51
|
Ren YS, Li HH, Yao JC, Tan YJ, Pan LH, Peng T, Zhao LL, Zhang GM, Yue J, Hu XM, Liu Z, Li J. Application quantitative proteomics approach to identify differentially expressed proteins associated with cardiac protection mediated by cycloastragenol in acute myocardial infarction rats. J Proteomics 2020; 222:103691. [PMID: 32068187 DOI: 10.1016/j.jprot.2020.103691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/18/2023]
Abstract
Acute myocardial infarction (AMI) is an acute heart disease. Cycloastragenol, as a natural product, inhibits inflammation and protects cardiomyocytes. Cycloastragenol (Y006) modulates inflammation in AMI is not known. To explore the function of Cycloastragenol in AMI, this study investigated the effect of Y006 and its mechanisms both in vitro and in vivo. Y006 influences the concentration of 11 proteins, as shown by a proteomics analysis, immunohistochemistry and western blotting. Among these 11 proteins, Erk1/2, PLCG1, IKBKG, and ZEB1 are related to inflammatory regulation. BAX, COX2, and GSK3β are involved in modulating cardiomyocyte apoptosis, and RhoA and DSC2 are directly associated with myocardial function. However, the functions of ARHGAP17 and Rit2 in heart are less well established. Additionally, Y006 suppressed TNF-α, IFN-γ and IL-17 production in PBMCs (peripheral blood monocytes) from patients with acute myocardial infarction and enhanced IL-10 and IL-4 expression. Similar results were obtained in a rat model of AMI by flow cytometry detection and ELISA. Our findings indicate that Y006 protects rats from AMI through direct or indirect inhibition of inflammation and cardiomyocyte apoptosis. However, the specific mechanism of Y006's protective function requires further study. Nonetheless, this research revealed a novel aspect for the treatment of myocardial infarction. SIGNIFICANCE: In the present study, we undertook the first proteomic evaluation of Cycloastragenol (Y006) function in acute myocardial infarction (AMI). Y006 significantly improved myocardial function in vivo by regulating multiple molecular expressions. Hypoxia is a direct reason for AMI. And our data support a role of Y006 in gene expression, cell apoptosis under hypoxia. The conclusions of this research assist to explain the potential molecular mechanism in Cycloastragenol treating AMI and supply a new method for ameliorating AMI.
Collapse
Affiliation(s)
- Yu-Shan Ren
- Department of Immunology, Binzhou Medical University, Yantai 264003, China
| | - Hong-Hua Li
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jing-Chun Yao
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yu-Jun Tan
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Li-Hong Pan
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Tao Peng
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Li-Li Zhao
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Gui-Min Zhang
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; School of Pharmacy, Linyi University, Linyi, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xue-Mei Hu
- Department of Immunology, Binzhou Medical University, Yantai 264003, China
| | - Zhong Liu
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jie Li
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.
| |
Collapse
|
52
|
Sheng W, Shi X, Lin Y, Tang J, Jia C, Cao R, Sun J, Wang G, Zhou L, Dong M. Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:16. [PMID: 31952541 PMCID: PMC6967093 DOI: 10.1186/s13046-020-1521-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
Abstract
Background Our previous study showed Musashi2 (MSI2) promoted chemotherapy resistance and pernicious biology of pancreatic cancer (PC) by down-regulating Numb and p53. We further explored the novel molecular mechanism involving its oncogenic role in PC development. Methods We investigated the potential role and mechanism of MSI2 in EGF-induced EMT in PC in vitro and vivo. Results EGF enhanced EGFR (epidermal growth factor receptor) phosphorylation, induced EMT and activated ZEB1-ERK/MAPK signaling in 2 PC cells. However, MSI2 silencing reversed EGF stimulated function, including inhibiting EGF-promoted EMT-like cell morphology and EGF-enhanced cell invasion and migration. Meanwhile, MSI2 silencing inhibited EGF-enhanced EGFR phosphorylation at tyrosine 1068 and reversed EGF-induced change of the key proteins in EMT and ZEB1-ERK/MAPK signaling (ZEB1, E-cad, ZO-1, β-catenin, pERK and c-Myc). Additionally, MSI2 was co-stained and co-immunoprecipitated with ZEB1, pERK and c-Myc in PC cells by IF and co-IP, implying a close interaction between them. In vivo, MSI2 silencing inhibited pancreatic tumor size in situ and distant liver metastases. A close relationship of MSI2 with EMT and ZEB1-ERK/MAPK signaling were also observed in vivo and human PC samples, which coordinately promoted the poor prognosis of PC patients. Conclusions MSI2 promotes EGF-induced EMT in PC via ZEB1-ERK/MAPK signaling.
Collapse
Affiliation(s)
- Weiwei Sheng
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Xiaoyang Shi
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Yiheng Lin
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Chao Jia
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Rongxian Cao
- Department of General Surgery, the People's Hospital of Liaoning province, Shenyang, 110034, China
| | - Jian Sun
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Guosen Wang
- Department of General Surgery, the First Hospital of Nanchang University, NanChang, 330006, China
| | - Lei Zhou
- Department of General Surgery, the Central Hospital of JingZhou City, JingZhou, 434020, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
53
|
Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer 2019; 19:716-732. [PMID: 31666716 PMCID: PMC7055151 DOI: 10.1038/s41568-019-0213-x] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
Experimental evidence accumulated over decades has implicated epithelial-mesenchymal plasticity (EMP), which collectively encompasses epithelial-mesenchymal transition and the reverse process of mesenchymal-epithelial transition, in tumour metastasis, cancer stem cell generation and maintenance, and therapeutic resistance. However, the dynamic nature of EMP processes, the apparent need to reverse mesenchymal changes for the development of macrometastases and the likelihood that only minor cancer cell subpopulations exhibit EMP at any one time have made such evidence difficult to accrue in the clinical setting. In this Perspectives article, we outline the existing preclinical and clinical evidence for EMP and reflect on recent controversies, including the failure of initial lineage-tracing experiments to confirm a major role for EMP in dissemination, and discuss accumulating data suggesting that epithelial features and/or a hybrid epithelial-mesenchymal phenotype are important in metastasis. We also highlight strategies to address the complexities of therapeutically targeting the EMP process that give consideration to its spatially and temporally divergent roles in metastasis, with the view that this will yield a potent and broad class of therapeutic agents.
Collapse
Affiliation(s)
- Elizabeth D Williams
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Translational Research Institute (TRI), Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, Queensland, Australia
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology and Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Redfern
- Department of Medicine, School of Medicine, University of Western Australia, Fiona Stanley Hospital Campus, Perth, Western Australia, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- Translational Research Institute (TRI), Brisbane, Queensland, Australia.
| |
Collapse
|
54
|
Liang J, Lu T, Chen Z, Zhan C, Wang Q. Mechanisms of resistance to pemetrexed in non-small cell lung cancer. Transl Lung Cancer Res 2019; 8:1107-1118. [PMID: 32010588 DOI: 10.21037/tlcr.2019.10.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, lung cancer has remained the most common cause of cancer death while non-small cell lung cancer (NSCLC) accounts for the most of all lung cancer cases. Regardless of multiple existing managements, chemotherapy regimens are still the mainstay of treatment for NSCLC, where pemetrexed has shown cytotoxic activity and has increasingly been used, especially for advanced cases. However, chemo-resistance may inhibit clinical efficacy after long-term use. Mechanisms responsible for chemo-resistance to pemetrexed in NSCLC are plethoric but can be separated into two categories to be discussed: tumor cells and their interactions with drugs. Phenomena relevant to tumor cells such as oncogene or oncoprotein alterations, DNA synthesis, DNA repair, and tumor cell biology behavior are discussed, as well as processes associated with drug dynamics, including drug uptake, drug elimination, and antifolate polyglutamylation. This review will focus on clinical trials and the basic biomedical mechanisms of NSCLC treated with pemetrexed and will describe the underlying mechanisms of resistance to facilitate more efficient clinical therapies to treat patients.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
55
|
Singh K, Sinha M, Pal D, Tabasum S, Gnyawali SC, Khona D, Sarkar S, Mohanty SK, Soto-Gonzalez F, Khanna S, Roy S, Sen CK. Cutaneous Epithelial to Mesenchymal Transition Activator ZEB1 Regulates Wound Angiogenesis and Closure in a Glycemic Status-Dependent Manner. Diabetes 2019; 68:2175-2190. [PMID: 31439646 PMCID: PMC6804631 DOI: 10.2337/db19-0202] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Epithelial to mesenchymal transition (EMT) and wound vascularization are two critical interrelated processes that enable cutaneous wound healing. Zinc finger E-box binding homeobox 1 (ZEB1), primarily studied in the context of tumor biology, is a potent EMT activator. ZEB1 is also known to contribute to endothelial cell survival as well as stimulate tumor angiogenesis. The role of ZEB1 in cutaneous wounds was assessed using Zeb1+/- mice, as Zeb1-/- mice are not viable. Quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomics was used to elucidate the effect of elevated ZEB1, as noted during hyperglycemia. Under different glycemic conditions, ZEB1 binding to E-cadherin promoter was investigated using chromatin immunoprecipitation. Cutaneous wounding resulted in loss of epithelial marker E-cadherin with concomitant gain of ZEB1. The dominant proteins downregulated after ZEB1 overexpression functionally represented adherens junction pathway. Zeb1+/- mice exhibited compromised wound closure complicated by defective EMT and poor wound angiogenesis. Under hyperglycemic conditions, ZEB1 lost its ability to bind E-cadherin promoter. Keratinocyte E-cadherin, thus upregulated, resisted EMT required for wound healing. Diabetic wound healing was improved in ZEB+/- as well as in db/db mice subjected to ZEB1 knockdown. This work recognizes ZEB1 as a key regulator of cutaneous wound healing that is of particular relevance to diabetic wound complication.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Mithun Sinha
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Durba Pal
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
- Center for Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Saba Tabasum
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Surya C Gnyawali
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Dolly Khona
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Subendu Sarkar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sujit K Mohanty
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Fidel Soto-Gonzalez
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
56
|
Amer S, Alsayegh F, Mashaal Z, Mohamed S, Shawa N, Rajan K, Ahmed SBM. Role of TGF‑β in the motility of ShcD‑overexpressing 293 cells. Mol Med Rep 2019; 20:2667-2674. [PMID: 31524262 PMCID: PMC6691231 DOI: 10.3892/mmr.2019.10517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 11/06/2022] Open
Abstract
The newly identified Src homology and collagen (Shc) family member ShcD was observed to be upregulated in 50% of vertical growth phase and metastatic melanomas. The aim of the present study was to investigate the mechanism by which ShcD mediates cell motility. 293 cell lines were altered to stably express GFP (GF) or GFP‑ShcD (G5). Treatment of the cells with transforming growth factor (TGF)β2 promoted extracellular signal‑regulated kinase (ERK) phosphorylation and, to a lesser extent, Smad2 phosphorylation in GFP‑ShcD‑expressing cells but not in GFP‑overexpressing cells. GFP‑ShcD‑expressing cells exhibited upregulated expression of certain epithelial‑mesenchymal transition‑related genes, such as snail family transcriptional repressor 1 and SLUG, than GFP‑expressing cells. Higher levels of ERK were found in the nuclear fraction of GFP‑ShcD‑expressing cells than that of GFP‑expressing cells. Overall, GFP‑ShcD‑expressing cells demonstrated enhanced migration compared with GFP‑expressing cells. A slight increase in cell migration was observed in both cell lines (GF and G5) when the cells were allowed to migrate towards conditioned medium derived from TGFβ2‑treated GFP‑ShcD expressing cells. Collectively, ShcD upregulation was proposed to induce cell migration by affecting the expression of certain epithelial‑mesenchymal transition‑related genes. Thus, our findings may improve understanding of the role of ShcD in cell migration.
Collapse
Affiliation(s)
- Sara Amer
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Fadi Alsayegh
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Zeina Mashaal
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Salma Mohamed
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nour Shawa
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Keerthi Rajan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Samrein B M Ahmed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
57
|
El Amrani M, Corfiotti F, Corvaisier M, Vasseur R, Fulbert M, Skrzypczyk C, Deshorgues AC, Gnemmi V, Tulasne D, Lahdaoui F, Vincent A, Pruvot FR, Van Seuningen I, Huet G, Truant S. Gemcitabine-induced epithelial-mesenchymal transition-like changes sustain chemoresistance of pancreatic cancer cells of mesenchymal-like phenotype. Mol Carcinog 2019; 58:1985-1997. [PMID: 31373074 DOI: 10.1002/mc.23090] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023]
Abstract
Growing body of evidence suggests that epithelial-mesenchymal transition (EMT) is a critical process in tumor progression and chemoresistance in pancreatic cancer (PC). The aim of this study was to analyze the role of EMT-like changes in acquisition of resistance to gemcitabine in pancreatic cells of the mesenchymal or epithelial phenotype. Therefore, chemoresistant BxPC-3, Capan-2, Panc-1, and MiaPaca-2 cells were selected by chronic exposure to increasing concentrations of gemcitabine. We show that gemcitabine-resistant Panc-1 and MiaPaca-2 cells of mesenchymal-like phenotype undergo further EMT-like molecular changes mediated by ERK-ZEB-1 pathway, and that inhibition of ERK1/2 phosphorylation or ZEB-1 expression resulted in a decrease in chemoresistance. Conversely, gemcitabine-resistant BxPC-3 and Capan-2 cells of epithelial-like phenotype did not show such typical EMT-like molecular changes although the expression of the tight junction marker occludin could be found decreased. In pancreatic cancer patients, high ZEB-1 expression was associated with tumor invasion and tumor budding. In addition, tumor budding was essentially observed in patients treated with neoadjuvant chemotherapy. These findings support the notion that gemcitabine treatment induces EMT-like changes that sustain invasion and chemoresistance in PC cells.
Collapse
Affiliation(s)
- Mehdi El Amrani
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France.,Department of Digestive Surgery and Transplantation, CHU Lille, Lille, France
| | - François Corfiotti
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France.,Department of Digestive Surgery and Transplantation, CHU Lille, Lille, France
| | - Matthieu Corvaisier
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France
| | - Romain Vasseur
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France
| | - Maxence Fulbert
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France.,Department of Digestive Surgery and Transplantation, CHU Lille, Lille, France
| | - Cécile Skrzypczyk
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France.,Department of Digestive Surgery and Transplantation, CHU Lille, Lille, France
| | - Anne-Claire Deshorgues
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France.,Department of Digestive Surgery and Transplantation, CHU Lille, Lille, France
| | - Viviane Gnemmi
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France.,Department of Pathology, Center of Biology-Pathology, CHU Lille, Lille, France
| | - David Tulasne
- Institut Pasteur de Lille, UMR 8161-M3T, Mechanisms of Tumorigenesis and Target Therapies, Université de Lille, CNRS, Lille, France
| | - Fatima Lahdaoui
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France
| | - Audrey Vincent
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France
| | - François-René Pruvot
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France.,Department of Digestive Surgery and Transplantation, CHU Lille, Lille, France
| | - Isabelle Van Seuningen
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France
| | - Guillemette Huet
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France
| | - Stéphanie Truant
- Department of Digestive Surgery and Transplantation, Université de Lille, Inserm, CHU Lille, UMR-S 1172, Lille, France.,Department of Digestive Surgery and Transplantation, CHU Lille, Lille, France
| |
Collapse
|
58
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|
59
|
The PAX6-ZEB2 axis promotes metastasis and cisplatin resistance in non-small cell lung cancer through PI3K/AKT signaling. Cell Death Dis 2019; 10:349. [PMID: 31024010 PMCID: PMC6483988 DOI: 10.1038/s41419-019-1591-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 02/05/2023]
Abstract
Paired-box 6 (PAX6) is an important transcription factor required for the function of human neuroectodermal epithelial tissues. Previous studies have suggested that it is also expressed in several types of tumors and has an oncogenic role. However, little is known about its role in non-small cell lung cancer (NSCLC). Here, we found that PAX6 expression levels were upregulated in human lung cancer tissues and correlated with poor clinical outcomes. PAX6 overexpression significantly promoted NSCLC epithelial-to-mesenchymal transition (EMT) and metastasis, whereas its knockdown inhibited these processes. PAX6 is commonly correlated with EMT-mediated stem cell transformation, thereby inducing cisplatin resistance. Using the RT2 Profiler PCR Array, we found that WNT5A, EGFR, and ZEB2 were differentially regulated in response to PAX6 modulation. In addition, PAX6 directly bound to the promoter region of ZEB2. ZEB2 knockdown significantly reduced the expression and function of PAX6. ZEB2 was upregulated upon PAX6 overexpression and downregulated upon PAX6 knockdown, whereas E-cadherin expression negatively correlated with PAX6 levels. Moreover, p-PI3K and p-AKT were significantly enhanced by PAX6, which was reversed by the addition of the PI3K-AKT inhibitor, LY294002. These data suggest that PAX6 can mediate E-cadherin downregulation through the PI3K/AKT signaling pathway by directly binding the promoter region of ZEB2, thereby mediating cell migration, stem cell transformation, and cisplatin resistance; and ultimately, affecting survival in NSCLC patients.
Collapse
|
60
|
Exosomal miRNAs as Novel Pharmacodynamic Biomarkers for Cancer Chemopreventive Agent Early Stage Treatments in Chemically Induced Mouse Model of Lung Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11040477. [PMID: 30987362 PMCID: PMC6520832 DOI: 10.3390/cancers11040477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Chemopreventive agent (CPA) treatment is one of the main preventive options for lung cancer. However, few studies have been done on pharmacodynamic biomarkers of known CPAs for lung cancer. Materials and methods: In this study, we treated mouse models of lung squamous cell carcinoma with three different CPAs (MEK inhibitor: AZD6244, PI-3K inhibitor: XL-147 and glucocorticoid: Budesonide) and examined circulating exosomal miRNAs in the plasma of each mouse before and after treatment. Results: Compared to baselines, we found differentially expressed exosomal miRNAs after AZD6244 treatment (n = 8, FDR < 0.05; n = 55, raw p-values < 0.05), after XL-147 treatment (n = 4, FDR < 0.05; n = 26, raw p-values < 0.05) and after Budesonide treatment (n = 1, FDR < 0.05; n = 36, raw p-values < 0.05). In co-expression analysis, we found that modules of exosomal miRNAs reacted to CPA treatments differently. By variable selection, we identified 11, 9 and nine exosomal miRNAs as predictors for AZD6244, XL-147 and Budesonide treatment, respectively. Integrating all the results, we highlighted 4 miRNAs (mmu-miR-215-5p, mmu-miR-204-5p, mmu-miR-708-3p and mmu-miR-1298-5p) as the key for AZD6244 treatment, mmu-miR-23a-3p as key for XL-147 treatment, and mmu-miR-125a-5p and mmu-miR-16-5p as key for Budesonide treatment. Conclusions: This is the first study to use circulating exosomal miRNAs as pharmacodynamic biomarkers for CPA treatment in lung cancer.
Collapse
|
61
|
Xu YL, Jiang XM, Zhang LL, Chen X, Huang ZJ, Lu JJ. Establishment and Characterization of Pemetrexed-resistant NCI-H460/PMT Cells. Anticancer Agents Med Chem 2019; 19:731-739. [PMID: 30848214 DOI: 10.2174/1871520619666190307120441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Pemetrexed (PMT) is a multitargeted antifolate agent that is used for treating patients with Non-Small Cell Lung Cancer (NSCLC). However, patients have presented clinical responses of drug resistance to PMT. OBJECTIVE This study aimed to explore the underlying mechanisms of PMT resistance in NSCLC cells. METHODS PMT-resistant NCI-H460/PMT cells were established by treating with PMT in a concentrationescalation manner. MTT assay and colony formation were performed to detect cell proliferation. Immunofluorescence was used to detect the expression of Ki-67. Transwell assay was performed to measure cell migration ability. qPCR and Western blot were used to detect the mRNA and protein expression levels of indicated genes. Small interfering RNAs (siRNA) were used to knockdown ATP binding cassette subfamily B member 1 (ABCB1) and Thymidylate Synthase (TYMS). RESULTS This study showed that compared with the parental cells, the NCI-H460/PMT cells displayed weakened proliferation and enhanced cell mobility. In addition, the NCI-H460/PMT cells demonstrated cellular senescence, which might result in PMT resistance. The NCI-H460/PMT cells exhibited cross-resistance to other chemotherapeutics, including fluorouracil, paclitaxel, doxorubicin, etoposide and gemcitabine, possibly because of the upregulated expression of ABCB1. However, the ABCB1 knockdown by siRNA failed to eradicate PMT resistance. Moreover, TYMS, a target of PMT, was obviously upregulated in the resistant cells. The genetic silence of TYMS partially abrogated PMT resistance, suggesting that the overexpression of TYMS was a key resistant mechanism of PMT. CONCLUSION The overexpression of TYMS was an important resistance mechanism of PMT for KRAS-mutated NCI-H460 cells. Cross-resistance to other chemotherapeutics should be considered in addressing PMT resistance.
Collapse
Affiliation(s)
- Yu-Lian Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiao-Ming Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
62
|
Zhong Y, Lin Z, Lin X, Lu J, Wang N, Huang S, Wang Y, Zhu Y, Shen Y, Jiang J, Lin S. IGFBP7 contributes to epithelial-mesenchymal transition of HPAEpiC cells in response to radiation. J Cell Biochem 2019; 120:12500-12507. [PMID: 30834595 DOI: 10.1002/jcb.28516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Radiation-induced lung injury (RILI) frequently occurs in patients with thoracic malignancies. In response to radiation, alveolar epithelial cells (AEC) undergo epithelial-mesenchymal transition (EMT) and contribute to the pathogenesis of RILI. Insulin-like growth factor binding protein 7 (IGFBP7) is reported as a downstream mediator of transforming growth factor-β1 (TGF-β1) pathway, which plays a crucial role in radiation-induced EMT. In the present study, the levels of IGFBP7 and TGF-β1 were simultaneously increased in experimental RILI models and radiation-treated AEC (human pulmonary alveolar epithelial cells [HPAEpic]). The expression of IGFBP7 in radiation-treated HPAEpic cells was obviously inhibited by the specific inhibitor of TGF-β receptor antagonist SB431542 and TGF-β1 neutralizing antibody, and time-dependently enhanced by TGF-β1 treatment. Moreover, IGFBP7 knockdown significantly attenuated the effects of radiation on morphology change, cell migration, expression of EMT-related markers (E-cadherin, α-SMA, and Vimentin), and phosphorylation of extracellular-signal-regulated kinase (ERK). The effects of IGFBP7 overexpression on the expression of EMT-related markers were partially reversed by the ERK inhibitor PD98059. In conclusion, IGFBP7, was enhanced by TGF-β1, may be involved in radiation-induced EMT of AEC via the ERK signaling pathway, thus contributing to the pathogenesis of RILI.
Collapse
Affiliation(s)
- Yazhen Zhong
- Oncology Department, Hangzhou Hospital of Traditional Chinese Medicine, GuangXing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Zechen Lin
- Department of Oncolgy, Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianlei Lin
- Oncology Department, Hangzhou Hospital of Traditional Chinese Medicine, GuangXing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhua Lu
- Department of Oncolgy Comprehensive Treatment, Hangzhou Cancer Hospital, Hangzhou, China
| | - Nan Wang
- Department of Oncolgy, The First People's Hospital of Xiaoshan Hangzhou, Hangzhou, China
| | - Siyu Huang
- Department of Oncolgy, Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanyuan Wang
- Department of Oncolgy, Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Zhu
- Department of Oncolgy, Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiwei Shen
- Department of Oncolgy, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Jiang
- Department of Oncolgy, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyou Lin
- Oncology Department, Hangzhou Hospital of Traditional Chinese Medicine, GuangXing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
63
|
Salehi B, Varoni EM, Sharifi-Rad M, Rajabi S, Zucca P, Iriti M, Sharifi-Rad J. Epithelial-mesenchymal transition as a target for botanicals in cancer metastasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:125-136. [PMID: 30668422 DOI: 10.1016/j.phymed.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 06/15/2018] [Accepted: 07/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The plant kingdom represents an unlimited source of phytotherapeutics with promising perspectives in the field of anticancer drug discovery. PURPOSE In this view, epithelial-mesenchymal transition (EMT) represents a novel and major target in anticancer therapy. Therefore, this narrative review aims to provide an updated overview on the bioactive phytochemicals with anti-EMT activity. CONCLUSION Among the plant products reviewed, phenylpropanoids were the most investigated at preclinical phase, thus exhibiting a promising potential as anticancer drugs, though an evidence-based clinical efficacy is still lacking.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Sadegh Rajabi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Italy.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
64
|
Miura K, Oba T, Hamanaka K, Ito KI. FGF2-FGFR1 pathway activation together with thymidylate synthase upregulation is induced in pemetrexed-resistant lung cancer cells. Oncotarget 2019; 10:1171-1192. [PMID: 30838090 PMCID: PMC6383826 DOI: 10.18632/oncotarget.26622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 01/09/2019] [Indexed: 11/25/2022] Open
Abstract
Pemetrexed (MTA) is a folate antimetabolite used for treating non-small cell lung cancer. To elucidate the mechanisms of pemetrexed resistance in lung cancer, we established pemetrexed-resistant sublines in PC9 (mutant EGFR) and H1993 (wild-type EGFR) lung adenocarcinoma cell lines (PC9-MTA, H1993-MTA). Gene expression profile comparison by microarray analyses revealed enhanced fibroblast growth factor 2 (FGF2) and FGF receptor 1 (FGFR1) expression, confirmed by Western blotting, enzyme-linked immunosorbent assay, and reverse transcription-polymerase chain reaction. ERK phosphorylation was increased in PC9-MTA but decreased in H1993-MTA along with decreased downstream signaling molecule phosphorylation. Cellular morphological change from epithelial to spindle-shape together with increased mesenchymal marker protein expression was observed in H1993-MTA. SiRNA-mediated FGF2 knockdown partially restored pemetrexed sensitivity in both lines, whereas anti-FGFR1 inhibitor PD173074 restored pemetrexed sensitivity in PC9-MTA. FGF2 or FGFR1 inhibition decreased pERK levels in PC9-MTA but increased pEGFR levels together with downstream signaling molecule activation and reversed epithelial-mesenchymal transition marker protein expression in H1993-MTA. Although thymidylate synthase strongly facilitates the development of pemetrexed resistance, our results reveal involvement of the FGF2-FGFR1 pathway in pemetrexed resistance in lung cancer cells and suggest that cellular function alterations induced by FGF2-FGFR1 pathway activation depend on the innate feature of cancer cells.
Collapse
Affiliation(s)
- Kentaro Miura
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Takaaki Oba
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazutoshi Hamanaka
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Ken-Ichi Ito
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
65
|
Non-redundant functions of EMT transcription factors. Nat Cell Biol 2019; 21:102-112. [PMID: 30602760 DOI: 10.1038/s41556-018-0196-y] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial embryonic programme that is executed by various EMT transcription factors (EMT-TFs) and is aberrantly activated in cancer and other diseases. However, the causal role of EMT and EMT-TFs in different disease processes, especially cancer and metastasis, continues to be debated. In this Review, we identify and describe specific, non-redundant functions of the different EMT-TFs and discuss the reasons that may underlie disputes about EMT in cancer.
Collapse
|
66
|
Antioxidant, anti-inflammatory and anticancer potential of natural bioactive compounds from seaweeds. BIOACTIVE NATURAL PRODUCTS 2019. [DOI: 10.1016/b978-0-12-817901-7.00005-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
67
|
Milone MR, Lombardi R, Roca MS, Bruzzese F, Addi L, Pucci B, Budillon A. Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells. J Cell Physiol 2018; 234:9077-9092. [DOI: 10.1002/jcp.27585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/18/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Maria Rita Milone
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Laura Addi
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| |
Collapse
|
68
|
Liu SQ, Xu CY, Wu WH, Fu ZH, He SW, Qin MB, Huang JA. Sphingosine kinase 1 promotes the metastasis of colorectal cancer by inducing the epithelial‑mesenchymal transition mediated by the FAK/AKT/MMPs axis. Int J Oncol 2018; 54:41-52. [PMID: 30365116 PMCID: PMC6254930 DOI: 10.3892/ijo.2018.4607] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
It was demonstrated that Sphingosine kinase 1 (SphK1) promotes tumor progression and confers the malignancy phenotype of colorectal cancer by activating the focal adhesion kinase (FAK) pathway. However, further clarification is required to determine if SphK1 promotes the metastasis of colorectal cancer by inducing epithelial‑mesenchymal transition (EMT), and its mechanisms have not been fully elucidated. Immunohistochemistry staining was used to detect protein expression in normal colonic mucosa tissues and colorectal cancer tissues. Cells were transfected to overexpress SphK1, downregulate SphK1 or downregulate FAK. An MTT assay was used to detect the drug toxicity to cells. Transwell and wound healing assays were used to detect cell migration ability. Reverse transcription‑polymerase chain reaction and western blot analysis were used to detect the expression of mRNA and protein, respectively. Scanning electron microscopy was used to observe the microvilli and pseudopodia of the cells. The analysis of protein expression in 114 human colorectal cancer tissues demonstrated that the expressions of SphK1, FAK, phosphorylated (p)‑FAK, E‑cadherin and vimentin were associated with the metastasis of colorectal cancer. Furthermore, the patients with colorectal cancer with SphK1‑positive cancer demonstrated poorer prognosis compared with SphK1‑negative cancer. FAK knockdown and SphK1 knockdown of human colon cancer RKO cells inhibited the EMT and migrational potency, along with the expression of p‑FAK, p‑protein kinase B (AKT) and matrix metalloproteinase (MMP)2/9. In contrast, SphK1 overexpression promoted EMT, migrational potency, and the expression of p‑FAK, p‑AKT and MMP2/9 in HT29 cells. Additionally, the EMT and migrational potency of SphK1‑overexpressing HT29 cells was suppressed by a FAK inhibitor, and the expression of p‑FAK, p‑AKT and MMP2/9 was suppressed by blocking the FAK pathway. In conclusion, SphK1 promoted the migration and metastasis of colon cancer by inducing EMT mediated by the FAK/AKT/MMPs axis.
Collapse
Affiliation(s)
- Shi-Quan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Chun-Yan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Wen-Hong Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Zhen-Hua Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Si-Wei He
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Meng-Bin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Jie-An Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| |
Collapse
|
69
|
Pan M, Schinke H, Luxenburger E, Kranz G, Shakhtour J, Libl D, Huang Y, Gaber A, Pavšič M, Lenarčič B, Kitz J, Jakob M, Schwenk-Zieger S, Canis M, Hess J, Unger K, Baumeister P, Gires O. EpCAM ectodomain EpEX is a ligand of EGFR that counteracts EGF-mediated epithelial-mesenchymal transition through modulation of phospho-ERK1/2 in head and neck cancers. PLoS Biol 2018; 16:e2006624. [PMID: 30261040 PMCID: PMC6177200 DOI: 10.1371/journal.pbio.2006624] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/09/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are characterized by outstanding molecular heterogeneity that results in severe therapy resistance and poor clinical outcome. Inter- and intratumoral heterogeneity in epithelial-mesenchymal transition (EMT) was recently revealed as a major parameter of poor clinical outcome. Here, we addressed the expression and function of the therapeutic target epidermal growth factor receptor (EGFR) and of the major determinant of epithelial differentiation epithelial cell adhesion molecule (EpCAM) in clinical samples and in vitro models of HNSCCs. We describe improved survival of EGFRlow/EpCAMhigh HNSCC patients (n = 180) and provide a molecular basis for the observed disparities in clinical outcome. EGF/EGFR have concentration-dependent dual capacities as inducers of proliferation and EMT through differential activation of the central molecular switch phosphorylated extracellular signal–regulated kinase 1/2 (pERK1/2) and EMT transcription factors (EMT-TFs) Snail, zinc finger E-box-binding homeobox 1 (Zeb1), and Slug. Furthermore, soluble ectodomain of EpCAM (EpEX) was identified as a ligand of EGFR that activates pERK1/2 and phosphorylated AKT (pAKT) and induces EGFR-dependent proliferation but represses EGF-mediated EMT, Snail, Zeb1, and Slug activation and cell migration. EMT repression by EpEX is realized through competitive modulation of pERK1/2 activation strength and inhibition of EMT-TFs, which is reflected in levels of pERK1/2 and its target Slug in clinical samples. Accordingly, high expression of pERK1/2 and/or Slug predicted poor outcome of HNSCCs. Hence, EpEX is a ligand of EGFR that induces proliferation but counteracts EMT mediated by the EGF/EGFR/pERK1/2 axis. Therefore, the emerging EGFR/EpCAM molecular cross talk represents a promising target to improve patient-tailored adjuvant treatment of HNSCCs. Head and neck squamous cell carcinomas (HNSCCs) display poor survival, with death rates above 55%. Major factors affecting survival are metastases’ formation and therapy resistance. Phenotypic changes during partial epithelial-mesenchymal transition (EMT) provide tumor cells with increased migration, invasion, and therapy resistance. Understanding molecular mechanisms of EMT, as a central process of the metastatic cascade and the development of therapy resistance, is therefore important. In the present work, we identified molecular cross talk between epidermal growth factor receptor (EGFR) and epithelial cell adhesion molecule (EpCAM) as a novel determinant of clinical outcome in HNSCCs. Low levels of EGFR but high levels of EpCAM (EGFRlow/EpCAMhigh) were associated with favorable prognosis, with survival rates above 90%, whereas EGFRhigh/EpCAMlow correlated with poor survival, below 10%. EGFR was shown to have a concentration-dependent capacity to induce proliferation and EMT. Proteolytic cleavage of the extracellular domain of EpCAM (EpEX) produces a ligand of EGFR that induces EGFR-dependent proliferation but counteracts EGF-induced EMT. We delineate an EGFR/extracellular signal–regulated kinase 1/2 (ERK1/2)/EpCAM signaling axis that may be a promising therapeutic target for HNSCCs.
Collapse
Affiliation(s)
- Min Pan
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Henrik Schinke
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Elke Luxenburger
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Julius Shakhtour
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Darko Libl
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Yuanchi Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Ljubljana, Slovenia
| | - Julia Kitz
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Julia Hess
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Kristian Unger
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
70
|
Liu J, Huang B, Xiu Z, Zhou Z, Liu J, Li X, Tang X. PI3K/Akt/HIF-1α signaling pathway mediates HPV-16 oncoprotein-induced expression of EMT-related transcription factors in non-small cell lung cancer cells. J Cancer 2018; 9:3456-3466. [PMID: 30310502 PMCID: PMC6171031 DOI: 10.7150/jca.26112] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Our previous studies have demonstrated that human papillomaviruse (HPV)-16 oncoproteins promoted epithelial-mesenchymal transition (EMT), leading to non-small cell lung cancer (NSCLC) progression, but the underlying molecular mechanisms still remain unclear. PI3K/Akt/HIF-1α signaling pathway has been reported to mediate hypoxia-induced EMT. In this study, we further explored the role of PI3K/Akt/HIF-1α signaling pathway in HPV-16 oncoprotein-induced EMT in NSCLC cells. Methods: A549 and NCI-H460 NSCLC cells were transiently transfected with pEGFP-HPV-16 E6 or E7 constructs. Western blotting and RT-qPCR were respectively performed to determine the protein and mRNA expression of EMT-related transcription factors. HPV-16 E6 or E7-transfected NSCLC cells were co-transfected with specific HIF-1α-siRNA or pretreated with different concentrations of LY294002, a specific PI3K inhibitor, followed by the analysis of expression of EMT-related transcription factors. The correlation between HIF-1α and EMT-related transcription factors in NSCLC tissues was analyzed by immunohistochemical staining and Spearman rank correlation coefficient. Results: HPV-16 E6 and E7 oncoproteins upregulated the expression of Slug and Twist1, the EMT-related transcription factors, at both protein and mRNA levels in A549 and NCI-H460 cells. The co-transfection with specific HIF-1α-siRNA, but not the non-specific (NS)-siRNA, significantly abrogated HPV-16 oncoprotein-induced upregulation of ZEB1, Snail1, Slug, and Twist1 at both protein and mRNA levels. Additionally, pretreatment with LY294002 obviously blocked HPV-16 E6- and E7-induced Snail1, Slug, and Twist1 protein expression in A549 and NCI-H460 cells. Further analysis of clinical specimens showed that HIF-1α protein was strongly expressed in NSCLC tissues, which was positively correlated with ZEB1, Snail1, Slug, and Twist1 protein expression. Conclusions: PI3K/Akt/HIF-1α may contribute to the progression of HPV-associated NSCLC via mediating the expression of EMT-related transcription factors in NSCLC cells.
Collapse
Affiliation(s)
- Jinhua Liu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Bingyu Huang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Zihan Xiu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Zhiyuan Zhou
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Jiao Liu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, P.R. China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, P.R. China
| |
Collapse
|
71
|
Zacharias M, Brcic L, Eidenhammer S, Popper H. Bulk tumour cell migration in lung carcinomas might be more common than epithelial-mesenchymal transition and be differently regulated. BMC Cancer 2018; 18:717. [PMID: 29976164 PMCID: PMC6034257 DOI: 10.1186/s12885-018-4640-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 11/26/2022] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) is one mechanism of carcinoma migration, while complex tumour migration or bulk migration is another - best demontrated by tumour cells invading blood vessels. Methods Thirty cases of non-small cell lung carcinomas were used for identifying genes responsible for bulk cell migration, 232 squamous cell and adenocarcinomas to identify bulk migration rates. Genes expressed differently in the primary tumour and in the invasion front were regarded as relevant in migration and further validated in 528 NSCLC cases represented on tissue microarrays (TMAs) and metastasis TMAs. Results Markers relevant for bulk cancer cell migration were regulated differently when compared with EMT: Twist expressed in primary tumour, invasion front, and metastasis was not associated with TGFβ1 and canonical Wnt, as Slug, Snail, and Smads were negative and β-Catenin expressed membraneously. In the majority of tumours, E-Cadherin was downregulated at the invasive front, but not absent, but, coexpressed with N-Cadherin. Vimentin was coexpressed with cytokeratins at the invasion site in few cases, whereas fascin expression was seen in a majority. Expression of ERK1/2 was downregulated, PLCγ was only expressed at the invasive front and in metastasis. Brk and Mad, genes identified in Drosophila border cell migration, might be important for bulk migration and metastasis, together with invadipodia proteins Tks5 and Rab40B, which were only upregulated at the invasive front and in metastasis. CXCR1 was expressed equally in all carcinomas, as opposed to CXCR2 and 4, which were only expressed in few tumours. Conclusion Bulk cancer cell migration seems predominant in AC and SCC. Twist, vimentin, fascin, Mad, Brk, Tsk5, Rab40B, ERK1/2 and PLCγ are associated with bulk cancer cell migration. This type of migration requires an orchestrated activation of proteins to keep the cells bound to each other and to coordinate movement. This hypothesis needs to be proven experimentally. Electronic supplementary material The online version of this article (10.1186/s12885-018-4640-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Zacharias
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Luka Brcic
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Sylvia Eidenhammer
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Helmut Popper
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria.
| |
Collapse
|
72
|
Redfern AD, Spalding LJ, Thompson EW. The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin Exp Metastasis 2018; 35:285-308. [PMID: 29948647 DOI: 10.1007/s10585-018-9906-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Epithelial mesenchymal transition (EMT) describes the shift of cells from an epithelial form to a contact independent, migratory, mesenchymal form. In cancer the change is linked to invasion and metastasis. Tumour conditions, including hypoxia, acidosis and a range of treatments can trigger EMT, which is implicated in the subsequent development of resistance to those same treatments. Consequently, the degree to which EMT occurs may underpin the entire course of tumour progression and treatment response in a patient. In this review we look past the protective effect of EMT against the initial treatment, to the role of the mesenchymal state, once triggered, in promoting disease growth, spread and future treatment insensitivity. In patients a correlation was found between the propensity of a treatment to induce EMT and failure of that treatment to provide a survival benefit, implicating EMT induction in accelerated tumour progression after treatment cessation. Looking to the mechanisms driving this detrimental effect; increased proliferation, suppressed apoptosis, stem cell induction, augmented angiogenesis, enhanced metastatic dissemination, and immune tolerance, can all result from treatment-induced EMT and could worsen outcome. Evidence also suggests EMT induction with earlier therapies attenuates benefits of later treatments. Looking beyond epithelial tumours, de-differentiation also has therapy-attenuating effects and reversal thereof may yield similar rewards. A range of potential therapies are in development that may address the diverse mechanisms and molecular control systems involved in EMT-induced accelerated progression. Considering the broad reaching effects of mesenchymal shift identified, successful deployment of such treatments could substantially improve patient outcomes.
Collapse
Affiliation(s)
- Andrew D Redfern
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia.
| | - Lisa J Spalding
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
73
|
Su C, Cheng X, Li Y, Han Y, Song X, Yu D, Cao X, Liu Z. MiR-21 improves invasion and migration of drug-resistant lung adenocarcinoma cancer cell and transformation of EMT through targeting HBP1. Cancer Med 2018; 7:2485-2503. [PMID: 29663730 PMCID: PMC6010699 DOI: 10.1002/cam4.1294] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 12/12/2022] Open
Abstract
This study was aimed at the investigation of the effects of miR-21 on drug resistance, invasion, migration, and epithelial-mesenchymal transition (EMT) of lung adenocarcinoma cells and the related molecular mechanisms. Cell viability of A549 cell line was measured by MTT assay. Wound healing assay and transwell assay were, respectively, employed to examine cell migration and invasion abilities. The cells were transfected with miR-21 mimic or inhibitor using Lipofectamine 3000. The target relationship between miR-21 and HBP1 was confirmed by luciferase reporter gene assay. Western blot and qRT-PCR were used to examine the expression of HBP1 and EMT-related molecules. Compared with A549 cells, drug resistance of A549/PTX cells and A549/DDP cells were obviously stronger. A549/PTX cells and A549/DDP cells had stronger ability of migration and invasion compared with parental A549 cells. Meanwhile, EMT of A549/PTX and A549/DDP was significantly higher than that of A549 cells. MiR-21 promoted migration, invasion, and EMT of human lung adenocarcinoma cancer cells. Our experiment also verified the target relationship between miR-21 and HBP1. MiR-21 may affect migration and invasion ability of drug-resistant lung adenocarcinoma cells by targeting HBP1, therefore modulating EMT.
Collapse
Affiliation(s)
- Chongyu Su
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical UniversityBeijing101149China
| | - Xu Cheng
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical UniversityBeijing101149China
| | - Yunsong Li
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical UniversityBeijing101149China
| | - Yi Han
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical UniversityBeijing101149China
| | - Xiaoyun Song
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical UniversityBeijing101149China
| | - Daping Yu
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical UniversityBeijing101149China
| | - Xiaoqing Cao
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical UniversityBeijing101149China
| | - Zhidong Liu
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical UniversityBeijing101149China
| |
Collapse
|
74
|
The histone deacetylase inhibitor OBP-801 and eribulin synergistically inhibit the growth of triple-negative breast cancer cells with the suppression of survivin, Bcl-xL, and the MAPK pathway. Breast Cancer Res Treat 2018; 171:43-52. [DOI: 10.1007/s10549-018-4815-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022]
|
75
|
Gou W, Zhou X, Liu Z, Wang L, Shen J, Xu X, Li Z, Zhai X, Zuo D, Wu Y. CD74-ROS1 G2032R mutation transcriptionally up-regulates Twist1 in non-small cell lung cancer cells leading to increased migration, invasion, and resistance to crizotinib. Cancer Lett 2018; 422:19-28. [DOI: 10.1016/j.canlet.2018.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/16/2018] [Accepted: 02/20/2018] [Indexed: 01/18/2023]
|
76
|
Salehi B, Zucca P, Sharifi-Rad M, Pezzani R, Rajabi S, Setzer WN, Varoni EM, Iriti M, Kobarfard F, Sharifi-Rad J. Phytotherapeutics in cancer invasion and metastasis. Phytother Res 2018; 32:1425-1449. [DOI: 10.1002/ptr.6087] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Paolo Zucca
- Department of Biomedical Sciences; University of Cagliari; Cagliari Italy
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology; Zabol University of Medical Sciences; Zabol 61663-335 Iran
| | - Raffaele Pezzani
- OU Endocrinology, Dept. Medicine (DIMED); University of Padova; via Ospedale 105 Padova 35128 Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base; Padova Italy
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - William N. Setzer
- Department of Chemistry; University of Alabama in Huntsville; Huntsville AL 35899 USA
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences; Milan State University; Milan Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences; Milan State University; Milan Italy
| | - Farzad Kobarfard
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex; The University of Winnipeg; Winnipeg MB Canada
| |
Collapse
|
77
|
A positive feedback loop of IL-17B-IL-17RB activates ERK/β-catenin to promote lung cancer metastasis. Cancer Lett 2018; 422:44-55. [PMID: 29496538 DOI: 10.1016/j.canlet.2018.02.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 11/20/2022]
Abstract
Inflammation contributes to the development and progression of cancer. Interleukin-17 (IL-17) is an inflammatory cytokine that functions in inflammation and cancer, as well as several other cellular processes. In this study, we investigated the roles and the prognostic value of IL-17 and the IL-17 receptor (IL-17R) in lung cancer. Gene expression microarray analysis followed by Kaplan-Meier survival curve showed that IL-17B was associated with poor patient survival, and IL-17B receptor (IL-17RB) was up-regulated in lung cancer tissue compared with normal tissue. Expression of IL-17RB was associated with lymph node metastasis and distant metastasis, as well as poor patient survival. IL-17RB overexpression significantly increased cancer cell invasion/migration and metastasis in vitro and in vivo. IL-17RB induced ERK phosphorylation, resulting in GSK3β inactivation and leading to β-catenin up-regulation. IL-17RB also participated in IL-17B synthesis via the ERK pathway. IL-17RB activation is required for IL-17B-mediated ERK phosphorylation. Taken together, IL-17B-IL-17RB signaling and ERK participate in a positive feedback loop that enhances invasion/migration ability in lung cancer cell lines. IL-17RB may therefore serve as an independent prognostic factor and a therapeutic target for lung cancer.
Collapse
|
78
|
Pan JX, Chen G, Li JJ, Zhu QD, Li JJ, Chen ZJ, Yu ZP, Ye LY. Isocorydine suppresses doxorubicin-induced epithelial-mesenchymal transition via inhibition of ERK signaling pathways in hepatocellular carcinoma. Am J Cancer Res 2018; 8:154-164. [PMID: 29416928 PMCID: PMC5794729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 06/08/2023] Open
Abstract
Doxorubicin (DOX) is a conventional and effective chemotherapeutic used in the treatment of hepatocellular carcinoma (HCC). However, doxorubicin administration may induce EMT, which results in the development of chemoresistance in HCC. Recent studies report that Isocorydine (ICD) selectively inhibits human cancer stem cells (CSCs), which have an important role in the development of chemoresistance. In this study, we observed that ICD co-administration enhanced DOX cytotoxicity in HCC cells, enabling the inhibition of DOX-induced epithelial-mesenchymal transition (EMT). Microarray data analysis revealed substantially decreased ERK signaling after ICD treatment. Additionally, we observed decreased IC50 for DOX upon ERK knockdown. Finally, we confirmed the enhanced efficacy of treatment with a combination of DOX and ICD in xenograft models. Collectively, the present study unveils the benefit of using DOX in combination with ICD for chemotherapy against HCC, revealing a novel potential anti-cancer strategy.
Collapse
Affiliation(s)
- Jie-Xue Pan
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Jun-Jian Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Qian-Dong Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Jing-Jie Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Zong-Jing Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Zheng-Ping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Long-Yun Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
79
|
Li J, Liang Z, Zheng J, Zhang X, Fu J. Long noncoding RNA ZEB1-AS1 predicts an unfavorable prognosis of non-small lung cancer and regulates epithelial to mesenchymal transition through reducing ZEB1 expression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10910-10917. [PMID: 31966434 PMCID: PMC6965832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/18/2017] [Indexed: 06/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) are critical gene regulators with important roles in a wide variety of biological processes, including tumorigenesis. ZEB1-AS1 was significantly increased in NSCLC tissues and cell lines, and its expression levels were highly associated with aggressive tumor progression and poor prognosis. Down-regulation of ZEB1-AS1 suppresses NSCLC cell proliferation and invasion in vitro, as well as inhibits xenograft tumor growth in vivo. Mechanistically, we found that ZEB1-AS1 down-regulation effectively suppressed EMT process through reducing ZEB1 expression, and the ectopic expression of ZEB1 restored the migratory and invasive abilities of NSCLC cells inhibited by ZEB1-AS1 down-regulation. In conclusion, these findings revealed that ZEB1-AS1 plays regulatory roles in NSCLC and it might become a novel molecular indicator of prognosis and therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Junying Li
- Department of Respiratory Medicine, West China School of Medicine, Sichuan UniversityChengdu 610041, P. R. China
- Department of Emergency Medicine, Sichuan Provincial People’s HospitalChengdu 610032, P. R. China
| | - Zongan Liang
- Department of Respiratory Medicine, West China School of Medicine, Sichuan UniversityChengdu 610041, P. R. China
| | - Jun Zheng
- Department of Emergency Medicine, Sichuan Provincial People’s HospitalChengdu 610032, P. R. China
| | - Xiaohong Zhang
- Department of Emergency Medicine, Sichuan Provincial People’s HospitalChengdu 610032, P. R. China
| | - Jing Fu
- Department of Emergency Medicine, Sichuan Provincial People’s HospitalChengdu 610032, P. R. China
| |
Collapse
|
80
|
Siddiqui A, Vazakidou ME, Schwab A, Napoli F, Fernandez-Molina C, Rapa I, Stemmler MP, Volante M, Brabletz T, Ceppi P. Thymidylate synthase is functionally associated with ZEB1 and contributes to the epithelial-to-mesenchymal transition of cancer cells. J Pathol 2017; 242:221-233. [PMID: 28337746 DOI: 10.1002/path.4897] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 01/26/2023]
Abstract
Thymidylate synthase (TS) is a fundamental enzyme of nucleotide metabolism and one of the oldest anti-cancer targets. Beginning from the analysis of gene array data from the NCI-60 panel of cancer cell lines, we identified a significant correlation at both gene and protein level between TS and the markers of epithelial-to-mesenchymal transition (EMT), a developmental process that allows cancer cells to acquire features of aggressiveness, like motility and chemoresistance. TS levels were found to be significantly augmented in mesenchymal-like compared to epithelial-like cancer cells, to be regulated by EMT induction, and to negatively correlate with micro-RNAs (miRNAs) usually expressed in epithelial-like cells and known to actively suppress EMT. Transfection of EMT-suppressing miRNAs reduced TS levels, and a specific role for miR-375 in targeting the TS 3'-untranslated region was identified. A particularly relevant association was found between TS and the powerful EMT driver ZEB1, the shRNA-mediated knockdown of which up-regulated miR-375 and reduced TS cellular levels. The TS-ZEB1 association was confirmed in clinical specimens from lung tumours and in a genetic mouse model of pancreatic cancer with ZEB1 deletion. Interestingly, TS itself appeared to have a regulatory role in EMT in cancer cells, as TS knockdown could directly reduce the EMT phenotype, the migratory ability of cells, the expression of stem-like markers, and chemoresistance. Taken together, these data indicate that the TS enzyme is functionally linked with EMT and cancer differentiation, with several potential translational implications. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aarif Siddiqui
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maria Eleni Vazakidou
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Annemarie Schwab
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Francesca Napoli
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cristina Fernandez-Molina
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ida Rapa
- Pathology Unit, San Luigi Hospital, University of Turin, Turin, Italy
| | - Marc P Stemmler
- Experimental Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marco Volante
- Pathology Unit, San Luigi Hospital, University of Turin, Turin, Italy
| | - Thomas Brabletz
- Experimental Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paolo Ceppi
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
81
|
Kuo WT, Tu DG, Chiu LY, Sheu GT, Wu MF. High pemetrexed sensitivity of docetaxel-resistant A549 cells is mediated by TP53 status and downregulated thymidylate synthase. Oncol Rep 2017; 38:2787-2795. [PMID: 28901493 PMCID: PMC5780031 DOI: 10.3892/or.2017.5951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
The chemoresistance of non-small cell lung cancer (NSCLC) that occurs in docetaxel (DOC) chemotherapy substantially decreases the survival of patients. To overcome DOC-induced chemoresistance, we established DOC-selected A549 lung cancer sublines (A549/D16 and A549/D32) and revealed that both sublines were cross-resistant to vincristine (VCR) and doxorubicin (DXR). Notably, both sublines were more sensitive to pemetrexed (PEM) than parental cells according to MTT and clonogenic assays. The expression levels of thymidylate synthase (TS) and γ-glutamyl hydrolase (GGH) were downregulated in DOC-resistant sublines. When exogenous TS was overexpressed in A549/D16 cells, PEM sensitivity was significantly decreased, however it was not decreased by overexpression of exogenous GGH. PEM treatment induced more apoptotic sub-G1 cells in both DOC-resistant sublines and in the in vivo PEM sensitivities of A549/D16 cells. These findings were further confirmed by a xenografted tumor model. To unmask the mediator of TS downregulation, we investigated human lung cancer cell lines that have various TP53 statuses using DOC treatment. The level of TS protein was significantly decreased in wild-type TP53-containing cells with DOC treatment; TS expression levels were not affected in mutant-TP53 and TP53-null cells under the same conditions. Furthermore, when the expression of TP53 was inhibited in A549 cells, the expression level of TS was increased. Our data indicated that DOC activated wild-type TP53 and suppressed TS expression under continuous DOC exposure. Therefore, the expression of TS remained at low levels in DOC-resistant A549 cancer cells. Our data revealed that for lung cancer with DOC resistance and wild-type TP53 status, the administration of PEM as a second-line agent to overcome DOC-resistance may benefit patients.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Dom-Gene Tu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia‑Yi Christian Hospital, Chiayi City 60002, Taiwan, R.O.C
| | - Ling-Yen Chiu
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, R.O.C
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, R.O.C
| | - Ming-Fang Wu
- School of Medicine, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, R.O.C
| |
Collapse
|
82
|
Wu G, Wang J, Chen G, Zhao X. microRNA-204 modulates chemosensitivity and apoptosis of prostate cancer cells by targeting zinc-finger E-box-binding homeobox 1 (ZEB1). Am J Transl Res 2017; 9:3599-3610. [PMID: 28861151 PMCID: PMC5575174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Epigenetic gene inactivation by microRNAs (miRNAs) is crucial in malignant transformation, prevention of apoptosis, development of drug resistance, and metastasis. miR-204 dysregulation has been reported in prostate cancer (PC). It is considered to exert tumor suppressor functions and is associated with the development of chemoresistance. However, the detailed mechanisms underlying the role of miR-204 in PC, particularly in chemoresistance, remain to be fully elucidated. In this study, analysis using miRNA microarray showed that miR-204 is downregulated in chemoresistant PC tissues with respect to its expression in chemosensitive PC tissues and benign prostatic hyperplasia tissues. Microarray results were validated via qPCR. The changes in miR-204 expression levels were also observed in vitro. Forced overexpression of miR-204 evidently attenuated docetaxel chemoresistance and promoted apoptosis in PC-3-R cells, whereas miR-204 knockdown effectively reduced docetaxel-induced cell death and inhibited cell apoptosis. Mechanistically, miR-204 directly targets the 3'-untranslated region of zinc-finger E-box-binding homeobox 1 (ZEB1) and inhibits its protein expression via translational repression. Furthermore, suppression of ZEB1 could effectively improve miR-204 deficiency-triggered chemoresistance in PC cells. Our results collectively indicate that miR-204 expression is downregulated in chemoresistant PC tissues and cells and that miR-204/ZEB1 could potentially be used as adjunct therapy for patients with advanced/chemoresistant PC.
Collapse
Affiliation(s)
- Guanlin Wu
- Department of Urology, Qinghai University Affiliated HospitalQinghai 810000, P. R. China
| | - Jian Wang
- Department of Urology, Qinghai University Affiliated HospitalQinghai 810000, P. R. China
| | - Guojun Chen
- Department of Urology, Qinghai University Affiliated HospitalQinghai 810000, P. R. China
| | - Xing Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing 100730, P. R. China
| |
Collapse
|
83
|
Zhang Y, Feng X, Li T, Yi E, Li Y. Metformin synergistic pemetrexed suppresses non-small-cell lung cancer cell proliferation and invasion in vitro. Cancer Med 2017; 6:1965-1975. [PMID: 28719077 PMCID: PMC5548881 DOI: 10.1002/cam4.1133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 05/03/2017] [Accepted: 05/26/2017] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to investigate whether metformin in combination with pemetrexed has an effect on the treatment of non-small-cell lung cancer (NSCLC) models and to explore the related molecular mechanism. The half maximal inhibitory concentration (IC50) and combination index (CI) of metformin and pemetrexed were detected by the CCK8 assay to assess the antiproliferative and therapeutic effects of the two-drug combination. Flow cytometry (FCM) and invasion assays were used to estimate the variation in apoptosis rate and invasion ability of the differently treated NSCLC cell lines. Apoptotic markers were detected by western blotting to validate the data related to the antiproliferation and proapoptosis effects. Metformin monotherapy inhibited the growth of NSCLC cell lines and reduced the invasion ability to different degrees compared with the control groups (P < 0.05). Metformin in combination with pemetrexed produced a synergistic effect (CI < 0.90) compared with the two drugs in monotherapy in the three tested NSCLC cell lines. Metformin in combination with pemetrexed significantly increased the cell numbers of HCC827 cells at S phase (P < 0.001), and the combination therapy had no influence on the A549 and H1975 cell lines. We found that combining metformin with pemetrexed induced more cell apoptosis than metformin or pemetrexed used alone (P < 0.05), which was validated by the apoptotic markers. These results demonstrate that the combination of metformin and pemetrexed has a synergistic effect on the treatment of NSCLC cell lines by inducing apoptosis or blocking the cell cycle. Our data indicate that the combination of metformin and pemetrexed could have beneficial antitumor effects on NSCLC cells in vitro.
Collapse
Affiliation(s)
- Yan Zhang
- Departments of Respiratory MedicineQilu hospital of Shandong UniversityJinanShandongChina
| | - Xiuli Feng
- Departments of Respiratory MedicineQilu hospital of Shandong UniversityJinanShandongChina
- Departments of Respiratory MedicinePeople's Hospital of QingzhouWeifangShandongChina
| | - Tao Li
- Departments of Respiratory MedicineQilu hospital of Shandong UniversityJinanShandongChina
| | - Erpan Yi
- Departments of Respiratory MedicineQilu hospital of Shandong UniversityJinanShandongChina
| | - Yu Li
- Departments of Respiratory MedicineQilu hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
84
|
Lee AF, Chen MC, Chen CJ, Yang CJ, Huang MS, Liu YP. Reverse epithelial-mesenchymal transition contributes to the regain of drug sensitivity in tyrosine kinase inhibitor-resistant non-small cell lung cancer cells. PLoS One 2017; 12:e0180383. [PMID: 28683123 PMCID: PMC5500319 DOI: 10.1371/journal.pone.0180383] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/14/2017] [Indexed: 01/06/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are currently the first-line treatment for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations. These patients receive platinum-based chemotherapy as the second-line treatment after they develop resistance to TKIs. Many patients regain sensitivity to the TKIs used in the first-line treatment after the failure of chemotherapy. However, the molecular mechanism for the regain of TKI sensitivity is largely unknown. In this study, we established gefitinib-resistant PC9 and HCC827 cell lines, which did not harbor the EGFR T790M mutation and MET amplification but exhibited the epithelial-mesenchymal transition (EMT) phenotype. Overexpression of EMT inducers, Snail or Slug, in the parental lines promoted their resistance to gefitinib. The gefitinib-resistant cell lines regained their sensitivity to gefitinib and displayed reverse EMT phenotypes after long-term culture in gefitinib-free culture medium. Blockage of reverse EMT by stable expression of Snail or Slug prevented the regain of TKI sensitivity. In conclusion, reverse EMT is one of the major mechanisms for the regain of TKI sensitivity in TKI-resistant NSCLC cells, suggesting that the development of small molecules targeting the EMT process may prolong the efficacy of TKIs in NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- An-Fu Lee
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Man-Chin Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Ju Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (YPL); (MSH); (CJY)
| | - Ming-Shyang Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (YPL); (MSH); (CJY)
| | - Yu-Peng Liu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (YPL); (MSH); (CJY)
| |
Collapse
|
85
|
Ma J, Zhan Y, Xu Z, Li Y, Luo A, Ding F, Cao X, Chen H, Liu Z. ZEB1 induced miR-99b/let-7e/miR-125a cluster promotes invasion and metastasis in esophageal squamous cell carcinoma. Cancer Lett 2017; 398:37-45. [PMID: 28408353 DOI: 10.1016/j.canlet.2017.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 01/10/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common digestive tumors in Asia. Recent researches demonstrate that miRNAs are involved in the development of ESCC. In this study, we identified a miRNA cluster, termed miR-99b/let-7e/miR-125a as pro-metastasis oncomir. Overexpression of this miRNA cluster promoted ESCC cell migration and invasion in vitro and induced an experimental metastasis in vivo. ZEB1 was discovered to bind to the promoter region of miR-99b/let-7e/miR-125a cluster and regulate the expression of miRNAs at transcriptional level. Knockdown of ZEB1 resulted in a decrease of both mature and primary miRNAs. Further research revealed AT-rich interaction domain 3A (ARID3A) as a direct target of miR-99b/let-7e/miR-125a cluster. Reduced ARID3A phenocopied miR-99b/let-7e/miR-125a overexpression, and elevated ARID3A counteracted the pro-metastasis effect of miR-99b/let-7e/miR-125a. Moreover, ARID3A was downregulated by ZEB1 in a miR-99b/let-7e/miR-125a dependent manner. Collectively, our study sheds light on the essential role of miR-99b/let-7e/miR-125a cluster in tumor metastasis.
Collapse
Affiliation(s)
- Jianlin Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yun Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhipeng Xu
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210001, China
| | - Yi Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fang Ding
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiufeng Cao
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210001, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
86
|
Zou M, Baitei EY, BinEssa HA, Al-Mohanna FA, Parhar RS, St-Arnaud R, Kimura S, Pritchard C, Alzahrani AS, Assiri AM, Meyer BF, Shi Y. Cyp24a1 Attenuation Limits Progression of BrafV600E -Induced Papillary Thyroid Cancer Cells and Sensitizes Them to BRAF V600E Inhibitor PLX4720. Cancer Res 2017; 77:2161-2172. [PMID: 28242615 DOI: 10.1158/0008-5472.can-16-2066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
CYP24A1, the primary inactivating enzyme for vitamin D, is often overexpressed in human cancers, potentially neutralizing the antitumor effects of calcitriol, the active form of vitamin D. However, it is unclear whether CYP24A1 expression serves as a functional contributor versus only a biomarker for tumor progression. In this study, we investigated the role of CYP24A1 on malignant progression of a murine model of BrafV600E -induced papillary thyroid cancer (PTC). Mice harboring wild-type Cyp24a1 (BVECyp24a1-wt) developed PTC at 5 weeks of age. Mice harboring a homozygous deletion of Cyp24a1 (BVECyp24a1-null) exhibited a 4-fold reduction in tumor growth. Notably, we found the tumorigenic potential of BVECyp24a1-null-derived tumor cells to be nearly abolished in immunocompromised nude mice. This phenotype was associated with downregulation of the MAPK, PI3K/Akt, and TGFβ signaling pathways and a loss of epithelial-mesenchymal transition (EMT) in BVECyp24a1-null cells, associated with downregulation of genes involved in EMT, tumor invasion, and metastasis. While calcitriol treatment did not decrease cell proliferation in BVECyp24a1-null cells, it strengthened antitumor responses to the BRAFV600E inhibitor PLX4720 in both BVECyp24a1-null and BVECyp24a1-wt cells. Our findings offer direct evidence that Cyp24a1 functions as an oncogene in PTC, where its overexpression activates multiple signaling cascades to promote malignant progression and resistance to PLX4720 treatment. Cancer Res; 77(8); 2161-72. ©2017 AACR.
Collapse
Affiliation(s)
- Minjing Zou
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Essa Y Baitei
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Huda A BinEssa
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ranjit S Parhar
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - René St-Arnaud
- Department of Surgery and Human Genetics, McGill University, Montreal, Quebec, Canada; and Research Centre, Shriners Hospitals for Children, Montreal, Quebec, Canada
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Catrin Pritchard
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester, UK
| | - Ali S Alzahrani
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Yufei Shi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
87
|
Li H, Batth IS, Qu X, Xu L, Song N, Wang R, Liu Y. IGF-IR signaling in epithelial to mesenchymal transition and targeting IGF-IR therapy: overview and new insights. Mol Cancer 2017; 16:6. [PMID: 28137302 PMCID: PMC5282886 DOI: 10.1186/s12943-016-0576-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
The insulin-like growth factor-I (IGF-I) signaling induces epithelial to mesenchymal transition (EMT) program and contributes to metastasis and drug resistance in several subtypes of tumors. In preclinical studies, targeting of the insulin-like growth factor-I receptor (IGF-IR) showed promising anti-tumor effects. Unfortunately, high expectations for anti-IGF-IR therapy encountered challenge and disappointment in numerous clinical trials. This review summarizes the regulation of EMT by IGF-I/IGF-IR signaling pathway and drug resistance mechanisms of targeting IGF-IR therapy. Most importantly, we address several factors in the regulation of IGF-I/IGF-IR-associated EMT progression that may be potential predictive biomarkers in targeted therapy.
Collapse
Affiliation(s)
- Heming Li
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Izhar Singh Batth
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.
| |
Collapse
|
88
|
Liao KS, Wei CL, Chen JC, Zheng HY, Chen WC, Wu CH, Wang TJ, Peng YS, Chang PY, Lin YW. Astaxanthin enhances pemetrexed-induced cytotoxicity by downregulation of thymidylate synthase expression in human lung cancer cells. Regul Toxicol Pharmacol 2016; 81:353-361. [PMID: 27693704 DOI: 10.1016/j.yrtph.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 12/18/2022]
Abstract
Pemetrexed, a multitargeted antifolate agent, has demonstrated clinical activity in non-small cell lung cancer (NSCLC) cells. Increased expression of thymidylate synthase (TS) is thought to be associated with resistance to pemetrexed. Astaxanthin exhibits a wide range of beneficial effects including anti-cancer and anti-inflammatory properties. In this study, we showed that down-regulating of TS expression in two NSCLC cell lines, human lung adenocarcinoma H1650 and squamous cell carcinoma H1703 cells, with astaxanthin were associated with decreased MKK1/2-ERK1/2 activity. Enforced expression of constitutively active MKK1 (MKK1-CA) vector significantly rescued the decreased TS mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with a MKK1/2 inhibitor (U0126 or PD98059) further decreased the TS expression in astaxanthin-exposed NSCLC cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting ERK1/2 activity enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Combination of pemetrexed and astaxanthin resulted in synergistic enhancing cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-MKK1/2, phopho-ERK1/2, and TS expression. Overexpression of MKK1/2-CA reversed the astaxanthin and pemetrexed-induced synergistic cytotoxicity. Our findings suggested that the down-regulation of MKK1/2-ERK1/2-mediated TS expression by astaxanthin is an important regulator of enhancing the pemetrexed-induced cytotoxicity in NSCLC cells.
Collapse
Affiliation(s)
- Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan; School of Nursing, Chung Jen Junior College of Nursing, Health Science and Management, Chiayi, Taiwan
| | - Chia-Li Wei
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Hao-Yu Zheng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Wen-Ching Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chia-Hung Wu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Tai-Jing Wang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Shuan Peng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Po-Yuan Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|