eNOS, and MMP-2. Our study suggests that SETD3 expression can act as a subtype-specific biomarker for breast cancer progression and prognosis.
Collapse
|
55
|
Bai C, Sun Y, Pan X, Yang J, Li X, Wu A, Qin D, Cao S, Zou W, Wu J. Antitumor Effects of Trimethylellagic Acid Isolated From Sanguisorba officinalis L. on Colorectal Cancer via Angiogenesis Inhibition and Apoptosis Induction. Front Pharmacol 2020; 10:1646. [PMID: 32047442 PMCID: PMC6997556 DOI: 10.3389/fphar.2019.01646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Previous studies have demonstrated that tannin could inhibit the proliferation and angiogenesis of cancer cells. However, the mechanism(s) associated with its antitumor effect remains unclear. Here, we investigated the effects of 3,3',4'-trimethylellagic acid (TMEA), a tannin compound isolated from Sanguisorba officinalis L., on the proliferation, angiogenesis, and apoptosis in cancer cells, as well as the underlying mechanism(s) related to its antitumor activity. TMEA was isolated from Sanguisorba officinalis L. by silica gel column chromatography. Molecular docking was carried out to assess active pocket binding between TMEA and vascular endothelial growth factor receptor 2 (VEGFR2). The antiangiogenic effect of TMEA on the migration and tube formation was detected in HUVECs by wound healing and tube formation assays, respectively. The antitumor effects of TMEA on the cell proliferation were determined in HepG2, A549, and SW620 cells by MTS assay in vitro and on the tumor growth of SW620 xenografts bearing in nude mice in vivo. The mRNA expression of Bcl-2, Bax, caspase-3, VEGF, PI3K, and mTOR were measured by qRT-PCR and protein expression of Bcl-2, Bax, caspase-3, VEGF, PI3K, and mTOR by Western blotting, and the protein expression of Bcl-2, Bax, caspase-3 and CD31 were detected by immunohistochemical analysis in vivo, respectively. The results showed that TMEA combined with VEGFR2 in the functional pockets of Asn223A, Gly922A, and Leu840A and inhibited the proliferation, migration, tube formation, and expression of VEGF and its downstream signaling mediators in HUVECs. TMEA also significantly inhibited the proliferation of HepG2, A549, and SW620 cancer cells in vitro, and suppressed the growth of SW620 tumors in vivo. Moreover, TMEA upregulated the expression of proapoptotic factors Bax and caspase-3 and downregulated the expression of antiapoptotic factors CD31 and Bcl-2 in cancer cells and/or tumor tissues. The data indicate that TMEA executes its anticancer activity by inducing apoptosis and inhibiting angiogenesis in cancer cells in vitro and tumor growth in vivo. The underlying anticancer mechanism is associated with the apoptotic and VEGF/PI3K/AKT/mTOR pathways.
Collapse
Affiliation(s)
- Chongfei Bai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueshan Sun
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xianchao Pan
- Department of Medicine, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, Key Laboratory of Medical Electrophysiology, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Xiaoxuan Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, Key Laboratory of Medical Electrophysiology, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Dalian Qin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, Key Laboratory of Medical Electrophysiology, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjun Zou
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, Key Laboratory of Medical Electrophysiology, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
56
|
Zhou R, Sun H, Zheng S, Zhang J, Zeng D, Wu J, Huang Z, Rong X, Bin J, Liao Y, Shi M, Liao W. A stroma-related lncRNA panel for predicting recurrence and adjuvant chemotherapy benefit in patients with early-stage colon cancer. J Cell Mol Med 2020; 24:3229-3241. [PMID: 31989761 PMCID: PMC7077592 DOI: 10.1111/jcmm.14999] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022] Open
Abstract
The heterogeneity in prognoses and chemotherapeutic responses of colon cancer patients with similar clinical features emphasized the necessity for new biomarkers that help to improve the survival prediction and tailor therapies more rationally and precisely. In the present study, we established a stroma‐related lncRNA signature (SLS) based on 52 lncRNAs to comprehensively predict clinical outcome. The SLS model could not only distinguish patients with different recurrence and mortality risks through univariate analysis, but also served as an independent factor for relapse‐free and overall survival. Compared with the conventionally used TNM stage system, the SLS model clearly possessed higher predictive accuracy. Moreover, the SLS model also effectively screened chemotherapy‐responsive patients, as only patients in the low‐SLS group could benefit from adjuvant chemotherapy. The following cell infiltration and competing endogenous RNA (ceRNA) network functional analyses further confirmed the association between the SLS model and stromal activation‐related biological processes. Additionally, this study also identified three phenotypically distinct colon cancer subtypes that varied in clinical outcome and chemotherapy benefits. In conclusion, our SLS model may be a significant determinant of survival and chemotherapeutic decision‐making in colon cancer and may have a strong clinical transformation value.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siting Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingwen Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhua Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
57
|
Meng XZ, Yan B. Prognostic implications of pre-operative platelet count to maximum tumor diameter ratio for colorectal cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:26-32. [DOI: 10.11569/wcjd.v28.i1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Xian-Ze Meng
- Department of Traditional Chinese Medicine, No. 971 Hospital of PLA, Qingdao 266071, Shandong Province, China
| | - Bing Yan
- Department of Oncology, Hainan Hospital of PLA General Hospital, Sanya 572000, Hainan Province, China
| |
Collapse
|
58
|
Hu WH, Chan GKL, Duan R, Wang HY, Kong XP, Dong TTX, Tsim KWK. Synergy of Ginkgetin and Resveratrol in Suppressing VEGF-Induced Angiogenesis: A Therapy in Treating Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11121828. [PMID: 31757048 PMCID: PMC6966653 DOI: 10.3390/cancers11121828] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Ginkgetin, a biflavone from Ginkgo biloba leaf, and resveratrol, a polyphenol found in grape and wine, are two phytochemicals being identified for its binding to vascular endothelial growth factor (VEGF): the binding, therefore, resulted in the alteration of the physiological roles of VEGF-mediated angiogenesis. The bindings of ginkgetin and resveratrol were proposed on different sites of VEGF, but both of them suppressed the angiogenic properties of VEGF. The suppressive activities of ginkgetin and resveratrol in VEGF-mediated angiogenesis were supported by several lines of evidence including (i) inhibiting the formation of sub-intestinal vessel in zebrafish embryos and microvascular sprouting in rat aortic ring; and (ii) suppressing the phosphorylations of VEGFR2, Akt, eNOS, and Erk as well as expressions of matrix metalloproteinases (MMPs), MMP-2, and MMP-9 in human umbilical vein endothelial cells (HUVECs). Here, we showed the synergy of ginkgetin and resveratrol in suppressing the VEGF-induced endothelial cell proliferation, migration, invasion, and tube formation. The synergy of ginkgetin and resveratrol was further illustrated in HT-29 colon cancer xenograft nude mice. Ginkgetin and resveratrol, when applied together, exerted a synergistic anti-tumor effect of 5-fluorouracil with decreasing microvessel density of tumors. In parallel, the combination of ginkgetin and resveratrol synergistically relieved the 5-fluorouracil-induced inflammatory response by suppressing expressions of COX-2 and inflammatory cytokines. Thus, the anti-angiogenic roles of ginkgetin and/or resveratrol could provide effective therapeutic strategy in cancer, similar to that of Avastin, in suppressing the VEGF-mediated angiogenesis during cancer development.
Collapse
Affiliation(s)
- Wei-Hui Hu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Gallant Kar-Lun Chan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Huai-You Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Xiang-Peng Kong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2358-7332; Fax: +852-2358-1552
| |
Collapse
|
59
|
Yang Y, Tang J, Zhang M, Gu Z, Song H, Yang Y, Yu C. Responsively Aggregatable Sub-6 nm Nanochelators Induce Simultaneous Antiangiogenesis and Vascular Obstruction for Enhanced Tumor Vasculature Targeted Therapy. NANO LETTERS 2019; 19:7750-7759. [PMID: 31657578 DOI: 10.1021/acs.nanolett.9b02691] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Inhibiting the formation of new tumor blood vessels (so-called antiangiogenesis) and obstructing the established ones are two primary strategies in tumor vasculature targeted therapy. However, the therapeutic outcome of conventional methodologies relying on only one mechanism is rather limited. Herein, the first example of ultrasmall responsively aggregatable nanochelators that can intrinsically fulfill both antivasculature functions as well as high renal clearable efficiency is introduced. The nanochelators with sub-6 nm sizes exhibit not only systemic copper depletion activity for tumor antiangiogenesis but also, more surprisingly, the capability to transform from a "dispersed" state to an "aggregated" state to form large secondary particles in response to tumor microenvironment with elevated copper and phosphate levels for blood vessel obstruction. Compared to a benchmark antiangiogenic agent that can only inhibit the formation of tumor blood vessels, the nanochelators with unprecedented synergistic functions demonstrate significantly enhanced tumor inhibition activity in both breast cancer and colon cancer tumor models. Moreover, these ultrasmall nanochelators are noncytotoxic and renal clearable, ensuring superior biocompatibility. It is envisaged that the design of nanomaterials with ground-breaking properties and the synergistic antivasculature functions would offer a substantial conceptual advance for tumor vasculature targeted therapy and may provide vast opportunities for developing advanced nanomedicines.
Collapse
Affiliation(s)
- Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Min Zhang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , People's Republic of China
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Yang Yang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , People's Republic of China
| |
Collapse
|
60
|
Reddy VG, Reddy TS, Jadala C, Reddy MS, Sultana F, Akunuri R, Bhargava SK, Wlodkowic D, Srihari P, Kamal A. Pyrazolo-benzothiazole hybrids: Synthesis, anticancer properties and evaluation of antiangiogenic activity using in vitro VEGFR-2 kinase and in vivo transgenic zebrafish model. Eur J Med Chem 2019; 182:111609. [DOI: 10.1016/j.ejmech.2019.111609] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022]
|
61
|
Jászai J, Schmidt MHH. Trends and Challenges in Tumor Anti-Angiogenic Therapies. Cells 2019; 8:cells8091102. [PMID: 31540455 PMCID: PMC6770676 DOI: 10.3390/cells8091102] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 01/18/2023] Open
Abstract
Excessive abnormal angiogenesis plays a pivotal role in tumor progression and is a hallmark of solid tumors. This process is driven by an imbalance between pro- and anti-angiogenic factors dominated by the tissue hypoxia-triggered overproduction of vascular endothelial growth factor (VEGF). VEGF-mediated signaling has quickly become one of the most promising anti-angiogenic therapeutic targets in oncology. Nevertheless, the clinical efficacy of this approach is severely limited in certain tumor types or shows only transient efficacy in patients. Acquired or intrinsic therapy resistance associated with anti-VEGF monotherapeutic approaches indicates the necessity of a paradigm change when targeting neoangiogenesis in solid tumors. In this context, the elaboration of the conceptual framework of “vessel normalization” might be a promising approach to increase the efficacy of anti-angiogenic therapies and the survival rates of patients. Indeed, the promotion of vessel maturation instead of regressing tumors by vaso-obliteration could result in reduced tumor hypoxia and improved drug delivery. The implementation of such anti-angiogenic strategies, however, faces several pitfalls due to the potential involvement of multiple pro-angiogenic factors and modulatory effects of the innate and adaptive immune system. Thus, effective treatments bypassing relapses associated with anti-VEGF monotherapies or breaking the intrinsic therapy resistance of solid tumors might use combination therapies or agents with a multimodal mode of action. This review enumerates some of the current approaches and possible future directions of treating solid tumors by targeting neovascularization.
Collapse
Affiliation(s)
- József Jászai
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01307 Dresden, Germany.
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany.
- German Cancer Research Center (DKFZ), 61920 Heidelberg, Germany.
| |
Collapse
|
62
|
Xue YJ, Chen SN, Chen WG, Wu GQ, Liao YF, Xu JB, Tang H, Yang SH, He SY, Luo YF, Wu ZH, Huang HW. Cripto-1 expression in patients with clear cell renal cell carcinoma is associated with poor disease outcome. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:378. [PMID: 31455359 PMCID: PMC6712621 DOI: 10.1186/s13046-019-1386-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/18/2019] [Indexed: 12/23/2022]
Abstract
Background Cripto-1 (CR-1) has been reported to be involved in the development of several human cancers. The potential role of CR-1 in clear cell renal cell carcinoma (ccRCC) is still not clear. Methods CR-1 expression was evaluated in ccRCC tissues by Real-time quantitative PCR, Western blot and immunohistochemistry. Serum levels of CR-1 were tested by enzyme-linked immunosorbent assay (ELISA). The clinical significance of CR-1 was analyzed. The effects of CR-1 on cell proliferation, migration, invasion and angiogenesis were investigated in ccRCC cell lines in vitro and in vivo, and markers of the epithelial -mesenchymal transition (EMT) were analyzed. The impact of CR-1 on Wnt/β-catenin signaling pathway was also evaluated in vitro and in vivo. Results CR-1 expression was elevated in ccRCC tumor tissues and serum samples. CR-1 expression was correlated with aggressive tumor phenotype and poor survival. Ectopic expression of CR-1 significantly promoted cell proliferation, migration, invasion and angiogenesis whereas knockdown of CR-1 inhibited these activities both in vitro and in vivo. Moreover, we found that CR-1 induced EMT and activated Wnt/β-catenin signaling pathway both in vitro and in vivo. Conclusions These results suggest that CR-1 is likely to play important roles in ccRCC development and progression, and that CR-1 is a prognostic biomarker and a promising therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Yi-Jun Xue
- Department of Urology, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, No.236, Yuanzhu Road, Zhanjiang, 524045, Guangdong Province, People's Republic of China.
| | - Song-Ning Chen
- Department of Urology, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, No.236, Yuanzhu Road, Zhanjiang, 524045, Guangdong Province, People's Republic of China
| | - Wei-Guang Chen
- Department of Urology, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, No.236, Yuanzhu Road, Zhanjiang, 524045, Guangdong Province, People's Republic of China
| | - Geng-Qing Wu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Yun-Feng Liao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Jian-Bin Xu
- Department of Urology, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, No.236, Yuanzhu Road, Zhanjiang, 524045, Guangdong Province, People's Republic of China
| | - Hao Tang
- Department of Urology, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, No.236, Yuanzhu Road, Zhanjiang, 524045, Guangdong Province, People's Republic of China
| | - Shui-Hua Yang
- Department of Urology, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, No.236, Yuanzhu Road, Zhanjiang, 524045, Guangdong Province, People's Republic of China
| | - Shui-Yong He
- Department of Urology, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, No.236, Yuanzhu Road, Zhanjiang, 524045, Guangdong Province, People's Republic of China
| | - Yun-Fei Luo
- Department of Urology, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, No.236, Yuanzhu Road, Zhanjiang, 524045, Guangdong Province, People's Republic of China
| | - Zhi-Hui Wu
- Department of Urology, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, No.236, Yuanzhu Road, Zhanjiang, 524045, Guangdong Province, People's Republic of China
| | - Hai-Wen Huang
- Department of Urology, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, No.236, Yuanzhu Road, Zhanjiang, 524045, Guangdong Province, People's Republic of China
| |
Collapse
|
63
|
De Rosa L, Di Stasi R, Longhitano L, D'Andrea LD. Labeling of VEGFR1D2 through oxime ligation. Bioorg Chem 2019; 91:103160. [PMID: 31398600 DOI: 10.1016/j.bioorg.2019.103160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
We reported an useful protocol for the labeling of the second domain of the Vascular Endothelial Growth Factor Receptor 1 (VEGFR1D2), a small protein ligand able to bind VEGF, the main regulator of angiogenesis. We developed a bioconjugation strategy based on the use of oxime-ligation reaction conjugating an aldehyde derivative of the VEGFR1D2 to a molecular probe harboring an alkoxyamine functional group. We applied the synthetic protocol to prepare a biotinylated conjugate of VEGFR1D2 and we demonstrate that the bioconjugate retains its ability to specifically bind its natural ligand, VEGF, with high affinity. The biotinylated VEGFR1D2 could be useful to detect and quantify VEGF for diagnostic purposes as well as a tool for the screening of new molecules targeting VEGFRs for therapeutic applications. The labeling protocol is versatile and can be extended to different molecular probes, such as fluorophores, chelators or multimeric scaffolds, affording a biomedical platform for VEGF targeting.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Laura Longhitano
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca Domenico D'Andrea
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy; Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
64
|
Tsai H, Miao Z, Chen Y, Huang C, Yeh Y, Yang I, Wang J. miR-148a inhibits early relapsed colorectal cancers and the secretion of VEGF by indirectly targeting HIF-1α under non-hypoxia/hypoxia conditions. J Cell Mol Med 2019; 23:3572-3582. [PMID: 30834693 PMCID: PMC6484316 DOI: 10.1111/jcmm.14257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is correlated with angiogenesis and early relapse of colorectal cancer (CRC). This study investigated the role of miR-148a in the regulation of VEGF/angiogenesis and early relapse of CRC. We established a stable clone with miR-148a expression in HCT116 and HT29 cell lines and created a hypoxic condition by using CoCl2 to determine the underlying mechanism of miR-148a. The effects of miR-148a on the phosphoryl-ERK (pERK)/hypoxia-inducible factor-1α (HIF-1α)/VEGF pathway were evaluated through Western blotting and the inhibitory effect of miR-148a on angiogenesis was demonstrated through a tube formation assay. Sixty-three CRC tissues (28 early relapse and 35 non-early relapse) were analysed to assess the relationship between miR-148a and HIF-1α/VEGF. The protein expression of pERK/HIF-1α/VEGF in HCT116 and HT29 cells was significantly decreased by miR-148a (all P < 0.05). The protein expression of VEGF/HIF-1α was strongly inversely associated with the expression of miR-148a in the 63 CRC tissue samples (all P < 0.05). Tube formation assay demonstrated that miR-148a significantly obliterated angiogenesis. miR-148a suppresses VEGF through down-regulation of the pERK/HIF-1α/VEGF pathway and might lead to the inhibition of angiogenesis; miR-148a down-regulation increased the early relapse rate of CRC. This demonstrates that miR-148a is a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Hsiang‐Lin Tsai
- Division of Colorectal Surgery, Department of SurgeryKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Department of Surgery, Faculty of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Zhi‐Feng Miao
- Division of Colorectal Surgery, Department of SurgeryKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Yi‐Ting Chen
- Department of PathologyKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Department of Pathology, Faculty of MedicineCollege of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Ching‐Wen Huang
- Division of Colorectal Surgery, Department of SurgeryKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Department of Surgery, Faculty of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Yung‐Sung Yeh
- Division of Colorectal Surgery, Department of SurgeryKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
- Division of Trauma and Surgical Critical Care, Department of SurgeryKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - I‐Ping Yang
- Department of Nursing, Shu‐Zen College of Medicine and ManagementKaohsiungTaiwan
| | - Jaw‐Yuan Wang
- Division of Colorectal Surgery, Department of SurgeryKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Department of Surgery, Faculty of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
65
|
Pang H, Dang X, Ren Y, Zhuang D, Qiu T, Chen H, Zhang J, Ma N, Li G, Zhang J, Wu J, Feng X. 3D-ASL perfusion correlates with VEGF expression and overall survival in glioma patients: Comparison of quantitative perfusion and pathology on accurate spatial location-matched basis. J Magn Reson Imaging 2019; 50:209-220. [PMID: 30652410 DOI: 10.1002/jmri.26562] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND There is a need for an imaging-based tool for measuring vascular endothelial growth factor (VEGF) expression and overall survival (OS) in patients with glioma. PURPOSE To assess the correlation between cerebral blood flow (CBF), measured by 3D pseudo-continuous arterial spin-labeling (3D-ASL), and VEGF expression in gliomas on the basis of coregistered localized biopsy, and investigate whether CBF correlated with survival month (SM) in glioma patients. STUDY TYPE Prospective cohort. SUBJECTS Thirty-seven patients with gliomas from whom 63 biopsy specimens were obtained. SEQUENCE 3D-ASL acquired with a 3.0T MR unit. ASSESSMENT Biopsy specimens were grouped as high-grade (HGG) or low-grade glioma (LGG). CBF measurements were spatially matched with VEGF expression by coregistered localized biopsies, and the CBF value was correlated with quantitative VEGF expression for each specimen. Patients' survival information was derived and connected with CBF. STATISTICAL TESTS Patients' OS was analyzed by Kaplan-Meier and Cox-regression methods. VEGF expression and CBF were compared in both LGG and HGG. The Spearman rank correlation was calculated for CBF and VEGF expression, SM. Significance level, P < 0.05. RESULTS CBF-derived 3D-ASL positively correlated significantly with VEGF expression in both LGG (31 specimens) and HGG (32 specimens), r = 0.604 (P < 0.001) and r = 0.665 (P < 0.001), respectively. LGG and HGG together gave a correlation coefficient r = 0.728 (P < 0.001). Median survival for LGG and HGG patients was 34.19 and 17.17 months, respectively (P = 0.037); CBF value negatively correlated significantly with SM with r = -0.714 (P < 0.001) regardless of glioma grade. CBF was an independent risk factor for OS with HR = 1.027 (P = 0.044), 1.028 (P = 0.010) for univariate/multivariate regression analysis. DATA CONCLUSION CBF determined by 3D-ASL correlates with VEGF expression in glioma and is an independent risk factor for OS in these patients. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:209-220.
Collapse
Affiliation(s)
- Haopeng Pang
- Department of Interventional Radiology, Affiliated Ruijin Hospital to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Xuefei Dang
- Department of Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Yan Ren
- Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Tianming Qiu
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Hong Chen
- Department of Pathology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Jie Zhang
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Ningning Ma
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, P.R. China
| | - Gang Li
- Department of Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Junhai Zhang
- Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Jinsong Wu
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Xiaoyuan Feng
- Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| |
Collapse
|
66
|
Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb) 2019; 55:6964-6996. [DOI: 10.1039/c9cc01741k] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging properties of noble metal nanoparticles are attracting huge interest from the translational scientific community. In this feature article, we highlight recent advances in the adaptation of noble metal nanomaterials and their biomedical applications in therapeutics, diagnostics and sensing.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
| | - Geyunjian H. Zhu
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| | - Debapratim Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Erdogan Ozgur
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | - Lokman Uzun
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | | | - Hirak K. Patra
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
- Department of Chemical Engineering and Biotechnology
| |
Collapse
|
67
|
Almagthali AG, Alkhaldi EH, Alzahrani AS, Alghamdi AK, Alghamdi WY, Kabel AM. Dipeptidyl peptidase-4 inhibitors: Anti-diabetic drugs with potential effects on cancer. Diabetes Metab Syndr 2019; 13:36-39. [PMID: 30641726 DOI: 10.1016/j.dsx.2018.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/09/2018] [Indexed: 01/08/2023]
Abstract
Dipeptidyl peptidase (DPP- 4) inhibitors belong to the oral antidiabetic drugs. They are used for the treatment of Type 2 Diabetes mellitus. DPP-4 is an enzyme which puts down the action of hormone, incretin. Incretins belong to the group of hypoglycaemic gastrointestinal hormones. Some studies show that DPP-4 inhibitors causes cancer and some study show that they have anticancer property. This review sheds light on the role of the different types of DPP-4 inhibitors in cancer therapy.
Collapse
Affiliation(s)
| | - Eman H Alkhaldi
- Pharm D, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | | | | | | | - Ahmed M Kabel
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
68
|
Moradi Sarabi M, Zahedi SA, Pajouhi N, Khosravi P, Bagheri S, Ahmadvand H, Shahryarhesami S. The effects of dietary polyunsaturated fatty acids on miR-126 promoter DNA methylation status and VEGF protein expression in the colorectal cancer cells. GENES AND NUTRITION 2018; 13:32. [PMID: 30598703 PMCID: PMC6299631 DOI: 10.1186/s12263-018-0623-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Background There is increasing evidence indicating an aberrant expression of miRNAs in colorectal cancer (CRC) development. Growing evidence has suggested that polyunsaturated fatty acids (PUFAs) could modulate the remodeling of the epigenome. No study has yet been published to examine the direct effect of PUFA on the promoter methylation of miRNAs. This study aimed to examine the potential clinical application of PUFA on the promoter DNA methylation of miR-126 and its angiogenic target molecule (VEGF) in the CRC cells. Methods We investigated the direct effect of 100 μM EPA, DHA, and LA for 24 h on promoter methylation status of miR-126 in a panel of five CRC cell lines (HCT116, HT29/219, Caco2, SW742, and LS180) by methylation-specific PCR (MSP). We also quantified the miR-126 and VEGF transcript expression levels in five CRC cell lines affected by PUFA by real-time PCR. Moreover, we analyzed the protein expression level of VEGF, as a target of miR-126, by western blotting assay. Results MSP analysis showed extensive DNA methylation of the miR-126 promoter in all five CRC cell lines, and among all three PUFAs, only DHA completely demethylated the promoter of miR-126 in HCT116 and Caco2 cell lines. We found that only DHA significantly induces the expression level of miR-126 in HCT116 and Caco2 cell lines, respectively, by 20.1-fold and 1.68-fold (p < 0.05). Our finding indicates that the downregulation of VEGF protein level is also effectively observed only in DHA-treated HCT116 and Caco2 cells compared to control cells (p < 0.05). Conclusions Our results provide evidence that n-3 PUFAs are able to modulate cellular miR-126 DNA methylation and inhibit VEGF expression level in a cell-type specific manner in colorectal cancer cells. DHA always showed higher efficacy than EPA and LA in our experiment. Overall, our results suggest a potential clinical application of n-3 PUFAs as anti-angiogenic agents in CRC therapy.
Collapse
Affiliation(s)
- Mostafa Moradi Sarabi
- 1Department of Biochemistry and Genetics, Lorestan University of Medical Sciences, School of Medicine, Khorramabad, 381251698 Iran.,3Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyed Abdollah Zahedi
- 1Department of Biochemistry and Genetics, Lorestan University of Medical Sciences, School of Medicine, Khorramabad, 381251698 Iran
| | - Naser Pajouhi
- 2Department of Physiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,3Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Peyman Khosravi
- 1Department of Biochemistry and Genetics, Lorestan University of Medical Sciences, School of Medicine, Khorramabad, 381251698 Iran.,4Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shahrokh Bagheri
- 1Department of Biochemistry and Genetics, Lorestan University of Medical Sciences, School of Medicine, Khorramabad, 381251698 Iran
| | - Hassan Ahmadvand
- 1Department of Biochemistry and Genetics, Lorestan University of Medical Sciences, School of Medicine, Khorramabad, 381251698 Iran
| | | |
Collapse
|
69
|
De Rosa L, Di Stasi R, D'Andrea LD. Pro-angiogenic peptides in biomedicine. Arch Biochem Biophys 2018; 660:72-86. [DOI: 10.1016/j.abb.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022]
|
70
|
Li Z, Wang S, Huo X, Yu H, Lu J, Zhang S, Li X, Cao Q, Li C, Guo M, Lv J, Du X, Chen Z. Cystatin C Expression is Promoted by VEGFA Blocking, With Inhibitory Effects on Endothelial Cell Angiogenic Functions Including Proliferation, Migration, and Chorioallantoic Membrane Angiogenesis. J Am Heart Assoc 2018; 7:e009167. [PMID: 30571388 PMCID: PMC6404187 DOI: 10.1161/jaha.118.009167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023]
Abstract
Background Vascular development, including vasculogenesis and angiogenesis, is involved in many diseases. Cystatin C ( CST 3) is a commonly used marker of renal dysfunction, and we have previously reported that its expression level is associated with variations in the gerbil circle of Willis. Thus, we hypothesized that CST 3 may affect endothelial function and angiogenic capacity. In the current study, we sought to determine the influence of CST 3 on endothelial function and explore its potential regulatory pathway. Methods and Results We analyzed CST 3 and vascular endothelial growth factor A ( VEGFA) levels in different developmental stages of gerbils using ELISA s and immunofluorescence (to examine the relationship between CST 3 and VEGFA . We used a real-time cell analyzer, cytotoxicity assays, and the chorioallantoic membrane assay to investigate the function of CST 3 in endothelial cells and the chorioallantoic membrane. Additionally, we used Western blotting to explore the downstream targets of CST 3. The expression levels of both CST 3 and VEGFA were at their highest on day 10 of the embryonic stage. CST 3 inhibited endothelial cell proliferation, migration, tube formation, and permeability, as well as vascular development in the chorioallantoic membrane. Blocking of VEGFA dose-dependently increased CST 3 expression in arterial and venous endothelial cells. Furthermore, overexpression and knockdown of CST 3 significantly affected the protein levels of p53 and CAPN10 (calpain 10), suggesting that CST 3 might play a role in vascular development through these proteins. Conclusions CST 3 may be associated with vascular development and angiogenesis, and this effect could be promoted by blocking VEGFA .
Collapse
Affiliation(s)
- Zhenkun Li
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Shiyuan Wang
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Xueyun Huo
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Hefen Yu
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Jing Lu
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Shuangyue Zhang
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Xiaohong Li
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Qi Cao
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Changlong Li
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Meng Guo
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Jianyi Lv
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Xiaoyan Du
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| | - Zhenwen Chen
- School of Basic Medical SciencesCapital Medical UniversityBeijing Key Laboratory of Cancer Invasion & Metastasis ResearchBeijingChina
| |
Collapse
|
71
|
Leblond A, Pezet S, Trouvin AP, Elhai M, Gonzalez V, Allanore Y, Avouac J. Linking systemic angiogenic markers to synovial vascularization in rheumatoid arthritis. PLoS One 2018; 13:e0203607. [PMID: 30188942 PMCID: PMC6126858 DOI: 10.1371/journal.pone.0203607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
Background Neoangiogenesis is a crucial event to promote the development of the hyperplasic proliferative pathologic synovium in Rheumatoid arthritis (RA). Ultrasound (US) is sensitive for detection of power Doppler (PD) vascularization. Objective To explore the associations between a set of complementary circulating angiogenic markers and a comprehensive US assessment in patients with RA. Patients and methods Serum levels of eight angiogenic markers were measured by quantitative ELISAs in a total of 125 patients with RA, who were all systematically assessed in parallel by PDUS, performed on 32 joints. Results Serum levels of soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and Tie-2 were more likely to be increased in patients with synovial hyperemia detected on at least one joint (Power Doppler grade ≥1). sVCAM-1, Tie-2 and Angiostatin concentrations gradually increased together with the grade of the semiquantitative PDUS scale and concentrations of these three markers were markedly increased in patients with moderate to marked hyperemia (Power Doppler grade 2 and 3). Levels of sVCAM-1, Tie-2, and Angiostatin correlated with a global arthritis sum score, defined by the sum of the semiquantitative PDUS scores for all joints examined. Levels of Tie-2 and Placenta Growth Factor (PlGF) were associated with PDUS features indicating residual disease activity. Conclusion Our results support the relevance of measuring serum levels of vascular markers to evaluate the intensity and extent of synovial vascularization. Angiogenic markers, and particularly Tie-2, could be a valuable surrogate of active synovitis and their place in relation to PDUS in clinical practice deserve further investigation.
Collapse
Affiliation(s)
- Agathe Leblond
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Sonia Pezet
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Anne Priscille Trouvin
- Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
| | - Muriel Elhai
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
| | - Virginie Gonzalez
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
| | - Jérôme Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
- * E-mail:
| |
Collapse
|
72
|
Alnimer Y, Hindi Z, Katato K. The Effect of Perioperative Bevacizumab on Disease-Free and Overall Survival in Locally Advanced HER-2 Negative Breast Cancer: A Meta-Analysis. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2018; 12:1178223418792250. [PMID: 30090017 PMCID: PMC6077892 DOI: 10.1177/1178223418792250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022]
Abstract
Introduction Multiple trials demonstrated that adding Bevacizumab to the standard neoadjuvant chemotherapy in HER-2 negative breast cancer increases pathological complete response. We conducted this meta-analysis to evaluate that effect on survival. Methods We performed a systematic search for randomized trials measuring the effect of adding either neoadjuvant or adjuvant Bevacizumab to the standard chemotherapy on disease-free and overall survival in breast cancer surgical candidates. The Mantel-Haenszel method and random effect model were used to analyze the data. A total of 7 randomized controlled trials were included in the analysis with a mean follow-up of 45 months. Results No statistically significant difference in overall survival was found after adding Bevacizumab to the standard chemotherapy in the overall study population, HR=0.9, 95% CI (90.72-1.13), estrogen/ progesterone positive subgroup, HR=0.99, 95% CI (0.72-1.35), or in triple negative breast cancer, HR=0.88, 95% CI (0.77-1.01). However, there was a small but significant improvement in disease-free survival in triple negative breast cancer with a HR of 0.88, 95% CI (0.78-0.98), but not in estrogen/ progesterone receptor positive tumors, HR=1.01, 95% CI (0.81-1.26). Conclusions The addition of Bevacizumab along with the standard chemotherapy would not improve overall survival in breast cancer surgical candidates, however, due to a small but significant improvement on disease-free survival in triple negative breast cancer, that would not eliminate the possibility of a certain subgroup of the latter who might benefit from adding Bevacizumab.
Collapse
Affiliation(s)
- Yanal Alnimer
- Internal Medicine Department, Hurley Medical Center, Michigan State University, East Lansing, MI, USA
| | - Zakaria Hindi
- Internal Medicine Department, Texas Tech University Health Sciences Center (Permian Basin), Odessa, TX, USA
| | - Khalil Katato
- Hurley Medical Center, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
73
|
Das M, Padda SK, Frymoyer A, Molina J, Adjei A, Lensing JL, Miles D, Sikic BI, Wakelee HA. A safety, tolerability, and pharmacokinetic analysis of two phase I studies of multitargeted small molecule tyrosine kinase inhibitor XL647 with an intermittent and continuous dosing schedule in patients with advanced solid malignancies. Cancer Chemother Pharmacol 2018; 82:541-550. [DOI: 10.1007/s00280-018-3646-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
|
74
|
Vassilakopoulou M, Harada K, Ajani JA. Ramucirumab for the treatment of gastric adenocarcinoma. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1500689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Maria Vassilakopoulou
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematology and Medical Oncology, Group Hospitalier Sud Ile de France, Melun, France
| | - Kazuto Harada
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
75
|
VEGFR Recognition Interface of a Proangiogenic VEGF-Mimetic Peptide Determined In Vitro and in the Presence of Endothelial Cells by NMR Spectroscopy. Chemistry 2018; 24:11461-11466. [DOI: 10.1002/chem.201802117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/18/2023]
|
76
|
Chellappan DK, Leng KH, Jia LJ, Aziz NABA, Hoong WC, Qian YC, Ling FY, Wei GS, Ying T, Chellian J, Gupta G, Dua K. The role of bevacizumab on tumour angiogenesis and in the management of gynaecological cancers: A review. Biomed Pharmacother 2018; 102:1127-1144. [DOI: 10.1016/j.biopha.2018.03.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023] Open
|
77
|
Thomas MB, Garrett-Mayer E, Anis M, Anderton K, Bentz T, Edwards A, Brisendine A, Weiss G, Siegel AB, Bendell J, Baron A, Duddalwar V, El-Khoueiry A. A Randomized Phase II Open-Label Multi-Institution Study of the Combination of Bevacizumab and Erlotinib Compared to Sorafenib in the First-Line Treatment of Patients with Advanced Hepatocellular Carcinoma. Oncology 2018; 94:329-339. [PMID: 29719302 PMCID: PMC7725004 DOI: 10.1159/000485384] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To investigate the clinical efficacy and tolerability of the combination of bevacizumab (B) and erlotinib (E) compared to sorafenib (S) as first-line treatment for patients with advanced hepatocellular carcinoma (HCC). METHODS A total of 90 patients with advanced HCC, Child-Pugh class A-B7 cirrhosis, and no prior systemic therapy were randomly assigned (1: 1) to receive either 10 mg/kg B intravenously every 14 days and 150 mg E orally daily (n = 47) (B+E) or 400 mg S orally twice daily (n = 43). The primary endpoint was overall survival (OS). Secondary endpoints included event-free survival (EFS), objective response rate based on Response Evaluation Criteria in Solid Tumors (RECIST 1.1), time to progression, and safety and tolerability. RESULTS The median OS was 8.55 months (95% CI: 7.00-13.9) for patients treated with B+E and 8.55 months (95% CI: 5.69-12.2) for patients receiving S. The hazard ratio (HR) for OS was 0.92 (95% CI: 0.57-1.47). The median EFS was 4.37 months (95% CI: 2.99-7.36) for patients receiving B+E and 2.76 months (95% CI: 1.84-4.80) for patients receiving S. The HR for EFS was 0.67 (95% CI: 0.42-1.07; p = 0.09), favoring B+E over S. When OS was assessed among patients who were Child-Pugh class A, the median OS was 11.4 months (95% CI: 7.5-15.7) for patients treated with B+E (n = 39) and 10.26 months (95% CI: 5.9-13.0) for patients treated with S (n = 38) (HR = 0.88; 95% CI: 0.53-1.46). CONCLUSIONS There was no difference in efficacy between the B+E and S arms, although the safety and tolerability profile tended to favor B+E over S based on competing risk analysis.
Collapse
Affiliation(s)
- Melanie B Thomas
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA,
- Gibbs Cancer Center and Research Institute, Spartanburg Regional Healthcare System, Spartanburg, South Carolina, USA,
| | - Elizabeth Garrett-Mayer
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Munazza Anis
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kate Anderton
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tricia Bentz
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Andie Edwards
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alan Brisendine
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Geoffrey Weiss
- Department of Oncology, University of Virginia, Charlottesville, Virginia, USA
| | - Abby B Siegel
- New York-Presbyterian Hospital, Columbia University, New York, New York, USA
| | - Johanna Bendell
- GI Oncology Research, Sarah Canon Research Institute, Nashville, Tennessee, USA
| | - Ari Baron
- California Pacific Medical Center, San Francisco, California, USA
| | - Vinay Duddalwar
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Anthony El-Khoueiry
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
78
|
Piao XM, Gao F, Zhu JX, Wang LJ, Zhao X, Li X, Sheng MM, Zhang Y. Cucurbitacin B inhibits tumor angiogenesis by triggering the mitochondrial signaling pathway in endothelial cells. Int J Mol Med 2018; 42:1018-1025. [PMID: 29717773 DOI: 10.3892/ijmm.2018.3647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
Cucurbitacin B (CuB), the active component of a traditional Chinese herbal medicine, Pedicellus Melo, has been shown to exhibit antitumor and anti-inflammation effects, but its role in tumor angiogenesis, the key step involved in tumor growth and metastasis, and the involved molecular mechanism are unknown. Tumor angiogenesis is one of the hallmarks of the development in malignant neoplasias and metastasis. Effective targeting of tumor angiogenesis is a key area of interest for cancer therapy. Here, we demonstrated that CuB significantly inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, migration, tubulogenesis in vitro, and blocked angiogenesis in chick embryo chorioallantoic membrane (CAM) assay in vivo. Furthermore, CuB induced HUVEC apoptosis and may induce apoptosis by triggering the mitochondrial apoptotic pathway. Finally, we found that CuB inhibiting angiogenesis was associated with inhibition of the activity of vascular endothelial growth factor receptor 2 (VEGFR2). Our investigations suggested that CuB was a potential drug candidate for angiogenesis related diseases.
Collapse
Affiliation(s)
- Xian-Mei Piao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Feng Gao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Jiu-Xin Zhu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Li-Juan Wang
- Shuangyashan Coal General Hospital, Shuangyashan, Heilongjiang 155100, P.R. China
| | - Xin Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Xin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Miao-Miao Sheng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Yan Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
79
|
Yan Y, Sun X, Shen B. Contrast agents in dynamic contrast-enhanced magnetic resonance imaging. Oncotarget 2018; 8:43491-43505. [PMID: 28415647 PMCID: PMC5522164 DOI: 10.18632/oncotarget.16482] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive method to assess angiogenesis, which is widely used in clinical applications including diagnosis, monitoring therapy response and prognosis estimation in cancer patients. Contrast agents play a crucial role in DCE-MRI and should be carefully selected in order to improve accuracy in DCE-MRI examination. Over the past decades, there was much progress in the development of optimal contrast agents in DCE-MRI. In this review, we describe the recent research advances in this field and discuss properties of contrast agents, as well as their advantages and disadvantages. Finally, we discuss the research perspectives for improving this promising imaging method.
Collapse
Affiliation(s)
- Yuling Yan
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Baozhong Shen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
80
|
Chen M, Zhao J, Ali IHA, Marry S, Augustine J, Bhuckory M, Lynch A, Kissenpfennig A, Xu H. Cytokine Signaling Protein 3 Deficiency in Myeloid Cells Promotes Retinal Degeneration and Angiogenesis through Arginase-1 Up-Regulation in Experimental Autoimmune Uveoretinitis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1007-1020. [PMID: 29452101 DOI: 10.1016/j.ajpath.2017.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 11/14/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023]
Abstract
The suppressor of cytokine signaling protein 3 (SOCS3) critically controls immune cell activation, although its role in macrophage polarization and function remains controversial. Using experimental autoimmune uveoretinitis (EAU) as a model, we show that inflammation-mediated retinal degeneration is exaggerated and retinal angiogenesis is accelerated in mice with SOCS3 deficiency in myeloid cells (LysMCre/+SOCS3fl/fl). At the acute stage of EAU, the population of infiltrating neutrophils was increased and the population of macrophages decreased in LysMCre/+SOCS3fl/fl mice compared with that in wild-type (WT) mice. Real-time RT-PCR showed that the expression of tumor necrosis factor-α, IL-1β, interferon-γ, granulocyte-macrophage colony-stimulating factor, and arginase-1 was significantly higher in the LysMCre/+SOCS3fl/fl EAU retina in contrast to the WT EAU retina. The percentage of arginase-1+ infiltrating cells was significantly higher in the LysMCre/+SOCS3fl/fl EAU retina than that in the WT EAU retina. In addition, bone marrow-derived macrophages and neutrophils from the LysMCre/+SOCS3fl/fl mice express significantly higher levels of chemokine (C-C motif) ligand 2 and arginase-1 compared with those from WT mice. Inhibition of arginase using an l-arginine analog amino-2-borono-6-hexanoic suppressed inflammation-induced retinal angiogenesis without affecting the severity of inflammation. Our results suggest that SOCS3 critically controls the phenotype and function of macrophages and neutrophils under inflammatory conditions and loss of SOCS3 promotes the angiogenic phenotype of the cells through up-regulation of arginase-1.
Collapse
Affiliation(s)
- Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Jiawu Zhao
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Imran H A Ali
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Stephen Marry
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Josy Augustine
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mohajeet Bhuckory
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Aisling Lynch
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Adrien Kissenpfennig
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
81
|
A water-soluble polysaccharide from the roots of Polygala tenuifolia suppresses ovarian tumor growth and angiogenesis in vivo. Int J Biol Macromol 2018; 107:713-718. [DOI: 10.1016/j.ijbiomac.2017.09.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023]
|
82
|
Ji B, Zhang Z, Guo W, Ma H, Xu B, Mu W, Amat A, Cao L. Isoliquiritigenin blunts osteoarthritis by inhibition of bone resorption and angiogenesis in subchondral bone. Sci Rep 2018; 8:1721. [PMID: 29379010 PMCID: PMC5788865 DOI: 10.1038/s41598-018-19162-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
Isoliquiritigenin (ISL), a natural flavonoid extracted from licorice, has been demonstrated to exert attenuation of osteoclastogenesis and anti-angiogenesis activity in a wide variety of cells. Here, we first evaluated the effects of ISL on pathogenesis of osteoarthritis in a mouse model of OA. The data showed that ISL blunted progression of OA and lowered the Osteoarthritis Research Society International (OARSI)-Modified Making Score and protected the articular cartilage. The thickness of calcified cartilage zone was significantly decreased in ISL-treated ACLT mice compared with vehicle group. ISL increased expression level of lubricin and decreased collagen X (Col X), matrix metalloproteinase-13 (MMP-13). Moreover, ISL reduced aberrant active subchondral bone remodelling, including lowered trabecular pattern factor (Tb.pf) and increased bone volume/tissue volume (BV/TV, %) and thickness of subchondral bone plate (SBP) compared with vehicle-treated group. The results of immunostaining further revealed that ISL directly reduced RANKL-RANK-TRAF6 singling pathway induced osteoclastogenesis, prevented abnormal bone formation through indirect inhibition of TGF-β release. Additionally, ISL exerts anti-angiogenesis effects in subchondral bone through direct suppression of MMP-2. These results indicated that ISL attenuates progression of OA by inhibition of bone resorption and angiogenesis in subchondral bone, indicating that this may be a potential preventive therapy for OA.
Collapse
Affiliation(s)
- Baochao Ji
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Zhendong Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Wentao Guo
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Hairong Ma
- Research Institute of Clinical Medicine, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Boyong Xu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Wenbo Mu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Abdusami Amat
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China.
| |
Collapse
|
83
|
Mawalla B, Yuan X, Luo X, Chalya PL. Treatment outcome of anti-angiogenesis through VEGF-pathway in the management of gastric cancer: a systematic review of phase II and III clinical trials. BMC Res Notes 2018; 11:21. [PMID: 29329598 PMCID: PMC5767044 DOI: 10.1186/s13104-018-3137-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/06/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Advanced gastric cancer poses a therapeutic challenge worldwide. In randomised clinical trials, anti-VEGF has been reported as an essential agent for the treatment of advanced gastric cancer. This review aims at assessing the treatment outcome of anti-angiogenesis therapy through the VEGF pathway in the management of patients with advanced gastric cancer. RESULTS During this review, 38 clinical trials were identified. Of these, 30 clinical trials were excluded, leaving eight trials of phase II and III. Ramucirumab, as a second line treatment of advanced gastric cancer, decreases the risk of disease progression (37-52%) and death (19-22%). Compare ramucirumab and bevacizumab in combination with traditional chemotherapy; ramucirumab has shown to improve progression-free survival and overall survival. Apatinib tyrosine kinase inhibitor combined with traditional chemotherapy has shown to improve overall response rate and progression-free survival with marginal improvements in overall survival. Chemotherapy, in combination with anti-VEGF drugs, in the management of advanced gastric cancer significantly improves the outcome of overall response rate, progression-free survival and overall survival when compared to chemotherapy alone. Therefore, we recommend that anti-VEGF drugs are the drugs of choice in the management of patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Brian Mawalla
- Department of Oncology, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital, Wuhan, Hubei, China.
| | - Xianglin Yuan
- Department of Oncology, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital, Wuhan, Hubei, China
| | - Xiaoxiao Luo
- Department of Oncology, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital, Wuhan, Hubei, China
| | - Phillip L Chalya
- Department of Oncology, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital, Wuhan, Hubei, China.,Department of Surgery, Bugando Medical Centre, Mwanza, Tanzania
| |
Collapse
|
84
|
Yang Y, Gao M, Lin Z, Chen L, Jin Y, Zhu G, Wang Y, Jin T. DEK promoted EMT and angiogenesis through regulating PI3K/AKT/mTOR pathway in triple-negative breast cancer. Oncotarget 2017; 8:98708-98722. [PMID: 29228721 PMCID: PMC5716761 DOI: 10.18632/oncotarget.21864] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer associated with poor prognosis. As an oncogene, DEK involves in regulation of various cellular metabolisms and plays an important role in tumor growth and progression. Increasing evidences suggested that abnormal expression of DEK is closely related to multiple malignant tumors. However, the possible involvement of DEK in epithelial to mesenchymal transition (EMT) and angiogenesis in TNBC remains unclear. In the present study, we revealed that the over-expression of DEK was significantly correlated with clinical stage, differentiation, and lymph node (LN) metastasis of TNBC and indicated poor overall survival of TNBC patients. Moreover, we demonstrated that DEK depletion could significantly reduce cell proliferation, migration, invasion and angiogenesis in vitro. We also found that DEK promoted cancer cell angiogenesis and metastasis by activating the PI3K/AKT/mTOR pathway. Furthermore, we revealed the inhibitory effect of DEK depletion on tumor growth and progression in a xenograft tumor model in mice. These data indicated that DEK promotes TNBC cell proliferation, angiogenesis, and metastasis via PI3K/AKT/mTOR signaling pathway, and therefore, it might be a potential target in TNBC therapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Meihua Gao
- Department of Internal Medicine, Yanbian University Hospital, Yanji 133000, China
| | - Zhenhua Lin
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Liyan Chen
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji 133002, China
| | - Yu Jin
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, China
| | - Guang Zhu
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Yixuan Wang
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Tiefeng Jin
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| |
Collapse
|
85
|
Zhu CC, Chen C, Xu ZQ, Zhao JK, Ou BC, Sun J, Zheng MH, Zong YP, Lu AG. CCR6 promotes tumor angiogenesis via the AKT/NF-κB/VEGF pathway in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2017; 1864:387-397. [PMID: 29097259 DOI: 10.1016/j.bbadis.2017.10.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
Abstract
Chemokines and chemokine receptors play an important role in tumorigenesis. Angiogenesis is a vital part of the occurrence, development and metastasis of cancer. CCR6 is an important factor during tumor progression; however, its function in tumor angiogenesis is not fully understood. In our study, we found that CCR6 was significantly overexpressed in colorectal cancer (CRC) tissues and predicted a poor prognosis in CRC patients. We then verified the function of CCR6 on tumor angiogenesis in vivo and in vitro. We observed that silencing CCR6 could decrease angiogenesis by inhibiting the proliferation and migration of human umbilical vein endothelial cells (HUVECs), whereas overexpression of CCR6 can promote angiogenesis. Additionally, we investigated the molecular mechanisms and demonstrated that activation of the AKT/NF-κB pathway maybe involved in CCR6-mediated tumor angiogenesis, which was able to promote the secretion of vascular endothelial growth factor A (VEGF-A). In conclusion, CCR6 facilitates tumor angiogenesis via the AKT/NF-κB/VEGF pathway in colorectal cancer. CCR6 inhibition may be a novel option for anti-vascular treatment in CRC.
Collapse
Affiliation(s)
- Cong-Cong Zhu
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Chun Chen
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Zhuo-Qing Xu
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Jing-Kun Zhao
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Bao-Chi Ou
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Jing Sun
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Min-Hua Zheng
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Ya-Ping Zong
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.
| | - Ai-Guo Lu
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
86
|
Niccoli Asabella A, Di Palo A, Altini C, Ferrari C, Rubini G. Multimodality Imaging in Tumor Angiogenesis: Present Status and Perspectives. Int J Mol Sci 2017; 18:ijms18091864. [PMID: 28846661 PMCID: PMC5618513 DOI: 10.3390/ijms18091864] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis is a complex biological process that plays a central role in progression of tumor growth and metastasis. It led to a search for antiangiogenic molecules, and to design antiangiogenic strategies for cancer treatment. Noninvasive molecular imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT), could be useful for lesion detection, to select patients likely to respond to antiangiogenic therapies, to confirm successful targeting, and dose optimization. Additionally, nuclear imaging techniques could also aid in the development of new angiogenesis-targeted drugs and their validation. Angiogenesis imaging can be categorized as targeted at three major cell types: (I) non-endothelial cell targets, (II) endothelial cell targets, and (III) extracellular matrix proteins and matrix proteases. Even if radiopharmaceuticals studying the metabolism and hypoxia can be also used for the study of angiogenesis, many of the agents used in nuclear imaging for this purpose are yet to be investigated. The purpose of this review is to describe the role of molecular imaging in tumor angiogenesis, highlighting the advances in this field.
Collapse
Affiliation(s)
- Artor Niccoli Asabella
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Alessandra Di Palo
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Corinna Altini
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Cristina Ferrari
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Giuseppe Rubini
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
87
|
Baek YY, Lee DK, Kim J, Kim JH, Park W, Kim T, Han S, Jeoung D, You JC, Lee H, Won MH, Ha KS, Kwon YG, Kim YM. Arg-Leu-Tyr-Glu tetrapeptide inhibits tumor progression by suppressing angiogenesis and vascular permeability via VEGF receptor-2 antagonism. Oncotarget 2017; 8:11763-11777. [PMID: 28052029 PMCID: PMC5355302 DOI: 10.18632/oncotarget.14343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/03/2016] [Indexed: 02/06/2023] Open
Abstract
The tetrapeptide Arg-Leu-Tyr-Glu (RLYE) is known to inhibit vascular endothelial growth factor-A (VEGF-A)-induced angiogenesis in vitro. Herein, we examined its underlying mechanism and antitumor activity associated with vascular remodeling. RLYE inhibited VEGF-A-induced angiogenesis in a mouse model and suppressed VEGF-A-induced angiogenic signal cascades in human endothelial cells. However, RLYE showed no inhibitory effect on VEGF-A-induced proliferation and migration of multiple myeloma cells expressing VEGF receptor (VEGFR)-1, but not VEGFR-2. In addition, RLYE showed no inhibitory effect on angiogenic activities induced by VEGF-B, basic fibroblast growth factor, epithermal growth factor, sphingosine-1-phosphate, and placental growth factor. RLYE bound specifically to VEGFR-2 at the VEGF-A binding site, thereby blocking VEGF-A-VEGFR-2 binding and VEGF-A-induced VEGFR-2 internalization. The RLYE peptide inhibited tumor growth and metastasis via suppression of tumor angiogenesis in tumor-bearing mice. Moreover, RLYE showed a synergistic effect of the cytotoxic agent irinotecan on tumor cell apoptosis and tumor progression via tumor vessel normalization due to stabilization of VE-cadherin-mediated adherens junction, improvement of pericyte coverage, and inhibition of vascular leakage in tumors. Our results suggest that RLYE can be used as an antiangiogenic and tumor blood vessel remodeling agent for inhibition of tumor growth and metastasis by antagonizing VEGFR-2, with the synergistic anti-cancer effect via enhancement of drug delivery and therapeutic efficacy.
Collapse
Affiliation(s)
- Yi-Yong Baek
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Dong-Keon Lee
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Joohwan Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Ji-Hee Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Wonjin Park
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Taesam Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Sanghwa Han
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Ji Chang You
- Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Hansoo Lee
- Department of and Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| |
Collapse
|
88
|
Abu-Jamous B, Buffa FM, Harris AL, Nandi AK. In vitro downregulated hypoxia transcriptome is associated with poor prognosis in breast cancer. Mol Cancer 2017; 16:105. [PMID: 28619028 PMCID: PMC5472949 DOI: 10.1186/s12943-017-0673-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hypoxia is a characteristic of breast tumours indicating poor prognosis. Based on the assumption that those genes which are up-regulated under hypoxia in cell-lines are expected to be predictors of poor prognosis in clinical data, many signatures of poor prognosis were identified. However, it was observed that cell line data do not always concur with clinical data, and therefore conclusions from cell line analysis should be considered with caution. As many transcriptomic cell-line datasets from hypoxia related contexts are available, integrative approaches which investigate these datasets collectively, while not ignoring clinical data, are required. RESULTS We analyse sixteen heterogeneous breast cancer cell-line transcriptomic datasets in hypoxia-related conditions collectively by employing the unique capabilities of the method, UNCLES, which integrates clustering results from multiple datasets and can address questions that cannot be answered by existing methods. This has been demonstrated by comparison with the state-of-the-art iCluster method. From this collection of genome-wide datasets include 15,588 genes, UNCLES identified a relatively high number of genes (>1000 overall) which are consistently co-regulated over all of the datasets, and some of which are still poorly understood and represent new potential HIF targets, such as RSBN1 and KIAA0195. Two main, anti-correlated, clusters were identified; the first is enriched with MYC targets participating in growth and proliferation, while the other is enriched with HIF targets directly participating in the hypoxia response. Surprisingly, in six clinical datasets, some sub-clusters of growth genes are found consistently positively correlated with hypoxia response genes, unlike the observation in cell lines. Moreover, the ability to predict bad prognosis by a combined signature of one sub-cluster of growth genes and one sub-cluster of hypoxia-induced genes appears to be comparable and perhaps greater than that of known hypoxia signatures. CONCLUSIONS We present a clustering approach suitable to integrate data from diverse experimental set-ups. Its application to breast cancer cell line datasets reveals new hypoxia-regulated signatures of genes which behave differently when in vitro (cell-line) data is compared with in vivo (clinical) data, and are of a prognostic value comparable or exceeding the state-of-the-art hypoxia signatures.
Collapse
Affiliation(s)
- Basel Abu-Jamous
- Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, UB8 3PH UK
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
| | - Francesca M. Buffa
- Cancer Research UK, Department of Oncology, Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS UK
| | - Adrian L. Harris
- Cancer Research UK, Department of Oncology, Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS UK
| | - Asoke K. Nandi
- Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, UB8 3PH UK
- The Key Laboratory of Embedded Systems and Service Computing, College of Electronic and Information Engineering, Tongji University, Shanghai, Peoples, Republic of China
| |
Collapse
|
89
|
Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS One 2017; 12:e0179202. [PMID: 28594907 PMCID: PMC5466359 DOI: 10.1371/journal.pone.0179202] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/25/2017] [Indexed: 11/29/2022] Open
Abstract
Background Targeting angiogenesis has been considered a promising treatment of choice for a large number of malignancies, including gastrointestinal cancers. Bevacizumab is an anti-vascular endothelial growth factor (anti-VEGF) being used for this purpose. However, treatment efficacy is largely questioned. Telomerase activity, responsible for cancer cell immortality, is detected in 85–95% of human cancers and is considered a potential regulator of VEGF. The aim of our study was to investigate the interrelationship between VEGF and hTERT in gastrointestinal cancers and to explore cell response to a combined inhibition of telomerase and VEGF. Methods AGS (gastric cancer), Caco-2 (colorectal cancer) and HepG2/C3A (hepatocellular carcinoma), were treated with telomerase inhibitors BIBR-1232 (10μM) and costunolide (10μM), with bevacizumab (Avastin® at 5 ng/ml or 100μg/ml) or with a combination of both types of inhibitors. VEGF and hTERT mRNA levels, and telomerase activity were detected by RT-PCR. VEGF levels were quantified by ELISA. Telomerase was knocked down using hTERT siRNA and hTERT was overexpressed in the telomerase negative cell line, Saos-2 (osteosarcoma), using constructs expressing either wild type hTERT (hTERT-WT) or dominant negative hTERT (hTERT-DN). Tube formation by HUVECs was assessed using ECMatrix™ (EMD Millipore). Results Our results showed that telomerase regulates VEGF expression and secretion through its catalytic subunit hTERT in AGS, Caco2, and HepG2/C3A, independent of its catalytic activity. Interestingly, VEGF inhibition with bevacizumab (100μg/ml) increased hTERT expression 42.3% in AGS, 94.1% in Caco2, and 52.5% in HepG2/C3A, and increased telomerase activity 30-fold in AGS, 10.3-fold in Caco2 and 8-fold in HepG2/C3A. A further investigation showed that VEGF upregulates hTERT expression in a mechanism that implicates the PI3K/AKT/mTOR pathway and HIF-1α. Moreover, bevacizumab treatment increased VEGFR1 and VEGFR2 expression in cancer cells and human umbilical vein endothelial cells (HUVECs) through hTERT. Thus, the combination of bevacizumab with telomerase inhibitors decreased VEGF expression and secretion by cancer cells, inhibited VEGFR1 and VEGFR2 upregulation, and reduced tube formation by HUVECs. Conclusions Taken together, our results suggest that bevacizumab treatment activates a VEGF autoregulatory mechanism involving hTERT and VEGF receptors and that an inhibition of this pathway could improve tumor cell response to anti-VEGF treatment.
Collapse
|
90
|
Dyakov IN, Zyryanov SK. [Vascular endothelial growth factor inhibitors in the treatment of neovascular age-related macular degeneration]. Vestn Oftalmol 2017; 133:125-129. [PMID: 28524152 DOI: 10.17116/oftalma20171332125-129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neovascular age-related macular degeneration (AMD) is the leading cause of vision loss in older patients. An important role in angiogenesis is played by regulatory mechanisms (an increase in the number of proliferating endothelial and stromal cells and morphological alterations in the vascular network) induced by factors from the vascular endothelial growth factor (VEGF) family. Since 2006, the key treatment of neovascular AMD includes agents that inhibit the activity of VEGF. This review covers the effectiveness and safety of the use of anti-VEGF agents in neovascular AMD patients. A comparison is drawn between monoclonal antibody-based therapy and a new drug from the VEGF-Trap group.
Collapse
Affiliation(s)
- I N Dyakov
- Mechnikov Research Institute for Vaccine and Sera, 5a Malyy Kazennyy pereulok, Moscow, Russian Federation, 105064
| | - S K Zyryanov
- Peoples' Friendship University of Russia, Medical Institute, Medical Faculty, Department of the Common and Clinical Pharmacology, 6 Miklukho-Maklaya St., Moscow, Russian Federation, 1171986
| |
Collapse
|
91
|
Li C, Guan X, Sun B, Ma M, Wang P, Gai X. Vector-mediated Tum-5 expression in neovascular endothelial cells for treating hepatocellular carcinoma. Exp Ther Med 2017; 13:1521-1525. [PMID: 28413503 DOI: 10.3892/etm.2017.4127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Hypervascular hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated mortality. Angiogenesis is an important contributor to HCC progression and metastasis; therefore, inhibiting angiogenesis may be an effective method of treating HCC. Tumstatin is a novel type of efficient endogenous vascular endothelial cell growth inhibiting factor. The anti-angiogenic activity of tumstatin is localized to the 54-132 amino acid region (Tum-5). In a previous study performed by our group, the gene fragment encoding Tum-5 was cloned and inserted into a pLXSN retroviral vector. In the present study, the anti-angiogenic effects of Tum-5 and the antitumor effects exerted by the pLXSN-Tum-5 vector in vivo were investigated. The results demonstrated that pLXSN-Tum-5 significantly inhibited the growth of human umbilical vein endothelial cells compared with pLXSN, but had no obvious effect on HepG2 cell growth. Moreover, the antitumor and anti-angiogenic activity of Tum-5 was examined in vivo using a xenograft of H22 HCC cells. The results indicated that pLXSN-Tum-5 significantly inhibited tumor growth following 5 injections over 10 days. The size and weight of tumors in the pLXSN-Tum-5 group were lower than those in the saline and pLXSN groups. Furthermore, immunohistochemical analysis with CD31 antibodies indicated that the average microvessel density in the pLXSN-Tum-5 group were significantly lower than that in the saline and pLXSN groups. These results suggested that Tum-5 exerts its antitumor activity by suppressing vascular endothelial cells. The gene fragment of Tum-5 may be developed as an effective inhibitor of angiogenesis and used to treat patients with HCC.
Collapse
Affiliation(s)
- Chun Li
- Department of Pathology, School of Basic Medical Sciences, Beihua University, Jilin City, Jilin 132013, P.R. China
| | - Xingang Guan
- Department of Pathology, School of Basic Medical Sciences, Beihua University, Jilin City, Jilin 132013, P.R. China
| | - Boqian Sun
- Department of Pathology, School of Basic Medical Sciences, Beihua University, Jilin City, Jilin 132013, P.R. China
| | - Mingyao Ma
- Department of Pathology, School of Basic Medical Sciences, Beihua University, Jilin City, Jilin 132013, P.R. China
| | - Peng Wang
- Department of Pathology, School of Basic Medical Sciences, Beihua University, Jilin City, Jilin 132013, P.R. China
| | - Xiaodong Gai
- Department of Pathology, School of Basic Medical Sciences, Beihua University, Jilin City, Jilin 132013, P.R. China
| |
Collapse
|
92
|
Lin H, Fang Z, Su Y, Li P, Wang J, Liao H, Hu Q, Ye C, Fang Y, Luo Q, Lin Z, Pan C, Wang F, Zhang ZY. DHX32 Promotes Angiogenesis in Colorectal Cancer Through Augmenting β-catenin Signaling to Induce Expression of VEGFA. EBioMedicine 2017; 18:62-72. [PMID: 28330603 PMCID: PMC5405167 DOI: 10.1016/j.ebiom.2017.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/29/2022] Open
Abstract
We previously reported that overexpression of DHX32 contributes to the growth and metastasis of colorectal cancer (CRC). However, the underlying mechanism is not largely characterized. Herein, we reported that DHX32 in CRC cells upregulated expression of vascular endothelial growth factor A (VEGFA) at the transcription level through interacting with and stabilizing β-catenin. This promoted the recruitment of host endothelial cells to the tumor, and therefore, formation of microvessel in the tumor. Xenograft model revealed that depletion of DHX32 in CRC cells significantly reduced the microvessel density in the grafts and suppressed the growth of grafts. Furthermore, the expression level of DHX32 was positively associated with microvessel density in human CRC and poor outcome of CRC patients. Therefore, the report demonstrates that DHX32 is a pro-angiogenic factor, that inhibition of DHX32-β-catenin pathway can provide a strategy for CRC treatment, and that the expression level of DHX32 has the potential to serve as a biomarker for CRC diagnosis and prognosis. DHX32 upregulates VEGFA expression through interacting with and stabilizing β-catenin. DHX32 promotes colorectal cancer cells to recruit endothelial cells and induces angiogenesis. DHX32 is associated with tumor angiogenesis and poor prognosis of colorectal cancer patients.
Tumor angiogenesis is required for cancer growth and metastasis. Understanding the molecular mechanism by which cancer cells promote angiogenesis is required to develop effective cancer treatment. In this study, we reported that DHX32 is a pro-angiogenic factor in colorectal cancer. Aberrantly expressed DHX32 promoted tumor angiogenesis by stabilizing β-catenin and increasing the expression of vascular endothelial growth factor. The results suggested that suppression of DHX32 can be of therapeutic value for colorectal cancer and that expression level of DHX32 has the potential to serve as a biomarker for colorectal cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Huayue Lin
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China
| | - Zanxi Fang
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China
| | - Yuanhui Su
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China
| | - Peihua Li
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China
| | - Jingkun Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Hongfeng Liao
- Department of Pathology, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China
| | - Qing Hu
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China
| | - Chunlei Ye
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China
| | - Yizhen Fang
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China
| | - Qing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zhiyuan Lin
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China
| | - Chao Pan
- Department of Pathology, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States.
| | - Zhong-Ying Zhang
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
93
|
A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nat Commun 2017; 8:14450. [PMID: 28205552 PMCID: PMC5316898 DOI: 10.1038/ncomms14450] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022] Open
Abstract
Non-classical secretory vesicles, collectively referred to as extracellular vesicles (EVs), have been implicated in different aspects of cancer cell survival and metastasis. Here, we describe how a specific class of EVs, called microvesicles (MVs), activates VEGF receptors and tumour angiogenesis through a unique 90 kDa form of VEGF (VEGF90K). We show that VEGF90K is generated by the crosslinking of VEGF165, catalysed by the enzyme tissue transglutaminase, and associates with MVs through its interaction with the chaperone Hsp90. We further demonstrate that MV-associated VEGF90K has a weakened affinity for Bevacizumab, causing Bevacizumab to be ineffective in blocking MV-dependent VEGF receptor activation. However, treatment with an Hsp90 inhibitor releases VEGF90K from MVs, restoring the sensitivity of VEGF90K to Bevacizumab. These findings reveal a novel mechanism by which cancer cell-derived MVs influence the tumour microenvironment and highlight the importance of recognizing their unique properties when considering drug treatment strategies. Extracellular vesicles (EVs) contain VEGF and can contribute to tumour angiogenesis, although the mechanism remains unclear. Here, the authors find that a form of VEGF (VEGF90K) resistant to Bevacizumab but sensitive to HSP90 inhibitors, associates with EVs through its interaction with Hsp90.
Collapse
|
94
|
Abstract
Colorectal cancer is commonly diagnosed throughout the world, and treatment options have greatly expanded over the last 2 decades. Targeting angiogenesis has been a major focus of study in a variety of malignancy types. Targeting angiogenesis has been achieved by several mechanisms in colorectal cancer, including use of antiangiogenic small molecule tyrosine kinase inhibitors (TKIs). There have been many attempts and failures to prove efficacy of TKIs in the treatment of colorectal cancer including sorafenib, sunitinib, vatalanib, and tivozanib. Regorafenib was the first TKI to demonstrate efficacy and is an orally active inhibitor of angiogenic (including the vascular endothelial growth factor receptors 1, 2, and 3), stromal, and oncogenic receptor tyrosine kinases. There are ongoing investigations of both regorafenib and ninetanib; however, there remains a critical need to better understand novel combinations with TKIs that could prove more efficacious than available options.
Collapse
|
95
|
Wang Z, You D, Lu M, He Y, Yan S. Inhibitory effect of norcantharidin on melanoma tumor growth and vasculogenic mimicry by suppressing MMP-2 expression. Oncol Lett 2017; 13:1660-1664. [PMID: 28454306 PMCID: PMC5403267 DOI: 10.3892/ol.2017.5622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/09/2016] [Indexed: 12/18/2022] Open
Abstract
A form of microcirculation called vasculogenic mimicry (VM), which constitutes a novel approach for tumor blood supply in certain highly aggressive malignant tumors, was recently reported to contribute to tumor metastasis and poor prognosis in melanoma patients. Development of strategies to target tumor VM may be significant to reduce the recurrence and metastasis of melanoma. Norcantharidin (NCTD) has been shown to inhibit tumor growth and VM of human gallbladder carcinomas. Besides, NCTD could induce melanoma cell apoptosis. However, whether NCTD can inhibit the growth and VM formation of melanoma has not been evaluated. The present study aims to investigate the anti-VM activity of NCTD as a VM inhibitor for melanoma and its potential mechanisms. The anti-VM activity of NCTD was determined in human melanoma A375 cells and xenografts in vitro and in vivo. The findings indicate that NCTD inhibits tumor growth and VM formation of melanoma both in vitro and in vivo by suppressing matrix metalloproteinase-2 expression. The results suggest that NCTD is a potential therapeutic agent targeting VM in melanoma.
Collapse
Affiliation(s)
- Zhenyu Wang
- Biomedical Engineering Research Center, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Dingyun You
- Department of Science and Technology, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Minnan Lu
- Experimental Center for Medical Science Research, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Shan Yan
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| |
Collapse
|
96
|
Checco JW, Gellman SH. Iterative Nonproteinogenic Residue Incorporation Yields α/β-Peptides with a Helix-Loop-Helix Tertiary Structure and High Affinity for VEGF. Chembiochem 2017; 18:291-299. [PMID: 27897370 DOI: 10.1002/cbic.201600545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Indexed: 12/12/2022]
Abstract
Inhibition of specific protein-protein interactions is attractive for a range of therapeutic applications, but the large and irregularly shaped contact surfaces involved in many such interactions make it challenging to design synthetic antagonists. Here, we describe the development of backbone-modified peptides containing both α- and β-amino acid residues (α/β-peptides) that target the receptor-binding surface of vascular endothelial growth factor (VEGF). Our approach is based on the Z-domain, which adopts a three-helix bundle tertiary structure. We show how a two-helix "mini-Z-domain" can be modified to contain β and other nonproteinogenic residues while retaining the target-binding epitope by using iterative unnatural residue incorporation. The resulting α/β-peptides are less susceptible to proteolysis than is their parent α-peptide, and some of these α/β-peptides match the full-length Z-domain in terms of affinity for receptor-recognition surfaces on the VEGF homodimer.
Collapse
Affiliation(s)
- James W Checco
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, USA
| |
Collapse
|
97
|
da Motta LL, Ledaki I, Purshouse K, Haider S, De Bastiani MA, Baban D, Morotti M, Steers G, Wigfield S, Bridges E, Li JL, Knapp S, Ebner D, Klamt F, Harris AL, McIntyre A. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene 2017; 36:122-132. [PMID: 27292261 PMCID: PMC5061082 DOI: 10.1038/onc.2016.184] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/22/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
The availability of bromodomain and extra-terminal inhibitors (BETi) has enabled translational epigenetic studies in cancer. BET proteins regulate transcription by selectively recognizing acetylated lysine residues on chromatin. BETi compete with this process leading to both downregulation and upregulation of gene expression. Hypoxia enables progression of triple negative breast cancer (TNBC), the most aggressive form of breast cancer, partly by driving metabolic adaptation, angiogenesis and metastasis through upregulation of hypoxia-regulated genes (for example, carbonic anhydrase 9 (CA9) and vascular endothelial growth factor A (VEGF-A). Responses to hypoxia can be mediated epigenetically, thus we investigated whether BETi JQ1 could impair the TNBC response induced by hypoxia and exert anti-tumour effects. JQ1 significantly modulated 44% of hypoxia-induced genes, of which two-thirds were downregulated including CA9 and VEGF-A. JQ1 prevented HIF binding to the hypoxia response element in CA9 promoter, but did not alter HIF expression or activity, suggesting some HIF targets are BET-dependent. JQ1 reduced TNBC growth in vitro and in vivo and inhibited xenograft vascularization. These findings identify that BETi dually targets angiogenesis and the hypoxic response, an effective combination at reducing tumour growth in preclinical studies.
Collapse
Affiliation(s)
- L L da Motta
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Biochemistry/UFRGS, Porto Alegre, Brazil
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - I Ledaki
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - K Purshouse
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - S Haider
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - D Baban
- High Throughput Genomics, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M Morotti
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - G Steers
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - S Wigfield
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - E Bridges
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - J-L Li
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Institute of Translational and Stratified Medicine, Plymouth University, Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - S Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
- Goethe University Frankfurt, Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Campus Riedberg, Frankfurt, Germany
| | - D Ebner
- Nuffield Department of Medicine, Target Discovery Institute (TDI), University of Oxford, Oxford, UK
| | - F Klamt
- Department of Biochemistry/UFRGS, Porto Alegre, Brazil
| | - A L Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - A McIntyre
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Cancer Biology, Division of Cancer and Stem Cells, The University of Nottingham, Nottingham, UK
| |
Collapse
|
98
|
Shen S, Liu M, Li T, Lin S, Mo R. Recent progress in nanomedicine-based combination cancer therapy using a site-specific co-delivery strategy. Biomater Sci 2017; 5:1367-1381. [DOI: 10.1039/c7bm00297a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article highlights the recent progresses in nanomedicine-based combination cancer therapy via site-specific co-delivery strategies.
Collapse
Affiliation(s)
- Shiyang Shen
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Meng Liu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Teng Li
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Shiqi Lin
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Ran Mo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
99
|
Zhang Y, Liu J, Lin J, Zhou L, Song Y, Wei B, Luo X, Chen Z, Chen Y, Xiong J, Xu X, Ding L, Ye Q. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget 2016; 7:9859-75. [PMID: 26848522 PMCID: PMC4891089 DOI: 10.18632/oncotarget.7126] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/18/2016] [Indexed: 01/26/2023] Open
Abstract
Angiogenesis is essential for tumor growth. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis. However, how transcription factors interact with histone-modifying enzymes to regulate VEGF transcription and tumor angiogenesis remains unclear. Here, we show that transcription factor GATA1 associates with the histone methyltransferase SET7 to promote VEGF transcription and breast tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that GATA1 was required for recruitment of SET7, RNA polymerase II and transcription factor II B to VEGF core promoter. GATA1 enhanced breast cancer cell (MCF7, ZR75-1 and MDA-MB-231)-secreted VEGF via SET7, which promoted vascular endothelial cell (HUVEC) proliferation, migration and tube formation. SET7 was required for GATA1-induced breast tumor angiogenesis and growth in nude mice. Immunohistochemical staining showed that expression of GATA1 and SET7 was upregulated and positively correlated with VEGF expression and microvessel number in 80 breast cancer patients. GATA1 and SET7 are independent poor prognostic factors in breast cancer. Our data provide novel insights into VEGF transcriptional regulation and suggest GATA1/SET7 as cancer therapeutic targets.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| | - Jie Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lei Zhou
- Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuhua Song
- The Affiliated Hospital of Qing Dao University, Qingdao, People's Republic of China
| | - Bo Wei
- Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoli Luo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Zhida Chen
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yingjie Chen
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,The Affiliated Hospital of Qing Dao University, Qingdao, People's Republic of China
| | - Jiaxiu Xiong
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| |
Collapse
|
100
|
MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment. Nat Commun 2016; 7:13597. [PMID: 27886180 PMCID: PMC5133658 DOI: 10.1038/ncomms13597] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
Rather than targeting tumour cells directly, elements of the tumour microenvironment can be modulated to sensitize tumours to the effects of therapy. Here we report a unique mechanism by which ectopic microRNA-103 can manipulate tumour-associated endothelial cells to enhance tumour cell death. Using gain-and-loss of function approaches, we show that miR-103 exacerbates DNA damage and inhibits angiogenesis in vitro and in vivo. Local, systemic or vascular-targeted delivery of miR-103 in tumour-bearing mice decreased angiogenesis and tumour growth. Mechanistically, miR-103 regulation of its target gene TREX1 in endothelial cells governs the secretion of pro-inflammatory cytokines into the tumour microenvironment. Our data suggest that this inflammatory milieu may potentiate tumour cell death by supporting immune activation and inducing tumour expression of Fas and TRAIL receptors. Our findings reveal miR-mediated crosstalk between vasculature and tumour cells that can be exploited to improve the efficacy of chemotherapy and radiation. The tumour microenvironment can be modulated to sensitize tumours to the effects of therapy. Here the authors show that radiation induced miR-103 downregulates TREX1 in endothelial cells, decreases angiogenesis and leads to the secretion of proinflammatory mediators that reduce tumour growth.
Collapse
|