51
|
Machine learning predicts translation initiation sites in neurologic diseases with nucleotide repeat expansions. PLoS One 2022; 17:e0256411. [PMID: 35648796 PMCID: PMC9159584 DOI: 10.1371/journal.pone.0256411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
A number of neurologic diseases associated with expanded nucleotide repeats, including an inherited form of amyotrophic lateral sclerosis, have an unconventional form of translation called repeat-associated non-AUG (RAN) translation. It has been speculated that the repeat regions in the RNA fold into secondary structures in a length-dependent manner, promoting RAN translation. Repeat protein products are translated, accumulate, and may contribute to disease pathogenesis. Nucleotides that flank the repeat region, especially ones closest to the initiation site, are believed to enhance translation initiation. A machine learning model has been published to help identify ATG and near-cognate translation initiation sites; however, this model has diminished predictive power due to its extensive feature selection and limited training data. Here, we overcome this limitation and increase prediction accuracy by the following: a) capture the effect of nucleotides most critical for translation initiation via feature reduction, b) implement an alternative machine learning algorithm better suited for limited data, c) build comprehensive and balanced training data (via sampling without replacement) that includes previously unavailable sequences, and d) split ATG and near-cognate translation initiation codon data to train two separate models. We also design a supplementary scoring system to provide an additional prognostic assessment of model predictions. The resultant models have high performance, with ~85-88% accuracy, exceeding that of the previously published model by >18%. The models presented here are used to identify translation initiation sites in genes associated with a number of neurologic repeat expansion disorders. The results confirm a number of sites of translation initiation upstream of the expanded repeats that have been found experimentally, and predict sites that are not yet established.
Collapse
|
52
|
Nguyen HT, Hori N, Thirumalai D. Condensates in RNA repeat sequences are heterogeneously organized and exhibit reptation dynamics. Nat Chem 2022; 14:775-785. [PMID: 35501484 DOI: 10.1038/s41557-022-00934-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Although it is known that RNA undergoes liquid-liquid phase separation, the interplay between the molecular driving forces and the emergent features of the condensates, such as their morphologies and dynamic properties, is not well understood. We introduce a coarse-grained model to simulate phase separation of trinucleotide repeat RNAs, which are implicated in neurological disorders. After establishing that the simulations reproduce key experimental findings, we show that once recruited inside the liquid droplets, the monomers transition from hairpin-like structures to extended states. Interactions between the monomers in the condensates result in the formation of an intricate and dense intermolecular network, which severely restrains the fluctuations and mobilities of the RNAs inside large droplets. In the largest densely packed high-viscosity droplets, the mobility of RNA chains is best characterized by reptation, reminiscent of the dynamics in polymer melts. Our work provides a microscopic framework for understanding liquid-liquid phase separation in RNA, which is not easily discernible in current experiments.
Collapse
Affiliation(s)
- Hung T Nguyen
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Naoto Hori
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
53
|
Fang L, Liu Q, Monteys AM, Gonzalez-Alegre P, Davidson BL, Wang K. DeepRepeat: direct quantification of short tandem repeats on signal data from nanopore sequencing. Genome Biol 2022; 23:108. [PMID: 35484600 PMCID: PMC9052667 DOI: 10.1186/s13059-022-02670-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Despite recent improvements in basecalling accuracy, nanopore sequencing still has higher error rates on short-tandem repeats (STRs). Instead of using basecalled reads, we developed DeepRepeat which converts ionic current signals into red-green-blue channels, thus transforming the repeat detection problem into an image recognition problem. DeepRepeat identifies and accurately quantifies telomeric repeats in the CHM13 cell line and achieves higher accuracy in quantifying repeats in long STRs than competing methods. We also evaluate DeepRepeat on genome-wide or candidate region datasets from seven different sources. In summary, DeepRepeat enables accurate quantification of long STRs and complements existing methods relying on basecalled reads.
Collapse
Affiliation(s)
- Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qian Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,School of Life Sciences, College of Science, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, 89154, USA. .,Nevada Institute of Personalized Medicine, College of Science, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, 89154, USA.
| | - Alex Mas Monteys
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pedro Gonzalez-Alegre
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
54
|
Varathan P, Gorijala P, Jacobson T, Chasioti D, Nho K, Risacher SL, Saykin AJ, Yan J. Integrative analysis of eQTL and GWAS summary statistics reveals transcriptomic alteration in Alzheimer brains. BMC Med Genomics 2022; 15:93. [PMID: 35461270 PMCID: PMC9035239 DOI: 10.1186/s12920-022-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Large-scale genome-wide association studies have successfully identified many genetic variants significantly associated with Alzheimer's disease (AD), such as rs429358, rs11038106, rs723804, rs13591776, and more. The next key step is to understand the function of these SNPs and the downstream biology through which they exert the effect on the development of AD. However, this remains a challenging task due to the tissue-specific nature of transcriptomic and proteomic data and the limited availability of brain tissue.In this paper, instead of using coupled transcriptomic data, we performed an integrative analysis of existing GWAS findings and expression quantitative trait loci (eQTL) results from AD-related brain regions to estimate the transcriptomic alterations in AD brain. RESULTS We used summary-based mendelian randomization method along with heterogeneity in dependent instruments method and were able to identify 32 genes with potential altered levels in temporal cortex region. Among these, 10 of them were further validated using real gene expression data collected from temporal cortex region, and 19 SNPs from NECTIN and TOMM40 genes were found associated with multiple temporal cortex imaging phenotype. CONCLUSION Significant pathways from enriched gene networks included neutrophil degranulation, Cell surface interactions at the vascular wall, and Regulation of TP53 activity which are still relatively under explored in Alzheimer's Disease while also encouraging a necessity to bind further trans-eQTL effects into this integrative analysis.
Collapse
Affiliation(s)
- Pradeep Varathan
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Priyanka Gorijala
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Tanner Jacobson
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Danai Chasioti
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jingwen Yan
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
55
|
Murase H, Nagatsugi F, Sasaki S. Development of a selective ligand for G-G mismatches of CGG repeat RNA inducing the RNA structural conversion from the G-quadruplex into a hairpin-like structure. Org Biomol Chem 2022; 20:3375-3381. [PMID: 35355034 DOI: 10.1039/d2ob00279e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trinucleotide CGG repeat is located in the 5'-UTR of FMR1 and its abnormal expansion and formation of a noncanonical RNA structure causes fetal genetic diseases. In this study, a small molecular dimer-type ligand consisting of dual G-clamp units for the recognition of two neighboring guanines was synthesized, and the binding properties for the r(CGG) repeats were investigated. Compound 2 was confirmed to bind to the mismatch guanines in the stem region of the r(CGG) repeat hairpin. In addition, the RNase T1 assay demonstrated that 2 induced the structural conversion of the r(CGG)8 repeat from the G-quadruplex into a hairpin-like structure.
Collapse
Affiliation(s)
- Hirotaka Murase
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis ten bosch machi, Sasebo 859-3298, Japan.
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis ten bosch machi, Sasebo 859-3298, Japan.
| |
Collapse
|
56
|
Eitan C, Siany A, Barkan E, Olender T, van Eijk KR, Moisse M, Farhan SMK, Danino YM, Yanowski E, Marmor-Kollet H, Rivkin N, Yacovzada NS, Hung ST, Cooper-Knock J, Yu CH, Louis C, Masters SL, Kenna KP, van der Spek RAA, Sproviero W, Al Khleifat A, Iacoangeli A, Shatunov A, Jones AR, Elbaz-Alon Y, Cohen Y, Chapnik E, Rothschild D, Weissbrod O, Beck G, Ainbinder E, Ben-Dor S, Werneburg S, Schafer DP, Brown RH, Shaw PJ, Van Damme P, van den Berg LH, Phatnani H, Segal E, Ichida JK, Al-Chalabi A, Veldink JH, Hornstein E. Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3'UTR protect against ALS. Nat Neurosci 2022; 25:433-445. [PMID: 35361972 PMCID: PMC7614916 DOI: 10.1038/s41593-022-01040-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
The noncoding genome is substantially larger than the protein-coding genome but has been largely unexplored by genetic association studies. Here, we performed region-based rare variant association analysis of >25,000 variants in untranslated regions of 6,139 amyotrophic lateral sclerosis (ALS) whole genomes and the whole genomes of 70,403 non-ALS controls. We identified interleukin-18 receptor accessory protein (IL18RAP) 3' untranslated region (3'UTR) variants as significantly enriched in non-ALS genomes and associated with a fivefold reduced risk of developing ALS, and this was replicated in an independent cohort. These variants in the IL18RAP 3'UTR reduce mRNA stability and the binding of double-stranded RNA (dsRNA)-binding proteins. Finally, the variants of the IL18RAP 3'UTR confer a survival advantage for motor neurons because they dampen neurotoxicity of human induced pluripotent stem cell (iPSC)-derived microglia bearing an ALS-associated expansion in C9orf72, and this depends on NF-κB signaling. This study reveals genetic variants that protect against ALS by reducing neuroinflammation and emphasizes the importance of noncoding genetic association studies.
Collapse
Affiliation(s)
- Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Aviad Siany
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Elad Barkan
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Kristel R van Eijk
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yehuda M Danino
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Yanowski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Hagai Marmor-Kollet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Rivkin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy Sarah Yacovzada
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Shu-Ting Hung
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Kevin P Kenna
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Rick A A van der Spek
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - William Sproviero
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ahmad Al Khleifat
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Alfredo Iacoangeli
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Aleksey Shatunov
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ashley R Jones
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Yael Elbaz-Alon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yahel Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Elik Chapnik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Daphna Rothschild
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Omer Weissbrod
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad Beck
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Ainbinder
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sebastian Werneburg
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Leonard H van den Berg
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, USA
| | - Eran Segal
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
- King's College Hospital, Denmark Hill, London, United Kingdom
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
57
|
Joz Abbasalian Z, Khanahmad H, Tabatabaiefar MA. Bisulfite Treatment of CG-Rich Track of Trinucleotide Repeat Expansion Disorder: Make the Sequence Less CG Rich. Adv Biomed Res 2022; 10:46. [PMID: 35127573 PMCID: PMC8781891 DOI: 10.4103/abr.abr_144_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/03/2019] [Accepted: 12/15/2020] [Indexed: 11/08/2022] Open
Abstract
Background: Trinucleotide repeat (TNR) expansion is a kind of mutation with instability in the number of microsatellite repeats. This nature of mutation leads to the different kinds of neurological and neuromuscular disorders; among them, fragile-X syndrome is the main cause of intellectual disability in which the increasing number of CGG TNR in 5' untranslated region is the main reason for epigenetic silencing of Fragile X mental retardation 1 gene. The aim of this study is to decrease the CG content of the candidate region to facilitate amplification by conventional polymerase chain reaction (PCR). Bisulfite treatment of the genomic DNA results in conversion of unmethylated cytosine to uridine and may overcome the diagnostic pitfalls. Materials and Methods: The whole blood DNA was extracted and bisulfite treated. Then any simplification in PCR process of desire sequence were assayed through following conventional PCR using specifically designed primers for converted sequence. Bisulfite-treated PCR product of a nearby sequence confirmed our results as a conversion control. Results: Both the control and the candidate sequences undergoing bisulfite treatment were successfully amplified by PCR. Conclusions: Decreasing the GC content of the sequence by bisulfite treating could be a new approach to overcome difficulties in amplifying GC-rich sequences.
Collapse
Affiliation(s)
- Zahra Joz Abbasalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
58
|
Tovar Fernandez MC, Sroka EM, Lavigne M, Thermou A, Daskalogianni C, Manoury B, Prado Martins R, Fahraeus R. Substrate-specific presentation of MHC class I-restricted antigens via autophagy pathway. Cell Immunol 2022; 374:104484. [DOI: 10.1016/j.cellimm.2022.104484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022]
|
59
|
Fourier A, Quadrio I. Proteinopathies associated to repeat expansion disorders. J Neural Transm (Vienna) 2022; 129:173-185. [DOI: 10.1007/s00702-021-02454-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
|
60
|
Dhasmana S, Dhasmana A, Narula AS, Jaggi M, Yallapu MM, Chauhan SC. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sci 2022; 288:120156. [PMID: 34801512 DOI: 10.1016/j.lfs.2021.120156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurological disease affecting both upper and lower motor neurons. In the United States alone, there are 16,000-20,000 established cases of ALS. The early disease diagnosis is challenging due to many overlapping pathophysiologies with other neurological diseases. The etiology of ALS is unknown; however, it is divided into two categories: familial ALS (fALS) which occurs due to gene mutations & contributes to 5-10% of ALS, and sporadic ALS (sALS) which is due to environmental factors & contributes to 90-95% of ALS. There is still no curative treatment for ALS: palliative care and symptomatic treatment are therefore essential components in the management of these patients. In this review, we provide a panoramic view of ALS, which includes epidemiology, risk factors, pathophysiologies, biomarkers, diagnosis, therapeutics (natural, synthetic, gene-based, pharmacological, stem cell, extracellular vesicles, and physical therapy), controversies (in the clinical trials of ALS), the scope of nanomedicine in ALS, and future perspectives.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Acharan S Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
61
|
Tzou FY, Wen JK, Yeh JY, Huang SY, Chen GC, Chan CC. Drosophila as a model to study autophagy in neurodegenerative diseases and digestive tract. IUBMB Life 2021; 74:339-360. [PMID: 34874101 DOI: 10.1002/iub.2583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Autophagy regulates cellular homeostasis by degrading and recycling cytosolic components and damaged organelles. Disruption of autophagic flux has been shown to induce or facilitate neurodegeneration and accumulation of autophagic vesicles is overt in neurodegenerative diseases. The fruit fly Drosophila has been used as a model system to identify new factors that regulate physiology and disease. Here we provide a historical perspective of how the fly models have offered mechanistic evidence to understand the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Charcot-Marie-Tooth neuropathy, and polyglutamine disorders. Autophagy also plays a pivotal role in maintaining tissue homeostasis and protecting organism health. The gastrointestinal tract regulates organism health by modulating food intake, energy balance, and immunity. Growing evidence is strengthening the link between autophagy and digestive tract health in recent years. Here, we also discuss how the fly models have advanced the understanding of digestive physiology regulated by autophagy.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jui-Yu Yeh
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
62
|
Marcelo A, Afonso IT, Afonso-Reis R, Brito DVC, Costa RG, Rosa A, Alves-Cruzeiro J, Ferreira B, Henriques C, Nobre RJ, Matos CA, de Almeida LP, Nóbrega C. Autophagy in Spinocerebellar ataxia type 2, a dysregulated pathway, and a target for therapy. Cell Death Dis 2021; 12:1117. [PMID: 34845184 PMCID: PMC8630050 DOI: 10.1038/s41419-021-04404-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an incurable and genetic neurodegenerative disorder. The disease is characterized by progressive degeneration of several brain regions, resulting in severe motor and non-motor clinical manifestations. The mutation causing SCA2 disease is an abnormal expansion of CAG trinucleotide repeats in the ATXN2 gene, leading to a toxic expanded polyglutamine segment in the translated ataxin-2 protein. While the genetic cause is well established, the exact mechanisms behind neuronal death induced by mutant ataxin-2 are not yet completely understood. Thus, the goal of this study is to investigate the role of autophagy in SCA2 pathogenesis and investigate its suitability as a target for therapeutic intervention. For that, we developed and characterized a new striatal lentiviral mouse model that resembled several neuropathological hallmarks observed in SCA2 disease, including formation of aggregates, neuronal marker loss, cell death and neuroinflammation. In this new model, we analyzed autophagic markers, which were also analyzed in a SCA2 cellular model and in human post-mortem brain samples. Our results showed altered levels of SQSTM1 and LC3B in cells and tissues expressing mutant ataxin-2. Moreover, an abnormal accumulation of these markers was detected in SCA2 patients' striatum and cerebellum. Importantly, the molecular activation of autophagy, using the compound cordycepin, mitigated the phenotypic alterations observed in disease models. Overall, our study suggests an important role for autophagy in the context of SCA2 pathology, proposing that targeting this pathway could be a potential target to treat SCA2 patients.
Collapse
Affiliation(s)
- Adriana Marcelo
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- PhD Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Inês T Afonso
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
| | - Ricardo Afonso-Reis
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - David V C Brito
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
| | - Rafael G Costa
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Ana Rosa
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
| | - João Alves-Cruzeiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Benedita Ferreira
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rui J Nobre
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Carlos A Matos
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
63
|
McIntosh CS, Li D, Wilton SD, Aung-Htut MT. Polyglutamine Ataxias: Our Current Molecular Understanding and What the Future Holds for Antisense Therapies. Biomedicines 2021; 9:1499. [PMID: 34829728 PMCID: PMC8615177 DOI: 10.3390/biomedicines9111499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine (polyQ) ataxias are a heterogenous group of neurological disorders all caused by an expanded CAG trinucleotide repeat located in the coding region of each unique causative gene. To date, polyQ ataxias encompass six disorders: spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17 and account for a larger group of disorders simply known as polyglutamine disorders, which also includes Huntington's disease. These diseases are typically characterised by progressive ataxia, speech and swallowing difficulties, lack of coordination and gait, and are unfortunately fatal in nature, with the exception of SCA6. All the polyQ spinocerebellar ataxias have a hallmark feature of neuronal aggregations and share many common pathogenic mechanisms, such as mitochondrial dysfunction, impaired proteasomal function, and autophagy impairment. Currently, therapeutic options are limited, with no available treatments that slow or halt disease progression. Here, we discuss the common molecular and clinical presentations of polyQ spinocerebellar ataxias. We will also discuss the promising antisense oligonucleotide therapeutics being developed as treatments for these devastating diseases. With recent advancements and therapeutic approvals of various antisense therapies, it is envisioned that some of the studies reviewed may progress into clinical trials and beyond.
Collapse
Affiliation(s)
- Craig S. McIntosh
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Dunhui Li
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - May T. Aung-Htut
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
64
|
Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22:589-607. [PMID: 34140671 PMCID: PMC9612635 DOI: 10.1038/s41580-021-00382-6] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The human genome contains over one million short tandem repeats. Expansion of a subset of these repeat tracts underlies over fifty human disorders, including common genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (C9orf72), polyglutamine-associated ataxias and Huntington disease, myotonic dystrophy, and intellectual disability disorders such as Fragile X syndrome. In this Review, we discuss the four major mechanisms by which expansion of short tandem repeats causes disease: loss of function through transcription repression, RNA-mediated gain of function through gelation and sequestration of RNA-binding proteins, gain of function of canonically translated repeat-harbouring proteins, and repeat-associated non-AUG translation of toxic repeat peptides. Somatic repeat instability amplifies these mechanisms and influences both disease age of onset and tissue specificity of pathogenic features. We focus on the crosstalk between these disease mechanisms, and argue that they often synergize to drive pathogenesis. We also discuss the emerging native functions of repeat elements and how their dynamics might contribute to disease at a larger scale than currently appreciated. Lastly, we propose that lynchpins tying these disease mechanisms and native functions together offer promising therapeutic targets with potential shared applications across this class of human disorders.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Chase P Kelley
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
65
|
Neshige S, Hitomi T, Tojima M, Oi K, Kobayashi K, Matsuhashi M, Shimotake A, Matsumoto R, Kanda M, Maruyama H, Ishiura H, Tsuji S, Takahashi R, Ikeda A. A Role of Aging in the Progression of Cortical Excitability in Benign Adult Familial Myoclonus Epilepsy type 1 Patients. Mov Disord 2021; 36:2446-2448. [PMID: 34302697 DOI: 10.1002/mds.28718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Shuichiro Neshige
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maya Tojima
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuki Oi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masutaro Kanda
- Department of Neurology, Takeda General Hospital, Kyoto, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, The University of Tokyo Hospital, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, The University of Tokyo Hospital, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Tokyo, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
66
|
Targeting RNA structures in diseases with small molecules. Essays Biochem 2021; 64:955-966. [PMID: 33078198 PMCID: PMC7724634 DOI: 10.1042/ebc20200011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023]
Abstract
RNA is crucial for gene expression and regulation. Recent advances in understanding of RNA biochemistry, structure and molecular biology have revealed the importance of RNA structure in cellular processes and diseases. Various approaches to discovering drug-like small molecules that target RNA structure have been developed. This review provides a brief introduction to RNA structural biology and how RNA structures function as disease regulators. We summarize approaches to targeting RNA with small molecules and highlight their advantages, shortcomings and therapeutic potential.
Collapse
|
67
|
Sun D, Weng J, Dong Y, Jiang Y. Three-dimensional genome organization in the central nervous system, implications for neuropsychological disorders. J Genet Genomics 2021; 48:1045-1056. [PMID: 34426099 DOI: 10.1016/j.jgg.2021.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Chromosomes in eukaryotic cell nuclei are highly compacted and finely organized into hierarchical three-dimensional (3D) configuration. In recent years, scientists have gained deeper understandings of 3D genome structures and revealed novel evidence linking 3D genome organization to various important cell events on the molecular level. Most importantly, alteration of 3D genome architecture has emerged as an intriguing higher order mechanism that connects disease-related genetic variants in multiple heterogenous and polygenic neuropsychological disorders, delivering novel insights into the etiology. In this review, we provide a brief overview of the hierarchical structures of 3D genome and two proposed regulatory models, loop extrusion and phase separation. We then focus on recent Hi-C data in the central nervous system and discuss 3D genome alterations during normal brain development and in mature neurons. Most importantly, we make a comprehensive review on current knowledge and discuss the role of 3D genome in multiple neuropsychological disorders, including schizophrenia, repeat expansion disorders, 22q11 deletion syndrome, and others.
Collapse
Affiliation(s)
- Daijing Sun
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jie Weng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuhao Dong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
68
|
Wang XW, Liu CX, Chen LL, Zhang QC. RNA structure probing uncovers RNA structure-dependent biological functions. Nat Chem Biol 2021; 17:755-766. [PMID: 34172967 DOI: 10.1038/s41589-021-00805-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/23/2021] [Indexed: 01/22/2023]
Abstract
RNA molecules fold into complex structures that enable their diverse functions in cells. Recent revolutionary innovations in transcriptome-wide RNA structural probing of living cells have ushered in a new era in understanding RNA functions. Here, we summarize the latest technological advances for probing RNA secondary structures and discuss striking discoveries that have linked RNA regulation and biological processes through interrogation of RNA structures. In particular, we highlight how different long noncoding RNAs form into distinct secondary structures that determine their modes of interactions with protein partners to realize their unique functions. These dynamic structures mediate RNA regulatory functions through altering interactions with proteins and other RNAs. We also outline current methodological hurdles and speculate about future directions for development of the next generation of RNA structure-probing technologies of higher sensitivity and resolution, which could then be applied in increasingly physiologically relevant studies.
Collapse
Affiliation(s)
- Xi-Wen Wang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Life Sciences, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
69
|
Role and Perspective of Molecular Simulation-Based Investigation of RNA-Ligand Interaction: From Small Molecules and Peptides to Photoswitchable RNA Binding. Molecules 2021; 26:molecules26113384. [PMID: 34205049 PMCID: PMC8199858 DOI: 10.3390/molecules26113384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant RNA–protein complexes are formed in a variety of diseases. Identifying the ligands that interfere with their formation is a valuable therapeutic strategy. Molecular simulation, validated against experimental data, has recently emerged as a powerful tool to predict both the pose and energetics of such ligands. Thus, the use of molecular simulation may provide insight into aberrant molecular interactions in diseases and, from a drug design perspective, may allow for the employment of less wet lab resources than traditional in vitro compound screening approaches. With regard to basic research questions, molecular simulation can support the understanding of the exact molecular interaction and binding mode. Here, we focus on examples targeting RNA–protein complexes in neurodegenerative diseases and viral infections. These examples illustrate that the strategy is rather general and could be applied to different pharmacologically relevant approaches. We close this study by outlining one of these approaches, namely the light-controllable association of small molecules with RNA, as an emerging approach in RNA-targeting therapy.
Collapse
|
70
|
Cascarina SM, King DC, Osborne Nishimura E, Ross ED. LCD-Composer: an intuitive, composition-centric method enabling the identification and detailed functional mapping of low-complexity domains. NAR Genom Bioinform 2021; 3:lqab048. [PMID: 34056598 PMCID: PMC8153834 DOI: 10.1093/nargab/lqab048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Low complexity domains (LCDs) in proteins are regions predominantly composed of a small subset of the possible amino acids. LCDs are involved in a variety of normal and pathological processes across all domains of life. Existing methods define LCDs using information-theoretical complexity thresholds, sequence alignment with repetitive regions, or statistical overrepresentation of amino acids relative to whole-proteome frequencies. While these methods have proven valuable, they are all indirectly quantifying amino acid composition, which is the fundamental and biologically-relevant feature related to protein sequence complexity. Here, we present a new computational tool, LCD-Composer, that directly identifies LCDs based on amino acid composition and linear amino acid dispersion. Using LCD-Composer's default parameters, we identified simple LCDs across all organisms available through UniProt and provide the resulting data in an accessible form as a resource. Furthermore, we describe large-scale differences between organisms from different domains of life and explore organisms with extreme LCD content for different LCD classes. Finally, we illustrate the versatility and specificity achievable with LCD-Composer by identifying diverse classes of LCDs using both simple and multifaceted composition criteria. We demonstrate that the ability to dissect LCDs based on these multifaceted criteria enhances the functional mapping and classification of LCDs.
Collapse
Affiliation(s)
- Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - David C King
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
71
|
Krude H, Mundlos S, Øien NC, Opitz R, Schuelke M. What can go wrong in the non-coding genome and how to interpret whole genome sequencing data. MED GENET-BERLIN 2021; 33:121-131. [PMID: 38836035 PMCID: PMC11007630 DOI: 10.1515/medgen-2021-2071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/24/2021] [Indexed: 06/06/2024]
Abstract
Whole exome sequencing discovers causative mutations in less than 50 % of rare disease patients, suggesting the presence of additional mutations in the non-coding genome. So far, non-coding mutations have been identified in less than 0.2 % of individuals with genetic diseases listed in the ClinVar database and exhibit highly diverse molecular mechanisms. In contrast to our capability to sequence the whole genome, our ability to discover and functionally confirm such non-coding mutations is lagging behind severely. We discuss the problems and present examples of confirmed mutations in deep intronic sequences, non-coding triplet repeats, enhancers, and larger structural variants and highlight their proposed disease mechanisms. Finally, we discuss the type of data that would be required to establish non-coding mutation detection in routine diagnostics.
Collapse
Affiliation(s)
- Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mundlos
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nancy Christine Øien
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Opitz
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
72
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
73
|
Xu K, Li Y, Allen EG, Jin P. Therapeutic Development for CGG Repeat Expansion-Associated Neurodegeneration. Front Cell Neurosci 2021; 15:655568. [PMID: 34054431 PMCID: PMC8149615 DOI: 10.3389/fncel.2021.655568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding repeat expansions, such as CGG, GGC, CUG, CCUG, and GGGGCC, have been shown to be involved in many human diseases, particularly neurological disorders. Of the diverse pathogenic mechanisms proposed in these neurodegenerative diseases, dysregulated RNA metabolism has emerged as an important contributor. Expanded repeat RNAs that form particular structures aggregate to form RNA foci, sequestering various RNA binding proteins and consequently altering RNA splicing, transport, and other downstream biological processes. One of these repeat expansion-associated diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), is caused by a CGG repeat expansion in the 5'UTR region of the fragile X mental retardation 1 (FMR1) gene. Moreover, recent studies have revealed abnormal GGC repeat expansion within the 5'UTR region of the NOTCH2NLC gene in both essential tremor (ET) and neuronal intranuclear inclusion disease (NIID). These CGG repeat expansion-associated diseases share genetic, pathological, and clinical features. Identification of the similarities at the molecular level could lead to a better understanding of the disease mechanisms as well as developing novel therapeutic strategies. Here, we highlight our current understanding of the molecular pathogenesis of CGG repeat expansion-associated diseases and discuss potential therapeutic interventions for these neurological disorders.
Collapse
Affiliation(s)
- Keqin Xu
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yujing Li
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
74
|
Homopeptide and homocodon levels across fungi are coupled to GC/AT-bias and intrinsic disorder, with unique behaviours for some amino acids. Sci Rep 2021; 11:10025. [PMID: 33976321 PMCID: PMC8113271 DOI: 10.1038/s41598-021-89650-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
Homopeptides (runs of one amino-acid type) are evolutionarily important since they are prone to expand/contract during DNA replication, recombination and repair. To gain insight into the genomic/proteomic traits driving their variation, we analyzed how homopeptides and homocodons (which are pure codon repeats) vary across 405 Dikarya, and probed their linkage to genome GC/AT bias and other factors. We find that amino-acid homopeptide frequencies vary diversely between clades, with the AT-rich Saccharomycotina trending distinctly. As organisms evolve, homocodon and homopeptide numbers are majorly coupled to GC/AT-bias, exhibiting a bi-furcated correlation with degree of AT- or GC-bias. Mid-GC/AT genomes tend to have markedly fewer simply because they are mid-GC/AT. Despite these trends, homopeptides tend to be GC-biased relative to other parts of coding sequences, even in AT-rich organisms, indicating they absorb AT bias less or are inherently more GC-rich. The most frequent and most variable homopeptide amino acids favour intrinsic disorder, and there are an opposing correlation and anti-correlation versus homopeptide levels for intrinsic disorder and structured-domain content respectively. Specific homopeptides show unique behaviours that we suggest are linked to inherent slippage probabilities during DNA replication and recombination, such as poly-glutamine, which is an evolutionarily very variable homopeptide with a codon repertoire unbiased for GC/AT, and poly-lysine whose homocodons are overwhelmingly made from the codon AAG.
Collapse
|
75
|
Zou X, Yao F, Li F, Wu S, Li H, Sun Z, Zhu T, Wei X, Li D, Sui R. Clinical characterization and the improved molecular diagnosis of autosomal dominant cone-rod dystrophy in patients with SCA7. Mol Vis 2021; 27:221-232. [PMID: 34012225 PMCID: PMC8116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/05/2021] [Indexed: 10/31/2022] Open
Abstract
Purpose To evaluate the retinal phenotype and genetic features of Chinese patients with spinocerebellar ataxia type 7 (SCA7). Methods Detailed ophthalmic examinations, including electroretinograms, fundus photography, fundus autofluorescence and optical coherence tomography, were performed to analyse the retinal lesions of patients with SCA7. A molecular genetic analysis was completed to confirm the number of CAG repeats in ATXN7 gene on the patients and their family members. Results Eight patients from three families with SCA7 were included in this study. Trinucleotide repeat was expanded from 43 to 113 in the affected patients. The affected patients were characterized by different degrees of cone-rod dystrophy, which is positively related to the number of CAG repeats and age. All patients complained of progressive bilateral visual loss, and most cases reported visual disturbance earlier than gait movement or dysarthria. A coarse granular appearance of the macular region on scanning laser ophthalmoscopy, hypofluorescence in the macula on autofluorescence, retinal atrophy on optic coherence tomography, depression of multifocal electroretinograms and prominent abnormalities in cone-mediated responses on electrograms are the general features of SCA7-related retinopathy. Hyperreflective dots in the outer retinal layers and choroidal vessel layers are a common sign in optic coherence tomography in the advanced stage. Conclusions SCA7 shows a cone-rod dystrophy phenotype. The multimodal imaging of the retina is beneficial to detect the early lesions of cone-rod dystrophy related to SCA7.
Collapse
Affiliation(s)
- Xuan Zou
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengxia Yao
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengrong Li
- Department of Ophthalmology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xing Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Donghui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
76
|
Zhu D, Schieferecke AJ, Lopez PA, Schaffer DV. Adeno-Associated Virus Vector for Central Nervous System Gene Therapy. Trends Mol Med 2021; 27:524-537. [PMID: 33895085 DOI: 10.1016/j.molmed.2021.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
The past several years have witnessed significant advances in the development of therapeutic gene delivery for neurological disorders of the central nervous system (CNS). In particular, genome-wide sequencing analysis has deepened our understanding of mutations that underlie many monogenic disorders, which in turn has contributed to clinical advances involving adeno-associated virus (AAV) vector delivery of replacement genes to treat recessive disorders. Moreover, gene therapy has been further bolstered with advances in genome editing tools that allow researchers to silence, repair, and amend endogenous genes. However, despite strong preclinical and clinical progress, challenges remain, including delivery and safety. Here, we discuss advances in AAV engineering, recent developments in cargo design, and translation of these technologies towards clinical progress.
Collapse
Affiliation(s)
- Danqing Zhu
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Adam J Schieferecke
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Paola A Lopez
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - David V Schaffer
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
77
|
Liu H, Lu YN, Paul T, Periz G, Banco MT, Ferré-D'Amaré AR, Rothstein JD, Hayes LR, Myong S, Wang J. A Helicase Unwinds Hexanucleotide Repeat RNA G-Quadruplexes and Facilitates Repeat-Associated Non-AUG Translation. J Am Chem Soc 2021; 143:7368-7379. [PMID: 33855846 DOI: 10.1021/jacs.1c00131] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of a hexanucleotide repeat GGGGCC (G4C2) in the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The G4C2 expansion leads to repeat-associated non-AUG (RAN) translation and the production of toxic dipeptide repeat (DPR) proteins, but the mechanisms of RAN translation remain enigmatic. Here, we report that the RNA helicase DHX36 is a robust positive regulator of C9orf72 RAN translation. DHX36 has a high affinity for the G4C2 repeat RNA, preferentially binds to the repeat RNA's G-quadruplex conformation, and efficiently unwinds the G4C2 G-quadruplex structures. Native DHX36 interacts with the G4C2 repeat RNA and is essential for effective RAN translation in the cell. In induced pluripotent stem cells and differentiated motor neurons derived from C9orf72-linked ALS patients, reducing DHX36 significantly decreased the levels of endogenous DPR proteins. DHX36 is also aberrantly upregulated in tissues of C9orf72-linked ALS patients. These results indicate that DHX36 facilitates C9orf72 RAN translation by resolving repeat RNA G-quadruplex structures and may be a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Honghe Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Yu-Ning Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Michael T Banco
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States
| | - Jeffrey D Rothstein
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Lindsey R Hayes
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
78
|
Ajjugal Y, Kolimi N, Rathinavelan T. Secondary structural choice of DNA and RNA associated with CGG/CCG trinucleotide repeat expansion rationalizes the RNA misprocessing in FXTAS. Sci Rep 2021; 11:8163. [PMID: 33854084 PMCID: PMC8046799 DOI: 10.1038/s41598-021-87097-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
CGG tandem repeat expansion in the 5'-untranslated region of the fragile X mental retardation-1 (FMR1) gene leads to unusual nucleic acid conformations, hence causing genetic instabilities. We show that the number of G…G (in CGG repeat) or C…C (in CCG repeat) mismatches (other than A…T, T…A, C…G and G…C canonical base pairs) dictates the secondary structural choice of the sense and antisense strands of the FMR1 gene and their corresponding transcripts in fragile X-associated tremor/ataxia syndrome (FXTAS). The circular dichroism (CD) spectra and electrophoretic mobility shift assay (EMSA) reveal that CGG DNA (sense strand of the FMR1 gene) and its transcript favor a quadruplex structure. CD, EMSA and molecular dynamics (MD) simulations also show that more than four C…C mismatches cannot be accommodated in the RNA duplex consisting of the CCG repeat (antisense transcript); instead, it favors an i-motif conformational intermediate. Such a preference for unusual secondary structures provides a convincing justification for the RNA foci formation due to the sequestration of RNA-binding proteins to the bidirectional transcripts and the repeat-associated non-AUG translation that are observed in FXTAS. The results presented here also suggest that small molecule modulators that can destabilize FMR1 CGG DNA and RNA quadruplex structures could be promising candidates for treating FXTAS.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | - Narendar Kolimi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | | |
Collapse
|
79
|
Abstract
The subcellular localization of RNAs correlates with their function and how they are regulated. Most protein-coding mRNAs are exported into the cytoplasm for protein synthesis, while some mRNA species, long noncoding RNAs, and some regulatory element-associated unstable transcripts tend to be retained in the nucleus, where they function as a regulatory unit and/or are regulated by nuclear surveillance pathways. While the mechanisms regulating mRNA export and localization have been well summarized, the mechanisms governing nuclear retention of RNAs, especially of noncoding RNAs, are seldomly reviewed. In this review, we summarize recent advances in the mechanistic study of RNA nuclear retention, especially for noncoding RNAs, from the angle of cis-acting elements embedded in RNA transcripts and their interaction with trans-acting factors. We also try to illustrate the general principles of RNA nuclear retention and we discuss potential areas for future investigation.
Collapse
Affiliation(s)
- Chong Tong
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
80
|
Zeng J, Santos AF, Mukadam AS, Osswald M, Jacques DA, Dickson CF, McLaughlin SH, Johnson CM, Kiss L, Luptak J, Renner N, Vaysburd M, McEwan WA, Morais-de-Sá E, Clift D, James LC. Target-induced clustering activates Trim-Away of pathogens and proteins. Nat Struct Mol Biol 2021; 28:278-289. [PMID: 33633400 PMCID: PMC7611929 DOI: 10.1038/s41594-021-00560-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Trim-Away is a recently developed technology that exploits off-the-shelf antibodies and the RING E3 ligase and cytosolic antibody receptor TRIM21 to carry out rapid protein depletion. How TRIM21 is catalytically activated upon target engagement, either during its normal immune function or when repurposed for targeted protein degradation, is unknown. Here we show that a mechanism of target-induced clustering triggers intermolecular dimerization of the RING domain to switch on the ubiquitination activity of TRIM21 and induce virus neutralization or drive Trim-Away. We harness this mechanism for selective degradation of disease-causing huntingtin protein containing long polyglutamine tracts and expand the Trim-Away toolbox with highly active TRIM21-nanobody chimeras that can also be controlled optogenetically. This work provides a mechanism for cellular activation of TRIM RING ligases and has implications for targeted protein degradation technologies.
Collapse
Affiliation(s)
- Jingwei Zeng
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Ana Filipa Santos
- i3S - Instituto de Investigação e Inovação em Saúde and IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Aamir S. Mukadam
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mariana Osswald
- i3S - Instituto de Investigação e Inovação em Saúde and IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - David A. Jacques
- EMBL Australia Node, Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Claire F. Dickson
- EMBL Australia Node, Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | - Leo Kiss
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Jakub Luptak
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Nadine Renner
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Marina Vaysburd
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - William A. McEwan
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Correspondence: William McEwan (); Eurico Morais-de-Sá (); Dean Clift (); Leo C. James ()
| | - Eurico Morais-de-Sá
- i3S - Instituto de Investigação e Inovação em Saúde and IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal,Correspondence: William McEwan (); Eurico Morais-de-Sá (); Dean Clift (); Leo C. James ()
| | - Dean Clift
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK,Correspondence: William McEwan (); Eurico Morais-de-Sá (); Dean Clift (); Leo C. James ()
| | - Leo C. James
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK,Correspondence: William McEwan (); Eurico Morais-de-Sá (); Dean Clift (); Leo C. James ()
| |
Collapse
|
81
|
Alriquet M, Calloni G, Martínez-Limón A, Delli Ponti R, Hanspach G, Hengesbach M, Tartaglia GG, Vabulas RM. The protective role of m1A during stress-induced granulation. J Mol Cell Biol 2021; 12:870-880. [PMID: 32462207 PMCID: PMC7883823 DOI: 10.1093/jmcb/mjaa023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional methylation of N6-adenine and N1-adenine can affect transcriptome turnover and translation. Furthermore, the regulatory function of N6-methyladenine (m6A) during heat shock has been uncovered, including the enhancement of the phase separation potential of RNAs. In response to acute stress, e.g. heat shock, the orderly sequestration of mRNAs in stress granules (SGs) is considered important to protect transcripts from the irreversible aggregation. Until recently, the role of N1-methyladenine (m1A) on mRNAs during acute stress response remains largely unknown. Here we show that the methyltransferase complex TRMT6/61A, which generates the m1A tag, is involved in transcriptome protection during heat shock. Our bioinformatics analysis indicates that occurrence of the m1A motif is increased in mRNAs known to be enriched in SGs. Accordingly, the m1A-generating methyltransferase TRMT6/61A accumulated in SGs and mass spectrometry confirmed enrichment of m1A in the SG RNAs. The insertion of a single methylation motif in the untranslated region of a reporter RNA leads to more efficient recovery of protein synthesis from that transcript after the return to normal temperature. Our results demonstrate far-reaching functional consequences of a minimal RNA modification on N1-adenine during acute proteostasis stress.
Collapse
Affiliation(s)
- Marion Alriquet
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Giulia Calloni
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Adrían Martínez-Limón
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Riccardo Delli Ponti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Gerd Hanspach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Gian G. Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Department of Biology ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - R. Martin Vabulas
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
82
|
Ghasemi M, Keyhanian K, Douthwright C. Glial Cell Dysfunction in C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2021; 10:cells10020249. [PMID: 33525344 PMCID: PMC7912327 DOI: 10.3390/cells10020249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested-(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Correspondence: ; Tel.: +1-774-441-7726; Fax: +1-508-856-4485
| | | | | |
Collapse
|
83
|
Enukashvily NI, Dobrynin MA, Chubar AV. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:151-193. [PMID: 34090614 DOI: 10.1016/bs.apcsb.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Membraneless organelles (bodies, granules, etc.) are spatially distinct sub-nuclear and cytoplasmic foci involved in all the processes in a living cell, such as development, cell death, carcinogenesis, proliferation, and differentiation. Today the list of the membraneless organelles includes a wide spectrum of intranuclear and cytoplasmic bodies. Proteins with intrinsically disordered regions are the key players in the membraneless body assembly. However, recent data assume an important role of RNA molecules in the process of the liquid-liquid phase separation. High-level expression of RNA above a critical concentration threshold is mandatory to nucleate interactions with specific proteins and for seeding membraneless organelles. RNA components are considered by many authors as the principal determinants of organelle identity. Tandemly repeated (TR) DNA of big satellites (a TR family that includes centromeric and pericentromeric DNA sequences) was believed to be transcriptionally silent for a long period. Now we know about the TR transcription upregulation during gameto- and embryogenesis, carcinogenesis, stress response. In the review, we summarize the recent data about the involvement of TR RNA in the formation of nuclear membraneless granules, bodies, etc., with different functions being in some cases an initiator of the structures assembly. These RNP structures sequestrate and inactivate different proteins and transcripts. The TR induced sequestration is one of the key principles of nuclear architecture and genome functioning. Studying the role of the TR-based membraneless organelles in stress and disease will bring some new ideas for translational medicine.
Collapse
Affiliation(s)
- Natella I Enukashvily
- Institute of Cytology RAS, St. Petersburg, Russia; North-Western Medical State University named after I.I. Mechnikov, St. Petersburg, Russia.
| | | | | |
Collapse
|
84
|
Sheeler C, Rosa JG, Borgenheimer E, Mellesmoen A, Rainwater O, Cvetanovic M. Post-symptomatic Delivery of Brain-Derived Neurotrophic Factor (BDNF) Ameliorates Spinocerebellar Ataxia Type 1 (SCA1) Pathogenesis. THE CEREBELLUM 2021; 20:420-429. [PMID: 33394333 DOI: 10.1007/s12311-020-01226-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 11/26/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an abnormal expansion of CAG repeats in the Ataxin1 (ATXN1) gene. SCA1 is characterized by motor deficits, cerebellar neurodegeneration, and gliosis and gene expression changes. Expression of brain-derived neurotrophic factor (BDNF), growth factor important for the survival and function of cerebellar neurons, is decreased in ATXN1[82Q] mice, the Purkinje neuron specific transgenic mouse model of SCA1. As this decrease in BDNF expression may contribute to cerebellar neurodegeneration, we tested whether delivery of extrinsic human BDNF via osmotic ALZET pumps has a beneficial effect on disease severity in this mouse model of SCA1. Additionally, to test the effects of BDNF on established and progressing cerebellar pathogenesis and motor deficits, we delivered BDNF post-symptomatically. We have found that post-symptomatic delivery of extrinsic BDNF ameliorated motor deficits and cerebellar pathology (i.e., dendritic atrophy of Purkinje cells, and astrogliosis) indicating therapeutic potential of BDNF even after the onset of symptoms in SCA1. However, BDNF did not alter Purkinje cell gene expression changes indicating that certain aspects of disease pathogenesis cannot be ameliorated/slowed down with BDNF and that combinational therapies may be needed.
Collapse
Affiliation(s)
- Carrie Sheeler
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Ella Borgenheimer
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Aaron Mellesmoen
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Orion Rainwater
- Department of Lab Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
85
|
Amiri A, Barreto G, Sathyapalan T, Sahebkar A. siRNA Therapeutics: Future Promise for Neurodegenerative Diseases. Curr Neuropharmacol 2021; 19:1896-1911. [PMID: 33797386 PMCID: PMC9185778 DOI: 10.2174/1570159x19666210402104054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases (ND), as a group of central nervous system (CNS) disorders, are among the most prominent medical problems of the 21st century. They are often associated with considerable disability, motor dysfunction and dementia and are more common in the aged population. ND imposes a psychologic, economic and social burden on the patients and their families. Currently, there is no effective treatment for ND. Since many ND result from the gain of function of a mutant allele, small interference RNA (siRNA) can be a potential therapeutic agent for ND management. Based on the RNA interference (RNAi) approach, siRNA is a powerful tool for modulating gene expression through gene silencing. However, there are some obstacles in the clinical application of siRNA, including unfavorable immune response, off-target effects, instability of naked siRNA, nuclease susceptibility and a need to develop a suitable delivery system. Since there are some issues related to siRNA delivery routes, in this review, we focus on the application of siRNA in the management of ND treatment from 2000 to 2020.
Collapse
Affiliation(s)
| | | | | | - Amirhossein Sahebkar
- Address correspondence to this author at the Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Tel: 985118002288; Fax: 985118002287; E-mails: ;
| |
Collapse
|
86
|
Liu Q, Tong Y, Wang K. Genome-wide detection of short tandem repeat expansions by long-read sequencing. BMC Bioinformatics 2020; 21:542. [PMID: 33371889 PMCID: PMC7768641 DOI: 10.1186/s12859-020-03876-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Short tandem repeat (STR), or "microsatellite", is a tract of DNA in which a specific motif (typically < 10 base pairs) is repeated multiple times. STRs are abundant throughout the human genome, and specific repeat expansions may be associated with human diseases. Long-read sequencing coupled with bioinformatics tools enables the estimation of repeat counts for STRs. However, with the exception of a few well-known disease-relevant STRs, normal ranges of repeat counts for most STRs in human populations are not well known, preventing the prioritization of STRs that may be associated with human diseases. RESULTS In this study, we extend a computational tool RepeatHMM to infer normal ranges of 432,604 STRs using 21 long-read sequencing datasets on human genomes, and build a genomic-scale database called RepeatHMM-DB with normal repeat ranges for these STRs. Evaluation on 13 well-known repeats show that the inferred repeat ranges provide good estimation to repeat ranges reported in literature from population-scale studies. This database, together with a repeat expansion estimation tool such as RepeatHMM, enables genomic-scale scanning of repeat regions in newly sequenced genomes to identify disease-relevant repeat expansions. As a case study of using RepeatHMM-DB, we evaluate the CAG repeats of ATXN3 for 20 patients with spinocerebellar ataxia type 3 (SCA3) and 5 unaffected individuals, and correctly classify each individual. CONCLUSIONS In summary, RepeatHMM-DB can facilitate prioritization and identification of disease-relevant STRs from whole-genome long-read sequencing data on patients with undiagnosed diseases. RepeatHMM-DB is incorporated into RepeatHMM and is available at https://github.com/WGLab/RepeatHMM .
Collapse
Affiliation(s)
- Qian Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yao Tong
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
87
|
Hop PJ, Zwamborn RAJ, Hannon EJ, Dekker AM, van Eijk K, Walker E, Iacoangeli A, Jones A, Shatunov A, Khleifat AA, Opie-Martin S, Shaw C, Morrison K, Shaw P, McLaughlin R, Hardiman O, Al-Chalabi A, Van Den Berg L, Mill J, Veldink JH. Cross-reactive probes on Illumina DNA methylation arrays: a large study on ALS shows that a cautionary approach is warranted in interpreting epigenome-wide association studies. NAR Genom Bioinform 2020; 2:lqaa105. [PMID: 33554115 PMCID: PMC7745769 DOI: 10.1093/nargab/lqaa105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/27/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Illumina DNA methylation arrays are a widely used tool for performing genome-wide DNA methylation analyses. However, measurements obtained from these arrays may be affected by technical artefacts that result in spurious associations if left unchecked. Cross-reactivity represents one of the major challenges, meaning that probes may map to multiple regions in the genome. Although several studies have reported on this issue, few studies have empirically examined the impact of cross-reactivity in an epigenome-wide association study (EWAS). In this paper, we report on cross-reactivity issues that we discovered in a large EWAS on the presence of the C9orf72 repeat expansion in ALS patients. Specifically, we found that that the majority of the significant probes inadvertently cross-hybridized to the C9orf72 locus. Importantly, these probes were not flagged as cross-reactive in previous studies, leading to novel insights into the extent to which cross-reactivity can impact EWAS. Our findings are particularly relevant for epigenetic studies into diseases associated with repeat expansions and other types of structural variation. More generally however, considering that most spurious associations were not excluded based on pre-defined sets of cross-reactive probes, we believe that the presented data-driven flag and consider approach is relevant for any type of EWAS.
Collapse
Affiliation(s)
- Paul J Hop
- Department of Neurology, UMC Utrecht Brain Center, 3584 CG, Utrecht, the Netherlands
| | - Ramona A J Zwamborn
- Department of Neurology, UMC Utrecht Brain Center, 3584 CG, Utrecht, the Netherlands
| | - Eilis J Hannon
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Annelot M Dekker
- Department of Neurology, UMC Utrecht Brain Center, 3584 CG, Utrecht, the Netherlands
| | - Kristel R van Eijk
- Department of Neurology, UMC Utrecht Brain Center, 3584 CG, Utrecht, the Netherlands
| | - Emma M Walker
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RS, UK
- Department of Biostatistics and Health Informatics, King’s College London, London SE5 8AF, UK
| | - Ashley R Jones
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RS, UK
| | - Aleksey Shatunov
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RS, UK
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RS, UK
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RS, UK
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RS, UK
- UK Dementia Research Institute, King’s College London, London WC2R 2LS, UK
| | - Karen E Morrison
- Faculty of Medicine, Health & Life Sciences, Queen’s University Belfast, 90 Lisburn Road, Belfast, BT9 6AG, Northern Ireland, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 DK07, Republic of Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin D02 PN40, Republic of Ireland
- Department of Neurology, Beaumont Hospital, Dublin D02 PN40, Republic of Ireland
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RS, UK
- Department of Neurology, King’s College Hospital, Bessemer Road, London, SE5 9RX, UK
| | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, 3584 CG, Utrecht, the Netherlands
| |
Collapse
|
88
|
Persi E, Wolf YI, Horn D, Ruppin E, Demichelis F, Gatenby RA, Gillies RJ, Koonin EV. Mutation-selection balance and compensatory mechanisms in tumour evolution. Nat Rev Genet 2020; 22:251-262. [PMID: 33257848 DOI: 10.1038/s41576-020-00299-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Intratumour heterogeneity and phenotypic plasticity, sustained by a range of somatic aberrations, as well as epigenetic and metabolic adaptations, are the principal mechanisms that enable cancers to resist treatment and survive under environmental stress. A comprehensive picture of the interplay between different somatic aberrations, from point mutations to whole-genome duplications, in tumour initiation and progression is lacking. We posit that different genomic aberrations generally exhibit a temporal order, shaped by a balance between the levels of mutations and selective pressures. Repeat instability emerges first, followed by larger aberrations, with compensatory effects leading to robust tumour fitness maintained throughout the tumour progression. A better understanding of the interplay between genetic aberrations, the microenvironment, and epigenetic and metabolic cellular states is essential for early detection and prevention of cancer as well as development of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David Horn
- School of Physics and Astronomy, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Demichelis
- Department for Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Robert A Gatenby
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
89
|
Chong S, Mir M. Towards Decoding the Sequence-Based Grammar Governing the Functions of Intrinsically Disordered Protein Regions. J Mol Biol 2020; 433:166724. [PMID: 33248138 DOI: 10.1016/j.jmb.2020.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
A substantial portion of the proteome consists of intrinsically disordered regions (IDRs) that do not fold into well-defined 3D structures yet perform numerous biological functions and are associated with a broad range of diseases. It has been a long-standing enigma how different IDRs successfully execute their specific functions. Further putting a spotlight on IDRs are recent discoveries of functionally relevant biomolecular assemblies, which in some cases form through liquid-liquid phase separation. At the molecular level, the formation of biomolecular assemblies is largely driven by weak, multivalent, but selective IDR-IDR interactions. Emerging experimental and computational studies suggest that the primary amino acid sequences of IDRs encode a variety of their interaction behaviors. In this review, we focus on findings and insights that connect sequence-derived features of IDRs to their conformations, propensities to form biomolecular assemblies, selectivity of interaction partners, functions in the context of physiology and disease, and regulation of function. We also discuss directions of future research to facilitate establishing a comprehensive sequence-function paradigm that will eventually allow prediction of selective interactions and specificity of function mediated by IDRs.
Collapse
Affiliation(s)
- Shasha Chong
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, United States; The Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, United States.
| | - Mustafa Mir
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
90
|
Braz SO, Dinca DM, Gourdon G, Gomes-Pereira M. Real Time Videomicroscopy and Semiautomated Analysis of Brain Cell Culture Models of Trinucleotide Repeat Expansion Diseases. Methods Mol Biol 2020; 2056:217-240. [PMID: 31586351 DOI: 10.1007/978-1-4939-9784-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proper brain function requires the coordinated and intricate interaction between neuronal and glial cells. Like many other neurological conditions, trinucleotide repeat expansion disorders are likely initiated by the synergistic combination of abnormalities hitting different brain cell types, which ultimately disrupt brain function and lead to the onset of neurological symptoms. Understanding how trinucleotide repeat expansions affect the phenotypes and physiology of neurons and glia is fundamental to improve our understanding of disease mechanisms in the brain and shape the design of future therapeutic interventions.Here we describe a protocol for semiautomated videomicroscopy analysis of cultured brain cells, maintained under suitable and controlled conditions. Through real-time monitoring of basic cell phenotypes (such as proliferation, cell morphology, differentiation, and migration) this method provides an accurate primary assessment of the impact of the repeat expansion on the physiology of neurons and glia. The versatility of the system, the automated image acquisition and the semiautomated processing of the data collected allow rapid phenotypic analysis of individual cell types, as well as the investigation of cell-cell interactions. The stability of the acquisition system provides reproducible and robust results. The raw data can be easily exported to other software to perform more sophisticated imaging analysis and statistical tests. In summary, the methods described offer versatile, reproducible, and time-effective means to dissect the impact of the repeat expansion on different brain cell types and on intercellular interactions.
Collapse
Affiliation(s)
- Sandra O Braz
- Laboratory CTGDM, Inserm UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes- Sorbonne Paris Cité, Paris, France
| | - Diana M Dinca
- Laboratory CTGDM, Inserm UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes- Sorbonne Paris Cité, Paris, France
| | - Geneviève Gourdon
- Laboratory CTGDM, Inserm UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes- Sorbonne Paris Cité, Paris, France.,Centre de Recherche en Myologie (CRM), Inserm UMRS974, Association Institut de Myologie, Sorbonne Université, Paris, France
| | - Mário Gomes-Pereira
- Laboratory CTGDM, Inserm UMR1163, Paris, France. .,Institut Imagine, Université Paris Descartes- Sorbonne Paris Cité, Paris, France. .,Centre de Recherche en Myologie (CRM), Inserm UMRS974, Association Institut de Myologie, Sorbonne Université, Paris, France.
| |
Collapse
|
91
|
Balzano E, Pelliccia F, Giunta S. Genome (in)stability at tandem repeats. Semin Cell Dev Biol 2020; 113:97-112. [PMID: 33109442 DOI: 10.1016/j.semcdb.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
Repeat sequences account for over half of the human genome and represent a significant source of variation that underlies physiological and pathological states. Yet, their study has been hindered due to limitations in short-reads sequencing technology and difficulties in assembly. A important category of repetitive DNA in the human genome is comprised of tandem repeats (TRs), where repetitive units are arranged in a head-to-tail pattern. Compared to other regions of the genome, TRs carry between 10 and 10,000 fold higher mutation rate. There are several mutagenic mechanisms that can give rise to this propensity toward instability, but their precise contribution remains speculative. Given the high degree of homology between these sequences and their arrangement in tandem, once damaged, TRs have an intrinsic propensity to undergo aberrant recombination with non-allelic exchange and generate harmful rearrangements that may undermine the stability of the entire genome. The dynamic mutagenesis at TRs has been found to underlie individual polymorphism associated with neurodegenerative and neuromuscular disorders, as well as complex genetic diseases like cancer and diabetes. Here, we review our current understanding of the surveillance and repair mechanisms operating within these regions, and we describe how alterations in these protective processes can readily trigger mutational signatures found at TRs, ultimately resulting in the pathological correlation between TRs instability and human diseases. Finally, we provide a viewpoint to counter the detrimental effects that TRs pose in light of their selection and conservation, as important drivers of human evolution.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Franca Pelliccia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Simona Giunta
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy.
| |
Collapse
|
92
|
Overhoff M, De Bruyckere E, Kononenko NL. Mechanisms of neuronal survival safeguarded by endocytosis and autophagy. J Neurochem 2020; 157:263-296. [PMID: 32964462 DOI: 10.1111/jnc.15194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Multiple aspects of neuronal physiology crucially depend on two cellular pathways, autophagy and endocytosis. During endocytosis, extracellular components either unbound or recognized by membrane-localized receptors (termed "cargo") become internalized into plasma membrane-derived vesicles. These can serve to either recycle the material back to the plasma membrane or send it for degradation to lysosomes. Autophagy also uses lysosomes as a terminal degradation point, although instead of degrading the plasma membrane-derived cargo, autophagy eliminates detrimental cytosolic material and intracellular organelles, which are transported to lysosomes by means of double-membrane vesicles, referred to as autophagosomes. Neurons, like all non-neuronal cells, capitalize on autophagy and endocytosis to communicate with the environment and maintain protein and organelle homeostasis. Additionally, the highly polarized, post-mitotic nature of neurons made them adopt these two pathways for cell-specific functions. These include the maintenance of the synaptic vesicle pool in the pre-synaptic terminal and the long-distance transport of signaling molecules. Originally discovered independently from each other, it is now clear that autophagy and endocytosis are closely interconnected and share several common participating molecules. Considering the crucial role of autophagy and endocytosis in cell type-specific functions in neurons, it is not surprising that defects in both pathways have been linked to the pathology of numerous neurodegenerative diseases. In this review, we highlight the recent knowledge of the role of endocytosis and autophagy in neurons with a special focus on synaptic physiology and discuss how impairments in genes coding for autophagy and endocytosis proteins can cause neurodegeneration.
Collapse
Affiliation(s)
- Melina Overhoff
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Elodie De Bruyckere
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
93
|
Costa MDC, Radzwion M, McLoughlin HS, Ashraf NS, Fischer S, Shakkottai VG, Maciel P, Paulson HL, Öz G. In Vivo Molecular Signatures of Cerebellar Pathology in Spinocerebellar Ataxia Type 3. Mov Disord 2020; 35:1774-1786. [PMID: 32621646 PMCID: PMC7572607 DOI: 10.1002/mds.28140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND No treatment exists for the most common dominantly inherited ataxia Machado-Joseph disease, or spinocerebellar ataxia type 3 (SCA3). Successful evaluation of candidate therapeutics will be facilitated by validated noninvasive biomarkers of disease pathology recapitulated by animal models. OBJECTIVE We sought to identify shared in vivo neurochemical signatures in two mouse models of SCA3 that reflect the human disease pathology. METHODS Cerebellar neurochemical concentrations in homozygous YACMJD84.2 (Q84/Q84) and hemizygous CMVMJD135 (Q135) mice were measured by in vivo magnetic resonance spectroscopy at 9.4 tesla. To validate the neurochemical biomarkers, levels of neurofilament medium (NFL; indicator of neuroaxonal integrity) and myelin basic protein (MBP; indicator of myelination) were measured in cerebellar lysates from a subset of mice and patients with SCA3. Finally, NFL and MBP levels were measured in the cerebellar extracts of Q84/Q84 mice upon silencing of the mutant ATXN3 gene. RESULTS Both Q84/Q84 and Q135 mice displayed lower N-acetylaspartate than wild-type littermates, indicating neuroaxonal loss/dysfunction, and lower myo-inositol and total choline, indicating disturbances in phospholipid membrane metabolism and demyelination. Cerebellar NFL and MBP levels were accordingly lower in both models as well as in the cerebellar cortex of patients with SCA3 than controls. Importantly, N-acetylaspartate and total choline correlated with NFL and MPB, respectively, in Q135 mice. Long-term sustained RNA interference (RNAi)-mediated reduction of ATXN3 levels increased NFL and MBP in Q84/Q84 cerebella. CONCLUSIONS N-acetylaspartate, myo-inositol, and total choline levels in the cerebellum are candidate biomarkers of neuroaxonal and oligodendrocyte pathology in SCA3, aspects of pathology that are reversible by RNAi therapy. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Maria Radzwion
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Naila S. Ashraf
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana Fischer
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Vikram G. Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Departments of Molecular & Integrative Physiology and of Medicine, University of Michigan, Ann Arbor, MI
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Portugal
| | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
94
|
The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1. Nat Biomed Eng 2020; 5:157-168. [PMID: 32929188 DOI: 10.1038/s41551-020-00607-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type I (DM1) is a multisystemic autosomal-dominant inherited human disorder that is caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of DMPK. Toxic RNAs expressed from such repetitive sequences can be eliminated using CRISPR-mediated RNA targeting, yet evidence of its in vivo efficacy and durability is lacking. Here, using adult and neonatal mouse models of DM1, we show that intramuscular or systemic injections of adeno-associated virus (AAV) vectors encoding nuclease-dead Cas9 and a single-guide RNA targeting CUG repeats results in the expression of the RNA-targeting Cas9 for up to three months, redistribution of the RNA-splicing protein muscleblind-like splicing regulator 1, elimination of foci of toxic RNA, reversal of splicing biomarkers and amelioration of myotonia. The sustained reversal of DM1 phenotypes provides further support that RNA-targeting Cas9 is a viable strategy for treating DM1 and other MRE-associated diseases.
Collapse
|
95
|
Wyner N, Barash M, McNevin D. Forensic Autosomal Short Tandem Repeats and Their Potential Association With Phenotype. Front Genet 2020; 11:884. [PMID: 32849844 PMCID: PMC7425049 DOI: 10.3389/fgene.2020.00884] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Forensic DNA profiling utilizes autosomal short tandem repeat (STR) markers to establish identity of missing persons, confirm familial relations, and link persons of interest to crime scenes. It is a widely accepted notion that genetic markers used in forensic applications are not predictive of phenotype. At present, there has been no demonstration of forensic STR variants directly causing or predicting disease. Such a demonstration would have many legal and ethical implications. For example, is there a duty to inform a DNA donor if a medical condition is discovered during routine analysis of their sample? In this review, we evaluate the possibility that forensic STRs could provide information beyond mere identity. An extensive search of the literature returned 107 articles associating a forensic STR with a trait. A total of 57 of these studies met our inclusion criteria: a reported link between a STR-inclusive gene and a phenotype and a statistical analysis reporting a p-value less than 0.05. A total of 50 unique traits were associated with the 24 markers included in the 57 studies. TH01 had the greatest number of associations with 27 traits reportedly linked to 40 different genotypes. Five of the articles associated TH01 with schizophrenia. None of the associations found were independently causative or predictive of disease. Regardless, the likelihood of identifying significant associations is increasing as the function of non-coding STRs in gene expression is steadily revealed. It is recommended that regular reviews take place in order to remain aware of future studies that identify a functional role for any forensic STRs.
Collapse
Affiliation(s)
- Nicole Wyner
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Mark Barash
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Department of Justice Studies, San José State University, San Jose, CA, United States
| | - Dennis McNevin
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
96
|
Supattapone S. Cofactor molecules: Essential partners for infectious prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:53-75. [PMID: 32958241 DOI: 10.1016/bs.pmbts.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, to date, all wild type protein-only PrPSc preparations lack significant levels of prion infectivity. Using a systemic biochemical approach, our laboratory isolated and identified two different endogenous cofactor molecules, RNA (Deleault et al., 2003 [50]; Deleault et al., 2007 [59]) and phosphatidylethanolamine (Deleault et al., 2012 [61]; Deleault et al., 2012 [18]), which facilitate the formation of prions with high levels of specific infectivity, leading us to propose to the alternative hypothesis that cofactor molecules are required to form wild type infectious prions (Deleault et al., 2007 [59]; Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]). In addition, we found that purified cofactor molecules restrict the strain properties of chemically defined infectious prions (Deleault et al., 2012 [18]), suggesting a "cofactor selection" model in which natural variation in the distribution of strain-specific cofactor molecules in different parts of the brain may be responsible for strain-dependent patterns of neurotropism (Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]).
Collapse
Affiliation(s)
- Surachai Supattapone
- Department of Biochemistry and Cell Biology and Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States.
| |
Collapse
|
97
|
Crapser JD, Ochaba J, Soni N, Reidling JC, Thompson LM, Green KN. Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington's disease. Brain 2020; 143:266-288. [PMID: 31848580 DOI: 10.1093/brain/awz363] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/22/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease is associated with a reactive microglial response and consequent inflammation. To address the role of these cells in disease pathogenesis, we depleted microglia from R6/2 mice, a rapidly progressing model of Huntington's disease marked by behavioural impairment, mutant huntingtin (mHTT) accumulation, and early death, through colony-stimulating factor 1 receptor inhibition (CSF1Ri) with pexidartinib (PLX3397) for the duration of disease. Although we observed an interferon gene signature in addition to downregulated neuritogenic and synaptic gene pathways with disease, overt inflammation was not evident by microglial morphology or cytokine transcript levels in R6/2 mice. Nonetheless, CSF1Ri-induced microglial elimination reduced or prevented disease-related grip strength and object recognition deficits, mHTT accumulation, astrogliosis, and striatal volume loss, the latter of which was not associated with reductions in cell number but with the extracellular accumulation of chondroitin sulphate proteoglycans (CSPGs)-a primary component of glial scars. A concurrent loss of proteoglycan-containing perineuronal nets was also evident in R6/2 mice, and microglial elimination not only prevented this but also strikingly increased perineuronal nets in the brains of naïve littermates, suggesting a new role for microglia as homeostatic regulators of perineuronal net formation and integrity.
Collapse
Affiliation(s)
- Joshua D Crapser
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jack C Reidling
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| |
Collapse
|
98
|
Oliveira LM, Long AS, Brown T, Fox KR, Weber G. Melting temperature measurement and mesoscopic evaluation of single, double and triple DNA mismatches. Chem Sci 2020; 11:8273-8287. [PMID: 34094181 PMCID: PMC8163305 DOI: 10.1039/d0sc01700k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Unlike the canonical base pairs AT and GC, the molecular properties of mismatches such as hydrogen bonding and stacking interactions are strongly dependent on the identity of the neighbouring base pairs. As a result, due to the sheer number of possible combinations of mismatches and flanking base pairs, only a fraction of these have been studied in varying experiments or theoretical models. Here, we report on the melting temperature measurement and mesoscopic analysis of contiguous DNA mismatches in nearest-neighbours and next-nearest neighbour contexts. A total of 4032 different mismatch combinations, including single, double and triple mismatches were covered. These were compared with 64 sequences containing all combinations of canonical base pairs in the same location under the same conditions. For a substantial number of single mismatch configurations, 15%, the measured melting temperatures were higher than the least stable AT base pair. The mesoscopic calculation, using the Peyrard-Bishop model, was performed on the set of 4096 sequences, and resulted in estimates of on-site and nearest-neighbour interactions that can be correlated to hydrogen bonding and base stacking. Our results confirm many of the known properties of mismatches, including the peculiar sheared stacking of tandem GA mismatches. More intriguingly, it also reveals that a number of mismatches present strong hydrogen bonding when flanked on both sites by other mismatches. To highlight the applicability of our results, we discuss a number of practical situations such as enzyme binding affinities, thymine DNA glycosylase repair activity, and trinucleotide repeat expansions.
Collapse
Affiliation(s)
- Luciana M Oliveira
- Departamento de Física, Universidade Federal de Minas Gerais 31270-901 Belo Horizonte MG Brazil +55 31 3409 5600 +55 31 3409 6616
| | - Adam S Long
- School of Biological Sciences, University of Southampton Life Sciences Building 85 Southampton SO17 1BJ UK
| | - Tom Brown
- Department of Chemistry, University of Oxford Oxford UK
| | - Keith R Fox
- School of Biological Sciences, University of Southampton Life Sciences Building 85 Southampton SO17 1BJ UK
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais 31270-901 Belo Horizonte MG Brazil +55 31 3409 5600 +55 31 3409 6616
| |
Collapse
|
99
|
Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB. Genomic Diagnosis for Pediatric Disorders: Revolution and Evolution. Front Pediatr 2020; 8:373. [PMID: 32733828 PMCID: PMC7360789 DOI: 10.3389/fped.2020.00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Powerful, recent advances in technologies to analyze the genome have had a profound impact on the practice of medical genetics, both in the laboratory and in the clinic. Increasing utilization of genome-wide testing such as chromosomal microarray analysis and exome sequencing have lead a shift toward a "genotype-first" approach. Numerous techniques are now available to diagnose a particular syndrome or phenotype, and while traditional techniques remain efficient tools in certain situations, higher-throughput technologies have become the de facto laboratory tool for diagnosis of most conditions. However, selecting the right assay or technology is challenging, and the wrong choice may lead to prolonged time to diagnosis, or even a missed diagnosis. In this review, we will discuss current core technologies for the diagnosis of classic genetic disorders to shed light on the benefits and disadvantages of these strategies, including diagnostic efficiency, variant interpretation, and secondary findings. Finally, we review upcoming technologies posed to impart further changes in the field of genetic diagnostics as we move toward "genome-first" practice.
Collapse
Affiliation(s)
- Emilie Lalonde
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefan Rentas
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew C. Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Cara M. Skraban
- Division of Human Genetics, Department of Pediatrics, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
100
|
Silva AC, Lobo DD, Martins IM, Lopes SM, Henriques C, Duarte SP, Dodart JC, Nobre RJ, Pereira de Almeida L. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain 2020; 143:407-429. [PMID: 31738395 DOI: 10.1093/brain/awz328] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.
Collapse
Affiliation(s)
- Ana C Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês M Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara M Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carina Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Sónia P Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|