51
|
Cama J, Pagliara S. Microfluidic Single-Cell Phenotyping of the Activity of Peptide-Based Antimicrobials. Methods Mol Biol 2021; 2208:237-253. [PMID: 32856267 DOI: 10.1007/978-1-0716-0928-6_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antibiotic resistance is a major challenge for modern medicine, and there is a dire need to refresh the antibiotic development pipeline to treat infections that are resistant to currently available drugs. Peptide-based antimicrobials represent a promising source of novel anti-infectives, but their development is severely impeded due to the lack of suitable techniques to accurately quantify their antimicrobial efficacy. A major problem involves the heterogeneity of cellular phenotypes in response to these peptides, even within a clonal population of bacteria. There is thus a need to develop single-cell resolution assays to quantify drug efficacy for these novel therapeutics. We present here a detailed microfluidics-microscopy protocol for testing the efficacy of peptide-based antimicrobials on hundreds to thousands of individual bacteria in well-defined microenvironments. This enables the study of cell-to-cell differences in drug response within a clonal population. It is a highly versatile tool, which can be used to quantify drug efficacy, including the number of individual survivors at defined drug doses; it even enables the potential exploration of the molecular mechanisms of action of the drug, which are often unknown in the early stages of drug development. We present here protocols for working with Escherichia coli, but organisms of different geometric shapes and sizes may also be tested with suitable modifications of the microfluidic device.
Collapse
Affiliation(s)
- Jehangir Cama
- Living Systems Institute, University of Exeter, Exeter, UK.
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Exeter, UK.
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
52
|
Zou J, Kou SH, Xie R, VanNieuwenhze MS, Qu J, Peng B, Zheng J. Non-walled spherical Acinetobacter baumannii is an important type of persister upon β-lactam antibiotic treatment. Emerg Microbes Infect 2021; 9:1149-1159. [PMID: 32419626 PMCID: PMC7448848 DOI: 10.1080/22221751.2020.1770630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial persistence is one of the major causes of antibiotic treatment failure and the step stone for antibiotic resistance. However, the mechanism by which persisters arise has not been well understood. Maintaining a dormant state to prevent antibiotics from taking effect is believed to be the fundamental mechanistic basis, and persisters normally maintain an intact cellular structure. Here we examined the morphologies of persisters in Acinetobacter baumannii survived from the treatment by three major classes of antibiotics (i.e. β-lactam, aminoglycoside, and fluoroquinolone) with microcopy and found that a fraction of enlarged spherical bacteria constitutes a major sub-population of bacterial survivors from β-lactam antibiotic treatment, whereas survivors from the treatment of aminoglycoside and fluoroquinolone were less changed morphologically. Further studies showed that these spherical bacteria had completely lost their cell wall structures but could survive without any osmoprotective reagent. The spherical bacteria were not the viable-but-non-culturable cells and they could revive upon the removal of β-lactam antibiotics. Importantly, these non-walled spherical bacteria also persisted during antibiotic therapy in vivo using Galleria mellonella as the infection model. Additionally, the combinational treatment on A. baumannii by β-lactam and membrane-targeting antibiotic significantly enhanced the killing efficacy. Our results indicate that in addition to the dormant, structure intact persisters, the non-wall spherical bacterium is another important type of persister in A. baumannii. The finding suggests that targeting the bacterial cell membrane during β-lactam chemotherapy could enhance therapeutic efficacy on A. baumannii infection, which might also help to reduce the resistance development of A. baumannii.
Collapse
Affiliation(s)
- Jin Zou
- Faculty of Health Sciences, University of Macau, Macau SAR, People's Republic of China
| | - Si-Hoi Kou
- Faculty of Health Sciences, University of Macau, Macau SAR, People's Republic of China
| | - Ruiqiang Xie
- Faculty of Health Sciences, University of Macau, Macau SAR, People's Republic of China
| | | | - Jiuxin Qu
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, People's Republic of China
| | - Bo Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau SAR, People's Republic of China.,Institute of Translational Medicine, University of Macau, Macau SAR, People's Republic of China
| |
Collapse
|
53
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
54
|
Rehman SK, Haynes J, Collignon E, Brown KR, Wang Y, Nixon AML, Bruce JP, Wintersinger JA, Singh Mer A, Lo EBL, Leung C, Lima-Fernandes E, Pedley NM, Soares F, McGibbon S, He HH, Pollet A, Pugh TJ, Haibe-Kains B, Morris Q, Ramalho-Santos M, Goyal S, Moffat J, O'Brien CA. Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive Chemotherapy. Cell 2021; 184:226-242.e21. [PMID: 33417860 PMCID: PMC8437243 DOI: 10.1016/j.cell.2020.11.018] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022]
Abstract
Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.
Collapse
Affiliation(s)
- Sumaiyah K Rehman
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jennifer Haynes
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Evelyne Collignon
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Kevin R Brown
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yadong Wang
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Allison M L Nixon
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jeffrey A Wintersinger
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada
| | - Arvind Singh Mer
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Edwyn B L Lo
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Cherry Leung
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Nicholas M Pedley
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Fraser Soares
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sophie McGibbon
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Aaron Pollet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Trevor J Pugh
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Clinical Genomics Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Quaid Morris
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada; Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Catherine A O'Brien
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Surgery, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
55
|
Martínez-García S, Peralta H, Betanzos-Cabrera G, Chavez-Galan L, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Proteomic comparison of biofilm vs. planktonic Staphylococcus epidermidis cells suggests key metabolic differences between these conditions. Res Microbiol 2021; 172:103796. [PMID: 33412274 DOI: 10.1016/j.resmic.2020.103796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that biofilm-forming bacteria are deficient in tricarboxylic acid (TCA) cycle metabolites, suggesting a relationship between these cellular processes. In this work, we compared the proteomes of planktonic vs biofilm cells from a clinical strain of Staphylococcus epidermidis using LC-MS/MS. A total of 168 proteins were identified from both growth conditions. The biofilm cells showed enrichment of proteins participating in glycolysis for the formation of pyruvate; however, the absence of TCA cycle proteins and the presence of lactate dehydrogenase, formate acetyltransferase, and acetoin reductase suggested that pyruvate was catabolized to their respective products: lactate, formate and acetoin. On the other hand, planktonic cells showed proteins participating in glycolysis and the TCA cycle, the pentose phosphate pathway, gluconeogenesis, ATP generation and the oxidative stress response. Functional networks with higher interconnection were predicted for planktonic proteins. We propose that in S. epidermidis, the relative absence of TCA cycle proteins is associated with the formation of biofilms and that lactate, formate and acetoin are the end products of partial glucose metabolism.
Collapse
Affiliation(s)
- Sergio Martínez-García
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Cd. México, Mexico
| | - Humberto Peralta
- Functional Genomics of Prokaryotes, Center for Genomic Sciences, National University of Mexico, Cuernavaca, Morelos, Mexico
| | | | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Cd. México, Mexico
| | - Sandra Rodríguez-Martínez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Cd. México, Mexico
| | - Mario E Cancino-Diaz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Cd. México, Mexico.
| | - Juan C Cancino-Diaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Cd. México, Mexico.
| |
Collapse
|
56
|
Wangngae S, Pewklang T, Chansaenpak K, Ganta P, Worakaensai S, Siwawannapong K, Kluaiphanngam S, Nantapong N, Lai RY, Kamkaew A. A chalcone-based fluorescent responsive probe for selective detection of nitroreductase activity in bacteria. NEW J CHEM 2021. [DOI: 10.1039/d1nj01794b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new chalcone-based fluorescent turn-on probe (3c) responsive to nitroreductase (NTR) activity and its application toward the detection of bacteria are presented.
Collapse
Affiliation(s)
- Sirilak Wangngae
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Thitima Pewklang
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center
- National Science and Technology Development Agency
- Thailand Science Park
- Pathum Thani 12120
- Thailand
| | - Phongsakorn Ganta
- School of Preclinical Sciences
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima
- Thailand
| | - Suphanida Worakaensai
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Kittipan Siwawannapong
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Surayut Kluaiphanngam
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Nawarat Nantapong
- School of Preclinical Sciences
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima
- Thailand
| | - Rung-Yi Lai
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Anyanee Kamkaew
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| |
Collapse
|
57
|
Abstract
The current TB treatment regimen involves a combination of drugs administered for an extended duration that could last for 6 months to 2 years. This could lead to noncompliance and the emergence of newer drug resistance strains. The worldwide increase in the frequency of multidrug-resistant and extensively drug-resistant cases of tuberculosis is mainly due to therapeutic noncompliance associated with a lengthy treatment regimen. Depending on the drug susceptibility profile, the treatment duration can extend from 6 months to 2 years. This protracted regimen is attributed to a supposedly nonreplicating and metabolically inert subset of the Mycobacterium tuberculosis population, called “persisters.” The mechanism underlying stochastic generation and enrichment of persisters is not fully known. We have previously reported that the utilization of host cholesterol is essential for mycobacterial persistence. In this study, we have demonstrated that cholesterol-induced activation of a RNase toxin (VapC12) inhibits translation by targeting proT tRNA in M. tuberculosis. This results in cholesterol-specific growth modulation that increases the frequency of generation of the persisters in a heterogeneous M. tuberculosis population. Also, a null mutant strain of this toxin (ΔvapC12) demonstrated an enhanced growth phenotype in a guinea pig model of M. tuberculosis infection, depicting its role in disease persistence. Thus, we have identified a novel strategy through which cholesterol-specific activation of a toxin-antitoxin module in M. tuberculosis enhances persister formation during infection. The current findings provide an opportunity to target persisters, a new paradigm facilitating tuberculosis drug development. IMPORTANCE The current TB treatment regimen involves a combination of drugs administered for an extended duration that could last for 6 months to 2 years. This could lead to noncompliance and the emergence of newer drug resistance strains. It is widely perceived that the major culprits are the so-called nonreplicating and metabolically inactive “persister” bacteria. The importance of cholesterol utilization during the persistence stage of M. tuberculosis infection and its potential role in the generation of persisters is very intriguing. We explored the mechanism involved in the cholesterol-mediated generation of persisters in mycobacteria. In this study, we have identified a toxin-antitoxin (TA) system essential for the generation of persisters during M. tuberculosis infection. This study verified that M. tuberculosis strain devoid of the VapBC12 TA system failed to persist and showed a hypervirulent phenotype in a guinea pig infection model. Our studies indicate that the M. tuberculosis VapBC12 TA system acts as a molecular switch regulating persister generation during infection. VapBC12 TA system as a drug target offers opportunities to develop shorter and more effective treatment regimens against tuberculosis.
Collapse
|
58
|
Single-cell RNA-seq reveals CD16 - monocytes as key regulators of human monocyte transcriptional response to Toxoplasma. Sci Rep 2020; 10:21047. [PMID: 33273621 PMCID: PMC7713135 DOI: 10.1038/s41598-020-78250-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Monocytes are among the major myeloid cells that respond to Toxoplasma, a ubiquitous foodborne that infects ≥ 1 billion people worldwide, in human peripheral blood. As such, a molecular understanding of human monocyte-Toxoplasma interactions can expedite the development of novel human toxoplasmosis control strategies. Current molecular studies on monocyte-Toxoplasma interactions are based on average cell or parasite responses across bulk cell populations. Although informative, population-level averages of monocyte responses to Toxoplasma have sometimes produced contradictory results, such as whether CCL2 or IL12 define effective monocyte responses to the parasite. Here, we used single-cell dual RNA sequencing (scDual-Seq) to comprehensively define, for the first time, the monocyte and parasite transcriptional responses that underpin human monocyte-Toxoplasma encounters at the single cell level. We report extreme transcriptional variability between individual monocytes. Furthermore, we report that Toxoplasma-exposed and unexposed monocytes are transcriptionally distinguished by a reactive subset of CD14+CD16- monocytes. Functional cytokine assays on sorted monocyte populations show that the infection-distinguishing monocytes secrete high levels of chemokines, such as CCL2 and CXCL5. These findings uncover the Toxoplasma-induced monocyte transcriptional heterogeneity and shed new light on the cell populations that largely define cytokine and chemokine secretion in human monocytes exposed to Toxoplasma.
Collapse
|
59
|
Ahmed SA, Nur Hasan M, Bagchi D, Altass HM, Morad M, Althagafi II, Hameed AM, Sayqal A, Khder AERS, Asghar BH, Katouah HA, Pal SK. Nano-MOFs as targeted drug delivery agents to combat antibiotic-resistant bacterial infections. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200959. [PMID: 33489263 PMCID: PMC7813248 DOI: 10.1098/rsos.200959] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/24/2020] [Indexed: 05/07/2023]
Abstract
The drug resistance of bacteria is a significant threat to human civilization while the action of antibiotics against drug-resistant bacteria is severely limited owing to the hydrophobic nature of drug molecules, which unquestionably inhibit its permanency for clinical applications. The antibacterial action of nanomaterials offers major modalities to combat drug resistance of bacteria. The current work reports the use of nano-metal-organic frameworks encapsulating drug molecules to enhance its antibacterial activity against model drug-resistant bacteria and biofilm of the bacteria. We have attached rifampicin (RF), a well-documented antituberculosis drug with tremendous pharmacological significance, into the pore surface of zeolitic imidazolate framework 8 (ZIF8) by a simple synthetic procedure. The synthesized ZIF8 has been characterized using the X-ray diffraction (XRD) method before and after drug encapsulation. The electron microscopic strategies such as scanning electron microscope and transmission electron microscope methods were performed to characterize the binding between ZIF8 and RF. We have also performed picosecond-resolved fluorescence spectroscopy to validate the formation of the ZIF8-RF nanohybrids (NHs). The drug release profile experiment demonstrates that ZIF8-RF depicts pH-responsive drug delivery and is ideal for targeting bacterial disease corresponding to its inherent acidic nature. Most remarkably, ZIF8-RF gives enhanced antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria and also prompts entire damage of structurally robust bacterial biofilms. Overall, the present study depicts a detailed physical insight for manufactured antibiotic-encapsulated NHs presenting tremendous antimicrobial activity that can be beneficial for manifold practical applications.
Collapse
Affiliation(s)
- Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Md. Nur Hasan
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, SaltLake, Kolkata 700 106, India
| | - Damayanti Bagchi
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, SaltLake, Kolkata 700 106, India
| | - Hatem M. Altass
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Moataz Morad
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ismail I. Althagafi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ahmed M. Hameed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ali Sayqal
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Abd El Rahman S. Khder
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Basim H. Asghar
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Hanadi A. Katouah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, SaltLake, Kolkata 700 106, India
| |
Collapse
|
60
|
Long non-coding RNAs in lung cancer: implications for lineage plasticity-mediated TKI resistance. Cell Mol Life Sci 2020; 78:1983-2000. [PMID: 33170304 PMCID: PMC7965852 DOI: 10.1007/s00018-020-03691-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The efficacy of targeted therapy in non-small-cell lung cancer (NSCLC) has been impeded by various mechanisms of resistance. Besides the mutations in targeted oncogenes, reversible lineage plasticity has recently considered to play a role in the development of tyrosine kinase inhibitors (TKI) resistance in NSCLC. Lineage plasticity enables cells to transfer from one committed developmental pathway to another, and has been a trigger of tumor adaptation to adverse microenvironment conditions including exposure to various therapies. More importantly, besides somatic mutation, lineage plasticity has also been proposed as another source of intratumoural heterogeneity. Lineage plasticity can drive NSCLC cells to a new cell identity which no longer depends on the drug-targeted pathway. Histological transformation and epithelial–mesenchymal transition are two well-known pathways of lineage plasticity-mediated TKI resistance in NSCLC. In the last decade, increased re-biopsy practice upon disease recurrence has increased the recognition of lineage plasticity induced resistance in NSCLC and has improved our understanding of the underlying biology. Long non-coding RNAs (lncRNAs), the dark matter of the genome, are capable of regulating variant malignant processes of NSCLC like the invisible hands. Recent evidence suggests that lncRNAs are involved in TKI resistance in NSCLC, particularly in lineage plasticity-mediated resistance. In this review, we summarize the mechanisms of lncRNAs in regulating lineage plasticity and TKI resistance in NSCLC. We also discuss how understanding these themes can alter therapeutic strategies, including combination therapy approaches to overcome TKI resistance.
Collapse
|
61
|
Chen H, Green A, Martz K, Wu X, Alzahrani A, Warriner K. The progress of type II persisters of Escherichia coli O157:H7 to a non-culturable state during prolonged exposure to antibiotic stress with revival being aided through acid-shock treatment and provision of methyl pyruvate. Can J Microbiol 2020; 67:518-528. [PMID: 33125853 DOI: 10.1139/cjm-2020-0339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Persisters are a form of dormancy in bacteria that provide temporary resistance to antibiotics. The following reports on the formation of Escherichia coli O157:H7 E318 type II persisters from a protracted (8 days) challenge with ampicillin. Escherichia coli O157:H7 followed a multiphasic die-off pattern with an initial rapid decline (Phase I) of susceptible cells that transitioned to a slower rate representing tolerant cells (Phase II). After 24 h post-antibiotic challenge, the E. coli O157:H7 levels remained relatively constant at 2 log CFU/mL (Phase III), but became non-culturable within 8-days (Phase IV). The revival of persisters in Phase III could be achieved by the removal of antibiotic stress, although those in Phase IV required an extended incubation period or application of acid-shock. The carbon utilization profile of persister cells was less diverse compared with non-persisters, with only methyl pyruvate being utilized from the range tested. Inclusion of methyl pyruvate in tryptic soy agar revived non-cultural persisters, presumably by stimulating metabolism. The results suggest that persisters could be subdivided into culturable or non-culturable cells, with the former representing a transition state to the latter. The study provided insights into how to revive cells from dormancy to aid enumeration and control.
Collapse
Affiliation(s)
- Heather Chen
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Andrew Green
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Kailey Martz
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Xueyang Wu
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Abdulhakeem Alzahrani
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Keith Warriner
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
62
|
Ferreira MA, Pereira ML, Dos Santos KV. Drug-induced tolerance: the effects of antibiotic pre-exposure in Stenotrophomonas maltophilia. Future Microbiol 2020; 15:497-508. [PMID: 32478618 DOI: 10.2217/fmb-2019-0253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aim: To investigate if the prior use of nontargeted antibiotics induces cross-tolerance in Stenotrophomonas maltophilia. Methods: Antibiotic induction was performed to evaluate daptomycin and vancomycin as possible tolerance-inducing drugs measured by minimum bactericidal concentration/minimum inhibitory concentration (MIC) ratio, adapted disk-diffusion tests and time-kill curves. Results: After antibiotic exposure, three potentially tolerant strains were isolated, maintaining the same MIC value of levofloxacin, with minimum bactericidal concentration/MIC ratio slightly higher than the parental. In the adapted disk-diffusion test, one strain (D25) showed high tolerance level for levofloxacin, ceftazidime and ticarcillin-clavulanate. In time-kill activity of levofloxacin, D25 presented a subpopulation of persisters with survival rate higher (1.6-fold) than the parental. Conclusion: Previous exposure of S. maltophilia to daptomycin can induce cross-tolerance to ceftazidime and ticarcillin-clavulanate and cross-persistence to levofloxacin.
Collapse
Affiliation(s)
- Mariana Am Ferreira
- Department of Pathology, Health Sciences Center, Universidade Federal do Espírito Santo (UFES), Av. Marechal Campos, 1468, 29040-090 Vitória, Espírito Santo, Brazil
| | - Maria Ls Pereira
- Department of Pathology, Health Sciences Center, Universidade Federal do Espírito Santo (UFES), Av. Marechal Campos, 1468, 29040-090 Vitória, Espírito Santo, Brazil
| | - Kênia V Dos Santos
- Department of Pathology, Health Sciences Center, Universidade Federal do Espírito Santo (UFES), Av. Marechal Campos, 1468, 29040-090 Vitória, Espírito Santo, Brazil
| |
Collapse
|
63
|
Angeli A, Ferraroni M, Pinteala M, Maier SS, Simionescu BC, Carta F, Del Prete S, Capasso C, Supuran CT. Crystal Structure of a Tetrameric Type II β-Carbonic Anhydrase from the Pathogenic Bacterium Burkholderia pseudomallei. Molecules 2020; 25:molecules25102269. [PMID: 32408533 PMCID: PMC7287614 DOI: 10.3390/molecules25102269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
Carbonic anhydrase (CA) is a zinc enzyme that catalyzes the reversible conversion of carbon dioxide to bicarbonate and proton. Currently, CA inhibitors are widely used as antiglaucoma, anticancer, and anti-obesity drugs and for the treatment of neurological disorders. Recently, the potential use of CA inhibitors to fight infections caused by protozoa, fungi, and bacteria has emerged as a new research line. In this article, the X-ray crystal structure of β-CA from Burkholderia pseudomallei was reported. The X-ray crystal structure of this new enzyme was solved at 2.7 Å resolution, revealing a tetrameric type II β-CA with a “closed” active site in which the zinc is tetrahedrally coordinated to Cys46, Asp48, His102, and Cys105. B. pseudomallei is known to encode at least two CAs, a β-CA, and a γ-CA. These proteins, playing a pivotal role in its life cycle and pathogenicity, offer a novel therapeutic opportunity to obtain antibiotics with a different mechanism of action. Furthermore, the new structure can provide a clear view of the β-CA mechanism of action and the possibility to find selective inhibitors for this class of CAs.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Marta Ferraroni
- Department of Chemistry “Ugo Schiff”, Via della Lastruccia 13, Università degli Studi di Firenze, I-50019 Sesto Fiorentino (Florence), Italy
- Correspondence: (M.F.); (C.T.S.)
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
- Polymers Research Center, Polymeric Release Systems Research Group, “Gheorghe Asachi” Technical University of Iasi, 700487 Iasi, Romania
| | - Bogdan C. Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.)
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (C.C.)
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (C.C.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.)
- Correspondence: (M.F.); (C.T.S.)
| |
Collapse
|
64
|
Ko-Adams C, Cioffi I, Dufour D, Nainar SMH, Lévesque CM, Gong SG. Short-term effects of fixed orthodontic appliance on concentrations of mutans streptococci and persister cells in adolescents. Am J Orthod Dentofacial Orthop 2020; 157:385-391. [PMID: 32115117 DOI: 10.1016/j.ajodo.2019.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Orthodontic patients are at an increased risk for developing caries. Dental caries is a biofilm-mediated disease, with mutans streptococci (MS) as the primary etiologic bacterial group. It has been suggested that persister cells (PCs), a subset of cells within the biofilm, contribute to the chronic infectious nature of dental caries. PC formation can be induced by environmental stressors such as orthodontic treatment. The aim of this study was to quantify MS, aerobic and facultative anaerobe bacterial PC proportions from plaque samples during the initial stage of orthodontic treatment. This study is the first to analyze the role of PCs in a population of patients highly susceptible to caries, that is, patients undergoing orthodontic treatment. METHODS Plaque samples were collected from 17 participants (11 males and 6 females; age range: 11-18 years) before and 1 month after insertion of fixed orthodontic appliances. Percentages of MS and PCs were determined with selective media and a classical persister microbial assay, respectively. RESULTS There was a statistically significant decrease in %MS (P = 0.039) but no statistically significant difference in %PCs (P = 0.939) after 1 month of orthodontic appliance placement. CONCLUSION Our study illustrated the technical feasibility of analysis of PCs in plaque samples of patients during orthodontic treatment and revealed that PC formation during orthodontic treatment is highly variable across individuals.
Collapse
Affiliation(s)
- Chelsea Ko-Adams
- Orthodontics program, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Iacopo Cioffi
- Orthodontics program, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Delphine Dufour
- Oral Microbiology program, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - S M Hashim Nainar
- Pediatric Dentistry program, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Céline M Lévesque
- Oral Microbiology program, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Siew-Ging Gong
- Orthodontics program, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
65
|
Zhao Y, Lv B, Sun F, Liu J, Wang Y, Gao Y, Qi F, Chang Z, Fu X. Rapid Freezing Enables Aminoglycosides To Eradicate Bacterial Persisters via Enhancing Mechanosensitive Channel MscL-Mediated Antibiotic Uptake. mBio 2020; 11:e03239-19. [PMID: 32047133 PMCID: PMC7018644 DOI: 10.1128/mbio.03239-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial persisters exhibit noninherited antibiotic tolerance and are linked to the recalcitrance of bacterial infections. It is very urgent but also challenging to develop antipersister strategies. Here, we report that 10-s freezing with liquid nitrogen dramatically enhances the bactericidal action of aminoglycoside antibiotics by 2 to 6 orders of magnitude against many Gram-negative pathogens, with weaker potentiation effects on Gram-positive bacteria. In particular, antibiotic-tolerant Escherichia coli and Pseudomonas aeruginosa persisters-which were prepared by treating exponential-phase cells with ampicillin, ofloxacin, the protonophore cyanide m-chlorophenyl hydrazone (CCCP), or bacteriostatic antibiotics-can be effectively killed. We demonstrated, as a proof of concept, that freezing potentiated the aminoglycosides' killing of P. aeruginosa persisters in a mouse acute skin wound model. Mechanistically, freezing dramatically increased the bacterial uptake of aminoglycosides regardless of the presence of CCCP, indicating that the effects are independent of the proton motive force (PMF). In line with these results, we found that the effects were linked to freezing-induced cell membrane damage and were attributable, at least partly, to the mechanosensitive ion channel MscL, which was able to directly mediate such freezing-enhanced aminoglycoside uptake. In view of these results, we propose that the freezing-induced aminoglycoside potentiation is achieved by freezing-induced cell membrane destabilization, which, in turn, activates the MscL channel, which is able to effectively take up aminoglycosides in a PMF-independent manner. Our work may pave the way for the development of antipersister strategies that utilize the same mechanism as freezing but do so without causing any injury to animal cells.IMPORTANCE Antibiotics have long been used to successfully kill bacterial pathogens, but antibiotic resistance/tolerance usually has led to the failure of antibiotic therapy, and it has become a severe threat to human health. How to improve the efficacy of existing antibiotics is of importance for combating antibiotic-resistant/tolerant pathogens. Here, we report that 10-s rapid freezing with liquid nitrogen dramatically enhanced the bactericidal action of aminoglycoside antibiotics by 2 to 6 orders of magnitude against many bacterial pathogens in vitro and also in a mouse skin wound model. In particular, such combined treatment was able to effectively kill persister cells of Escherichia coli and Pseudomonas aeruginosa, which are per se tolerant of conventional treatment with bactericidal antibiotics for several hours. We also demonstrated that freezing-induced aminoglycoside potentiation was apparently linked to freezing-induced cell membrane damage that may have activated the mechanosensitive ion channel MscL, which, in turn, was able to effectively uptake aminoglycoside antibiotics in a proton motive force-independent manner. Our report sheds light on the development of a new strategy against bacterial pathogens by combining existing antibiotics with a conventional physical treatment or with MscL agonists.
Collapse
Affiliation(s)
- Yanna Zhao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Boyan Lv
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Fengqi Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Jiafeng Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yan Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Yuanyuan Gao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Zengyi Chang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou City, Fujian Province, China
| |
Collapse
|
66
|
Nikolaev YA, Demkina EV, Perminova IV, Loiko NG, Borzenkov IA, Ivanona AE, Konstantinov AI, El’-Registan GI. Role of Humic Compounds in Viability Prolongation of the Cells of Hydrocarbon-Oxidizing Bacteria. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261719060122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
67
|
Lu J, Cheng L, Huang Y, Jiang Y, Chu CH, Peng X, Li M, Xu HHK, Zhou X, Ren B. Resumptive Streptococcus mutans Persisters Induced From Dimethylaminododecyl Methacrylate Elevated the Cariogenic Virulence by Up-Regulating the Quorum-Sensing and VicRK Pathway Genes. Front Microbiol 2020; 10:3102. [PMID: 32038546 PMCID: PMC6985435 DOI: 10.3389/fmicb.2019.03102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/23/2019] [Indexed: 02/05/2023] Open
Abstract
Bacterial persistence has become a worldwide health problem due to its ability to cause the recalcitrance and relapse of infections. The existence of bacterial persistence and their possible mechanisms have been widely reported. However, the following regrowth of persister cells is not clear although the awakening of dormant surviving persisters is the key to reinitialize bacterial infection. In this study, we investigated the growth character and cariogenic virulence during the recovery of Streptococcus mutans drug-tolerant persister cells induced by a novel quaternary ammonium: dimethylaminododecyl methacrylate (DMADDM). A remarkable lag phase was observed in S. mutans persisters when regrew at the first 24 h compared to normal cells. During the entire recovery state, persisters are metabolically active to increase the production of both water-soluble and water-insoluble glucan. The shortage of cell number in persisters resulted in the decrease of lactic acid production, but persisters gradually recovered the normal acid production ability after 72 h. The up-regulated expression of gtf and vicR was in line with comDE circuit and consistent with the virulence change during the regrowth stage. Our findings proved that lethal dosages of DMADDM induced drug-tolerant S. mutans persisters in biofilm, which had a prolonged lag phase and elevated cariogenic virulence during regrowth. The recovery and elevated virulence of persisters were regulated by quorum-sensing and VicRK pathway. This alarmed the elevated cariogenicity of persisters and highlighted the critical requirement for the drug-tolerance evaluation when developing new oral antimicrobial agents. To the best of our knowledge, we characterized the regrowth and cariogenic virulence variation of S. mutans persisters induced by quaternary ammonium for the first time. Our findings suggest that S. mutans persisters with the elevated cariogenic virulence during their regrowth stage highlighted the need of new strategy to overcome bacterial persistence. Meanwhile, the prolonged lag phase and the involvement of quorum-sensing system in the regrowth of S. mutans persisters may provide the potential targets.
Collapse
Affiliation(s)
- Junzhuo Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chun-Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
68
|
Nikolaev YA, Loiko NG, Demkina EV, Atroshchik EA, Konstantinov AI, Perminova IV, El’-Registan GI. Functional Activity of Humic Substances in Survival Prolongation of Populations of Hydrocarbon-Oxidizing Bacteria Acinetobacter junii. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
69
|
da Silva MA, Baronetti JL, Páez PL, Paraje MG. Oxidative Imbalance in Candida tropicalis Biofilms and Its Relation With Persister Cells. Front Microbiol 2020; 11:598834. [PMID: 33603717 PMCID: PMC7884318 DOI: 10.3389/fmicb.2020.598834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Persister cells (PCs) make up a small fraction of microbial population, can survive lethal concentrations of antimicrobial agents. In recent years, Candida tropicalis has emerged as being a frequent fungal agent of medical devices subject to biofilm infections. However, PCs are still poorly understood. OBJECTIVES This study aimed to investigate the relation of PCs on the redox status in C. tropicalis biofilms exposed to high doses of Amphotericin B (AmB), and alterations in surface topography and the architecture of biofilms. METHODS We used an experimental model of two different C. tropicalis biofilms exposed to AmB at supra minimum inhibitory concentration (SMIC80), and the intra- and extracellular reactive oxygen species (iROS and eROS), reactive nitrogen species (RNS) and oxidative stress response were studied. Light microscopy (LM) and confocal laser scanning microscopy (CLSM) were also used in conjunction with the image analysis software COMSTAT. RESULTS We demonstrated that biofilms derived from the PC fraction (B2) showed a higher capacity to respond to the stress generated upon AmB treatment, compared with biofilms obtained from planktonic cells. In B2, a lower ROS and RNS accumulation was observed in concordance with higher activation of the antioxidant systems, resulting in an oxidative imbalance of a smaller magnitude compared to B1. LM analysis revealed that the AmB treatment provoked a marked decrease of biomass, showing a loss of cellular aggrupation, with the presence of mostly yeast cells. Moreover, significant structural changes in the biofilm architecture were noted between both biofilms by CLSM-COMSTAT analysis. For B1, the quantitative parameters bio-volume, average micro-colony volume, surface to bio-volume ratio and surface coverage showed reductions upon AmB treatment, whereas increases were observed in roughness coefficient and average diffusion distance. In addition, untreated B2 was substantially smaller than B1, with less biomass and thickness values. The analysis of the above-mentioned parameters also showed changes in B2 upon AmB exposure. CONCLUSION To our knowledge, this is the first study that has attempted to correlate PCs of Candida biofilms with alterations in the prooxidant-antioxidant balance and the architecture of the biofilms. The finding of regular and PCs with different cellular stress status may help to solve the puzzle of biofilm resistance, with redox imbalance possibly being an important factor.
Collapse
Affiliation(s)
- María A. da Silva
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José L. Baronetti
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulina L. Páez
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María G. Paraje
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- *Correspondence: María G. Paraje, ;
| |
Collapse
|
70
|
Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov 2020; 19:39-56. [PMID: 31601994 DOI: 10.1038/s41573-019-0044-1] [Citation(s) in RCA: 466] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 01/05/2023]
Abstract
The success of targeted therapies in cancer treatment has been impeded by various mechanisms of resistance. Besides the acquisition of resistance-conferring genetic mutations, reversible mechanisms that lead to drug tolerance have emerged. Plasticity in tumour cells drives their transformation towards a phenotypic state that no longer depends on the drug-targeted pathway. These drug-refractory cells constitute a pool of slow-cycling cells that can either regain drug sensitivity upon treatment discontinuation or acquire permanent resistance to therapy and drive relapse. In the past few years, cell plasticity has emerged as a mode of targeted therapy evasion in various cancers, ranging from prostate and lung adenocarcinoma to melanoma and basal cell carcinoma. Our understanding of the mechanisms that control this phenotypic switch has also expanded, revealing the crucial role of reprogramming factors and chromatin remodelling. Further deciphering the molecular basis of tumour cell plasticity has the potential to contribute to new therapeutic strategies which, combined with existing anticancer treatments, could lead to deeper and longer-lasting clinical responses.
Collapse
Affiliation(s)
- Soufiane Boumahdi
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | | |
Collapse
|
71
|
Dusane DH, Brooks JR, Sindeldecker D, Peters CW, Li A, Farrar NR, Diamond SM, Knecht CS, Plaut RD, Delury C, Aiken SS, Laycock PA, Sullivan A, Granger JF, Stoodley P. Complete Killing of Agar Lawn Biofilms by Systematic Spacing of Antibiotic-Loaded Calcium Sulfate Beads. MATERIALS 2019; 12:ma12244052. [PMID: 31817373 PMCID: PMC6947297 DOI: 10.3390/ma12244052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022]
Abstract
Background:Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) are the major causative agents of acute and chronic infections. Antibiotic-loaded calcium sulfate beads (ALCSB) are used in the management of musculoskeletal infections such as periprosthetic joint infections (PJI). Methods: To determine whether the number and spatial distribution of ALCSB are important factors to totally eradicate biofilms, ALCSBs containing vancomycin and tobramycin were placed on 24 h agar lawn biofilms as a single bead in the center, or as 16 beads placed as four clusters of four, a ring around the edge and as a group in the center or 19 beads evenly across the plate. Bioluminescence was used to assess spatial metabolic activity in real time. Replica plating was used to assess viability. Results: For both strains antibiotics released from the beads completely killed biofilm bacteria in a zone immediately adjacent to each bead. However, for PA extended incubation revealed the emergence of resistant colony phenotypes between the zone of eradication and the background lawn. The rate of biofilm clearing was greater when the beads were distributed evenly over the plate. Conclusions: Both number and distribution pattern of ALCSB are important to ensure adequate coverage of antibiotics required to eradicate biofilms.
Collapse
Affiliation(s)
- Devendra H. Dusane
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (D.H.D.); (J.R.B.); (D.S.); (C.W.P.); (A.L.); (N.R.F.); (S.M.D.); (C.S.K.)
| | - Jacob R. Brooks
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (D.H.D.); (J.R.B.); (D.S.); (C.W.P.); (A.L.); (N.R.F.); (S.M.D.); (C.S.K.)
| | - Devin Sindeldecker
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (D.H.D.); (J.R.B.); (D.S.); (C.W.P.); (A.L.); (N.R.F.); (S.M.D.); (C.S.K.)
| | - Casey W. Peters
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (D.H.D.); (J.R.B.); (D.S.); (C.W.P.); (A.L.); (N.R.F.); (S.M.D.); (C.S.K.)
| | - Anthony Li
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (D.H.D.); (J.R.B.); (D.S.); (C.W.P.); (A.L.); (N.R.F.); (S.M.D.); (C.S.K.)
| | - Nicholas R. Farrar
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (D.H.D.); (J.R.B.); (D.S.); (C.W.P.); (A.L.); (N.R.F.); (S.M.D.); (C.S.K.)
| | - Scott M. Diamond
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (D.H.D.); (J.R.B.); (D.S.); (C.W.P.); (A.L.); (N.R.F.); (S.M.D.); (C.S.K.)
| | - Cory S. Knecht
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (D.H.D.); (J.R.B.); (D.S.); (C.W.P.); (A.L.); (N.R.F.); (S.M.D.); (C.S.K.)
| | - Roger D. Plaut
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Craig Delury
- Biocomposites Ltd., Keele Science Park, Keele, Staffordshire ST5 5NL, UK; (C.D.); (S.S.A.); (P.A.L.)
| | - Sean S. Aiken
- Biocomposites Ltd., Keele Science Park, Keele, Staffordshire ST5 5NL, UK; (C.D.); (S.S.A.); (P.A.L.)
| | - Phillip A. Laycock
- Biocomposites Ltd., Keele Science Park, Keele, Staffordshire ST5 5NL, UK; (C.D.); (S.S.A.); (P.A.L.)
| | - Anne Sullivan
- Department of Orthopaedics, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (A.S.); (J.F.G.)
| | - Jeffrey F. Granger
- Department of Orthopaedics, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (A.S.); (J.F.G.)
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (D.H.D.); (J.R.B.); (D.S.); (C.W.P.); (A.L.); (N.R.F.); (S.M.D.); (C.S.K.)
- Department of Orthopaedics, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (A.S.); (J.F.G.)
- National Centre for Advanced Tribology at Southampton (nCATS) and National Biofilm Innovation Centre (NBIC), Department of Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, UK
- Correspondence: ; Tel.: +1-614-292-7871
| |
Collapse
|
72
|
Carvalho G, Forestier C, Mathias JD. Antibiotic resilience: a necessary concept to complement antibiotic resistance? Proc Biol Sci 2019; 286:20192408. [PMID: 31795866 DOI: 10.1098/rspb.2019.2408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Resilience is the capacity of systems to recover their initial state or functions after a disturbance. The concepts of resilience and resistance are complementary in ecology and both represent different aspects of the stability of ecosystems. However, antibiotic resilience is not used in clinical bacteriology whereas antibiotic resistance is a recognized major problem. To join the fields of ecology and clinical bacteriology, we first review the resilience concept from ecology, socio-ecological systems and microbiology where it is widely developed. We then review resilience-related concepts in microbiology, including bacterial tolerance and persistence, phenotypic heterogeneity and collective tolerance and resistance. We discuss how antibiotic resilience could be defined and argue that the use of this concept largely relies on its experimental measure and its clinical relevance. We review indicators in microbiology which could be used to reflect antibiotic resilience and used as valuable indicators to anticipate the capacity of bacteria to recover from antibiotic treatments.
Collapse
Affiliation(s)
- Gabriel Carvalho
- Université Clermont Auvergne, Irstea, UR LISC, Centre de Clermont-Ferrand, 9 Avenue Blaise Pascal CS 20085, F-63178, Aubière, France
| | | | - Jean-Denis Mathias
- Université Clermont Auvergne, Irstea, UR LISC, Centre de Clermont-Ferrand, 9 Avenue Blaise Pascal CS 20085, F-63178, Aubière, France
| |
Collapse
|
73
|
A Universal Stress Protein That Controls Bacterial Stress Survival in Micrococcus luteus. J Bacteriol 2019; 201:JB.00497-19. [PMID: 31548273 DOI: 10.1128/jb.00497-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Bacteria have remarkable mechanisms to survive severe external stresses, and one of the most enigmatic is the nonreplicative persistent (NRP) state. Practically, NRP bacteria are difficult to treat, and so inhibiting the proteins underlying this survival state may render such bacteria more susceptible to external stresses, including antibiotics. Unfortunately, we know little about the proteins and mechanisms conferring survival through the NRP state. Here, we report that a universal stress protein (Usp) is a primary regulator of bacterial survival through the NRP state in Micrococcus luteus NCTC 2665, a biosafety level 1 (BSL1) mycobacterial relative. Usps are widely conserved, and bacteria, including Mycobacterium tuberculosis, Mycobacterium smegmatis, and Escherichia coli, have multiple paralogs with overlapping functions that have obscured their functional roles. A kanamycin resistance cassette inserted into the M. luteus universal stress protein A 616 gene (ΔuspA616::kan M. luteus) ablates the UspA616 protein and drastically impairs M. luteus survival under even short-term starvation (survival, 83% wild type versus 32% ΔuspA616::kan M. luteus) and hypoxia (survival, 96% wild type versus 48% ΔuspA616::kan M. luteus). We observed no detrimental UspA616 knockout phenotype in logarithmic growth. Proteomics demonstrated statistically significant log-phase upregulation of glyoxylate pathway enzymes isocitrate lyase and malate synthase in ΔuspA616::kan M. luteus We note that these enzymes and the M. tuberculosis UspA616 homolog (Rv2623) are important in M. tuberculosis virulence and chronic infection, suggesting that Usps are important stress proteins across diverse bacterial species. We propose that UspA616 is a metabolic switch that controls survival by regulating the glyoxylate shunt.IMPORTANCE Bacteria tolerate severe external stresses, including antibiotics, through a nonreplicative persistent (NRP) survival state, yet the proteins regulating this survival state are largely unknown. We show a specific universal stress protein (UspA616) controls the NRP state in Micrococcus luteus Usps are widely conserved across bacteria, but their biological function(s) has remained elusive. UspA616 inactivation renders M. luteus susceptible to stress: bacteria die instead of adapting through the NRP state. UspA616 regulates malate synthase and isocitrate lyase, glyoxylate pathway enzymes important for chronic Mycobacterium tuberculosis infection. These data show that UspA616 regulates NRP stress survival in M. luteus and suggest a function for homologous proteins in other bacteria. Importantly, inhibitors of UspA616 and homologs may render NRP bacteria more susceptible to stresses, including current antibiotics.
Collapse
|
74
|
Personnic N, Striednig B, Lezan E, Manske C, Welin A, Schmidt A, Hilbi H. Quorum sensing modulates the formation of virulent Legionella persisters within infected cells. Nat Commun 2019; 10:5216. [PMID: 31740681 PMCID: PMC6861284 DOI: 10.1038/s41467-019-13021-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
The facultative intracellular bacterium Legionella pneumophila replicates in environmental amoebae and in lung macrophages, and causes Legionnaires' disease. Here we show that L. pneumophila reversibly forms replicating and nonreplicating subpopulations of similar size within amoebae. The nonreplicating bacteria are viable and metabolically active, display increased antibiotic tolerance and a distinct proteome, and show high virulence as well as the capacity to form a degradation-resistant compartment. Upon infection of naïve or interferon-γ-activated macrophages, the nonreplicating subpopulation comprises ca. 10% or 50%, respectively, of the total intracellular bacteria; hence, the nonreplicating subpopulation is of similar size in amoebae and activated macrophages. The numbers of nonreplicating bacteria within amoebae are reduced in the absence of the autoinducer synthase LqsA or other components of the Lqs quorum-sensing system. Our results indicate that virulent, antibiotic-tolerant subpopulations of L. pneumophila are formed during infection of evolutionarily distant phagocytes, in a process controlled by the Lqs system.
Collapse
Affiliation(s)
- Nicolas Personnic
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland.
| | - Bianca Striednig
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Emmanuelle Lezan
- Proteomics Core Facility, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Christian Manske
- Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | - Amanda Welin
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Hubert Hilbi
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| |
Collapse
|
75
|
Bottner A, He RY, Sarbu A, Nainar SMH, Dufour D, Gong SG, Lévesque CM. Streptococcus mutans isolated from children with severe-early childhood caries form higher levels of persisters. Arch Oral Biol 2019; 110:104601. [PMID: 31734540 DOI: 10.1016/j.archoralbio.2019.104601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/12/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Dental caries is the most common chronic infectious disease in children. Streptococcus mutans, the main cariogenic bacterial species, produces persisters, nongrowing dormant variants of regular cells associated with chronicity of diseases. We hypothesized that the recurrent nature of caries, particularly within populations with high-caries risk, is due partly to specific phenotypic features of S. mutans such as its ability to form persisters. We aimed to investigate the genotypic and phenotypic differences between the S. mutans from children with severe early-childhood caries (S-ECC) and those without caries. METHODS S. mutans from plaque samples of caries-free (CF) and S-ECC children were tested for their ability to adapt to a lethal pH in an acid tolerance response assay. The persister levels of S. mutans isolates was quantified in both groups. RESULTS S. mutanswas identified in all 23 S-ECC but only 6 of the 21 CF subjects. In most subjects, only one dominant S. mutans genotype was detected. No statistically significant differences in the mean survival percentage of S. mutans were observed between the two groups at a lethal pH of 3.5. However, the dominant genotype within a particular S-ECC subject exhibited a higher percentage of cell survival compared to those in the CF group. In S-ECC patients, S. mutans isolates displayed a ∼15-fold higher persistence phenotype than S. mutans isolates from CF patients. CONCLUSIONS The ability of S. mutans to produce high levels of persisters may contribute to part of an individual's ability to control caries disease activity and recurrent lesions.
Collapse
Affiliation(s)
- Aaron Bottner
- Orthodontics, Faculty of Dentistry, University of Toronto, Canada
| | - Richard Y He
- Microbiology, Faculty of Dentistry, University of Toronto, Canada
| | - Andrea Sarbu
- Microbiology, Faculty of Dentistry, University of Toronto, Canada
| | - S M Hashim Nainar
- Pediatric Dentistry, Faculty of Dentistry, University of Toronto, Canada
| | - Delphine Dufour
- Microbiology, Faculty of Dentistry, University of Toronto, Canada
| | - Siew-Ging Gong
- Orthodontics, Faculty of Dentistry, University of Toronto, Canada.
| | - Céline M Lévesque
- Pediatric Dentistry, Faculty of Dentistry, University of Toronto, Canada
| |
Collapse
|
76
|
Pratt SL, Zath GK, Akiyama T, Williamson KS, Franklin MJ, Chang CB. DropSOAC: Stabilizing Microfluidic Drops for Time-Lapse Quantification of Single-Cell Bacterial Physiology. Front Microbiol 2019; 10:2112. [PMID: 31608020 PMCID: PMC6774397 DOI: 10.3389/fmicb.2019.02112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
The physiological heterogeneity of cells within a microbial population imparts resilience to stresses such as antimicrobial treatments and nutrient limitation. This resilience is partially due to a subpopulation of cells that can survive such stresses and regenerate the community. Microfluidic approaches now provide a means to study microbial physiology and bacterial heterogeneity at the single cell level, improving our ability to isolate and examine these subpopulations. Drop-based microfluidics provides a high-throughput approach to study individual cell physiology within bacterial populations. Using this approach, single cells are isolated from the population and encapsulated in growth medium dispersed in oil using a 15 μm diameter drop making microfluidic device. The drops are arranged as a packed monolayer inside a polydimethylsiloxane (PDMS) microfluidic device. Growth of thousands of individual cells in identical microenvironments can then be imaged using confocal laser scanning microscopy (CLSM). A challenge for this approach has been the maintenance of drop stability during extended time-lapse imaging. In particular, the drops do not maintain their volume over time during incubation in PDMS devices, due to fluid transport into the porous PDMS surroundings. Here, we present a strategy for PDMS device preparation that stabilizes drop position and volume within a drop array on a microfluidic chip for over 20 h. The stability of water-in-oil drops is maintained by soaking the device in a reservoir containing both water and oil in thermodynamic equilibrium. This ensures that phase equilibrium of the drop emulsion fluids within the porous PDMS material is maintained during drop incubation and imaging. We demonstrate the utility of this approach, which we label DropSOAC (Drop Stabilization On A Chip), for time-lapse studies of bacterial growth. We characterize growth of Pseudomonas aeruginosa and its Δhpf mutant derivative during resuscitation and growth following starvation. We demonstrate that growth rate and lag time heterogeneity of hundreds of individual bacterial cells can be determined starting from single isolated cells. The results show that the DropSOAC capsule provides a high-throughput approach toward studies of microbial physiology at the single cell level, and can be used to characterize physiological differences of cells from within a larger population.
Collapse
Affiliation(s)
- Shawna L. Pratt
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States
| | - Geoffrey K. Zath
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States
| | - Tatsuya Akiyama
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Kerry S. Williamson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Michael J. Franklin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Connie B. Chang
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
77
|
Germain-Amiot N, Augagneur Y, Camberlein E, Nicolas I, Lecureur V, Rouillon A, Felden B. A novel Staphylococcus aureus cis-trans type I toxin-antitoxin module with dual effects on bacteria and host cells. Nucleic Acids Res 2019; 47:1759-1773. [PMID: 30544243 PMCID: PMC6393315 DOI: 10.1093/nar/gky1257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial type I toxin–antitoxin (TA) systems are widespread, and consist of a stable toxic peptide whose expression is monitored by a labile RNA antitoxin. We characterized Staphylococcus aureus SprA2/SprA2AS module, which shares nucleotide similarities with the SprA1/SprA1AS TA system. We demonstrated that SprA2/SprA2AS encodes a functional type I TA system, with the cis-encoded SprA2AS antitoxin acting in trans to prevent ribosomal loading onto SprA2 RNA. We proved that both TA systems are distinct, with no cross-regulation between the antitoxins in vitro or in vivo. SprA2 expresses PepA2, a toxic peptide which internally triggers bacterial death. Conversely, although PepA2 does not affect bacteria when it is present in the extracellular medium, it is highly toxic to other host cells such as polymorphonuclear neutrophils and erythrocytes. Finally, we showed that SprA2AS expression is lowered during osmotic shock and stringent response, which indicates that the system responds to specific triggers. Therefore, the SprA2/SprA2AS module is not redundant with SprA1/SprA1AS, and its PepA2 peptide exhibits an original dual mode of action against bacteria and host cells. This suggests an altruistic behavior for S. aureus in which clones producing PepA2 in vivo shall die as they induce cytotoxicity, thereby promoting the success of the community.
Collapse
Affiliation(s)
- Noëlla Germain-Amiot
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Yoann Augagneur
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Emilie Camberlein
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Irène Nicolas
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Valérie Lecureur
- Université de Rennes 1, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, 35000 Rennes, France
| | - Astrid Rouillon
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Brice Felden
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| |
Collapse
|
78
|
A ParDE-family toxin antitoxin system in major resistance plasmids of Enterobacteriaceae confers antibiotic and heat tolerance. Sci Rep 2019; 9:9872. [PMID: 31285520 PMCID: PMC6614396 DOI: 10.1038/s41598-019-46318-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems were initially discovered as plasmid addiction systems on low-copy-number plasmids. Thousands of TA loci have since been identified on chromosomes, plasmids and mobile elements in bacteria and archaea with diverse roles in bacterial physiology and in maintenance of genetic elements. Here, we identified and characterised a plasmid mediated type II TA system in Enterobacteriaceae as a member of the ParDE super family. This system (hereafter, ParDEI) is distributed among IncI and IncF-type antibiotic resistance and virulence plasmids found in avian and human-source Escherichia coli and Salmonella. It is found that ParDEI is a plasmid stability and stress response module that increases tolerance of aminoglycoside, quinolone and β-lactam antibiotics in E. coli by ~100–1,000-fold, and thus to levels beyond those achievable in the course of antibiotic therapy for human infections. ParDEI also confers a clear survival advantage at 42 °C and expression of the ParEI toxin in trans induces the SOS response, inhibits cell division and promotes biofilm formation. This transmissible high-level antibiotic tolerance is likely to be an important factor in the success of the IncI and IncF plasmids which carry it and the important pathogens in which these are resident.
Collapse
|
79
|
Antibiotic Killing of Diversely Generated Populations of Nonreplicating Bacteria. Antimicrob Agents Chemother 2019; 63:AAC.02360-18. [PMID: 31036690 PMCID: PMC6591645 DOI: 10.1128/aac.02360-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/18/2019] [Indexed: 01/11/2023] Open
Abstract
Nonreplicating bacteria are known to be (or at least commonly thought to be) refractory to antibiotics to which they are genetically susceptible. Here, we explore the sensitivity to killing by bactericidal antibiotics of three classes of nonreplicating populations of planktonic bacteria: (i) stationary phase, when the concentration of resources and/or nutrients are too low to allow for population growth; (ii) persisters, minority subpopulations of susceptible bacteria surviving exposure to bactericidal antibiotics; and (iii) antibiotic-static cells, bacteria exposed to antibiotics that prevent their replication but kill them slowly if at all, the so-called bacteriostatic drugs. Using experimental populations of Staphylococcus aureus Newman and Escherichia coli K-12 (MG1655) and, respectively, nine and seven different bactericidal antibiotics, we estimated the rates at which these drugs kill these different types of nonreplicating bacteria. In contrast to the common belief that bacteria that are nonreplicating are refractory to antibiotic-mediated killing, all three types of nonreplicating populations of these Gram-positive and Gram-negative bacteria are consistently killed by aminoglycosides and the peptide antibiotics daptomycin and colistin, respectively. This result indicates that nonreplicating cells, irrespectively of why they do not replicate, have an almost identical response to bactericidal antibiotics. We discuss the implications of these results to our understanding of the mechanisms of action of antibiotics and the possibility of adding a short-course of aminoglycosides or peptide antibiotics to conventional therapy of bacterial infections.
Collapse
|
80
|
García-Betancur JC, Lopez D. Cell Heterogeneity in Staphylococcal Communities. J Mol Biol 2019; 431:4699-4711. [PMID: 31220460 DOI: 10.1016/j.jmb.2019.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
The human pathogen Staphylococcus aureus is a gram-positive bacterium that causes difficult-to-treat infections. One of the reasons why S. aureus is such as successful pathogen is due to the cell-to-cell physiological variability that exists within microbial communities. Many laboratories around the world study the genetic mechanisms involved in S. aureus cell heterogeneity to better understand infection mechanism of this bacterium. It was recently shown that the Agr quorum-sensing system, which antagonistically regulates biofilm-associated or acute bacteremia infections, is expressed in a subpopulation of specialized cells. In this review, we discuss the different genetic mechanism for bacterial cell differentiation and the physiological properties of the distinct cell types that are already described in S. aureus communities, as well as the role that these cell types play during an infection process.
Collapse
Affiliation(s)
- Juan Carlos García-Betancur
- Research Center for Infectious Diseases ZINF, University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology IMIB, University of Würzburg, 97080 Würzburg, Germany
| | - Daniel Lopez
- Research Center for Infectious Diseases ZINF, University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology IMIB, University of Würzburg, 97080 Würzburg, Germany; National Centre for Biotechnology (CNB-CSIC), 28050 Madrid, Spain.
| |
Collapse
|
81
|
Biofilm Disruption Utilizing α/β Chimeric Polypeptide Molecular Brushes. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2278-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
82
|
Zhang L, Guo L, Shan X, Lin X, Gu T, Zhang J, Ge J, Li W, Ge H, Jiang Q, Ning X. An elegant nitroreductase responsive fluorescent probe for selective detection of pathogenic Listeria in vitro and in vivo. Talanta 2019; 198:472-479. [DOI: 10.1016/j.talanta.2019.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/24/2018] [Accepted: 02/04/2019] [Indexed: 01/24/2023]
|
83
|
Hinohara K, Polyak K. Intratumoral Heterogeneity: More Than Just Mutations. Trends Cell Biol 2019; 29:569-579. [PMID: 30987806 DOI: 10.1016/j.tcb.2019.03.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Abstract
Most human tumors are composed of genetically and phenotypically heterogeneous cancer cell populations, which poses a major challenge for the clinical management of cancer patients. Advances of single-cell technologies have allowed the profiling of tumors at unprecedented depth, which, in combination with newly developed computational tools, enable the dissection of tumor evolution with increasing precision. However, our understanding of mechanisms that regulate intratumoral heterogeneity and our ability to modulate it has been lagging behind. Recent data demonstrate that epigenetic regulators, including histone demethylases, may control the cell-to-cell variability of transcriptomes and chromatin profiles and they may modulate therapeutic responses via this function. Thus, the therapeutic targeting of epigenetic enzymes may be used to decrease intratumoral cellular heterogeneity and treatment resistance, when used in combination with other types of agents.
Collapse
Affiliation(s)
- Kunihiko Hinohara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
84
|
Interaction studies on bacterial stringent response protein RelA with uncharged tRNA provide evidence for its prerequisite complex for ribosome binding. Curr Genet 2019; 65:1173-1184. [PMID: 30968189 DOI: 10.1007/s00294-019-00966-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The bacterial stringent response is regulated by the synthesis of (p)ppGpp which is mediated by RelA in a complex with uncharged tRNA and ribosome. We intended to probe RelA-uncharged tRNA interactions off the ribosome to understand the sequential activation mechanism of RelA. Stringent response is a key regulatory pleiotropic mechanism which allows bacteria to survive in unfavorable conditions. Since the discovery of RelA, it has been believed that it is activated upon binding to ribosomes which already have uncharged tRNA on acceptor site (A-site). However, uncharged tRNA occupied in the A-site of the ribosome prior to RelA binding could not be observed; therefore, recently an alternate model for RelA activation has been proposed in which RelA first binds to uncharged tRNA and then RelA-uncharged tRNA complex is loaded on to the ribosome to synthesize (p)ppGpp. To explore the alternate hypothesis, we report here the in vitro binding of uncharged tRNA to RelA in the absence of ribosome using formaldehyde cross-linking, fluorescence spectroscopy, surface plasmon resonance, size-exclusion chromatography, and hydrogen-deuterium exchange mass spectrometry. Altogether, our results clearly indicate binding between RelA and uncharged tRNA without the involvement of ribosome. Moreover, we have analyzed their binding kinetics and mapping of tRNA-interacting regions of RelA structure. We have also co-purified TGS domain in complex with tRNA to further establish in vivo RelA-tRNA binding. We have observed that TGS domain recognizes all types of uncharged tRNA similar to EF-Tu and tRNA interactions. Altogether, our results demonstrate the complex formation between RelA and uncharged tRNA that may be loaded to the ribosome for (p)ppGpp synthesis.
Collapse
|
85
|
Lee DYD, Galera-Laporta L, Bialecka-Fornal M, Moon EC, Shen Z, Briggs SP, Garcia-Ojalvo J, Süel GM. Magnesium Flux Modulates Ribosomes to Increase Bacterial Survival. Cell 2019; 177:352-360.e13. [PMID: 30853217 PMCID: PMC6814349 DOI: 10.1016/j.cell.2019.01.042] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/03/2018] [Accepted: 01/24/2019] [Indexed: 01/30/2023]
Abstract
Bacteria exhibit cell-to-cell variability in their resilience to stress, for example, following antibiotic exposure. Higher resilience is typically ascribed to "dormant" non-growing cellular states. Here, by measuring membrane potential dynamics of Bacillus subtilis cells, we show that actively growing bacteria can cope with ribosome-targeting antibiotics through an alternative mechanism based on ion flux modulation. Specifically, we observed two types of cellular behavior: growth-defective cells exhibited a mathematically predicted transient increase in membrane potential (hyperpolarization), followed by cell death, whereas growing cells lacked hyperpolarization events and showed elevated survival. Using structural perturbations of the ribosome and proteomic analysis, we uncovered that stress resilience arises from magnesium influx, which prevents hyperpolarization. Thus, ion flux modulation provides a distinct mechanism to cope with ribosomal stress. These results suggest new approaches to increase the effectiveness of ribosome-targeting antibiotics and reveal an intriguing connection between ribosomes and the membrane potential, two fundamental properties of cells.
Collapse
Affiliation(s)
- Dong-Yeon D Lee
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leticia Galera-Laporta
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Maja Bialecka-Fornal
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eun Chae Moon
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0380, USA
| | - Steven P Briggs
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0380, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093-0380, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
86
|
Bactericidal activity of bacteriophage endolysin HY-133 against Staphylococcus aureus in comparison to other antibiotics as determined by minimum bactericidal concentrations and time-kill analysis. Diagn Microbiol Infect Dis 2019; 93:362-368. [DOI: 10.1016/j.diagmicrobio.2018.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023]
|
87
|
Mutational and non mutational adaptation of Salmonella enterica to the gall bladder. Sci Rep 2019; 9:5203. [PMID: 30914708 PMCID: PMC6435676 DOI: 10.1038/s41598-019-41600-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
During systemic infection of susceptible hosts, Salmonella enterica colonizes the gall bladder, which contains lethal concentrations of bile salts. Recovery of Salmonella cells from the gall bladder of infected mice yields two types of isolates: (i) bile-resistant mutants; (ii) isolates that survive lethal selection without mutation. Bile-resistant mutants are recovered at frequencies high enough to suggest that increased mutation rates may occur in the gall bladder, thus providing a tentative example of stress-induced mutation in a natural environment. However, most bile-resistant mutants characterized in this study show defects in traits that are relevant for Salmonella colonization of the animal host. Mutation may thus permit short-term adaptation to the gall bladder at the expense of losing fitness for transmission to new hosts. In contrast, non mutational adaptation may have evolved as a fitness-preserving strategy. Failure of RpoS− mutants to colonize the gall bladder supports the involvement of the general stress response in non mutational adaptation.
Collapse
|
88
|
Barrett TC, Mok WWK, Murawski AM, Brynildsen MP. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nat Commun 2019; 10:1177. [PMID: 30862812 PMCID: PMC6414640 DOI: 10.1038/s41467-019-09058-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial persisters are able to tolerate high levels of antibiotics and give rise to new populations. Persister tolerance is generally attributed to minimally active cellular processes that prevent antibiotic-induced damage, which has led to the supposition that persister offspring give rise to antibiotic-resistant mutants at comparable rates to normal cells. Using time-lapse microscopy to monitor Escherichia coli populations following ofloxacin treatment, we find that persisters filament extensively and induce impressive SOS responses before returning to a normal appearance. Further, populations derived from fluoroquinolone persisters contain significantly greater quantities of antibiotic-resistant mutants than those from untreated controls. We confirm that resistance is heritable and that the enhancement requires RecA, SOS induction, an opportunity to recover from treatment, and the involvement of error-prone DNA polymerase V (UmuDC). These findings show that fluoroquinolones damage DNA in persisters and that the ensuing SOS response accelerates the development of antibiotic resistance from these survivors. Fluoroquinolone (FQ)-induced DNA damage in persisters could promote antibiotic resistance. Here, using time-lapse microscopy and genetic analyses, the authors show that after a single round of FQ treatment, SOS response in persisters accelerates the development of resistance to unrelated antibiotics.
Collapse
Affiliation(s)
- Theresa C Barrett
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Wendy W K Mok
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06032-3305, USA
| | - Allison M Murawski
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Mark P Brynildsen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA. .,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
89
|
Suzina NE, Polivtseva VN, Shorokhova AP, Ross DV, Abashina TN, Machulin AV, El’-Registan GI, Solyanikova IP. Ultrastructural Organization and Enzymes of the Antioxidant Defense System in the Dormant Cells of Gram-Negative Bacteria Stenotrophomonas sp. Strain FM3 and Morganella morganii subsp. sibonii Strain FF1. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719020115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
90
|
Bumann D. Salmonella Single-Cell Metabolism and Stress Responses in Complex Host Tissues. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0009-2019. [PMID: 30953427 PMCID: PMC11588158 DOI: 10.1128/microbiolspec.bai-0009-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/12/2023] Open
Abstract
Systemic Salmonella enterica infections are a major cause of mortality worldwide and are becoming increasingly untreatable. Recent single-cell data from a mouse model of typhoid fever show that the host immune system actually eradicates many Salmonella cells, while other Salmonella organisms thrive at the same time in the same tissue, causing lethal disease progression. The surviving Salmonella cells have highly heterogeneous metabolism, growth rates, and exposure to various stresses. Emerging evidence suggests that similarly heterogeneous host-pathogen encounters might be a key feature of many infectious diseases. This heterogeneity offers fascinating opportunities for research and application. If we understand the mechanisms that determine the disparate local outcomes, we might be able to develop entirely novel strategies for infection control by broadening successful host antimicrobial attacks and closing permissive niches in which pathogens can thrive. This review describes suitable technologies, a current working model of heterogeneous host-Salmonella interactions, the impact of diverse Salmonella subsets on antimicrobial chemotherapy, and major open questions and challenges.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
91
|
Sulaiman JE, Lam H. Application of proteomics in studying bacterial persistence. Expert Rev Proteomics 2019; 16:227-239. [DOI: 10.1080/14789450.2019.1575207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Kowloon, Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Kowloon, Hong Kong
| |
Collapse
|
92
|
Regrowth-delay body as a bacterial subcellular structure marking multidrug-tolerant persisters. Cell Discov 2019; 5:8. [PMID: 30675381 PMCID: PMC6341109 DOI: 10.1038/s41421-019-0080-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 02/08/2023] Open
Abstract
Bacteria have long been recognized to be capable of entering a phenotypically non-growing persister state, in which the cells exhibit an extended regrowth lag and a multidrug tolerance, thus posing a great challenge in treating infectious diseases. Owing to their non-inheritability, low abundance of existence, lack of metabolic activities, and high heterogeneity, properties of persisters remain poorly understood. Here, we report our accidental discovery of a subcellular structure that we term the regrowth-delay body, which is formed only in non-growing bacterial cells and sequesters multiple key proteins. This structure, that dissolves when the cell resumes growth, is able to be viewed as a marker of persisters. Our studies also indicate that persisters exhibit different depth of persistence, as determined by the status of their regrowth-delay bodies. Our findings imply that suppressing the formation and/or promoting the dissolution of regrowth-delay bodies could be viable strategies for eradicating persisters.
Collapse
|
93
|
Moreno-Del Álamo M, Tabone M, Muñoz-Martínez J, Valverde JR, Alonso JC. Toxin ζ Reduces the ATP and Modulates the Uridine Diphosphate-N-acetylglucosamine Pool. Toxins (Basel) 2019; 11:E29. [PMID: 30634431 PMCID: PMC6356619 DOI: 10.3390/toxins11010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 11/20/2022] Open
Abstract
Toxin ζ expression triggers a reversible state of dormancy, diminishes the pool of purine nucleotides, promotes (p)ppGpp synthesis, phosphorylates a fraction of the peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG), leading to unreactive UNAG-P, induces persistence in a reduced subpopulation, and sensitizes cells to different antibiotics. Here, we combined computational analyses with biochemical experiments to examine the mechanism of toxin ζ action. Free ζ toxin showed low affinity for UNAG. Toxin ζ bound to UNAG hydrolyzed ATP·Mg2+, with the accumulation of ADP, Pi, and produced low levels of phosphorylated UNAG (UNAG-P). Toxin ζ, which has a large ATP binding pocket, may temporally favor ATP binding in a position that is distant from UNAG, hindering UNAG phosphorylation upon ATP hydrolysis. The residues D67, E116, R158 and R171, involved in the interaction with metal, ATP, and UNAG, were essential for the toxic and ATPase activities of toxin ζ; whereas the E100 and T128 residues were partially dispensable. The results indicate that ζ bound to UNAG reduces the ATP concentration, which indirectly induces a reversible dormant state, and modulates the pool of UNAG.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Mariangela Tabone
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Juan Muñoz-Martínez
- Scientific Computing Service, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - José R Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| |
Collapse
|
94
|
Allen RJ, Waclaw B. Bacterial growth: a statistical physicist's guide. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:016601. [PMID: 30270850 PMCID: PMC6330087 DOI: 10.1088/1361-6633/aae546] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Bacterial growth presents many beautiful phenomena that pose new theoretical challenges to statistical physicists, and are also amenable to laboratory experimentation. This review provides some of the essential biological background, discusses recent applications of statistical physics in this field, and highlights the potential for future research.
Collapse
Affiliation(s)
- Rosalind J Allen
- School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | | |
Collapse
|
95
|
Xia A, Han J, Jin Z, Ni L, Yang S, Jin F. Dual-Color Fluorescent Timer Enables Detection of Growth-Arrested Pathogenic Bacterium. ACS Infect Dis 2018; 4:1666-1670. [PMID: 30215505 DOI: 10.1021/acsinfecdis.8b00129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present a method capable of detecting single slow-growing and growth-arrested cells in a bacterial culture composed of physiologically and phenotypically different cells. Unlike the use of transcriptional reporters to gauge the metabolic activities in cells, here, we fuse two different fluorescent proteins with distinctive maturation rates to construct a timer to directly determine the growth rate of single Pseudomonas aeruginosa cells. We demonstrate that the dual-color fluorescent timer can indicate the slow-growing and growth-arrested cells from bacterial cultures in the presence of various environmental stresses, including nutrient starvation or antibiotic treatments, which greatly expand the methods for detecting and isolating persister cells.
Collapse
Affiliation(s)
- Aiguo Xia
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, P. R. China
| | - Jundong Han
- Department of Polymer Science and Engineering, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, P. R. China
| | - Zhenyu Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, P. R. China
| | - Lei Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, P. R. China
| | - Shuai Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, P. R. China
| | - Fan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, P. R. China
- Department of Polymer Science and Engineering, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, P. R. China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
96
|
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2018; 37:177-192. [PMID: 30500353 DOI: 10.1016/j.biotechadv.2018.11.013] [Citation(s) in RCA: 1173] [Impact Index Per Article: 167.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals. Eradication of P. aeruginosa has become increasingly difficult due to its remarkable capacity to resist antibiotics. Strains of Pseudomonas aeruginosa are known to utilize their high levels of intrinsic and acquired resistance mechanisms to counter most antibiotics. In addition, adaptive antibiotic resistance of P. aeruginosa is a recently characterized mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant persister cells, and is responsible for recalcitrance and relapse of infections. The discovery and development of alternative therapeutic strategies that present novel avenues against P. aeruginosa infections are increasingly demanded and gaining more and more attention. Although mostly at the preclinical stages, many recent studies have reported several innovative therapeutic technologies that have demonstrated pronounced effectiveness in fighting against drug-resistant P. aeruginosa strains. This review highlights the mechanisms of antibiotic resistance in P. aeruginosa and discusses the current state of some novel therapeutic approaches for treatment of P. aeruginosa infections that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Pediatrics, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
97
|
Sulaiman JE, Hao C, Lam H. Specific Enrichment and Proteomics Analysis of Escherichia coli Persisters from Rifampin Pretreatment. J Proteome Res 2018; 17:3984-3996. [PMID: 30336045 DOI: 10.1021/acs.jproteome.8b00625] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacterial persisters, a dormant and multidrug tolerant subpopulation that are able to resuscitate after antibiotic treatment, have recently received considerable attention as a major cause of relapse of various infectious diseases in the clinic. However, because of their low abundance and inherent transience, it is extremely difficult to study them by proteomics. Here we developed a magnetic-beads-based separation approach to enrich Escherichia coli persisters and then subjected them to shotgun proteomics. Rifampin pretreatment was employed to increase persister formation, and the resulting cells were exposed to a high concentration of ampicillin (10× MIC) to remove nonpersisters. The survivors were analyzed by spectral counting-based quantitative proteomics. On average, 710 proteins were identified at a false discovery rate of 0.01 for enriched E. coli persisters. By spectral counting-based quantification, 105 proteins (70 down-regulated, 35 up-regulated) were shown to be differentially expressed compared with normal cells. A comparison of the differentially expressed proteins between the magnetic beads-enriched persisters and nonenriched persisters (a mixture of persisters and intact dead cells) shows only around half (∼58%) overlap and different protein-protein interaction networks. This suggest that persister enrichment is important to eliminate the cumulative effect of dead cells that will obscure the proteome of persisters. As expected, proteins involved in carbohydrate metabolism, fatty acid and amino acid biosynthesis, and bacterial chemotaxis were found to be down-regulated in the persisters. Interestingly, membrane proteins including some transport proteins were up-regulated, indicating that they might be important for the drug tolerance of persisters. Knockout of the pal gene expressing peptidoglycan-associated lipoprotein, one of the most up-regulated proteins detected in persisters, led to 10-fold reduced persister formation under ampicillin treatment.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Chunlin Hao
- Department of Chemical and Biological Engineering , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong
| |
Collapse
|
98
|
Abstract
Persister cells are a small subpopulation within fungal biofilms that are highly resistant to high concentrations of antifungals and therefore most likely contribute to the resistance and recalcitrance of biofilm infections. Moreover, this subpopulation is defined as a nongrowing, phenotypic variant of wild-type cells that can survive high doses of antifungals. There are high degrees of heterogeneity and plasticity associated with biofilm formation, resulting in a strong variation in the amount of persister cells. The fraction of these cells in fungal biofilms also appear to be dependent on the type of substrate. The cells can be observed immediately after their adhesion to that substrate, which makes up the initial step of biofilm formation. Thus far, persister cells have primarily been studied in Candida spp. These fungi are the fourth most common cause of nosocomial systemic infections in the United States, with C. albicans being the most prevalent species. Remarkably, persisters exhibit characteristics of a dormant state similar to what is observed in cells deprived of glucose. This dormant state, together with attachment to a substrate, appears to provide the cells with characteristics that help them overcome the challenges with fungicidal drugs such as amphotericin B (AmB). AmB is known to induce apoptosis, and persister cells are able to cope with the increase in reactive oxygen species (ROS) by activating stress response pathways and the accumulation of high amounts of glycogen and trehalose-two known stress-protecting molecules. In this review, we discuss the molecular pathways that are involved in persister cell formation in fungal species and highlight that the eradication of persister cells could lead to a strong reduction of treatment failure in a clinical setting.
Collapse
Affiliation(s)
- Jurgen Wuyts
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
- * E-mail:
| | - Michelle Holtappels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| |
Collapse
|
99
|
Rifampicin can induce antibiotic tolerance in mycobacteria via paradoxical changes in rpoB transcription. Nat Commun 2018; 9:4218. [PMID: 30310059 PMCID: PMC6181997 DOI: 10.1038/s41467-018-06667-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
Metrics commonly used to describe antibiotic efficacy rely on measurements performed on bacterial populations. However, certain cells in a bacterial population can continue to grow and divide, even at antibiotic concentrations that kill the majority of cells, in a phenomenon known as antibiotic tolerance. Here, we describe a form of semi-heritable tolerance to the key anti-mycobacterial agent rifampicin, which is known to inhibit transcription by targeting the β subunit of the RNA polymerase (RpoB). We show that rifampicin exposure results in rpoB upregulation in a sub-population of cells, followed by growth. More specifically, rifampicin preferentially inhibits one of the two rpoB promoters (promoter I), allowing increased rpoB expression from a second promoter (promoter II), and thus triggering growth. Disruption of promoter architecture leads to differences in rifampicin susceptibility of the population, confirming the contribution of rifampicin-induced rpoB expression to tolerance. The antibiotic rifampicin inhibits transcription by targeting RpoB, a bacterial RNA polymerase subunit. Here, Zhu et al. show that certain cells in mycobacterial populations can continue to grow and divide in the presence of rifampicin due, paradoxically, to rifampicin-induced upregulation of the rpoB gene.
Collapse
|
100
|
Chaudhuri S, Li L, Zimmerman M, Chen Y, Chen YX, Toosky MN, Gardner M, Pan M, Li YY, Kawaji Q, Zhu JH, Su HW, Martinot AJ, Rubin EJ, Dartois VA, Javid B. Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation. eLife 2018; 7:36782. [PMID: 30152756 PMCID: PMC6160228 DOI: 10.7554/elife.36782] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/27/2018] [Indexed: 12/23/2022] Open
Abstract
Most bacteria use an indirect pathway to generate aminoacylated glutamine and/or asparagine tRNAs. Clinical isolates of Mycobacterium tuberculosis with increased rates of error in gene translation (mistranslation) involving the indirect tRNA-aminoacylation pathway have increased tolerance to the first-line antibiotic rifampicin. Here, we identify that the aminoglycoside kasugamycin can specifically decrease mistranslation due to the indirect tRNA pathway. Kasugamycin but not the aminoglycoside streptomycin, can limit emergence of rifampicin resistance in vitro and increases mycobacterial susceptibility to rifampicin both in vitro and in a murine model of infection. Moreover, despite parenteral administration of kasugamycin being unable to achieve the in vitro minimum inhibitory concentration, kasugamycin alone was able to significantly restrict growth of Mycobacterium tuberculosis in mice. These data suggest that pharmacologically reducing mistranslation may be a novel mechanism for targeting bacterial adaptation. A bacterium called Mycobacterium tuberculosis is responsible for nearly 98% of cases of tuberculosis, which kills more people worldwide than any other infectious disease. This is due, in part, to the time it takes to cure individuals of the disease: patients have to take antibiotics continuously for at least six months to eradicate M. tuberculosis in the body. Bacteria, like all cells, make proteins using instructions contained within their genetic code. Cell components called ribosomes are responsible for translating these instructions and assembling the new proteins. Sometimes the ribosomes produce proteins that are slightly different to what the cell’s genetic code specified. These ‘incorrect proteins’ may not work properly so it is generally thought that cells try to prevent the mistakes from happening. However, scientists have recently found that the ribosomes in M. tuberculosis often assemble incorrect proteins. The more mistakes the ribosomes let happen, the more likely the bacteria are to survive when they are exposed to rifampicin, an antibiotic which is often used to treat tuberculosis infections. This suggests that it may be possible to make antibiotics more effective against M. tuberculosis by using them alongside a second drug that decreases the number of ribosome mistakes. Chaudhuri, Li et al. investigated the effect of a drug called kasugamycin on M. tuberculosis when the bacterium is cultured in the lab, and when it infects mice. The experiments found that Kasugamycin decreased the number of incorrect proteins assembled by the M. tuberculosis bacterium. When the drug was present, rifampicin also killed M. tuberculosis cells more efficiently. Furthermore, in the mice but not the cell cultures, kasugamycin alone was able to restrict the growth of the bacteria. This implies that M. tuberculosis cells may use ribosome mistakes as a strategy to survive in humans and other hosts. When it was given with rifampicin, kasugamycin caused several unwanted side effects in the mice, including weight loss; this may mean that the drug is currently not suitable to use in humans. Further studies may be able to find safer ways to decrease ribosome mistakes in M. tuberculosis, which could speed up the treatment of tuberculosis.
Collapse
Affiliation(s)
- Swarnava Chaudhuri
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Liping Li
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, United States
| | - Matthew Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, United States
| | - Yuemeng Chen
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Yu-Xiang Chen
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Melody N Toosky
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China.,Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| | - Michelle Gardner
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| | - Miaomiao Pan
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Yang-Yang Li
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Qingwen Kawaji
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Jun-Hao Zhu
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Hong-Wei Su
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| | - Veronique Anne Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, United States
| | - Babak Javid
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China.,Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| |
Collapse
|