51
|
Li Z, Liang D, Ye D, Chang HH, Ziegler TR, Jones DP, Ebelt ST. Application of high-resolution metabolomics to identify biological pathways perturbed by traffic-related air pollution. ENVIRONMENTAL RESEARCH 2021; 193:110506. [PMID: 33245887 PMCID: PMC7855798 DOI: 10.1016/j.envres.2020.110506] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Substantial research has investigated the adverse effects of traffic-related air pollutants (TRAP) on human health. Convincing associations between TRAP and respiratory and cardiovascular diseases are known, but the underlying biological mechanisms are not well established. High-resolution metabolomics (HRM) is a promising platform for untargeted characterization of molecular mechanisms between TRAP and health indexes. OBJECTIVES We examined metabolic perturbations associated with short-term exposures to TRAP, including carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), fine particulate matter (PM2.5), organic carbon (OC), and elemental carbon (EC) among 180 participants of the Center for Health Discovery and Well-Being (CHDWB), a cohort of Emory University-affiliated employees. METHODS A cross-sectional study was conducted on baseline visits of 180 CHDWB participants enrolled during 2008-2012, in whom HRM profiling was determined in plasma samples using liquid chromatography-high-resolution mass spectrometry with positive and negative electrospray ionization (ESI) modes. Ambient pollution concentrations were measured at an ambient monitor near downtown Atlanta. Metabolic perturbations associated with TRAP exposures were assessed following an untargeted metabolome-wide association study (MWAS) framework using feature-specific Tobit regression models, followed by enriched pathway analysis and chemical annotation. RESULTS Subjects were predominantly white (76.1%) and non-smokers (95.6%), and all had at least a high school education. In total, 7821 and 4123 metabolic features were extracted from the plasma samples by the negative and positive ESI runs, respectively. There are 3421 features significantly associated with at least one air pollutant by negative ion mode, and 1691 features by positive ion mode. Biological pathways enriched by features associated with the pollutants are primarily involved in nucleic acids damage/repair (e.g., pyrimidine metabolism), nutrient metabolism (e.g., fatty acid metabolism), and acute inflammation (e.g., histidine metabolism and tyrosine metabolism). NO2 and EC were associated most consistently with these pathways. We confirmed the chemical identity of 8 metabolic features in negative ESI and 2 features in positive ESI, including metabolites closely linked to oxidative stress and inflammation, such as histamine, tyrosine, tryptophan, and proline. CONCLUSIONS We identified a range of ambient pollutants, including components of TRAP, associated with differences in the metabolic phenotype among the cohort of 180 subjects. We found Tobit models to be a robust approach to handle missing data among the metabolic features. The results were encouraging of further use of HRM and MWAS approaches for characterizing molecular mechanisms underlying exposure to TRAP.
Collapse
Affiliation(s)
- Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Dongni Ye
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Thomas R Ziegler
- Division of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, United States
| | - Stefanie T Ebelt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| |
Collapse
|
52
|
Air Pollution and Adverse Pregnancy and Birth Outcomes: Mediation Analysis Using Metabolomic Profiles. Curr Environ Health Rep 2021; 7:231-242. [PMID: 32770318 DOI: 10.1007/s40572-020-00284-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Review how to use metabolomic profiling in causal mediation analysis to assess epidemiological evidence for air pollution impacts on birth outcomes. RECENT FINDINGS Maternal exposures to air pollutants have been associated with pregnancy complications and adverse pregnancy and birth outcomes. Causal mediation analysis enables us to estimate direct and indirect effects on outcomes (i.e., effect decomposition), elucidating causal mechanisms or effect pathways. Maternal metabolites and metabolic pathways are perturbed by air pollution exposures may lead to adverse pregnancy and birth outcomes, thus they can be considered mediators in the causal pathways. Metabolomic markers have been used to explain the biological mechanisms linking air pollution and respiratory function, and of arsenic exposure and birth weight. However, mediation analysis of metabolomic markers has not been used to assess air pollution effects on adverse birth outcomes. In this article, we describe the assumptions and applications of mediation analysis using metabolomic markers that elucidate the potential mechanisms of the effects of air pollution on adverse pregnancy and birth outcomes. The hypothesis of mediation along specified pathways can be assessed within the structural causal modeling framework. For causal inferences, several assumptions that go beyond the data-including no uncontrolled confounding-need to be made to justify the effect decomposition. Nevertheless, studies that integrate metabolomic information in causal mediation analysis may greatly improve our understanding of the effects of ambient air pollution on adverse pregnancy and birth outcomes as they allow us to suggest and test hypotheses about underlying biological mechanisms in studies of pregnant women.
Collapse
|
53
|
Chen C, Liu S, Dong W, Song Y, Chu M, Xu J, Guo X, Zhao B, Deng F. Increasing cardiopulmonary effects of ultrafine particles at relatively low fine particle concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141726. [PMID: 32889464 DOI: 10.1016/j.scitotenv.2020.141726] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Ultrafine particles (UFPs) are of concern because of their high pulmonary deposition efficiency. However, present control measures are generally targeted at fine particles (PM2.5), with little effect on UFPs. The health effects of UFPs at different PM2.5 concentrations may provide a basic for controlling UFPs but remain unclear in polluted areas. School children spend the majority of their time in the classrooms. This study investigated the different short-term effects of indoor UFPs on school children in Beijing, China when indoor PM2.5 concentrations exceeded or satisfied the recently published Chinese standard for indoor PM2.5. Cardiopulmonary functions of 48 school children, of whom 46 completed, were measured three times. Indoor PM2.5 and UFPs were monitored in classrooms on weekdays. Measurements were separated into two groups according to the abovementioned standard. Mixed-effect models were used to explore the health effects of the air pollutants. Generally, UFP-associated effects on children's cardiopulmonary function persisted even at relatively low PM2.5 concentrations, especially on heart rate variability indices. The risks associated with high PM2.5 concentrations are well-known, but the effects of UFPs on children's cardiopulmonary function deserve more attention even when PM2.5 has been controlled. UFP control and standard setting should therefore be considered.
Collapse
Affiliation(s)
- Chen Chen
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Mengtian Chu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
54
|
Nassan FL, Kelly RS, Kosheleva A, Koutrakis P, Vokonas PS, Lasky-Su JA, Schwartz JD. Metabolomic signatures of the long-term exposure to air pollution and temperature. Environ Health 2021; 20:3. [PMID: 33413450 PMCID: PMC7788989 DOI: 10.1186/s12940-020-00683-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/01/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Long-term exposures to air pollution has been reported to be associated with inflammation and oxidative stress. However, the underlying metabolic mechanisms remain poorly understood. OBJECTIVES We aimed to determine the changes in the blood metabolome and thus the metabolic pathways associated with long-term exposure to outdoor air pollution and ambient temperature. METHODS We quantified metabolites using mass-spectrometry based global untargeted metabolomic profiling of plasma samples among men from the Normative Aging Study (NAS). We estimated the association between long-term exposure to PM2.5, NO2, O3, and temperature (annual average of central site monitors) with metabolites and their associated metabolic pathways. We used multivariable linear mixed-effect regression models (LMEM) while simultaneously adjusting for the four exposures and potential confounding and correcting for multiple testing. As a reduction method for the intercorrelated metabolites (outcome), we further used an independent component analysis (ICA) and conducted LMEM with the same exposures. RESULTS Men (N = 456) provided 648 blood samples between 2000 and 2016 in which 1158 metabolites were quantified. On average, men were 75.0 years and had an average body mass index of 27.7 kg/m2. Almost all men (97%) were not current smokers. The adjusted analysis showed statistically significant associations with several metabolites (58 metabolites with PM2.5, 15 metabolites with NO2, and 6 metabolites with temperature) while no metabolites were associated with O3. One out of five ICA factors (factor 2) was significantly associated with PM2.5. We identified eight perturbed metabolic pathways with long-term exposure to PM2.5 and temperature: glycerophospholipid, sphingolipid, glutathione, beta-alanine, propanoate, and purine metabolism, biosynthesis of unsaturated fatty acids, and taurine and hypotaurine metabolism. These pathways are related to inflammation, oxidative stress, immunity, and nucleic acid damage and repair. CONCLUSIONS Using a global untargeted metabolomic approach, we identified several significant metabolites and metabolic pathways associated with long-term exposure to PM2.5, NO2 and temperature. This study is the largest metabolomics study of long-term air pollution, to date, the first study to report a metabolomic signature of long-term temperature exposure, and the first to use ICA in the analysis of both.
Collapse
Affiliation(s)
- Feiby L. Nassan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Landmark Center, Room 414C, 401 Park Dr, Boston, MA 02215 USA
| | - Rachel S. Kelly
- Channing Division of Network Medicine; Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02129 USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Landmark Center, Room 414C, 401 Park Dr, Boston, MA 02215 USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Landmark Center, Room 414C, 401 Park Dr, Boston, MA 02215 USA
| | - Pantel S. Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, School of Medicine and School of Public Health, Boston University, Boston, MA 02215 USA
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine; Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02129 USA
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Landmark Center, Room 414C, 401 Park Dr, Boston, MA 02215 USA
- Channing Division of Network Medicine; Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02129 USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
55
|
Liu C, Scorr L, Kilic-Berkmen G, Cotton A, Factor SA, Freeman A, Tran V, Liu K, Uppal K, Jones D, Jinnah HA, Sun YV. A metabolomic study of cervical dystonia. Parkinsonism Relat Disord 2021; 82:98-103. [PMID: 33271463 PMCID: PMC7856090 DOI: 10.1016/j.parkreldis.2020.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/26/2020] [Accepted: 11/21/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cervical dystonia is the most common of the adult-onset focal dystonias. Most cases are idiopathic. The current view is that cervical dystonia may be caused by some combination of genetic and environmental factors. Genetic contributions have been studied extensively, but there are few studies of other factors. We conducted an exploratory metabolomics analysis of cervical dystonia to identify potentially abnormal metabolites or altered biological pathways. METHODS Plasma samples from 100 cases with idiopathic cervical dystonia and 100 controls were compared using liquid chromatography coupled with mass spectrometry-based metabolomics. RESULTS A total of 7346 metabolic features remained after quality control, and up to 289 demonstrated significant differences between cases and controls, depending on statistical criteria chosen. Pathway analysis revealed 9 biological processes to be significantly associated at p < 0.05, 5 pathways were related to carbohydrate metabolism, 3 pathways were related to lipid metabolism. CONCLUSION This is the first large scale metabolomics study for any type of dystonia. The results may provide potential novel insights into the biology of cervical dystonia.
Collapse
Affiliation(s)
- Chang Liu
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA.
| | - Laura Scorr
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Clinic Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Gamze Kilic-Berkmen
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Clinic Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Adam Cotton
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Clinic Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Stewart A Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Clinic Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Alan Freeman
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Clinic Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Ken Liu
- Clinical Biomarkers Laboratory, Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Karan Uppal
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Dean Jones
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - H A Jinnah
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Clinic Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
56
|
Kelly FJ, Fussell JC. Toxicity of airborne particles-established evidence, knowledge gaps and emerging areas of importance. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190322. [PMID: 32981440 PMCID: PMC7536031 DOI: 10.1098/rsta.2019.0322] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Epidemiological research has taught us a great deal about the health effects of airborne particulate matter (PM), particularly cardiorespiratory effects of combustion-related particles. This has been matched by toxicological research to define underlying mechanistic pathways. To keep abreast of the substantial challenges that air pollution continues to throw at us requires yet more strides to be achieved. For example, being aware of the most toxic components/sources and having a definitive idea of the range of associated disease outcomes. This review discusses approaches designed to close some of these knowledge gaps. These include a focus on particles arising from non-exhaust PM at the roadside and microplastics-both of which are becoming more relevant in the light of a shift in PM composition in response to global pressure to reduce combustion emissions. The application of hypothesis-free approaches in both mechanistic studies and epidemiology in unveiling unexpected relationships and generating novel insights is also discussed. Previous work, strengthening the evidence for both the adverse effects and benefits of intervention tell us that the sooner we act to close knowledge gaps, increase awareness and develop creative solutions, the sooner we can reduce the public health burden attributable to these complex and insidious environmental pollutants. This article is part of a discussion meeting issue 'Air quality, past present and future'.
Collapse
Affiliation(s)
- Frank J. Kelly
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, Sir Michael Uren Building, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK
| | | |
Collapse
|
57
|
Mote RS, Filipov NM. Use of Integrative Interactomics for Improvement of Farm Animal Health and Welfare: An Example with Fescue Toxicosis. Toxins (Basel) 2020; 12:toxins12100633. [PMID: 33019560 PMCID: PMC7600642 DOI: 10.3390/toxins12100633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Rapid scientific advances are increasing our understanding of the way complex biological interactions integrate to maintain homeostatic balance and how seemingly small, localized perturbations can lead to systemic effects. The ‘omics movement, alongside increased throughput resulting from statistical and computational advances, has transformed our understanding of disease mechanisms and the multi-dimensional interaction between environmental stressors and host physiology through data integration into multi-dimensional analyses, i.e., integrative interactomics. This review focuses on the use of high-throughput technologies in farm animal research, including health- and toxicology-related papers. Although limited, we highlight recent animal agriculture-centered reports from the integrative multi-‘omics movement. We provide an example with fescue toxicosis, an economically costly disease affecting grazing livestock, and describe how integrative interactomics can be applied to a disease with a complex pathophysiology in the pursuit of novel treatment and management approaches. We outline how ‘omics techniques have been used thus far to understand fescue toxicosis pathophysiology, lay out a framework for the fescue toxicosis integrome, identify some challenges we foresee, and offer possible means for addressing these challenges. Finally, we briefly discuss how the example with fescue toxicosis could be used for other agriculturally important animal health and welfare problems.
Collapse
|
58
|
Wisniewski BL, Shrestha CL, Zhang S, Thompson R, Gross M, Groner JA, Uppal K, Ramilo O, Mejias A, Kopp BT. Metabolomics profiling of tobacco exposure in children with cystic fibrosis. J Cyst Fibros 2020; 19:791-800. [PMID: 32487493 PMCID: PMC7492400 DOI: 10.1016/j.jcf.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Inflammation is integral to early disease progression in children with CF. The effect of modifiable environmental factors on infection and inflammation in persons with CF is poorly understood. Our prior studies determined that secondhand smoke exposure (SHSe) is highly prevalent in young children with CF. SHSe is associated with increased inflammation, heightened bacterial burden, and worsened clinical outcomes. However, the specific metabolite and signaling pathways that regulate responses to SHSe in CF are relatively unknown. METHODS High-resolution metabolomics was performed on plasma samples from infants (n = 25) and children (n = 40) with CF compared to non-CF controls (n = 15). CF groups were stratified according to infant or child age and SHSe status. RESULTS Global metabolomic profiles segregated by age and SHSe status. SHSe in CF was associated with changes in pathways related to steroid biosynthesis, fatty acid metabolism, cysteine metabolism, and oxidative stress. CF infants with SHSe demonstrated enrichment for altered metabolite localization to the small intestine, liver, and striatum. CF children with SHSe demonstrated metabolite enrichment for organs/tissues associated with oxidative stress including mitochondria, peroxisomes, and the endoplasmic reticulum. In a confirmatory analysis, SHSe was associated with changes in biomarkers of oxidative stress and cellular adhesion including MMP-9, MPO, and ICAM-1. CONCLUSIONS SHSe in young children and infants with CF is associated with altered global metabolomics profiles and specific biochemical pathways, including enhanced oxidative stress. SHSe remains an important but understudied modifiable variable in early CF disease.
Collapse
Affiliation(s)
- Benjamin L Wisniewski
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Shuzhong Zhang
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Rohan Thompson
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Myron Gross
- Minnesota CHEAR Exposure Assessment Hub, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Judith A Groner
- Section of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Karan Uppal
- National Exposure Assessment Laboratory at Emory, Emory University, Atlanta, GA, USA
| | - Octavio Ramilo
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA; Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Asuncion Mejias
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA; Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin T Kopp
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
59
|
Yu EA, Yu T, Jones DP, Martorell R, Ramirez-Zea M, Stein AD. Macronutrient, Energy, and Bile Acid Metabolism Pathways Altered Following a Physiological Meal Challenge, Relative to Fasting, among Guatemalan Adults. J Nutr 2020; 150:2031-2040. [PMID: 32597983 PMCID: PMC7398776 DOI: 10.1093/jn/nxaa169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The healthy human metabolome, including its physiological responses after meal consumption, remains incompletely understood. One major research gap is the limited literature assessing how human metabolomic profiles differ between fasting and postprandial states after physiological challenges. OBJECTIVES Our study objective was to evaluate alterations in high-resolution metabolomic profiles following a standardized meal challenge, relative to fasting, in Guatemalan adults. METHODS We studied 123 Guatemalan adults without obesity, hypertension, diabetes, metabolic syndrome, or comorbidities. Every participant received a standardized meal challenge (520 kcal, 67.4 g carbohydrates, 24.3 g fat, 8.0 g protein) and provided blood samples while fasting and at 2 h postprandial. Plasma samples were assayed by high-resolution metabolomics with dual-column LC [C18 (negative electrospray ionization), hydrophilic interaction LC (HILIC, positive electrospray ionization)] coupled to ultra-high-resolution MS. Associations between metabolomic features and the meal challenge timepoint were assessed in feature-by-feature multivariable linear mixed regression models. Two algorithms (mummichog, gene set enrichment analysis) were used for pathway analysis, and P values were combined by the Fisher method. RESULTS Among participants (62.6% male, median age 43.0 y), 1130 features (C18: 777; HILIC: 353) differed between fasting and postprandial states (all false discovery rate-adjusted q < 0.05). Based on differing C18 features, top pathways included: tricarboxylic acid cycle (TCA), primary bile acid biosynthesis, and linoleic acid metabolism (all Pcombined < 0.05). Mass spectral features included: taurine and cholic acid in primary bile acid biosynthesis; and fumaric acid, malic acid, and citric acid in the TCA. HILIC features that differed in the meal challenge reflected linoleic acid metabolism (Pcombined < 0.05). CONCLUSIONS Energy, macronutrient, and bile acid metabolism pathways were responsive to a standardized meal challenge in adults without cardiometabolic diseases. Our findings reflect metabolic flexibility in disease-free individuals.
Collapse
Affiliation(s)
- Elaine A Yu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Reynaldo Martorell
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Manuel Ramirez-Zea
- Institute of Nutrition of Central America and Panama Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala
| | | |
Collapse
|
60
|
Cioffi CE, Narayan KMV, Liu K, Uppal K, Jones DP, Tran V, Yu T, Alvarez JA, Bellissimo MP, Maner-Smith KM, Pierpoint B, Caprio S, Santoro N, Vos MB. Hepatic fat is a stronger correlate of key clinical and molecular abnormalities than visceral and abdominal subcutaneous fat in youth. BMJ Open Diabetes Res Care 2020; 8:e001126. [PMID: 32699106 PMCID: PMC7380953 DOI: 10.1136/bmjdrc-2019-001126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 05/13/2020] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Body fat distribution is strongly associated with cardiometabolic disease (CMD), but the relative importance of hepatic fat as an underlying driver remains unclear. Here, we applied a systems biology approach to compare the clinical and molecular subnetworks that correlate with hepatic fat, visceral fat, and abdominal subcutaneous fat distribution. RESEARCH DESIGN AND METHODS This was a cross-sectional sub-study of 283 children/adolescents (7-19 years) from the Yale Pediatric NAFLD Cohort. Untargeted, high-resolution metabolomics (HRM) was performed on plasma and combined with existing clinical variables including hepatic and abdominal fat measured by MRI. Integrative network analysis was coupled with pathway enrichment analysis and multivariable linear regression (MLR) to examine which metabolites and clinical variables associated with each fat depot. RESULTS The data divided into four communities of correlated variables (|r|>0.15, p<0.05) after integrative network analysis. In the largest community, hepatic fat was associated with eight clinical biomarkers, including measures of insulin resistance and dyslipidemia, and 878 metabolite features that were enriched predominantly in amino acid (AA) and lipid pathways in pathway enrichment analysis (p<0.05). Key metabolites associated with hepatic fat included branched-chain AAs (valine and isoleucine/leucine), aromatic AAs (tyrosine and tryptophan), serine, glycine, alanine, and pyruvate, as well as several acylcarnitines and glycerophospholipids (all q<0.05 in MLR adjusted for covariates). The other communities detected in integrative network analysis consisted of abdominal visceral, superficial subcutaneous, and deep subcutaneous fats, but no clinical variables, fewer metabolite features (280, 312, and 74, respectively), and limited findings in pathway analysis. CONCLUSIONS These data-driven findings show a stronger association of hepatic fat with key CMD risk factors compared with abdominal fats. The molecular network identified using HRM that associated with hepatic fat provides insight into potential mechanisms underlying the hepatic fat-insulin resistance interface in youth.
Collapse
Affiliation(s)
- Catherine E Cioffi
- Nutrition and Health Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - K M Venkat Narayan
- Hubert Department of Global Health, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Ken Liu
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Karan Uppal
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dean P Jones
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - ViLinh Tran
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tianwei Yu
- Department of Biostatistics, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Jessica A Alvarez
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Moriah P Bellissimo
- Nutrition and Health Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Kristal M Maner-Smith
- Emory Integrated Lipidomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bridget Pierpoint
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sonia Caprio
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nicola Santoro
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Molise, Italy
| | - Miriam B Vos
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
61
|
Ritz B, Yan Q, Uppal K, Liew Z, Cui X, Ling C, Inoue K, von Ehrenstein O, Walker DI, Jones DP. Untargeted Metabolomics Screen of Mid-pregnancy Maternal Serum and Autism in Offspring. Autism Res 2020; 13:1258-1269. [PMID: 32496662 DOI: 10.1002/aur.2311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
Discovering pathophysiologic networks in a blood-based approach may help to generate valuable tools for early treatment or preventive measures in autism. To date targeted or untargeted metabolomics approaches to identify metabolic features and pathways affecting fetal neurodevelopment have rarely been applied to pregnancy samples, that is, an early period potentially relevant for the development of autism spectrum disorders (ASD). We conducted a population-based study relying on autism diagnoses retrieved from California Department of Developmental Services record. After linking cases to and sampling controls from birth certificates, we retrieved stored maternal mid-pregnancy serum samples collected as part of the California Prenatal Screening Program from the California Biobank for children born 2004 to 2010 in the central valley of California. We retrieved serum for 52 mothers whose children developed autism and 62 population controls originally selected from all eligible children matched by birth year and child's sex. Also, we required that these mothers were relatively low or unexposed to air pollution and select pesticides during early pregnancy. We identified differences in metabolite levels in several metabolic pathways, including glycosphingolipid biosynthesis and metabolism, N-glycan and pyrimidine metabolism, bile acid pathways and, importantly, C21-steroid hormone biosynthesis and metabolism. Disturbances in these pathways have been shown to be relevant for neurodevelopment in rare genetic syndromes or implicated in previous studies of autism. This study provides new insight into maternal mid-pregnancy metabolic features possibly related to the development of autism and an incentive to explore whether these pathways and metabolites are useful for early diagnosis, treatment, or prevention. LAY SUMMARY: This study found that in mid-pregnancy the blood of mothers who give birth to a child that develops autism has some characteristic features that are different from those of blood samples taken from control mothers. These features are related to biologic mechanisms that can affect fetal brain development. In the future, these insights may help identify biomarkers for early autism diagnosis and treatment or preventive measures. Autism Res 2020, 13: 1258-1269. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA.,Department of Neurology, UCLA School of Medicine, Los Angeles, California, USA
| | - Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA.,Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Xin Cui
- Perinatal Epidemiology and Health Outcomes Research Unit, Division of Neonatology, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, California, USA.,California Perinatal Quality Care Collaborative, Palo Alto, California, USA
| | - Chenxiao Ling
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Kosuke Inoue
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Ondine von Ehrenstein
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
62
|
Collins JM, Siddiqa A, Jones DP, Liu K, Kempker RR, Nizam A, Shah NS, Ismail N, Ouma SG, Tukvadze N, Li S, Day CL, Rengarajan J, Brust JC, Gandhi NR, Ernst JD, Blumberg HM, Ziegler TR. Tryptophan catabolism reflects disease activity in human tuberculosis. JCI Insight 2020; 5:137131. [PMID: 32369456 DOI: 10.1172/jci.insight.137131] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
There is limited understanding of the role of host metabolism in the pathophysiology of human tuberculosis (TB). Using high-resolution metabolomics with an unbiased approach to metabolic pathway analysis, we discovered that the tryptophan pathway is highly regulated throughout the spectrum of TB infection and disease. This regulation is characterized by increased catabolism of tryptophan to kynurenine, which was evident not only in active TB disease but also in latent TB infection (LTBI). Further, we found that tryptophan catabolism is reversed with effective treatment of both active TB disease and LTBI in a manner commensurate with bacterial clearance. Persons with active TB and LTBI also exhibited increased expression of indoleamine 2,3-dioxygenase-1 (IDO-1), suggesting IDO-1 mediates observed increases in tryptophan catabolism. Together, these data indicate IDO-1-mediated tryptophan catabolism is highly preserved in the human response to Mycobacterium tuberculosis and could be a target for biomarker development as well as host-directed therapies.
Collapse
Affiliation(s)
- Jeffrey M Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amnah Siddiqa
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ken Liu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Russell R Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Azhar Nizam
- Department of Biostatistics and Bioinformatics
| | - N Sarita Shah
- Department of Epidemiology, and.,Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Nazir Ismail
- Centre for Tuberculosis, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa.,Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,Department of Internal Medicine, University of Witwatersrand, Johannesburg, South Africa
| | | | - Nestani Tukvadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Shuzhao Li
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Cheryl L Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Vaccine Center and.,Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jyothi Rengarajan
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Vaccine Center and.,Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - James Cm Brust
- Division of General Internal Medicine and.,Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Neel R Gandhi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Epidemiology, and.,Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Joel D Ernst
- Division of Experimental Medicine, Department of Medicine, UCSF School of Medicine, San Francisco, California, USA
| | - Henry M Blumberg
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Epidemiology, and.,Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA.,Emory Vaccine Center and
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism, and Lipids and.,Emory Center for Clinical and Molecular Nutrition, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Section of Endocrinology, Atlanta Veterans Affairs Medical Center, Atlanta Georgia, USA
| |
Collapse
|
63
|
Jin R, McConnell R, Catherine C, Xu S, Walker DI, Stratakis N, Jones DP, Miller GW, Peng C, Conti DV, Vos MB, Chatzi L. Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: An untargeted metabolomics approach. ENVIRONMENT INTERNATIONAL 2020; 134:105220. [PMID: 31744629 PMCID: PMC6944061 DOI: 10.1016/j.envint.2019.105220] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Toxicant-associated steatohepatitis has been described in adults but less is known regarding the role of toxicants in liver disease of children. Perfluoroalkyl substances (PFAS) cause hepatic steatosis in rodents, but few previous studies have examined PFAS effects on severity of liver injury in children. OBJECTIVES We aimed to examine the relationship of PFAS to histologic severity of nonalcoholic fatty liver disease (NAFLD) in children. METHODS Seventy-four children with physician-diagnosed NAFLD were recruited from Children's Healthcare of Atlanta between 2007 and 2015. Biopsy-based liver histological features were scored for steatosis, lobular and portal inflammation, ballooning, and fibrosis. Plasma concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonic acid (PFHxS), and untargeted plasma metabolomic profiling, were determined using liquid chromatography with high-resolution mass spectrometry. A metabolome-wide association study coupled with pathway enrichment analysis was performed to evaluate metabolic dysregulation associated with PFAS. A structural integrated analysis was applied to identify latent clusters of children with more severe form of NAFLD based on their PFAS levels and metabolite pattern. RESULTS Patients were 7-19 years old, mostly boys (71%), Hispanic (51%), and obese (85%). The odds of having nonalcoholic steatohepatitis (NASH), compared to children with steatosis alone, was significantly increased with each interquartile range (IQR) increase of PFOS (OR: 3.32, 95% CI: 1.40-7.87) and PFHxS (OR: 4.18, 95% CI: 1.64-10.7). Each IQR increase of PFHxS was associated with increased odds for liver fibrosis (OR: 4.44, 95% CI: 1.34-14.8), lobular inflammation (OR: 2.87, 95% CI: 1.12-7.31), and higher NAFLD activity score (β coefficient 0.46; 95% CI: 0.03, 0.89). A novel integrative analysis identified a cluster of children with NASH, characterized by increased PFAS levels and altered metabolite patterns including higher plasma levels of phosphoethanolamine, tyrosine, phenylalanine, aspartate and creatine, and decreased plasma levels of betaine. CONCLUSIONS Ηigher PFAS exposure was associated with more severe disease in children with NAFLD. PFAS may be an important toxicant contributing to NAFLD progression; however larger, longitudinal studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Ran Jin
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Rob McConnell
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Cioffi Catherine
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, USA.
| | - Shujing Xu
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Douglas I Walker
- Clinical Biomarkers Laboratory, Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA; Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Nikos Stratakis
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA.
| | - Gary W Miller
- Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Cheng Peng
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - David V Conti
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Miriam B Vos
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
64
|
Banoei MM, Iupe I, Bazaz RD, Campos M, Vogel HJ, Winston BW, Mirsaeidi M. Metabolomic and metallomic profile differences between Veterans and Civilians with Pulmonary Sarcoidosis. Sci Rep 2019; 9:19584. [PMID: 31863066 PMCID: PMC6925242 DOI: 10.1038/s41598-019-56174-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Sarcoidosis is a disorder characterized by granulomatous inflammation of unclear etiology. In this study we evaluated whether veterans with sarcoidosis exhibited different plasma metabolomic and metallomic profiles compared with civilians with sarcoidosis. A case control study was performed on veteran and civilian patients with confirmed sarcoidosis. Proton nuclear magnetic resonance spectroscopy (1H NMR), hydrophilic interaction liquid chromatography mass spectrometry (HILIC-MS) and inductively coupled plasma mass spectrometry (ICP-MS) were applied to quantify metabolites and metal elements in plasma samples. Our results revealed that the veterans with sarcoidosis significantly differed from civilians, according to metabolic and metallomics profiles. Moreover, the results showed that veterans with sarcoidosis and veterans with COPD were similar to each other in metabolomics and metallomics profiles. This study suggests the important role of environmental risk factors in the development of different molecular phenotypic responses of sarcoidosis. In addition, this study suggests that sarcoidosis in veterans may be an occupational disease.
Collapse
Affiliation(s)
| | - Isabella Iupe
- Department of Medicine, University of Miami, Miami, FL, USA
| | - Reza Dowlatabadi Bazaz
- Department of Biological Science, Bio-NMR-metabolomics Research center, University of Calgary, Calgary, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Michael Campos
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, USA
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Hans J Vogel
- Department of Biological Science, Bio-NMR-metabolomics Research center, University of Calgary, Calgary, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Brent W Winston
- Department of Biological Science, Bio-NMR-metabolomics Research center, University of Calgary, Calgary, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mirsaeidi
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, USA.
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA.
| |
Collapse
|
65
|
Finch CE, Kulminski AM. The Alzheimer's Disease Exposome. Alzheimers Dement 2019; 15:1123-1132. [PMID: 31519494 PMCID: PMC6788638 DOI: 10.1016/j.jalz.2019.06.3914] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Environmental factors are poorly understood in the etiology of Alzheimer's disease (AD) and related dementias. The importance of environmental factors in gene environment interactions (GxE) is suggested by wide individual differences in cognitive loss, even for carriers of AD-risk genetic variants. RESULTS AND DISCUSSION We propose the "AD exposome" to comprehensively assess the modifiable environmental factors relevant to genetic underpinnings of cognitive aging and AD. Analysis of endogenous and exogenous environmental factors requires multi-generational consideration of these interactions over age and time (GxExT). New computational approaches to the multi-level complexities may identify accessible interventions for individual brain aging. International collaborations on diverse populations are needed to identify the most relevant exposures over the life course for GxE interactions.
Collapse
Affiliation(s)
- Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
66
|
Yan Q, Liew Z, Uppal K, Cui X, Ling C, Heck JE, von Ehrenstein OS, Wu J, Walker DI, Jones DP, Ritz B. Maternal serum metabolome and traffic-related air pollution exposure in pregnancy. ENVIRONMENT INTERNATIONAL 2019; 130:104872. [PMID: 31228787 PMCID: PMC7017857 DOI: 10.1016/j.envint.2019.05.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Maternal exposure to traffic-related air pollution during pregnancy has been shown to increase the risk of adverse birth outcomes and neurodevelopmental disorders. By utilizing high-resolution metabolomics (HRM), we investigated perturbations of the maternal serum metabolome in response to traffic-related air pollution to identify biological mechanisms. METHODS We retrieved stored mid-pregnancy serum samples from 160 mothers who lived in the Central Valley of California known for high air particulate levels. We estimated prenatal traffic-related air pollution exposure (carbon monoxide, nitric oxides, and particulate matter <2.5 μm) during first-trimester using the California Line Source Dispersion Model, version 4 (CALINE4) based on residential addresses recorded at birth. We used liquid chromatography-high resolution mass spectrometry to obtain untargeted metabolic profiles and partial least squares discriminant analysis (PLS-DA) to select metabolic features associated with air pollution exposure. Pathway analyses were employed to identify biologic pathways related to air pollution exposure. As potential confounders we included maternal age, maternal race/ethnicity, and maternal education. RESULTS In total we extracted 4038 and 4957 metabolic features from maternal serum samples in hydrophilic interaction (HILIC) chromatography (positive ion mode) and C18 (negative ion mode) columns, respectively. After controlling for confounding factors, PLS-DA (Variable Importance in Projection (VIP) ≥2) yielded 181 and 251 metabolic features (HILIC and C18, respectively) that discriminated between the high (n = 98) and low exposed (n = 62). Pathway enrichment analysis for discriminatory features associated with air pollution indicated that in maternal serum oxidative stress and inflammation related pathways were altered, including linoleate, leukotriene, and prostaglandin pathways. CONCLUSION The metabolomic features and pathways we found to be associated with air pollution exposure suggest that maternal exposure during pregnancy induces oxidative stress and inflammation pathways previously implicated in pregnancy complications and adverse outcomes.
Collapse
Affiliation(s)
- Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Xin Cui
- Perinatal Epidemiology and Health Outcomes Research Unit, Division of Neonatology, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA, USA; California Perinatal Quality Care Collaborative, Palo Alto, CA, USA
| | - Chenxiao Ling
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Julia E Heck
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | | | - Jun Wu
- Program in Public Health, UCI Susan and Henry Samueli College of Health Sciences, Irvine, CA, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Department of Medicine, Emory University, Atlanta, GA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA; Department of Neurology, UCLA School of Medicine, CA, USA.
| |
Collapse
|
67
|
Khusial RD, Cioffi CE, Caltharp SA, Krasinskas AM, Alazraki A, Knight-Scott J, Cleeton R, Castillo-Leon E, Jones DP, Pierpont B, Caprio S, Santoro N, Akil A, Vos MB. Development of a Plasma Screening Panel for Pediatric Nonalcoholic Fatty Liver Disease Using Metabolomics. Hepatol Commun 2019; 3:1311-1321. [PMID: 31592078 PMCID: PMC6771165 DOI: 10.1002/hep4.1417] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children, but diagnosis is challenging due to limited availability of noninvasive biomarkers. Machine learning applied to high-resolution metabolomics and clinical phenotype data offers a novel framework for developing a NAFLD screening panel in youth. Here, untargeted metabolomics by liquid chromatography-mass spectrometry was performed on plasma samples from a combined cross-sectional sample of children and adolescents ages 2-25 years old with NAFLD (n = 222) and without NAFLD (n = 337), confirmed by liver biopsy or magnetic resonance imaging. Anthropometrics, blood lipids, liver enzymes, and glucose and insulin metabolism were also assessed. A machine learning approach was applied to the metabolomics and clinical phenotype data sets, which were split into training and test sets, and included dimension reduction, feature selection, and classification model development. The selected metabolite features were the amino acids serine, leucine/isoleucine, and tryptophan; three putatively annotated compounds (dihydrothymine and two phospholipids); and two unknowns. The selected clinical phenotype variables were waist circumference, whole-body insulin sensitivity index (WBISI) based on the oral glucose tolerance test, and blood triglycerides. The highest performing classification model was random forest, which had an area under the receiver operating characteristic curve (AUROC) of 0.94, sensitivity of 73%, and specificity of 97% for detecting NAFLD cases. A second classification model was developed using the homeostasis model assessment of insulin resistance substituted for the WBISI. Similarly, the highest performing classification model was random forest, which had an AUROC of 0.92, sensitivity of 73%, and specificity of 94%. Conclusion: The identified screening panel consisting of both metabolomics and clinical features has promising potential for screening for NAFLD in youth. Further development of this panel and independent validation testing in other cohorts are warranted.
Collapse
Affiliation(s)
- Richard D Khusial
- Department of Pharmaceutical Sciences, College of Pharmacy Mercer University Atlanta GA
| | - Catherine E Cioffi
- Nutrition and Health Sciences, Laney Graduate School Emory University Atlanta GA
| | - Shelley A Caltharp
- Children's Healthcare of Atlanta Atlanta GA.,Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta GA
| | - Alyssa M Krasinskas
- Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta GA
| | - Adina Alazraki
- Children's Healthcare of Atlanta Atlanta GA.,Department of Radiology Emory University School of Medicine Atlanta GA
| | | | - Rebecca Cleeton
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | | | - Dean P Jones
- Department of Medicine Emory University School of Medicine Atlanta GA
| | | | - Sonia Caprio
- Department of Pediatrics Yale School of Medicine New Haven CT
| | - Nicola Santoro
- Department of Pediatrics Yale School of Medicine New Haven CT
| | - Ayman Akil
- Department of Pharmaceutical Sciences, College of Pharmacy Mercer University Atlanta GA
| | - Miriam B Vos
- Nutrition and Health Sciences, Laney Graduate School Emory University Atlanta GA.,Children's Healthcare of Atlanta Atlanta GA.,Department of Pediatrics Emory University School of Medicine Atlanta GA
| |
Collapse
|
68
|
Kingsley SL, Walker DI, Calafat AM, Chen A, Papandonatos GD, Xu Y, Jones DP, Lanphear BP, Pennell KD, Braun JM. Metabolomics of childhood exposure to perfluoroalkyl substances: a cross-sectional study. Metabolomics 2019; 15:95. [PMID: 31227916 PMCID: PMC7172933 DOI: 10.1007/s11306-019-1560-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/05/2019] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Exposure to perfluoroalkyl substances (PFAS), synthetic and persistent chemicals used in commercial and industrial processes, are associated with cardiometabolic dysfunction and related risk factors including reduced birth weight, excess adiposity, and dyslipidemia. Identifying the metabolic changes induced by PFAS exposure could enhance our understanding of biological pathways underlying PFAS toxicity. OBJECTIVE To identify metabolic alterations associated with serum concentrations of four PFAS in children using a metabolome-wide association study. METHODS We performed untargeted metabolomic profiling by liquid chromatography with ultra-high-resolution mass spectrometry, and separately quantified serum concentrations of perfluorooctanoic acid, perfluorooctanesulfonic acid, perfluorononanoic acid, and perfluorohexanesulfonic acid (PFHxS) for 114 8-year old children from Cincinnati, OH. We evaluated associations between each serum PFAS concentration and 16,097 metabolic features using linear regression adjusted for child age, sex, and race with a false discovery rate < 20%. We annotated PFAS-associated metabolites and conducted pathway enrichment analyses. RESULTS Serum PFAS concentrations were associated with metabolic features annotated primarily as lipids and dietary factors. Biological pathways associated with all four PFAS included arginine, proline, aspartate, asparagine, and butanoate metabolism. CONCLUSIONS In this cross-sectional study, childhood serum PFAS concentrations were correlated with metabolic pathways related to energy production and catabolism. Future studies should determine whether these pathways mediate associations between PFAS exposure and childhood cardiometabolic health.
Collapse
Affiliation(s)
- Samantha L Kingsley
- Department of Epidemiology, School of Public Health, Brown University, Box G-S121-2, Providence, RI, 02912, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - George D Papandonatos
- Department of Biostatistics, School of Public Health, Brown University, Providence, RI, USA
| | - Yingying Xu
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's and Women's Hospital, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | - Joseph M Braun
- Department of Epidemiology, School of Public Health, Brown University, Box G-S121-2, Providence, RI, 02912, USA.
| |
Collapse
|
69
|
Walker DI, Marder ME, Yano Y, Terrell M, Liang Y, Barr DB, Miller GW, Jones DP, Marcus M, Pennell KD. Multigenerational metabolic profiling in the Michigan PBB registry. ENVIRONMENTAL RESEARCH 2019; 172:182-193. [PMID: 30782538 PMCID: PMC6534816 DOI: 10.1016/j.envres.2019.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 05/17/2023]
Abstract
Although polychlorinated biphenyls and polybrominated biphenyls are no longer manufactured the United States, biomonitoring in human populations show that exposure to these pollutants persist in human tissues. The objective of this study was to identify metabolic variations associated with exposure to 2,2'4,4',5,5'-hexabromobiphenyl (PBB-153) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB-153) in two generations of participants enrolled in the Michigan PBB Registry (http://pbbregistry.emory.edu/). Untargeted, high-resolution metabolomic profiling of plasma collected from 156 individuals was completed using liquid chromatography with high-resolution mass spectrometry. PBB-153 and PCB-153 levels were measured in the same individuals using targeted gas chromatography-tandem mass spectrometry and tested for dose-dependent correlation with the metabolome. Biological response to these exposures were evaluated using identified endogenous metabolites and pathway enrichment. When compared to lipid-adjusted concentrations for adults in the National Health and Nutrition Examination Survey (NHANES) for years 2003-2004, PCB-153 levels were consistent with similarly aged individuals, whereas PBB-153 concentrations were elevated (p<0.0001) in participants enrolled in the Michigan PBB Registry. Metabolic alterations were correlated with PBB-153 and PCB-153 in both generations of participants, and included changes in pathways related to catecholamine metabolism, cellular respiration, essential fatty acids, lipids and polyamine metabolism. These pathways were consistent with pathophysiological changes observed in neurodegenerative disease and included previously identified metabolomic markers of Parkinson's disease. To determine if the metabolic alterations detected in this study are replicated other cohorts, we evaluated correlation of PBB-153 and PCB-153 with plasma fatty acids measured in NHANES. Both pollutants showed similar associations with fatty acids previously linked to PCB exposure. Thus, the results from this study show metabolic alterations correlated with PBB-153 and PCB-153 exposure can be detected in human populations and are consistent with health outcomes previously reported in epidemiological and mechanistic studies.
Collapse
Affiliation(s)
- Douglas I Walker
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford MA 02155, United States; Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - M Elizabeth Marder
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Yukiko Yano
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Ave Hall #7360, Berkeley CA 94720, United States.
| | - Metrecia Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Yongliang Liang
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Kurt D Pennell
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford MA 02155, United States.
| |
Collapse
|
70
|
|
71
|
Walker DI, Valvi D, Rothman N, Lan Q, Miller GW, Jones DP. The metabolome: A key measure for exposome research in epidemiology. CURR EPIDEMIOL REP 2019; 6:93-103. [PMID: 31828002 PMCID: PMC6905435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW Application of omics to study human health has created a new era of opportunities for epidemiology research. However, approaches to characterize exogenous health triggers have largely not leveraged advances in analytical platforms and big data. In this review, we highlight the exposome, which is defined as the cumulative measure of exposure and biological responses across a lifetime as a cornerstone for new epidemiology approaches to study complex and preventable human diseases. RECENT FINDINGS While no universal approach exists to measure the entirety of the exposome, use of high-resolution mass spectrometry methods provide distinct advantages over traditional biomonitoring and have provided key advances necessary for exposome research. Application to different study designs and recommendations for combining exposome data with novel data analytic frameworks to study complex interactions of multiple stressors are also discussed. SUMMARY Even though challenges still need to be addressed, advances in methods to characterize the exposome provide exciting new opportunities for epidemiology to support fundamental discoveries to improve public health.
Collapse
Affiliation(s)
- Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Damaskini Valvi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, United States
| | - Nathaniel Rothman
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Qing Lan
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Gary W. Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York NY
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|