51
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part IV. Canonical, non-canonical and hybrid iron-sulfur proteins. J Struct Biol 2019; 205:103-120. [PMID: 30677521 DOI: 10.1016/j.jsb.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/26/2022]
Abstract
A plethora of proteins are able to express iron-sulfur clusters, but have a clear picture of the different types of proteins and the different iron-sulfur clusters they harbor it is not easy. In the last five years we have reviewed structure/electrochemistry of metalloproteins expressing: (i) single types of iron-sulfur clusters (namely: {Fe(Cys)4}, {[Fe2S2](Cys)4}, {[Fe2S2](Cys)3(X)} (X = Asp, Arg, His), {[Fe2S2](Cys)2(His)2}, {[Fe3S4](Cys)3}, {[Fe4S4](Cys)4} and {[Fe4S4](Cys)3(nonthiolate ligand)} cores); (ii) metalloproteins harboring iron-sulfur centres of different nuclearities (namely: [4Fe-4S] and [2Fe-2S], [4Fe-4S] and [3Fe-4S], and [4Fe-4S], [3Fe-4S] and [2Fe-2S] clusters. Our target is now to review structure and electrochemistry of proteins harboring canonical, non-canonical and hybrid iron-sulfur proteins.
Collapse
Affiliation(s)
- Piero Zanello
- Dipartimento di Biotecnologie, Chimica e Farmacia dell'Università di Siena, Via A. De Gasperi 2, 53100 Siena, Italy
| |
Collapse
|
52
|
Abstract
Hydrogenases catalyze the simple yet important interconversion between H2 and protons and electrons. Found throughout prokaryotes, lower eukaryotes, and archaea, hydrogenases are used for a variety of redox and signaling purposes and are found in many different forms. This diverse group of metalloenzymes is divided into [NiFe], [FeFe], and [Fe] variants, based on the transition metal contents of their active sites. A wide array of biochemical and spectroscopic methods has been used to elucidate hydrogenases, and this along with a general description of the main enzyme types and catalytic mechanisms is discussed in this chapter.
Collapse
|
53
|
Breglia R, Greco C, Fantucci P, De Gioia L, Bruschi M. Reactivation of the Ready and Unready Oxidized States of [NiFe]-Hydrogenases: Mechanistic Insights from DFT Calculations. Inorg Chem 2018; 58:279-293. [PMID: 30576127 DOI: 10.1021/acs.inorgchem.8b02348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The apparently simple dihydrogen formation from protons and electrons (2H+ + 2e- ⇄ H2) is one of the most challenging reactions in nature. It is catalyzed by metalloenzymes of amazing complexity, called hydrogenases. A better understanding of the chemistry of these enzymes, especially that of the [NiFe]-hydrogenases subgroup, has important implications for production of H2 as alternative sustainable fuel. In this work, reactivation mechanism of the oxidized and inactive Ni-B and Ni-A states of the [NiFe]-hydrogenases active site has been investigated using density functional theory. Results obtained from this study show that one-electron reduction and protonation of the active site promote the removal of the bridging hydroxide ligand contained in Ni-B and Ni-A. However, this process is sufficient to activate only the Ni-B state. H2 binding to the active site is required to convert Ni-A to the active Ni-SIa state. Here, we also propose a reasonable structure for the spectroscopically well-characterized Ni-SIr and Ni-SU species, formed respectively from the one-electron reduction of Ni-B and Ni-A. Ni-SIr, depending on the pH at which the reaction occurs, features a bridging hydroxide ligand or a water molecule terminally coordinated to the Ni atom, whereas in Ni-SU a water molecule is terminally coordinated to the Fe atom, and the Cys64 residue is oxidized to sulfenate. The sulfenate oxygen atom in the Ni-A state affects the stereoelectronic properties of the binuclear cluster by modifying the coordination geometry of Ni, and consequently, by switching the regiochemistry of H2O and H2 binding from the Ni to the Fe atom. This effect is predicted to be at the origin of the different reactivation kinetics of the oxidized and inactive Ni-B and Ni-A states.
Collapse
|
54
|
Molecular hydrogen may enhance the production of testosterone hormone in male infertility through hormone signal modulation and redox balance. Med Hypotheses 2018; 121:6-9. [DOI: 10.1016/j.mehy.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/07/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022]
|
55
|
Infrared Characterization of the Bidirectional Oxygen-Sensitive [NiFe]-Hydrogenase from E. coli. Catalysts 2018. [DOI: 10.3390/catal8110530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
[NiFe]-hydrogenases are gas-processing metalloenzymes that catalyze the conversion of dihydrogen (H2) to protons and electrons in a broad range of microorganisms. Within the framework of green chemistry, the molecular proceedings of biological hydrogen turnover inspired the design of novel catalytic compounds for H2 generation. The bidirectional “O2-sensitive” [NiFe]-hydrogenase from Escherichia coli HYD-2 has recently been crystallized; however, a systematic infrared characterization in the presence of natural reactants is not available yet. In this study, we analyze HYD-2 from E. coli by in situ attenuated total reflection Fourier-transform infrared spectroscopy (ATR FTIR) under quantitative gas control. We provide an experimental assignment of all catalytically relevant redox intermediates alongside the O2- and CO-inhibited cofactor species. Furthermore, the reactivity and mutual competition between H2, O2, and CO was probed in real time, which lays the foundation for a comparison with other enzymes, e.g., “O2-tolerant” [NiFe]-hydrogenases. Surprisingly, only Ni-B was observed in the presence of O2 with no indications for the “unready” Ni-A state. The presented work proves the capabilities of in situ ATR FTIR spectroscopy as an efficient and powerful technique for the analysis of biological macromolecules and enzymatic small molecule catalysis.
Collapse
|
56
|
Hao L, McIlroy SJ, Kirkegaard RH, Karst SM, Fernando WEY, Aslan H, Meyer RL, Albertsen M, Nielsen PH, Dueholm MS. Novel prosthecate bacteria from the candidate phylum Acetothermia. THE ISME JOURNAL 2018; 12:2225-2237. [PMID: 29884828 PMCID: PMC6092417 DOI: 10.1038/s41396-018-0187-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/09/2018] [Accepted: 03/20/2018] [Indexed: 02/05/2023]
Abstract
Members of the candidate phylum Acetothermia are globally distributed and detected in various habitats. However, little is known about their physiology and ecological importance. In this study, an operational taxonomic unit belonging to Acetothermia was detected at high abundance in four full-scale anaerobic digesters by 16S rRNA gene amplicon sequencing. The first closed genome from this phylum was obtained by differential coverage binning of metagenomes and scaffolding with long nanopore reads. Genome annotation and metabolic reconstruction suggested an anaerobic chemoheterotrophic lifestyle in which the bacterium obtains energy and carbon via fermentation of peptides, amino acids, and simple sugars to acetate, formate, and hydrogen. The morphology was unusual and composed of a central rod-shaped cell with bipolar prosthecae as revealed by fluorescence in situ hybridization combined with confocal laser scanning microscopy, Raman microspectroscopy, and atomic force microscopy. We hypothesize that these prosthecae allow for increased nutrient uptake by greatly expanding the cell surface area, providing a competitive advantage under nutrient-limited conditions.
Collapse
Affiliation(s)
- Liping Hao
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Simon Jon McIlroy
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Rasmus Hansen Kirkegaard
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Søren Michael Karst
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | | | - Hüsnü Aslan
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.
| | - Morten Simonsen Dueholm
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
57
|
Hartmann S, Frielingsdorf S, Ciaccafava A, Lorent C, Fritsch J, Siebert E, Priebe J, Haumann M, Zebger I, Lenz O. O2-Tolerant H2 Activation by an Isolated Large Subunit of a [NiFe] Hydrogenase. Biochemistry 2018; 57:5339-5349. [DOI: 10.1021/acs.biochem.8b00760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sven Hartmann
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Alexandre Ciaccafava
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Christian Lorent
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Johannes Fritsch
- Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Elisabeth Siebert
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Jacqueline Priebe
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Oliver Lenz
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
58
|
Slater JW, Marguet SC, Monaco HA, Shafaat HS. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases. J Am Chem Soc 2018; 140:10250-10262. [PMID: 30016865 DOI: 10.1021/jacs.8b05194] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jeffrey W. Slater
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C. Marguet
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Haleigh A. Monaco
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S. Shafaat
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
59
|
Isegawa M, Sharma AK, Ogo S, Morokuma K. DFT Study on Fe(IV)-Peroxo Formation and H Atom Transfer Triggered O2 Activation by NiFe Complex. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0385, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Akhilesh K. Sharma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0385, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
60
|
Kalms J, Schmidt A, Frielingsdorf S, Utesch T, Gotthard G, von Stetten D, van der Linden P, Royant A, Mroginski MA, Carpentier P, Lenz O, Scheerer P. Tracking the route of molecular oxygen in O 2-tolerant membrane-bound [NiFe] hydrogenase. Proc Natl Acad Sci U S A 2018; 115:E2229-E2237. [PMID: 29463722 PMCID: PMC5877991 DOI: 10.1073/pnas.1712267115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[NiFe] hydrogenases catalyze the reversible splitting of H2 into protons and electrons at a deeply buried active site. The catalytic center can be accessed by gas molecules through a hydrophobic tunnel network. While most [NiFe] hydrogenases are inactivated by O2, a small subgroup, including the membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha, is able to overcome aerobic inactivation by catalytic reduction of O2 to water. This O2 tolerance relies on a special [4Fe3S] cluster that is capable of releasing two electrons upon O2 attack. Here, the O2 accessibility of the MBH gas tunnel network has been probed experimentally using a "soak-and-freeze" derivatization method, accompanied by protein X-ray crystallography and computational studies. This combined approach revealed several sites of O2 molecules within a hydrophobic tunnel network leading, via two tunnel entrances, to the catalytic center of MBH. The corresponding site occupancies were related to the O2 concentrations used for MBH crystal derivatization. The examination of the O2-derivatized data furthermore uncovered two unexpected structural alterations at the [4Fe3S] cluster, which might be related to the O2 tolerance of the enzyme.
Collapse
Affiliation(s)
- Jacqueline Kalms
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany
| | | | - Tillmann Utesch
- Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | | | | | - Peter van der Linden
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
- Partnership for Soft Condensed Matter (PSCM), F-38043 Grenoble, France
| | - Antoine Royant
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | | | - Philippe Carpentier
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biosciences et Biotechnologies de Grenoble (BIG)-Laboratoire Chimie et Biologie des Métaux (LCBM), F-38000 Grenoble, France
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany;
| |
Collapse
|
61
|
Qiu S, Olsen S, MacFarlane DR, Sun C. The oxygen reduction reaction on [NiFe] hydrogenases. Phys Chem Chem Phys 2018; 20:23528-23534. [DOI: 10.1039/c8cp04160a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxygen tolerance capacity is critical for hydrogen oxidation/evolution catalysts.
Collapse
Affiliation(s)
- Siyao Qiu
- Science & Technology Innovation Institute
- Dongguan University of Technology
- Dongguan
- China
- School of Chemistry
| | - Seth Olsen
- School of Chemistry
- Faculty of Science
- Monash University
- Clayton
- VIC 3800
| | | | - Chenghua Sun
- Science & Technology Innovation Institute
- Dongguan University of Technology
- Dongguan
- China
- Department of Chemistry and Biotechnology
| |
Collapse
|
62
|
Lenz O, Lauterbach L, Frielingsdorf S. O2-tolerant [NiFe]-hydrogenases of Ralstonia eutropha H16: Physiology, molecular biology, purification, and biochemical analysis. Methods Enzymol 2018; 613:117-151. [DOI: 10.1016/bs.mie.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
63
|
Matsumoto T, Kishima T, Yatabe T, Yoon KS, Ogo S. Mechanistic Insight into Switching between H2- or O2-Activation by Simple Ligand Effects of [NiFe]hydrogenase Models. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Takahiro Matsumoto
- Center for Small Molecule Energy, ‡Department of Chemistry and Biochemistry,
Graduate School of Engineering, and §International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahiro Kishima
- Center for Small Molecule Energy, ‡Department of Chemistry and Biochemistry,
Graduate School of Engineering, and §International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Yatabe
- Center for Small Molecule Energy, ‡Department of Chemistry and Biochemistry,
Graduate School of Engineering, and §International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ki-Seok Yoon
- Center for Small Molecule Energy, ‡Department of Chemistry and Biochemistry,
Graduate School of Engineering, and §International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Seiji Ogo
- Center for Small Molecule Energy, ‡Department of Chemistry and Biochemistry,
Graduate School of Engineering, and §International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
64
|
Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H 2-driven NAD +-reduction in the presence of O 2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:8-18. [PMID: 28970007 DOI: 10.1016/j.bbabio.2017.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/17/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022]
Abstract
Biocatalysts that mediate the H2-dependent reduction of NAD+ to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD+-reducing [NiFe]‑hydrogenase that sustains catalytic activity at high temperatures and in the presence of O2, which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD+-reducing [NiFe]‑hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H2-oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H2-mediated NAD+ reduction activity was observed at 80°C and pH6.5, and catalytic activity was found to be sustained at low O2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]‑hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD+-reducing [NiFe]‑hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H2-driven cofactor recycling under oxic conditions at elevated temperatures.
Collapse
|
65
|
Dyksma S, Pjevac P, Ovanesov K, Mussmann M. Evidence for H 2 consumption by uncultured Desulfobacterales in coastal sediments. Environ Microbiol 2017; 20:450-461. [PMID: 28772023 DOI: 10.1111/1462-2920.13880] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/30/2017] [Indexed: 12/26/2022]
Abstract
Molecular hydrogen (H2 ) is the key intermediate in the anaerobic degradation of organic matter. Its removal by H2 -oxidizing microorganisms is essential to keep anaerobic degradation energetically favourable. Sulfate-reducing microorganisms (SRM) are known as the main H2 scavengers in anoxic marine sediments. Although the community of marine SRM has been extensively studied, those consuming H2 in situ are completely unknown. We combined metagenomics, PCR-based clone libraries, single-amplified genomes (SAGs) and metatranscriptomics to identify potentially H2 -consuming SRM in anoxic coastal sediments. The vast majority of SRM-related H2 ase sequences were assigned to group 1b and 1c [NiFe]-H2 ases of the deltaproteobacterial order Desulfobacterales. Surprisingly, the same sequence types were similarly highly expressed in spring and summer, suggesting that these are stable and integral members of the H2 -consuming community. Notably, one sequence cluster from the SRM group 1 consistently accounted for around half of all [NiFe]-H2 ase transcripts. Using SAGs, we could link this cluster with the 16S rRNA genes of the uncultured Sva0081-group of the family Desulfobacteraceae. Sequencing of 16S rRNA gene amplicons and H2 ase gene libraries suggested consistently high in situ abundance of the Sva0081 group also in other marine sediments. Together with other Desulfobacterales these likely are important H2 -scavengers in marine sediments.
Collapse
Affiliation(s)
- Stefan Dyksma
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Petra Pjevac
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Kin Ovanesov
- Department of Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marc Mussmann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
66
|
Matsumoto M, Fujita A, Yamashita A, Kameoka S, Shimomura Y, Kitada Y, Tamada H, Nakamura S, Tsubota K. Effects of functional milk containing galactooligosaccharide, maltitol, and glucomannan on the production of hydrogen gas in the human intestine. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
67
|
Mobberley JM, Lindemann SR, Bernstein HC, Moran JJ, Renslow RS, Babauta J, Hu D, Beyenal H, Nelson WC. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat. FEMS Microbiol Ecol 2017; 93:3071443. [PMID: 28334407 PMCID: PMC5812542 DOI: 10.1093/femsec/fix028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/13/2017] [Indexed: 02/06/2023] Open
Abstract
Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms; however, little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity and metabolic gradient measurements. Draft reconstructed genomes of 34 abundant organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence on metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements.
Collapse
Affiliation(s)
- Jennifer M Mobberley
- Biological Science Division, Earth and Environmental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.,Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Hans C Bernstein
- Biological Science Division, Earth and Environmental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - James J Moran
- Chemical and Biological Signature Sciences, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ryan S Renslow
- Biological Science Division, Earth and Environmental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Jerome Babauta
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Earth and Environmental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - William C Nelson
- Biological Science Division, Earth and Environmental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
68
|
Ohta S, Ohki Y. Impact of ligands and media on the structure and properties of biological and biomimetic iron-sulfur clusters. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
69
|
Slater JW, Marguet SC, Cirino SL, Maugeri PT, Shafaat HS. Experimental and DFT Investigations Reveal the Influence of the Outer Coordination Sphere on the Vibrational Spectra of Nickel-Substituted Rubredoxin, a Model Hydrogenase Enzyme. Inorg Chem 2017; 56:3926-3938. [PMID: 28323426 DOI: 10.1021/acs.inorgchem.6b02934] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nickel-substituted rubredoxin (NiRd) is a functional enzyme mimic of hydrogenase, highly active for electrocatalytic and solution-phase hydrogen generation. Spectroscopic methods can provide valuable insight into the catalytic mechanism, provided the appropriate technique is used. In this study, we have employed multiwavelength resonance Raman spectroscopy coupled with DFT calculations on an extended active-site model of NiRd to probe the electronic and geometric structures of the resting state of this system. Excellent agreement between experiment and theory is observed, allowing normal mode assignments to be made on the basis of frequency and intensity analyses. Both metal-ligand and ligand-centered vibrational modes are enhanced in the resonance Raman spectra. The latter provide information about the hydrogen bonding network and structural distortions due to perturbations in the secondary coordination sphere. To reproduce the resonance enhancement patterns seen for high-frequency vibrational modes, the secondary coordination sphere must be included in the computational model. The structure and reduction potential of the NiIIIRd state have also been investigated both experimentally and computationally. This work begins to establish a foundation for computational resonance Raman spectroscopy to serve in a predictive fashion for investigating catalytic intermediates of NiRd.
Collapse
Affiliation(s)
- Jeffrey W Slater
- The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C Marguet
- The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sabrina L Cirino
- The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Pearson T Maugeri
- The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
70
|
The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis. Nat Chem Biol 2017; 13:544-550. [DOI: 10.1038/nchembio.2335] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/21/2016] [Indexed: 01/14/2023]
|
71
|
|
72
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin Luther University, Halle-Wittenberg, 06120 Halle, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
73
|
Kim EJ, Wu CH, Adams MWW, Zhang YHP. Exceptionally High Rates of Biological Hydrogen Production by Biomimetic In Vitro Synthetic Enzymatic Pathways. Chemistry 2016; 22:16047-16051. [PMID: 27605312 DOI: 10.1002/chem.201604197] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 11/08/2022]
Abstract
Hydrogen production by water splitting energized by biomass sugars is one of the most promising technologies for distributed green H2 production. Direct H2 generation from NADPH, catalysed by an NADPH-dependent, soluble [NiFe]-hydrogenase (SH1) is thermodynamically unfavourable, resulting in slow volumetric productivity. We designed the biomimetic electron transport chain from NADPH to H2 by the introduction of an oxygen-insensitive electron mediator benzyl viologen (BV) and an enzyme (NADPH rubredoxin oxidoreductase, NROR), catalysing electron transport between NADPH and BV. The H2 generation rates using this biomimetic chain increased by approximately five-fold compared to those catalysed only by SH1. The peak volumetric H2 productivity via the in vitro enzymatic pathway comprised of hyperthermophilic glucose 6-phosphate dehydrogenase, 6-phosphogluconolactonase, and 6-phosphogluconate dehydrogenase, NROR, and SH1 was 310 mmol H2 /L h-1 , the highest rate yet reported. The concept of biomimetic electron transport chains could be applied to both in vitro and in vivo H2 production biosystems and artificial photosynthesis.
Collapse
Affiliation(s)
- Eui-Jin Kim
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Y-H Percival Zhang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061, USA. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China.
| |
Collapse
|
74
|
Monsalve K, Mazurenko I, Gutierrez-Sanchez C, Ilbert M, Infossi P, Frielingsdorf S, Giudici-Orticoni MT, Lenz O, Lojou E. Impact of Carbon Nanotube Surface Chemistry on Hydrogen Oxidation by Membrane-Bound Oxygen-Tolerant Hydrogenases. ChemElectroChem 2016. [DOI: 10.1002/celc.201600460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Karen Monsalve
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Ievgen Mazurenko
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | | | - Marianne Ilbert
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Pascale Infossi
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Stefan Frielingsdorf
- Institute für Chemie, Sekretariat PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | | | - Oliver Lenz
- Institute für Chemie, Sekretariat PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| |
Collapse
|
75
|
Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5: probing the roles of system-specific accessory proteins. J Biol Inorg Chem 2016; 21:865-73. [PMID: 27566174 DOI: 10.1007/s00775-016-1385-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
A subset of bacterial [NiFe]-hydrogenases have been shown to be capable of activating dihydrogen-catalysis under aerobic conditions; however, it remains relatively unclear how the assembly and activation of these enzymes is carried out in the presence of air. Acquiring this knowledge is important if a generic method for achieving production of O2-resistant [NiFe]-hydrogenases within heterologous hosts is to be developed. Salmonella enterica serovar Typhimurium synthesizes the [NiFe]-hydrogenase-5 (Hyd-5) enzyme under aerobic conditions. As well as structural genes, the Hyd-5 operon also contains several accessory genes that are predicted to be involved in different stages of biosynthesis of the enzyme. In this work, deletions in the hydF, hydG, and hydH genes have been constructed. The hydF gene encodes a protein related to Ralstonia eutropha HoxO, which is known to interact with the small subunit of a [NiFe]-hydrogenase. HydG is predicted to be a fusion of the R. eutropha HoxQ and HoxR proteins, both of which have been implicated in the biosynthesis of an O2-tolerant hydrogenase, and HydH is a homologue of R. eutropha HoxV, which is a scaffold for [NiFe] cofactor assembly. It is shown here that HydG and HydH play essential roles in Hyd-5 biosynthesis. Hyd-5 can be isolated and characterized from a ΔhydF strain, indicating that HydF may not play the same vital role as the orthologous HoxO. This study, therefore, emphasises differences that can be observed when comparing the function of hydrogenase maturases in different biological systems.
Collapse
|
76
|
Owens CP, Katz FEH, Carter CH, Oswald VF, Tezcan FA. Tyrosine-Coordinated P-Cluster in G. diazotrophicus Nitrogenase: Evidence for the Importance of O-Based Ligands in Conformationally Gated Electron Transfer. J Am Chem Soc 2016; 138:10124-7. [PMID: 27487256 DOI: 10.1021/jacs.6b06783] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The P-cluster is a unique iron-sulfur center that likely functions as a dynamic electron (e(-)) relay site between the Fe-protein and the catalytic FeMo-cofactor in nitrogenase. The P-cluster has been shown to undergo large conformational changes upon 2-e(-) oxidation which entail the coordination of two of the Fe centers to a Ser side chain and a backbone amide N, respectively. Yet, how and if this 2-e(-) oxidized state (P(OX)) is involved in catalysis by nitrogenase is not well established. Here, we present the crystal structures of reduced and oxidized MoFe-protein (MoFeP) from Gluconacetobacter diazotrophicus (Gd), which natively possesses an Ala residue in the position of the Ser ligand to the P-cluster. While reduced Gd-MoFeP is structurally identical to previously characterized counterparts around the FeMo-cofactor, oxidized Gd-MoFeP features an unusual Tyr coordination to its P-cluster along with ligation by a backbone amide nitrogen. EPR analysis of the oxidized Gd-MoFeP P-cluster confirmed that it is a 2-e(-) oxidized, integer-spin species. Importantly, we have found that the sequence positions corresponding to the Ser and Tyr ligands are almost completely covariant among Group I nitrogenases. These findings strongly support the possibility that the P(OX) state is functionally relevant in nitrogenase catalysis and that a hard, O-based anionic ligand serves to stabilize this state in a switchable fashion.
Collapse
Affiliation(s)
- Cedric P Owens
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0356, United States
| | - Faith E H Katz
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0356, United States
| | - Cole H Carter
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0356, United States
| | - Victoria F Oswald
- Department of Chemistry, University of California , Irvine, 1102 Natural Science II, Irvine, California 92697, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0356, United States
| |
Collapse
|
77
|
Ogata H, Lubitz W, Higuchi Y. Structure and function of [NiFe] hydrogenases. J Biochem 2016; 160:251-258. [PMID: 27493211 DOI: 10.1093/jb/mvw048] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
Abstract
Hydrogenases catalyze the reversible conversion of molecular hydrogen to protons and electrons via a heterolytic splitting mechanism. The active sites of [NiFe] hydrogenases comprise a dinuclear Ni-Fe center carrying CO and CN- ligands. The catalytic activity of the standard (O2-sensitive) [NiFe] hydrogenases vanishes under aerobic conditions. The O2-tolerant [NiFe] hydrogenases can sustain H2 oxidation activity under atmospheric conditions. These hydrogenases have very similar active site structures that change the ligand sphere during the activation/catalytic process. An important structural difference between these hydrogenases has been found for the proximal iron-sulphur cluster located in the vicinity of the active site. This unprecedented [4Fe-3S]-6Cys cluster can supply two electrons, which lead to rapid recovery of the O2 inactivation, to the [NiFe] active site.
Collapse
Affiliation(s)
- Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan .,RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
78
|
Abstract
[NiFe]-hydrogenases catalyze the reversible conversion of hydrogen gas into protons and electrons and are vital metabolic components of many species of bacteria and archaea. At the core of this enzyme is a sophisticated catalytic center comprising nickel and iron, as well as cyanide and carbon monoxide ligands, which is anchored to the large hydrogenase subunit through cysteine residues. The production of this multicomponent active site is accomplished by a collection of accessory proteins and can be divided into discrete stages. The iron component is fashioned by the proteins HypC, HypD, HypE, and HypF, which functionalize iron with cyanide and carbon monoxide. Insertion of the iron center signals to the metallochaperones HypA, HypB, and SlyD to selectively deliver the nickel to the active site. A specific protease recognizes the completed metal cluster and then cleaves the C-terminus of the large subunit, resulting in a conformational change that locks the active site in place. Finally, the large subunit associates with the small subunit, and the complete holoenzyme translocates to its final cellular position. Beyond this broad overview of the [NiFe]-hydrogenase maturation process, biochemical and structural studies are revealing the fundamental underlying molecular mechanisms. Here, we review recent work illuminating how the accessory proteins contribute to the maturation of [NiFe]-hydrogenase and discuss some of the outstanding questions that remain to be resolved.
Collapse
Affiliation(s)
- Michael J Lacasse
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6.,Department of Biochemistry, University of Toronto , Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
79
|
Structure of an Actinobacterial-Type [NiFe]-Hydrogenase Reveals Insight into O 2 -Tolerant H 2 Oxidation. Structure 2016; 24:285-92. [DOI: 10.1016/j.str.2015.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022]
|
80
|
Deller MC, Kong L, Rupp B. Protein stability: a crystallographer's perspective. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:72-95. [PMID: 26841758 PMCID: PMC4741188 DOI: 10.1107/s2053230x15024619] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Abstract
Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.
Collapse
Affiliation(s)
- Marc C Deller
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125, USA
| | - Leopold Kong
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814, USA
| | - Bernhard Rupp
- Department of Forensic Crystallography, k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084, USA
| |
Collapse
|
81
|
Radu V, Frielingsdorf S, Lenz O, Jeuken LJC. Reactivation from the Ni–B state in [NiFe] hydrogenase of Ralstonia eutropha is controlled by reduction of the superoxidised proximal cluster. Chem Commun (Camb) 2016; 52:2632-5. [DOI: 10.1039/c5cc10382g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tolerance towards oxic conditions of O2-tolerant [NiFe] hydrogenases has been attributed to an unusual [4Fe–3S] cluster that lies proximal to the [NiFe] active site.
Collapse
Affiliation(s)
- Valentin Radu
- School of Biomedical Sciences
- The Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Stefan Frielingsdorf
- Institut für Chemie
- Sekretariat PC14
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Oliver Lenz
- Institut für Chemie
- Sekretariat PC14
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Lars J. C. Jeuken
- School of Biomedical Sciences
- The Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| |
Collapse
|
82
|
Monsalve K, Mazurenko I, Lalaoui N, Le Goff A, Holzinger M, Infossi P, Nitsche S, Lojou J, Giudici-Orticoni M, Cosnier S, Lojou E. A H 2 /O 2 enzymatic fuel cell as a sustainable power for a wireless device. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
83
|
Wang H, Yoda Y, Ogata H, Tanaka Y, Lubitz W. A strenuous experimental journey searching for spectroscopic evidence of a bridging nickel-iron-hydride in [NiFe] hydrogenase. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:1334-44. [PMID: 26524296 PMCID: PMC4629863 DOI: 10.1107/s1600577515017816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/23/2015] [Indexed: 05/24/2023]
Abstract
Direct spectroscopic evidence for a hydride bridge in the Ni-R form of [NiFe] hydrogenase has been obtained using iron-specific nuclear resonance vibrational spectroscopy (NRVS). The Ni-H-Fe wag mode at 675 cm(-1) is the first spectroscopic evidence for a bridging hydride in Ni-R as well as the first iron-hydride-related NRVS feature observed for a biological system. Although density function theory (DFT) calculation assisted the determination of the Ni-R structure, it did not predict the Ni-H-Fe wag mode at ∼ 675 cm(-1) before NRVS. Instead, the observed Ni-H-Fe mode provided a critical reference for the DFT calculations. While the overall science about Ni-R is presented and discussed elsewhere, this article focuses on the long and strenuous experimental journey to search for and experimentally identify the Ni-H-Fe wag mode in a Ni-R sample. As a methodology, the results presented here will go beyond Ni-R and hydrogenase research and will also be of interest to other scientists who use synchrotron radiation for measuring dilute samples or weak spectroscopic features.
Collapse
Affiliation(s)
- Hongxin Wang
- Department of Chemistry, University of California, 1 Cyclotron Road, Davis, CA 95616, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yoshitaka Yoda
- Research and Utilization Division, SPring-8/JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Yoshihito Tanaka
- Research and Utilization Division, SPring-8/JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
84
|
Kishima T, Matsumoto T, Nakai H, Hayami S, Ohta T, Ogo S. A High-Valent Iron(IV) Peroxo Core Derived from O2. Angew Chem Int Ed Engl 2015; 55:724-7. [PMID: 26509430 DOI: 10.1002/anie.201507022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/28/2015] [Indexed: 11/07/2022]
Abstract
Dioxygen-tolerant [NiFe] hydrogenases catalyze not only the conversion of H2 into 2 H(+) and 2 e(-) but also the reduction of O2 to H2O. Chemists have sought to mimic such bifunctional catalysts with structurally simpler compounds to facilitate analysis and improvement. Herein, we report a new [NiFe]-based catalyst for O2 reduction via an O2 adduct. Structural investigations reveal the first example of a side-on iron(IV) peroxo complex.
Collapse
Affiliation(s)
- Takahiro Kishima
- Center for Small Molecule Energy, Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan) ogo.seiji.872m.kyushu-u.ac.jp http://www.cstm.kyushu-u.ac.jp/ogo/
| | - Takahiro Matsumoto
- Center for Small Molecule Energy, Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan) ogo.seiji.872m.kyushu-u.ac.jp http://www.cstm.kyushu-u.ac.jp/ogo/
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)
| | - Hidetaka Nakai
- Center for Small Molecule Energy, Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan) ogo.seiji.872m.kyushu-u.ac.jp http://www.cstm.kyushu-u.ac.jp/ogo/
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)
| | - Shinya Hayami
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan)
| | - Takehiro Ohta
- Institute for Materials Chemistry and Engineering, Kyushu University, Higashi-ku, Fukuoka 812-8581 (Japan)
| | - Seiji Ogo
- Center for Small Molecule Energy, Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan) ogo.seiji.872m.kyushu-u.ac.jp http://www.cstm.kyushu-u.ac.jp/ogo/
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)
| |
Collapse
|
85
|
Kishima T, Matsumoto T, Nakai H, Hayami S, Ohta T, Ogo S. A High-Valent Iron(IV) Peroxo Core Derived from O2. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
86
|
Kaiser M, Knör G. Synthesis, Characterization, and Reactivity of Functionalized Trinuclear Iron-Sulfur Clusters - A New Class of Bioinspired Hydrogenase Models. Eur J Inorg Chem 2015; 2015:4199-4206. [PMID: 26512211 PMCID: PMC4612652 DOI: 10.1002/ejic.201500574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 02/03/2023]
Abstract
The air- and moisture-stable iron-sulfur carbonyl clusters Fe3S2(CO)7(dppm) (1) and Fe3S2(CO)7(dppf) (2) carrying the bisphosphine ligands bis(diphenylphosphanyl)methane (dppm) and 1,1'-bis(diphenylphosphanyl)ferrocene (dppf) were prepared and fully characterized. Two alternative synthetic routes based on different thionation reactions of triiron dodecacarbonyl were tested. The molecular structures of the methylene-bridged compound 1 and the ferrocene-functionalized derivative 2 were determined by single-crystal X-ray diffraction. The catalytic reactivity of the trinuclear iron-sulfur cluster core for proton reduction in solution at low overpotential was demonstrated. These deeply colored bisphosphine-bridged sulfur-capped iron carbonyl systems are discussed as promising candidates for the development of new bioinspired model compounds of iron-based hydrogenases.
Collapse
Affiliation(s)
- Manuel Kaiser
- Institute of Inorganic Chemistry, Johannes Kepler University Linz (JKU) , Altenbergerstr. 69, 4040 Linz, Austria , http://www.anorganik.jku.at
| | - Günther Knör
- Institute of Inorganic Chemistry, Johannes Kepler University Linz (JKU) , Altenbergerstr. 69, 4040 Linz, Austria , http://www.anorganik.jku.at
| |
Collapse
|
87
|
Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy. Nat Commun 2015; 6:7890. [PMID: 26259066 PMCID: PMC4531378 DOI: 10.1038/ncomms8890] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/18/2015] [Indexed: 11/28/2022] Open
Abstract
The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging' mode involving H− motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H− binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts. Understanding the catalytic mechanism of redox-active hydrogenases is a key to efficient hydrogen production and consumption. Here, the authors use nuclear resonance vibrational spectroscopy to study [NiFe]-hydrogenase, and observe a bridging hydride structure in an EPR silent intermediate.
Collapse
|
88
|
Siebert E, Rippers Y, Frielingsdorf S, Fritsch J, Schmidt A, Kalms J, Katz S, Lenz O, Scheerer P, Paasche L, Pelmenschikov V, Kuhlmann U, Mroginski MA, Zebger I, Hildebrandt P. Resonance Raman Spectroscopic Analysis of the [NiFe] Active Site and the Proximal [4Fe-3S] Cluster of an O2-Tolerant Membrane-Bound Hydrogenase in the Crystalline State. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elisabeth Siebert
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Yvonne Rippers
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Johannes Fritsch
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Andrea Schmidt
- Charité − Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group
Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Jacqueline Kalms
- Charité − Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group
Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sagie Katz
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Oliver Lenz
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Charité − Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group
Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Lars Paasche
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Vladimir Pelmenschikov
- Technische
Universität Berlin, Institut für Chemie, Sekr. C7, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Uwe Kuhlmann
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Ingo Zebger
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
89
|
Coordination of Synthesis and Assembly of a Modular Membrane-Associated [NiFe]-Hydrogenase Is Determined by Cleavage of the C-Terminal Peptide. J Bacteriol 2015; 197:2989-98. [PMID: 26170410 DOI: 10.1128/jb.00437-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During biosynthesis of [NiFe]-hydrogenase 2 (Hyd-2) of Escherichia coli, a 15-amino-acid C-terminal peptide is cleaved from the catalytic large subunit precursor, pro-HybC. This peptide is removed only after NiFe(CN)2CO cofactor insertion by the Hyp accessory protein machinery has been completed, suggesting that it has a regulatory function during enzyme maturation. We show here that in hyp mutants that fail to synthesize and insert the NiFe cofactor, and therefore retain the peptide, the Tat (twin-arginine translocon) signal peptide on the small subunit HybO is not removed and the subunit is degraded. In a mutant lacking the large subunit, the Tat signal peptide was also not removed from pre-HybO, indicating that the mature large subunit must actively engage the small subunit to elicit Tat transport. We validated the proposed regulatory role of the C-terminal peptide in controlling enzyme assembly by genetically removing it from the precursor of HybC, which allowed assembly and Tat-dependent membrane association of a HybC-HybO heterodimer lacking the NiFe(CN)2CO cofactor. Finally, genetic transfer of the C-terminal peptide from pro-HyaB, the large subunit of Hyd-1, onto HybC did not influence its dependence on the accessory protein HybG, a HypC paralog, or the specific protease HybD. This indicates that the C-terminal peptide per se is not required for interaction with the Hyp machinery but rather suggests a role of the peptide in maintaining a conformation of the protein suitable for cofactor insertion. Together, our results demonstrate that the C-terminal peptide on the catalytic subunit controls biosynthesis, assembly, and membrane association of Hyd-2. IMPORTANCE [NiFe]-hydrogenases are multisubunit enzymes with a catalytic subunit containing a NiFe(CN)2CO cofactor. Results of previous studies suggested that after synthesis and insertion of the cofactor by the Hyp accessory proteins, this large subunit changes conformation upon proteolytic removal of a short peptide from its C terminus. We show that removal of this peptide is necessary to allow the cleavage of the Tat signal peptide from the small subunit with concomitant membrane association of the heterodimer to occur. Genetic removal of the C-terminal peptide from the large subunit allowed productive interaction with the small subunit and Tat-dependent membrane insertion of a NiFe cofactor-free enzyme. Results based on swapping of C-terminal peptides between hydrogenases suggest that this peptide governs enzyme assembly via a conformational switch.
Collapse
|
90
|
Ash PA, Liu J, Coutard N, Heidary N, Horch M, Gudim I, Simler T, Zebger I, Lenz O, Vincent KA. Electrochemical and Infrared Spectroscopic Studies Provide Insight into Reactions of the NiFe Regulatory Hydrogenase from Ralstonia eutropha with O2 and CO. J Phys Chem B 2015; 119:13807-15. [PMID: 26115011 DOI: 10.1021/acs.jpcb.5b04164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regulatory hydrogenase (RH) from Ralstonia eutropha acts as the H2-sensing unit of a two-component system that regulates biosynthesis of the energy conserving hydrogenases of the organism according to the availability of H2. The H2 oxidation activity, which was so far determined in vitro with artificial electron acceptors, has been considered to be insensitive to O2 and CO. It is assumed that bulky isoleucine and phenylalanine amino acid residues close to the NiFe active site "gate" gas access, preventing molecules larger than H2 interacting with the active site. We have carried out sensitive electrochemical measurements to demonstrate that O2 is in fact an inhibitor of H2 oxidation by the RH, and that both H(+) reduction and H2 oxidation are inhibited by CO. Furthermore, we have demonstrated that the inhibitory effect of O2 arises due to interaction of O2 with the active site. Using protein film infrared electrochemistry (PFIRE) under H2 oxidation conditions, in conjunction with solution infrared measurements, we have identified previously unreported oxidized inactive and catalytically active reduced states of the RH active site. These findings suggest that the RH has a rich active site chemistry similar to that of other NiFe hydrogenases.
Collapse
Affiliation(s)
- Philip A Ash
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| | - Juan Liu
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| | - Nathan Coutard
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| | - Nina Heidary
- Institut für Chemie, Technische Universität Berlin , PC14, Berlin, Germany
| | - Marius Horch
- Institut für Chemie, Technische Universität Berlin , PC14, Berlin, Germany
| | - Ingvild Gudim
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| | - Thomas Simler
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin , PC14, Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin , PC14, Berlin, Germany
| | - Kylie A Vincent
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| |
Collapse
|
91
|
Metagenomic Sequencing Unravels Gene Fragments with Phylogenetic Signatures of O2-Tolerant NiFe Membrane-Bound Hydrogenases in Lacustrine Sediment. Curr Microbiol 2015; 71:296-302. [PMID: 26044993 PMCID: PMC4486115 DOI: 10.1007/s00284-015-0846-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022]
Abstract
Many promising hydrogen technologies utilising hydrogenase enzymes have been slowed by the fact that most hydrogenases are extremely sensitive to O2. Within the group 1 membrane-bound NiFe hydrogenase, naturally occurring tolerant enzymes do exist, and O2 tolerance has been largely attributed to changes in iron–sulphur clusters coordinated by different numbers of cysteine residues in the enzyme’s small subunit. Indeed, previous work has provided a robust phylogenetic signature of O2 tolerance [1], which when combined with new sequencing technologies makes bio prospecting in nature a far more viable endeavour. However, making sense of such a vast diversity is still challenging and could be simplified if known species with O2-tolerant enzymes were annotated with information on metabolism and natural environments. Here, we utilised a bioinformatics approach to compare O2-tolerant and sensitive membrane-bound NiFe hydrogenases from 177 bacterial species with fully sequenced genomes for differences in their taxonomy, O2 requirements, and natural environment. Following this, we interrogated a metagenome from lacustrine surface sediment for novel hydrogenases via high-throughput shotgun DNA sequencing using the Illumina™ MiSeq platform. We found 44 new NiFe group 1 membrane-bound hydrogenase sequence fragments, five of which segregated with the tolerant group on the phylogenetic tree of the enzyme’s small subunit, and four with the large subunit, indicating de novo O2-tolerant protein sequences that could help engineer more efficient hydrogenases.
Collapse
|
92
|
Roncaroli F, Bill E, Friedrich B, Lenz O, Lubitz W, Pandelia ME. Cofactor composition and function of a H 2-sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy. Chem Sci 2015; 6:4495-4507. [PMID: 29142700 PMCID: PMC5665086 DOI: 10.1039/c5sc01560j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 01/22/2023] Open
Abstract
The regulatory hydrogenase (RH) from Ralstonia eutropha H16 acts as a sensor for the detection of environmental H2 and regulates gene expression related to hydrogenase-mediated cellular metabolism. In marked contrast to prototypical energy-converting [NiFe] hydrogenases, the RH is apparently insensitive to inhibition by O2 and CO. While the physiological function of regulatory hydrogenases is well established, little is known about the redox cycling of the [NiFe] center and the nature of the iron-sulfur (FeS) clusters acting as electron relay. The absence of any FeS cluster signals in EPR had been attributed to their particular nature, whereas the observation of essentially only two active site redox states, namely Ni-SI and Ni-C, invoked a different operant mechanism. In the present work, we employ a combination of Mössbauer, FTIR and EPR spectroscopic techniques to study the RH, and the results are consistent with the presence of three [4Fe-4S] centers in the small subunit. In the as-isolated, oxidized RH all FeS clusters reside in the EPR-silent 2+ state. Incubation with H2 leads to reduction of two of the [4Fe-4S] clusters, whereas only strongly reducing agents lead to reduction of the third cluster, which is ascribed to be the [4Fe-4S] center in 'proximal' position to the [NiFe] center. In the two different active site redox states, the low-spin FeII exhibits distinct Mössbauer features attributed to changes in the electronic and geometric structure of the catalytic center. The results are discussed with regard to the spectral characteristics and physiological function of H2-sensing regulatory hydrogenases.
Collapse
Affiliation(s)
- Federico Roncaroli
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany . ; .,Department of Condensed Matter Physics , Centro Atómico Constituyentes , Comisión Nacional de Energía Atómica (CNEA) , Argentina
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Bärbel Friedrich
- Institut für Biologie/Mikrobiologie , Humboldt-Universität zu Berlin , Chausseestraße 117 , 10115 Berlin , Germany
| | - Oliver Lenz
- Institut für Biologie/Mikrobiologie , Humboldt-Universität zu Berlin , Chausseestraße 117 , 10115 Berlin , Germany.,Institut für Chemie , Technische Universität Berlin , Max-Volmer-Laboratorium , Straße des 17. Juni 135 , 10623 Berlin , Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Maria-Eirini Pandelia
- The Pennsylvania State University , Department of Chemistry , State College , PA 16802 , USA . .,Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| |
Collapse
|
93
|
Rivera-Chávez F, Bäumler AJ. The Pyromaniac Inside You: Salmonella Metabolism in the Host Gut. Annu Rev Microbiol 2015; 69:31-48. [PMID: 26002180 DOI: 10.1146/annurev-micro-091014-104108] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A metabolically diverse microbial community occupies all available nutrient-niches in the lumen of the mammalian intestine, making it difficult for pathogens to establish themselves in this highly competitive environment. Salmonella serovars sidestep the competition by using their virulence factors to coerce the host into creating a novel nutrient-niche. Inflammation-derived nutrients available in this new niche support a bloom of Salmonella serovars, thereby ensuring transmission of the pathogen to the next susceptible host by the fecal-oral route. Here we review the anaerobic food chain that characterizes resident gut-associated microbial communities along with the winning metabolic strategy Salmonella serovars use to edge out competing microbes in the inflamed intestine.
Collapse
Affiliation(s)
- Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616;
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616;
| |
Collapse
|
94
|
[NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins1. Biochem J 2015; 464:169-77. [PMID: 25184670 DOI: 10.1042/bj20140485] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
[NiFe]-hydrogenases (Hyd) bind a nickel-iron-based cofactor. The Fe ion of the cofactor is bound by two cyanide ligands and a single carbon monoxide ligand. Minimally six accessory proteins (HypA-HypF) are necessary for NiFe(CN)2CO cofactor biosynthesis in Escherichia coli. It has been shown that the anaerobically purified HypC-HypD-HypE scaffold complex carries the Fe(CN)2CO moiety of this cofactor. In the present study, we have purified the HybG-HypDE complex and used it to successfully reconstitute in vitro active Hyd from E. coli. HybG is a homologue of HypC that is specifically required for the maturation of Hyd-2 and also functions in the maturation of Hyd-1 of E. coli. Maturation of active Hyd-1 and Hyd-2 could be demonstrated in extracts derived from HybG- and HypD-deficient E. coli strains by adding anaerobically purified HybG-HypDE complex. In vitro maturation was dependent on ATP, carbamoylphosphate, nickel and reducing conditions. Hydrogenase maturation was prevented when the purified HybG-HypDE complex used in the maturation assay lacked a bound Fe(CN)2CO moiety. These findings demonstrate that it is possible to isolate incompletely processed intermediates on the maturation pathway and to use these to activate apo-forms of [NiFe]-hydrogenase large subunits.
Collapse
|
95
|
Huang GF, Wu XB, Bai LP, Liu K, Jiang LJ, Long MN, Chen QX. Improved O2-tolerance in variants of a H2-evolving [NiFe]-hydrogenase from Klebsiella oxytoca HP1. FEBS Lett 2015; 589:910-8. [PMID: 25747389 DOI: 10.1016/j.febslet.2015.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/14/2015] [Accepted: 02/23/2015] [Indexed: 12/29/2022]
Abstract
In this study, we investigated the mechanism of O2 tolerance of Klebsiella oxytoca HP1 H2-evolving hydrogenase 3 (KHyd3) by mutational analysis and three-dimensional structure modeling. Results revealed that certain surface amino acid residues of KHyd3 large subunit, in particular those at the outer entrance of the gas channel, have a visible effect on its oxygen tolerance. Additionally, solution pH, immobilization and O2 partial pressure also affect KHyd3 O2-tolerance to some extent. We propose that the extent of KHyd3 O2-tolerance is determined by a balance between the rate of O2 access to the active center through gas channels and the deoxidation rate of the oxidized active center. Based on our findings, two higher O2-tolerant KHyd3 mutations G300E and G300M were developed.
Collapse
Affiliation(s)
- Gang-Feng Huang
- State Key Laboratory of Cellular Stress Biology and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiao-Bing Wu
- State Key Laboratory of Cellular Stress Biology and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Li-Ping Bai
- State Key Laboratory of Cellular Stress Biology and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ke Liu
- State Key Laboratory of Cellular Stress Biology and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Li-Jing Jiang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Min-Nan Long
- School of Energy Research, Xiamen University, Xiamen 361102, China
| | - Qing-Xi Chen
- State Key Laboratory of Cellular Stress Biology and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
96
|
Tsygankov AA, Khusnutdinova AN. Hydrogen in metabolism of purple bacteria and prospects of practical application. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715010154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
97
|
Structural differences of oxidized iron–sulfur and nickel–iron cofactors in O 2 -tolerant and O 2 -sensitive hydrogenases studied by X-ray absorption spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:162-170. [DOI: 10.1016/j.bbabio.2014.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 11/23/2022]
|
98
|
Ohta S. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol 2015; 555:289-317. [PMID: 25747486 DOI: 10.1016/bs.mie.2014.11.038] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular hydrogen (H2) was believed to be inert and nonfunctional in mammalian cells. We overturned this concept by demonstrating that H2 reacts with highly reactive oxidants such as hydroxyl radical ((•)OH) and peroxynitrite (ONOO(-)) inside cells. H2 has several advantages exhibiting marked effects for medical applications: it is mild enough neither to disturb metabolic redox reactions nor to affect signaling by reactive oxygen species. Therefore, it should have no or little adverse effects. H2 can be monitored with an H2-specific electrode or by gas chromatography. H2 rapidly diffuses into tissues and cells to exhibit efficient effects. Thus, we proposed the potential of H2 for preventive and therapeutic applications. There are several methods to ingest or consume H2: inhaling H2 gas, drinking H2-dissolved water (H2-water), injecting H2-dissolved saline (H2-saline), taking an H2 bath, or dropping H2-saline onto the eyes. Recent publications revealed that, in addition to the direct neutralization of highly reactive oxidants, H2 indirectly reduces oxidative stress by regulating the expression of various genes. Moreover, by regulating gene expression, H2 functions as an anti-inflammatory, antiallergic, and antiapoptotic molecule, and stimulates energy metabolism. In addition to growing evidence obtained by model animal experiments, extensive clinical examinations were performed or are under way. Since most drugs specifically act on their specific targets, H2 seems to differ from conventional pharmaceutical drugs. Owing to its great efficacy and lack of adverse effects, H2 has potential for clinical applications for many diseases.
Collapse
Affiliation(s)
- Shigeo Ohta
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan.
| |
Collapse
|
99
|
Karstens K, Wahlefeld S, Horch M, Grunzel M, Lauterbach L, Lendzian F, Zebger I, Lenz O. Impact of the iron-sulfur cluster proximal to the active site on the catalytic function of an O2-tolerant NAD(+)-reducing [NiFe]-hydrogenase. Biochemistry 2015; 54:389-403. [PMID: 25517969 DOI: 10.1021/bi501347u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The soluble NAD(+)-reducing hydrogenase (SH) from Ralstonia eutropha H16 belongs to the O2-tolerant subtype of pyridine nucleotide-dependent [NiFe]-hydrogenases. To identify molecular determinants for the O2 tolerance of this enzyme, we introduced single amino acids exchanges in the SH small hydrogenase subunit. The resulting mutant strains and proteins were investigated with respect to their physiological, biochemical, and spectroscopic properties. Replacement of the four invariant conserved cysteine residues, Cys41, Cys44, Cys113, and Cys179, led to unstable protein, strongly supporting their involvement in the coordination of the iron-sulfur cluster proximal to the catalytic [NiFe] center. The Cys41Ser exchange, however, resulted in an SH variant that displayed up to 10% of wild-type activity, suggesting that the coordinating role of Cys41 might be partly substituted by the nearby Cys39 residue, which is present only in O2-tolerant pyridine nucleotide-dependent [NiFe]-hydrogenases. Indeed, SH variants carrying glycine, alanine, or serine in place of Cys39 showed increased O2 sensitivity compared to that of the wild-type enzyme. Substitution of further amino acids typical for O2-tolerant SH representatives did not greatly affect the H2-oxidizing activity in the presence of O2. Remarkably, all mutant enzymes investigated by electron paramagnetic resonance spectroscopy did not reveal significant spectral changes in relation to wild-type SH, showing that the proximal iron-sulfur cluster does not contribute to the wild-type spectrum. Interestingly, exchange of Trp42 by serine resulted in a completely redox-inactive [NiFe] site, as revealed by infrared spectroscopy and H2/D(+) exchange experiments. The possible role of this residue in electron and/or proton transfer is discussed.
Collapse
Affiliation(s)
- Katja Karstens
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin , Chausseestr. 117, 10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Bertsch J, Müller V. Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:210. [PMID: 26692897 PMCID: PMC4676187 DOI: 10.1186/s13068-015-0393-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 05/05/2023]
Abstract
Synthesis gas (syngas) is a gas mixture consisting mainly of H2, CO, and CO2 and can be derived from different sources, including renewable materials like lignocellulose. The fermentation of syngas to certain biofuels, using acetogenic bacteria, has attracted more and more interest over the last years. However, this technology is limited by two things: (1) the lack of complete knowledge of the energy metabolism of acetogenic bacteria, and (2) the lack of sophisticated genetic tools for the modification of acetogens. In this review, we discuss the bioenergetic constraints for the conversion of syngas to different biofuels. We will mainly focus on Acetobacterium woodii, which is the best understood acetogen in terms of energy conservation. Syngas fermentation with Clostridium autoethanogenum will also be discussed, since this organism is well suited to convert syngas to certain products and already used in large-scale industrial processes.
Collapse
Affiliation(s)
- Johannes Bertsch
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|