51
|
Wang S, Fang J, Li J, Wang S, Su P, Wan Y, Tao F, Sun Y. Identification of urine biomarkers associated with early puberty in children: An untargeted metabolomics analysis. Physiol Behav 2023; 270:114305. [PMID: 37507079 DOI: 10.1016/j.physbeh.2023.114305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
A trend toward earlier pubertal maturation in both sexes has been shown in many countries. Early puberty affects an increasing proportion of children for reasons that remain obscure. Novel candidate biomarkers are strongly needed. We sought to apply untargeted metabolomic profiling to identify triggering mechanisms and candidate biomarkers in children with early puberty. Participants aged 7 - 12 years old were recruited directly from two elementary schools of Bengbu, Anhui Province, China, from Feb 2021 to May 2021. Early puberty was determined by breast and testicular development at baseline (May 2021) and 6-month later. Ultra-high-performance liquid chromatography-based untargeted metabolomic profiling was performed on urine samples of children with early puberty and control subjects. Metabolomic profiling for early puberty in a sex dependent manner. For boys, we identified several perturbed pathways, including histidine metabolism, glycine, serine and threonine metabolism, and selenoamino acid metabolism, associated with early puberty. In contrast, there were differences in pyruvate metabolism, one carbon pool by folate, and D-glutamine and D-glutamate metabolism pathways in girls with early puberty compared with controls. In addition, 4-hydroxyhippuric acid and 5-methoxytryptophol were shown as potential independent diagnostic biomarker for early puberty in boys, 3-hydroxybenzoic acid and glutaminylproline were shown as early biomarker for early puberty in girls, achieving area under the ROC curve of 0.71 and 0.72 in discriminating early puberty boys, and 0.70 and 0.74 in discriminating early puberty girls from controls. Through metabolomic analysis, we have identified metabolic perturbations and potential biomarkers of early puberty.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Jiao Fang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Jing Li
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Shihong Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yuhui Wan
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
52
|
Wang Y, Chen X, Chen Z, Yu H, Tian Y, He Y, Cheng K, Xie P. Disturbances of phosphatidylcholines metabolism in major depressive disorder. CNS Spectr 2023; 28:637-645. [PMID: 36647611 DOI: 10.1017/s1092852923000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a common neuropsychiatry disorder with high prevalence and recurrence rate, but the misdiagnosis rate is inevitable due to the shortage of objective laboratory-based diagnostic criteria. This study is focused on the disturbance of lipid metabolism, providing potential biomarkers for diagnosing. METHODS Lipid metabolism-related molecules in plasma of 42 drug-naïve MDD patients and 49 healthy people were measured by liquid chromatography-mass spectrometry. Further to evaluate the diagnostic values of changed metabolites, these molecules were evaluated by the receiver operating characteristic curve. Based on the significant role of phosphatidylcholine (PC) disturbance in depression, oxidization of PCs, oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC), IL-8 and caspase-3 in hippocampus, and serum of chronic lipopolysaccharide (cLPS) depression mice were detected by ELISA. RESULTS Compared with healthy control, MDD patients expressed higher 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (16:0-16:0 PC, DPPC), 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (16:0-20:4 PC, PAPC), 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (16:0-18:0 PC), glycocholic acid, taurocholic acid, glycoursodeoxycholic acid, and chenodeoxycholic acid glycine conjugate, and lower 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 20:0). The 16:0-20:4 PC showed the great diagnostic value for MDD with an area under the curve (AUC) of 0.9519, and combination of 16:0 PC, 16:0-18:0 PC, and 16:0-20:4 PC exhibited the highest diagnostic value with AUC of 0.9602. OxPAPC was certified increase in hippocampus and serum of cLPS depression mice, which further supported PCs disorder participated in depression. CONCLUSION This research offers 16:0-20:4 PC as the latent diagnostic indicator for MDD and hints the important role of PCs in depression.
Collapse
Affiliation(s)
- Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xiangyu Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Zhi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Heming Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
53
|
Zheng L, Shen J, Han X, Jin C, Chen X, Yao J. High rumen degradable starch diet induced blood bile acids profile changes and hepatic inflammatory response in dairy goats. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:121-129. [PMID: 37808950 PMCID: PMC10556040 DOI: 10.1016/j.aninu.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 10/10/2023]
Abstract
The objective of this study was to reveal the effect of rumen degradable starch (RDS) on bile acid metabolism and liver transcription in dairy goats using metabolomics and transcriptomics. Eighteen Guanzhong dairy goats of a similar weight and production level (body weight = 45.8 ± 1.54 kg, milk yield = 1.75 ± 0.08 kg, and second parity) were randomly assigned to 3 treatment groups where they were fed a low RDS (LRDS, RDS = 20.52% DM) diet, medium RDS (MRDS, RDS = 22.15% DM) diet, or high RDS (HRDS, RDS = 24.88% DM) diet, respectively. The goats were fed with the experimental diets for 5 weeks. On the last day of the experiment, all goats were anesthetized, and peripheral blood and liver tissue samples were collected. The peripheral blood samples were used in metabolomic analysis and white blood cell (WBC) count, whereas the liver tissue samples were used in transcriptomic analysis. Based on the metabolomics results, the relative abundances of primary bile acids in the peripheral blood were significantly reduced in the group that was fed the HRDS diet (P < 0.05). The WBC count was significantly increased in the HRDS group compared with that in the LRDS and MRDS groups (P < 0.01), indicating that there was inflammation in the HRDS group. Transcriptomic analysis showed that 4 genes related to bile acid secretion (genes: MDR1, RXRα, AE2, SULT2A1) were significantly downregulated in the HRDS group. In addition, genes related to the immune response were upregulated in the HRDS group, suggesting the HRDS diet induced a hepatic inflammatory response mediated by lipopolysaccharides (LPS) (gene: LBP), activated the Toll-like receptor 4 binding (genes: S100A8, S100A9) and the NF-kappa B signaling pathway (genes: LOC106503980, LOC108638497, CD40, LOC102180880, LOC102170970, LOC102175177, LBP, LOC102168903, LOC102185461, LY96 and CXCL8), triggered inflammation and complement responses (genes: C1QB, C1QC, and CFD). The HRDS diet induced a hepatic inflammatory response may be mediated by activating the Toll-like receptor 4 binding and NF-kappa B signaling pathway after free LPS entered the liver. The changes of bile acids profile in blood and the down-regulation of 4 key genes (MDR1, RXRα, AE2, SULT2A1) involved in bile secretion in liver are probably related to liver inflammation.
Collapse
Affiliation(s)
- Lixin Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Newhope Dairy Co., Ltd, Chengdu, China
| | - Jing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoying Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chunjia Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
54
|
Zhao J, Ye L, Liu Z, Wu J, Deng D, An L, Bai S, Yang L, Liu B, Shi Y, Liu Z, Zhang R. The Effects of Early-Life Stress on Liver Transcriptomics and the Protective Role of EPA in a Mouse Model of Early-Life-Stress-Induced Adolescent Depression. Int J Mol Sci 2023; 24:13131. [PMID: 37685937 PMCID: PMC10487865 DOI: 10.3390/ijms241713131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Early-life stress (ELS) was found to increase the risk of adolescent depression, and clinical evidence indicated that eicosapentaenoic acid (EPA) was decreased in patients with adolescent depression, but the underlying mechanisms are unclear. Here, we utilized an ELS model of maternal separation with early weaning to explore the protective role of EPA in adolescent depression. We found that that ELS induced depression-like behavior rather than anxiety-like behavior in adolescent mice. RNA-sequencing results showed that ELS changed the transcription pattern in the liver, including 863 upregulated genes and 971 downregulated genes, especially those related to the biosynthesis of unsaturated fatty acids metabolism in the liver. Moreover, ELS decreased the expression of the rate-limiting enzymes, fatty acid desaturases 1/2 (FADS1/2), involved in the biosynthesis of EPA in the liver. Additionally, ELS reduced the levels of EPA in the liver, serum, and hippocampus, and EPA administration improved depression-like behavior-induced by ELS. Our results provide transcriptomic evidence that ELS increases the risk of adolescent depression by reducing the synthesis of unsaturated fatty acids in the liver, especially EPA, and suggest that supplementation with EPA should be investigated as a potential treatment for adolescent depression.
Collapse
Affiliation(s)
- Jinlan Zhao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Lihong Ye
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Zuyi Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Jiayi Wu
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.W.); (Y.S.)
| | - Di Deng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Lin An
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Shasha Bai
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Lei Yang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Binjie Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.W.); (Y.S.)
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| |
Collapse
|
55
|
He D, Hu S, Huang Z, Mo C, Cheng X, Song P, Li Y, Song T, Guan Z, Zhou Y, Zhang X, Liao M. Metabolomics analyses of serum metabolites perturbations associated with Naja atra bite. PLoS Negl Trop Dis 2023; 17:e0011507. [PMID: 37639406 PMCID: PMC10461852 DOI: 10.1371/journal.pntd.0011507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
Naja atra bite is one of the most common severe snakebites in emergency departments. Unfortunately, the pathophysiological changes caused by Naja atra bite are unclear due to the lack of good animal models. In this study, an animal model of Naja atra bite in Guangxi Bama miniature pigs was established by intramuscular injection at 2 mg/kg of Naja atra venom, and serum metabolites were systematically analyzed using untargeted metabolomic and targeted metabolomic approaches. Untargeted metabolomic analysis revealed that 5045 chromatographic peaks were obtained in ESI+ and 3871 chromatographic peaks were obtained in ESI-. Screening in ESI+ modes and ESI- modes identified 22 and 36 differential metabolites compared to controls. The presence of 8 core metabolites of glutamine, arginine, proline, leucine, phenylalanine, inosine, thymidine and hippuric acid in the process of Naja atra bite was verified by targeted metabolomics significant difference (P<0.05). At the same time, during the verification process of the serum clinical samples with Naja atra bite, we found that the contents of three metabolites of proline, phenylalanine and inosine in the serum of the patients were significantly different from those of the normal human serum (P<0.05). By conducting functional analysis of core and metabolic pathway analysis, we revealed a potential correlation between changes in key metabolites after the Naja atra bite and the resulting pathophysiological alterations, and our research aims to establish a theoretical foundation for the prompt diagnosis and treatment of Naja atra bite.
Collapse
Affiliation(s)
- Dongling He
- Life Science Institute Guangxi Medical University, Nanning, PR China
| | - Shaocong Hu
- Life Science Institute Guangxi Medical University, Nanning, PR China
| | - Zhi Huang
- Life Science Institute Guangxi Medical University, Nanning, PR China
| | - Caifeng Mo
- Life Science Institute Guangxi Medical University, Nanning, PR China
| | - Xiaoyang Cheng
- Life Science Institute Guangxi Medical University, Nanning, PR China
| | - Pengshu Song
- Life Science Institute Guangxi Medical University, Nanning, PR China
| | - Yalan Li
- Life Science Institute Guangxi Medical University, Nanning, PR China
| | - Tianlin Song
- Life Science Institute Guangxi Medical University, Nanning, PR China
| | - Zhezhe Guan
- Life Science Institute Guangxi Medical University, Nanning, PR China
| | - Yi Zhou
- Life Science Institute Guangxi Medical University, Nanning, PR China
| | - Xuerong Zhang
- Life Science Institute Guangxi Medical University, Nanning, PR China
| | - Ming Liao
- Life Science Institute Guangxi Medical University, Nanning, PR China
| |
Collapse
|
56
|
Alemany-Navarro M, Diz-de Almeida S, Cruz R, Riancho JA, Rojas-Martínez A, Lapunzina P, Flores C, Carracedo A. Psychiatric polygenic risk as a predictor of COVID-19 risk and severity: insight into the genetic overlap between schizophrenia and COVID-19. Transl Psychiatry 2023; 13:189. [PMID: 37280221 DOI: 10.1038/s41398-023-02482-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Despite the high contagion and mortality rates that have accompanied the coronavirus disease-19 (COVID-19) pandemic, the clinical presentation of the syndrome varies greatly from one individual to another. Potential host factors that accompany greater risk from COVID-19 have been sought and schizophrenia (SCZ) patients seem to present more severe COVID-19 than control counterparts, with certain gene expression similarities between psychiatric and COVID-19 patients reported. We used summary statistics from the last SCZ, bipolar disorder (BD), and depression (DEP) meta-analyses available on the Psychiatric Genomics Consortium webpage to calculate polygenic risk scores (PRSs) for a target sample of 11,977 COVID-19 cases and 5943 subjects with unknown COVID-19 status. Linkage disequilibrium score (LDSC) regression analysis was performed when positive associations were obtained from the PRS analysis. The SCZ PRS was a significant predictor in the case/control, symptomatic/asymptomatic, and hospitalization/no hospitalization analyses in the total and female samples; and of symptomatic/asymptomatic status in men. No significant associations were found for the BD or DEP PRS or in the LDSC regression analysis. SNP-based genetic risk for SCZ, but not for BD or DEP, may be associated with higher risk of SARS-CoV-2 infection and COVID-19 severity, especially among women; however, predictive accuracy barely exceeded chance level. We believe that the inclusion of sexual loci and rare variations in the analysis of genomic overlap between SCZ and COVID-19 will help to elucidate the genetic commonalities between these conditions.
Collapse
Affiliation(s)
- M Alemany-Navarro
- IBIS (Universidad de Sevilla, HUVR, Junta de Andalucia, CSIC), Sevilla, Spain.
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS) Santiago de Compostela, Santiago de Compostela, Spain.
- Grupo de Genética. Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.
| | - S Diz-de Almeida
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| | - R Cruz
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| | - J A Riancho
- IDIVAL, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
| | - A Rojas-Martínez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - P Lapunzina
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM) del Hospital Universitario La Paz, Madrid, Spain
- ERN-ITHACA-European Reference Network, Santa Cruz de Tenerife, Canarias, Spain
| | - C Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - A Carracedo
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS) Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Genética. Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
57
|
Miao G, Deen J, Struzeski JB, Chen M, Zhang Y, Cole SA, Fretts AM, Lee ET, Howard BV, Fiehn O, Zhao J. Plasma lipidomic profile of depressive symptoms: a longitudinal study in a large sample of community-dwelling American Indians in the strong heart study. Mol Psychiatry 2023; 28:2480-2489. [PMID: 36653676 PMCID: PMC10753994 DOI: 10.1038/s41380-023-01948-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
Dyslipidemia has been associated with depression, but individual lipid species associated with depression remain largely unknown. The temporal relationship between lipid metabolism and the development of depression also remains to be determined. We studied 3721 fasting plasma samples from 1978 American Indians attending two exams (2001-2003, 2006-2009, mean ~5.5 years apart) in the Strong Heart Family Study. Plasma lipids were repeatedly measured by untargeted liquid chromatography-mass spectrometry (LC-MS). Depressive symptoms were assessed using the 20-item Center for Epidemiologic Studies for Depression (CES-D). Participants at risk for depression were defined as total CES-D score ≥16. Generalized estimating equation (GEE) was used to examine the associations of lipid species with incident or prevalent depression, adjusting for covariates. The associations between changes in lipids and changes in depressive symptoms were additionally adjusted for baseline lipids. We found that lower levels of sphingomyelins and glycerophospholipids and higher level of lysophospholipids were significantly associated with incident and/or prevalent depression. Changes in sphingomyelins, glycerophospholipids, acylcarnitines, fatty acids and triacylglycerols were associated with changes in depressive symptoms and other psychosomatic traits. We also identified differential lipid networks associated with risk of depression. The observed alterations in lipid metabolism may affect depression through increasing the activities of acid sphingomyelinase and phospholipase A2, disturbing neurotransmitters and membrane signaling, enhancing inflammation, oxidative stress, and lipid peroxidation, and/or affecting energy storage in lipid droplets or membrane formation. These findings illuminate the mechanisms through which dyslipidemia may contribute to depression and provide initial evidence for targeting lipid metabolism in developing preventive and therapeutic interventions for depression.
Collapse
Affiliation(s)
- Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Jason Deen
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Joseph B Struzeski
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Mingjing Chen
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Elisa T Lee
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, California, CA, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
58
|
Zhang ZW, Han P, Fu J, Yu H, Xu H, Hu JC, Lu JY, Yang XY, Zhang HJ, Bu MM, Jiang JD, Wang Y. Gut microbiota-based metabolites of Xiaoyao Pills (a typical Traditional Chinese medicine) ameliorate depression by inhibiting fatty acid amide hydrolase levels in brain. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116555. [PMID: 37100263 DOI: 10.1016/j.jep.2023.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) are often prepared in oral dosage forms, making TCMs interact with gut microbiota after oral administration, which could affect the therapeutic effect of TCM. Xiaoyao Pills (XYPs) are a commonly used TCM in China to treat depression. The biological underpinnings, however, are still in its infancy due to its complex chemical composition. AIM OF THE STUDY The study aims to explore XYPs' underlying antidepressant mechanism from both in vivo and in vitro. MATERIALS AND METHODS XYPs were composed of 8 herbs, including the root of Bupleurum chinense DC., the root of Angelica sinensis (Oliv.) Diels, the root of Paeonia lactiflora Pall., the sclerotia of Poria cocos (Schw.) Wolf, the rhizome of Glycyrrhiza uralensis Fisch., the leaves of Mentha haplocalyx Briq., the rhizome of Atractylis lancea var. chinensis (Bunge) Kitam., and the rhizome of Zingiber officinale Roscoe, in a ratio of 5:5:5:5:4:1:5:5. The chronic unpredictable mild stress (CUMS) rat models were established. After that, the sucrose preference test (SPT) was carried out to evaluate if the rats were depressed. After 28 days of treatment, the forced swimming test and SPT were carried out to evaluate the antidepressant efficacy of XYPs. The feces, brain and plasma were taken out for 16SrRNA gene sequencing analysis, untargeted metabolomics and gut microbiota transformation analysis. RESULTS The results revealed multiple pathways affected by XYPs. Among them, the hydrolysis of fatty acids amide in brain decreased most significant via XYPs treatment. Moreover, the XYPs' metabolites which mainly derived from gut microbiota (benzoic acid, liquiritigenin, glycyrrhetinic acid and saikogenin D) were found in plasma and brain of CUMS rats and could inhibit the levels of FAAH in brain, which contributed to XYPs' antidepressant effect. CONCLUSIONS The potential antidepressant mechanism of XYPs by untargeted metabolomics combined with gut microbiota-transformation analysis was revealed, which further support the theory of gut-brain axis and provide valuable evidence of the drug discovery.
Collapse
Affiliation(s)
- Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Xin-Yu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hao-Jian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
59
|
Astrocytic SIRT6 is a potential anti-depression and anti-anxiety target. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110702. [PMID: 36565979 DOI: 10.1016/j.pnpbp.2022.110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Sirtuin 6 (SIRT6) is a nuclear silencing information regulator that is widely expressed in brain. Inhibition of SIRT6 in the brain induced antidepressant effects in rodents. However, SIRT6 knockout in neurons induced developmental retardation and cognitive impairments. In this study, a mouse strain of astrocyte conditional knockout SIRT6 (AKO) was constructed. Unlike whole brain SIRT6 knockout mice, AKO mice did not show growth retardation. We showed that SIRT6 knockout in astrocytes did not impair the learning and memory ability of mice. Chronic unpredictable mild stress (CUMS) was used to evaluate the anti-depression and anti-anxiety effects in mice. In tail suspension test and forced swimming test, AKO mice did not show depression like phenotype induced by CUMS. In addition, knockout of SIRT6 in astrocytes alleviated the high anxiety level induced by CUMS in light and dark box test, open field test and elevated cross maze test. Three box social test showed that the deletion of SIRT6 in astrocytes changed the social preference of mice. Re-expression of SIRT6 in astrocytes mediated by adeno-associated virus reversed the social preference of AKO mice, but the re-expression also eliminated the anti-depression and anti-anxiety effects in AKO mice. Deletion of SIRT6 in astrocytes change the purine metabolic homeostasis of medial prefrontal cortex in mice. The results of transcriptomics and metabolomics analysis showed that the deletion of SIRT6 would change the purine metabolic pathway of cultured astrocytes and increase the contents of inosine and the second messenger cyclic adenosine monophosphate in astrocytes. In conclusion, knockout of SIRT6 in astrocytes induced anti-depression and anti-anxiety effects in mice without impairing the development and cognitive ability of mice.
Collapse
|
60
|
Teng T, Clarke G, Wu J, Wu Q, Maes M, Wang J, Wu H, Yin B, Jiang Y, Li X, Liu X, Han Y, Song J, Jin X, Ji P, Guo Y, Zhou X, Xie P. Disturbances of purine and lipid metabolism in the microbiota-gut-brain axis in male adolescent nonhuman primates with depressive-like behaviors. J Adv Res 2023:S2090-1232(23)00116-9. [PMID: 37068733 DOI: 10.1016/j.jare.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) in adolescents is a widespread and growing global public health concern with unique characteristics and pathophysiological mechanisms that are distinct from MDD in adults. OBJECTIVE The purpose of our work was to address this knowledge gap about the unique characteristics and pathophysiological mechanisms of adolescent depression from a microbiota-gut-brain (MGB) axis perspective. METHOD Ten healthy male cynomolgus macaques (Macaca fascicularis) were paired into five pairs based on age and body weight, and two cynomolgus macaques from each pair were randomly allocated to chronic unpredictable mild stress group, or unstressed control group. At endpoint, microbe composition from cecum, ascending colon, transverse colon, and descending colon were analyzed by metagenome sequencing, and the metabolite profiles of MGB axis including central (prefrontal cortex, hippocampus and amygdala) and peripheral (plasma, gut and feces of cecum, ascending colon, transverse colon and descending colon) samples were analyzed by metabolomic profiling. Then, we compare the gut microbiome and metabolic signatures in MGB axis between adolescent and adult depressed macaques. RESULTS The microbial composition and gut-brain metabolic signatures were widely divergent between adolescent and adult depressed macaques, though the phylum Firmicutes and lipid metabolism pathways were persistently altered in both populations. Purine and arginine biosynthesis metabolism were a specific hallmark of adolescent depressed macaques, while fatty acyl metabolism was specially altered in adult. These differential metabolic pathways in adolescent and adult depressed macaques were mainly mapped into the prefrontal cortex and hippocampus, respectively. Notably, the genus Clostridium and Haemophilus, characteristically disturbed in adolescent depressed macaques but not in adult, were also significantly associated with the majority of purine metabolites in MGB axis. CONCLUSION These findings provide a new framework describing divergent pathophysiological mechanisms between adolescent and adult depression, and may open new windows for more effective treatment strategies of adolescent depression.
Collapse
Affiliation(s)
- Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jing Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingyuan Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence, Peking University, Beijing, China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
61
|
Identification of adolescent patients with depression via assessment of the niacin skin flushing response. J Affect Disord 2023; 324:69-76. [PMID: 36521667 DOI: 10.1016/j.jad.2022.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Depressive disorder (DD) affects approximately 20 % of adolescents worldwide, but it is underdiagnosed due to the lack of objective biomarkers. Niacin skin flushing response (NSFR) is an objective and noninvasive biomarker of adult depression; however, its effectiveness has not been assessed in adolescents. METHODS This study included 198 adolescents with 50 % healthy controls (HC). Linear mixed-effects model and multiple linear regression analyses were performed to assess differences in NSFR between the DD and HC groups. Logistic regression models based on NSFR were constructed, and the area under curve (AUC) was calculated to evaluate the performance of models. Spearman correlations were calculated to assess the relationships between NSFR and disease duration and hormone levels associated with puberty. RESULTS Adolescents with DD displayed significantly attenuated and delayed NSFR compared to HC. NSFR effectively distinguished DD patients from HC with AUC values of 0.719 (sensitivity = 0.844) and 0.721 (sensitivity = 0.829) determined in the discovery and validation sets, respectively. Within the DD group, the maximum degree of NSFR was negatively correlated with the disease duration (r = -0.28, p = 0.011), and the overall degree of NSFR was positively associated with prolactin (r = 0.29, p = 0.039) and thyroxine (r = 0.29, p = 0.027) levels. LIMITATIONS Future investigations will be necessary to confirm our results in an independent sample set. CONCLUSIONS This study provides the first evidence of the utility of NSFR as an objective auxiliary diagnostic biomarker for adolescent depression. It provides new clues to understand the pathophysiology of the disease, and helps promote precise diagnosis, treatment, and prognostic evaluation of adolescent depression.
Collapse
|
62
|
A Preliminary Comparison of Plasma Tryptophan Metabolites and Medium- and Long-Chain Fatty Acids in Adult Patients with Major Depressive Disorder and Schizophrenia. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020413. [PMID: 36837614 PMCID: PMC9968143 DOI: 10.3390/medicina59020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Background and Objectives: Disturbance of tryptophan (Trp) and fatty acid (FA) metabolism plays a role in the pathogenesis of psychiatric disorders. However, quantitative analysis and comparison of plasma Trp metabolites and medium- and long-chain fatty acids (MCFAs and LCFAs) in adult patients with major depressive disorder (MDD) and schizophrenia (SCH) are limited. Materials and Methods: Clinical symptoms were assessed and the level of Trp metabolites and MCFAs and LCFAs for plasma samples from patients with MDD (n = 24) or SCH (n = 22) and healthy controls (HC, n = 23) were obtained and analyzed. Results: We observed changes in Trp metabolites and MCFAs and LCFAs with MDD and SCH and found that Trp and its metabolites, such as N-formyl-kynurenine (NKY), 5-hydroxyindole-3-acetic acid (5-HIAA), and indole, as well as omega-3 polyunsaturated fatty acids (N3) and the ratio of N3 to omega-6 polyunsaturated fatty acids (N3: N6), decreased in both MDD and SCH patients. Meanwhile, levels of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) decreased in SCH patients, and there was a significant difference in the composition of MCFAs and LCFAs between MDD and SCH patients. Moreover, the top 10 differential molecules could distinguish the two groups of diseases from HC and each other with high reliability. Conclusions: This study provides a further understanding of dysfunctional Trp and FA metabolism in adult patients with SCH or MDD and might develop combinatorial classifiers to distinguish between these disorders.
Collapse
|
63
|
Wu H, Wang J, Teng T, Yin B, He Y, Jiang Y, Liu X, Yu Y, Li X, Zhou X. Biomarkers of intestinal permeability and blood-brain barrier permeability in adolescents with major depressive disorder. J Affect Disord 2023; 323:659-666. [PMID: 36493942 DOI: 10.1016/j.jad.2022.11.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The etiology in major depressive disorder (MDD) has not been fully understood. Accumulating evidence suggests an association between altered intestinal and blood-brain barrier (BBB) permeability and psychiatric disorders, while its changes in adolescent MDD populations have been received less attention. In this study, our aim was to explore the differences in plasma levels of intestinal and blood-brain barrier permeability markers in adolescents with MDD compared with healthy controls (HCs). METHODS We enrolled MDD (n = 50), and HCs (n = 40) with the age of 13-18 years old. The plasma level of zonulin, I-FABP, LPS, and claudin-5 were quantified. The Hamilton Depression Scale 17 items (HAMD-17) and Hamilton Anxiety Scale 14 items (HAMA-14) were used for symptom assessments. RESULTS The plasma levels of zonulin, I-FABP, LPS, and claudin-5 in the MDD group were significantly higher than those in the HCs. Plasma I-FABP levels in MDD with moderate to severe anxiety were significantly higher than those in MDD without moderate to severe anxiety and HCs. In addition, these four biomarkers (alone or combined) can be used as diagnostic markers for MDD in adolescents. LIMITATIONS The key limitation of this study is the blood measurements at a single time point with a relatively small sample size. CONCLUSIONS These findings advance our understanding of the pathophysiology of intestinal barrier injury, bacterial translocation, and blood-brain barrier injury involved in adolescents with MDD.
Collapse
Affiliation(s)
- Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
64
|
Kraaij R, Schuurmans IK, Radjabzadeh D, Tiemeier H, Dinan TG, Uitterlinden AG, Hillegers M, Jaddoe VW, Duijts L, Moll H, Rivadeneira F, Medina-Gomez C, Jansen PW, Cecil CA. The gut microbiome and child mental health: A population-based study. Brain Behav Immun 2023; 108:188-196. [PMID: 36494050 PMCID: PMC7614161 DOI: 10.1016/j.bbi.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The link between the gut microbiome and the brain has gained increasing scientific and public interest for its potential to explain psychiatric risk. While differences in gut microbiome composition have been associated with several mental health problems, evidence to date has been largely based on animal models and human studies with modest sample sizes. In this cross-sectional study in 1,784 ten-year-old children from the multi-ethnic, population-based Generation R Study, we aimed to characterize associations of the gut microbiome with child mental health problems. Gut microbiome was assessed from stool samples using 16S rRNA sequencing. We focused on overall psychiatric symptoms as well as with specific domains of emotional and behavioral problems, assessed via the maternally rated Child Behavior Checklist. While we observed lower gut microbiome diversity in relation to higher overall and specific mental health problems, associations were not significant. Likewise, we did not identify any taxonomic feature associated with mental health problems after multiple testing correction, although suggestive findings indicated depletion of genera previously associated with psychiatric disorders, including Hungatella, Anaerotruncus and Oscillospiraceae. The identified compositional abundance differences were found to be similar across all mental health problems. Finally, we did not find significant enrichment for specific microbial functions in relation to mental health problems. In conclusion, based on the largest sample examined to date, we do not find clear evidence of associations between gut microbiome diversity, taxonomies or functions and mental health problems in the general pediatric population. In future, the use of longitudinal designs with repeated measurements of microbiome and psychiatric outcomes will be critical to identify whether and when associations between the gut microbiome and mental health emerge across development and into adulthood.
Collapse
Affiliation(s)
- Robert Kraaij
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Isabel K. Schuurmans
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands,Department of Social and Behavioral Sciences, Harvard. T.H. Chan School of Public Health, Boston, MA, USA
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Vincent W.V. Jaddoe
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands,Department of Pediatrics, Divisions of Respiratory Medicine and Allergology, and Neonatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henriette Moll
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pauline W. Jansen
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Charlotte A.M. Cecil
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands,Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands,Corresponding authors at: Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, Rotterdam, The Netherlands (C. Cecil). addresses: (R. Kraaij), (C.A.M. Cecil)
| |
Collapse
|
65
|
Zwolińska W, Dmitrzak-Węglarz M, Słopień A. Biomarkers in Child and Adolescent Depression. Child Psychiatry Hum Dev 2023; 54:266-281. [PMID: 34590201 PMCID: PMC9867683 DOI: 10.1007/s10578-021-01246-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Despite the significant prevalence of Major Depressive Disorder in the pediatric population, the pathophysiology of this condition remains unclear, and the treatment outcomes poor. Investigating tools that might aid in diagnosing and treating early-onset depression seems essential in improving the prognosis of the future disease course. Recent studies have focused on searching for biomarkers that constitute biochemical indicators of MDD susceptibility, diagnosis, or treatment outcome. In comparison to increasing evidence of possible biomarkers in adult depression, the studies investigating this subject in the youth population are lacking. This narrative review aims to summarize research on molecular and biochemical biomarkers in child and adolescent depression in order to advocate future directions in the research on this subject. More studies on depression involving the youth population seem vital to comprehend the natural course of the disease and identify features that may underlie commonly observed differences in treatment outcomes between adults and children.
Collapse
Affiliation(s)
- Weronika Zwolińska
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Szpitalna St. 27/33, 60-572, Poznan, Poland.
| | - Monika Dmitrzak-Węglarz
- grid.22254.330000 0001 2205 0971Department of Psychiatric Genetics, Medical Biology Center, Poznan University of Medical Sciences, Rokietnicka St. 8, 60-806 Poznan, Poland
| | - Agnieszka Słopień
- grid.22254.330000 0001 2205 0971Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Szpitalna St. 27/33, 60-572 Poznan, Poland
| |
Collapse
|
66
|
Zeng L, Lv H, Wang X, Xue R, Zhou C, Liu X, Yu H. Causal effects of fatty acids on depression: Mendelian randomization study. Front Nutr 2022; 9:1010476. [PMID: 36562041 PMCID: PMC9763462 DOI: 10.3389/fnut.2022.1010476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives Fatty acids (FA) are widely believed to play a role in the pathophysiology of depression. However, the causal relationships between FA and depression remain elusive and warrant further research. We aimed to investigate the potential causal relationship between FA [saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)] and the risk of depression using Mendelian randomization (MR) analysis. Methods We conducted a two-sample MR analysis using large-scale European-based genome-wide association studies (GWASs) summary data related to depression (n = 500,199 individuals) and FA [saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)] levels. MR analysis was performed using the Wald ratio and inverse variance-weighted (IVW) methods, and sensitivity analysis was conducted by the simple mode, weighted mode, weighted median method, and MR-Egger method. Results We found the causal effects for the levels of oleic acid (OA; OR = 1.07, p = 5.72 × 10-4), adrenic acid (OR = 0.74, p = 1.01 × 10-3), α-linolenic acid (ALA; OR = 2.52, p = 1.01 × 10-3), eicosapentaenoic acid (EPA; OR = 0.84, p = 3.11 × 10-3) on depression risk, after Bonferroni correction. The sensitivity analyses indicated similar trends. No causal effect between the levels of SFA and depression risk was observed. Conclusion Our study suggests that adrenic acid and EPA are protective against the risk of depression, while OA and ALA are potential risk factors for depression. Nonetheless, the underlying mechanisms that mediate the association between these FAs and depression risk should be investigated in further experiments.
Collapse
Affiliation(s)
- Lingsi Zeng
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Honggang Lv
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Xubo Wang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Ranran Xue
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Cong Zhou
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Xia Liu
- Department of Sleep Medicine, Shandong Daizhuang Hospital, Jining, Shandong, China,Xia Liu,
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China,*Correspondence: Hao Yu,
| |
Collapse
|
67
|
Li W, Zhou R, Zheng J, Sun B, Jin X, Hong M, Chen R. Chaihu-Shugan-San ameliorates tumor growth in prostate cancer promoted by depression via modulating sphingolipid and glycerinphospholipid metabolism. Front Pharmacol 2022; 13:1011450. [PMID: 36545317 PMCID: PMC9760688 DOI: 10.3389/fphar.2022.1011450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Psychologic depression is a pivotal pathological characteristic and has been shown to promote prostate cancer (PCa) progression. Chaihu-Shugan-San (CSS), a well-known Chinese herbal decoction, exhibits efficacy in the treatment of stress-accelerated PCa. However, the underlying mechanism of CSS in resisting PCa growth is still unknown, and further study is needed. Objective: To evaluate the effects of CSS on stress-accelerated PCa in a BALB/C nude mice model and to investigate the underlying mechanisms. Methods: PC-3 cells were implanted into BALB/C nude mice, and the stressed mice were exposed to chronic unpredictable mild stress (CUMS) to study the effects of CSS. The PCa growth were evaluated by tumor volume and tumor weight. Analyses of depression-like behaviors were evaluated by sucrose consumption test, tail suspension test and open field test. Network pharmacology was used to analyze the potential targets and signaling pathways of CSS against PCa. Untargeted lipidomics were used to analyze the serum lipid profiles and further elucidate the possible mechanism. Results: In the CUMS stressed PCa mice, CSS can restrain tumor growth with reduced tumor volume and tumor weight, and depression-like behaviors with increased sucrose consumption, reduced immobility duration, and increased total distance and center distance. Network pharmacology suggested that the lipid metabolism-related pathways are the most likely potential targets of CSS against PCa. Using untargeted lipidomics analysis, 62 lipids were found to have significant changes in PCa mice under CUMS treatment. The levels of glycerophospholipids containing phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylglycerol (PG), except PC (18:0_22:6) and PC (18:0_20:4), were significantly increased. Likewise, the levels of all sphingolipids (including sphingomyelin (SM), ceramides (Cer) and hexosyl-1-ceramide (Hex1Cer)) and diglyceride (DG) (32:1e) were significantly increased. CSS water extract was found to contribute to restore 32 lipids including 6 sphingolipids, 25 glycerophospholipids and 1 glyceride. Conclusion: This study is the first to delineate the lipid profile of stressed PCa BALB/C nude mice using untargeted lipidomics analysis. CSS restrained tumor growth and ameliorated depression-like behaviors by reprogramming lipid metabolism. Intervention of lipid metabolism could be a preventive and therapeutic approach for PCa patients with depression.
Collapse
Affiliation(s)
- Wei Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,Institute of TCM-Related Comorbid Depression, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runze Zhou
- Institute of TCM-Related Comorbid Depression, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,School of Medicine and Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Sun
- Institute of TCM-Related Comorbid Depression, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Jin
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruini Chen
- School of Medicine and Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Ruini Chen,
| |
Collapse
|
68
|
Bian X, Zhou N, Zhao Y, Fang Y, Li N, Zhang X, Wang X, Li Y, Wu JL, Zhou T. Identification of proline, 1-pyrroline-5-carboxylate and glutamic acid as biomarkers of depression reflecting brain metabolism using carboxylomics, a new metabolomics method. Psychiatry Clin Neurosci 2022; 77:196-204. [PMID: 36468242 DOI: 10.1111/pcn.13517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
AIM Depression is a psychiatric disease which is accompanied by metabolic disorder. Though depression has been widely studied, its metabolism is yet to be illustrated. We aimed to manifest the underlying mechanisms to diagnose depression. METHODS One hundred thirty serum samples, including 65 patients and 65 healthy controls from different hospitals (training and validation cohorts), were recruited into the research. Sensitive Profiling for ChemoSelective Derivatization Carboxylomics (SPCSDCarboxyl) was applied to deeply hunt for the differential metabolites. Then, the serum, CSF, and hippocampus from depression rat models (CUMS group) were used to further confirm the results. Additionally, the co-occurrence between enzymes and biomarkers, as well as the combinatorial marker panel and the correlation of biomarkers among serum, CSF, or hippocampus were elucidated. RESULTS Two hundred eight metabolites were identified from the sera of patients. Proline, 1-pyrroline-5-carboxylate (P5C), and glutamic acid could discriminate patients from healthy humans and were confirmed to be the potential biomarkers. After further validation through CUMS rats, proline, and P5C were enriched, while glutamic acid was depleted in the CUMS group. The co-occurrence analysis of enzymes and biomarkers indicated that they could be used for the diagnosis of depression. Moreover, the combinatorial marker panel and the correlation analysis of biomarkers between serum and CSF or between serum and hippocampus revealed that serum could be an alternative approach to directly reflect the potential physiological mechanisms and diagnose depression instead of brain samples. CONCLUSION These integrated methods may facilitate the identification of biomarkers and help manifest the underlying mechanisms of depression.
Collapse
Affiliation(s)
- Xiqing Bian
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Na Zhou
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Yiran Zhao
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Yichao Fang
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Xin Zhang
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Xuan Wang
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Tingting Zhou
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
69
|
Liu Y, Zhao W, Lu Y, Zhao Y, Zhang Y, Dai M, Hai S, Ge N, Zhang S, Huang M, Liu X, Li S, Yue J, Lei P, Dong B, Dai L, Dong B. Systematic metabolic characterization of mental disorders reveals age-related metabolic disturbances as potential risk factors for depression in older adults. MedComm (Beijing) 2022; 3:e165. [PMID: 36204590 PMCID: PMC9523679 DOI: 10.1002/mco2.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Mental disorders are associated with dysregulated metabolism, but comprehensive investigations of their metabolic similarities and differences and their clinical relevance are few. Here, based on the plasma metabolome and lipidome of subcohort1, comprising 100 healthy participants, 55 cases with anxiety, 52 persons with depression, and 41 individuals with comorbidity, which are from WCHAT, a perspective cohort study of community-dwelling older adults aged over 50, multiple metabolites as potential risk factors of mental disorders were identified. Furthermore, participants with mental illnesses were classified into three subtypes (S1, S2, and S3) by unsupervised classification with lipidomic data. Among them, S1 showed higher triacylglycerol and lower sphingomyelin, while S2 displayed opposite features. The metabolic profile of S3 was like that of the normal group. Compared with S3, individuals in S1 and S2 had worse quality of life, and suffered more from sleep and cognitive disorders. Notably, an assessment of 6,467 individuals from the WCHAT showed an age-related increase in the incidence of depression. Seventeen depression-related metabolites were significantly correlated with age, which were validated in an independent subcohort2. Collectively, this work highlights the clinical relevance of metabolic perturbation in mental disorders, and age-related metabolic disturbances may be a bridge-linking aging and depressive.
Collapse
Affiliation(s)
- Yu Liu
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Wanyu Zhao
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Ying Lu
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yunli Zhao
- Department of Health Research Methods, Evidence, and ImpactMcMaster UniversityHamiltonOntarioCanada
| | - Yan Zhang
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Miao Dai
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Shan Hai
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Ning Ge
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Shuting Zhang
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Mingjin Huang
- The Third Hospital of MianyangSichuan Mental Health CenterMianyangChina
| | - Xiaohui Liu
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jirong Yue
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Peng Lei
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Biao Dong
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Birong Dong
- National Clinical Research Center for Geriatrics and Department of General PracticeState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
70
|
Wang L, Yang P, Yang C, Yang D, Wu X, Cao T, Zeng C, Chen Q, Zhang S, Zhu Z, Jiao S, Cai H. Disturbance of neurotransmitter metabolism in drug-naïve, first-episode major depressive disorder: a comparative study on adult and adolescent cohorts. Eur Arch Psychiatry Clin Neurosci 2022; 272:1283-1296. [PMID: 35410391 DOI: 10.1007/s00406-022-01406-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
Neurotransmitter metabolism plays a critical role in the pathophysiology of major depressive disorder (MDD). However, whether the neurotransmitter metabolism in adolescent MDD is differentiated from adult MDD is still elusive. In the current study, plasma concentrations of monoamine and amino acid neurotransmitters as well as their metabolites, including tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), vanillylmandelic acid (VMA), 3-methoxy-4-hydroxyphenylglycol (MHPG), glutamine (GLN), glutamate (GLU) and gamma-aminobutyric acid (GABA), were measured and compared in two cohorts of subjects (adult cohort: 31 first-episode MDD vs. 35 healthy controls; adolescent cohort: 33 first-episode MDD vs. 30 healthy controls). To assess the effects of antidepressant treatment, we also analyzed the concentrations of these indexes pre- and post-treatment in adult and adolescent cohorts. At baseline, the deficits of neurotransmitter metabolism in adult MDD were manifested in all the neurotransmitter systems. In contrast, for adolescent MDD, the dysregulation of neurotransmission was mainly indicated in the catecholaminergic systems. After antidepressant treatment, adult MDD showed increased TRP, KYN, KYNA and GLU levels, together with decreased levels of 5-HIAA and DOPAC. Adolescent MDD illustrated an increased level of 5-HT and decreased levels of TRP and GABA. The improvements of Hamilton total scores correlated with the changes in plasma TRP and the turnover of KYN/TRP after treatment in all MDD patients. However, these correlations were only manifested in the adult MDD rather than in adolescent MDD patients. The findings highlight the shared and distinguished neurotransmitter pathways in MDD and emphasize the different antidepressant responses between adults and adolescents. Potentially, the neurotransmitters above could serve as diagnostic biomarkers and provide a novel pharmacological treatment strategy for MDD.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Ping Yang
- Department of Psychiatry, The Second People's Hospital of Hunan Province, Changsha, 410007, Hunan, China
| | - Chao Yang
- Department of Child Psychology, Xinjiang Mental Health Center and Urumqi Fourth People's Hospital, Urumqi, 830000, Xinjiang, China
| | - Dong Yang
- Department of Psychiatry, The Second People's Hospital of Hunan Province, Changsha, 410007, Hunan, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Zhenyu Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
71
|
Tao S, Zhang Y, Wang Q, Qiao C, Deng W, Liang S, Wei J, Wei W, Yu H, Li X, Li M, Guo W, Ma X, Zhao L, Li T. Identifying transdiagnostic biological subtypes across schizophrenia, bipolar disorder, and major depressive disorder based on lipidomics profiles. Front Cell Dev Biol 2022; 10:969575. [PMID: 36133917 PMCID: PMC9483200 DOI: 10.3389/fcell.2022.969575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging evidence has demonstrated overlapping biological abnormalities underlying schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder (MDD); these overlapping abnormalities help explain the high heterogeneity and the similarity of patients within and among diagnostic categories. This study aimed to identify transdiagnostic subtypes of these psychiatric disorders based on lipidomics abnormalities. We performed discriminant analysis to identify lipids that classified patients (N = 349, 112 with SCZ, 132 with BP, and 105 with MDD) and healthy controls (N = 198). Ten lipids that mainly regulate energy metabolism, inflammation, oxidative stress, and fatty acylation of proteins were identified. We found two subtypes (named Cluster 1 and Cluster 2 subtypes) across patients with SCZ, BP, and MDD by consensus clustering analysis based on the above 10 lipids. The distribution of clinical diagnosis, functional impairment measured by Global Assessment of Functioning (GAF) scales, and brain white matter abnormalities measured by fractional anisotropy (FA) and radial diffusivity (RD) differed in the two subtypes. Patients within the Cluster 2 subtype were mainly SCZ and BP patients and featured significantly elevated RD along the genu of corpus callosum (GCC) region and lower GAF scores than patients within the Cluster 1 subtype. The SCZ and BP patients within the Cluster 2 subtype shared similar biological patterns; that is, these patients had comparable brain white matter abnormalities and functional impairment, which is consistent with previous studies. Our findings indicate that peripheral lipid abnormalities might help identify homogeneous transdiagnostic subtypes across psychiatric disorders.
Collapse
Affiliation(s)
- Shiwan Tao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yamin Zhang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunxia Qiao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sugai Liang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinxue Wei
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- *Correspondence: Tao Li,
| |
Collapse
|
72
|
Zhang MY, Wang XY, Ayala J, Liu YL, An JH, Wang DH, Cai ZG, Hou R, Cai KL. Combined urine metabolomics and 16S rDNA sequencing analyses reveals physiological mechanism underlying decline in natural mating behavior of captive giant pandas. Front Microbiol 2022; 13:906737. [PMID: 36118243 PMCID: PMC9478395 DOI: 10.3389/fmicb.2022.906737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
The decline in natural mating behavior is the primary reason underlying in the poor population growth of captive giant pandas. However, the influencing factors and underlying mechanisms remain unclear to data. It is speculated that the decline in natural mating behavior could be related to the psychological stress caused by captivity, which restricts their free choice of mates. In order to test this hypothesis, we performed urinary metabolomics analysis using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry (UHPLC/-MS) combined with 16S rDNA sequencing for exploring the physiological mechanism underlying the decline in the natural mating behavior of captive giant panda. The results demonstrated that the decline in mating ability could be related to abnormalities in arginine biosynthesis and neurotransmitter synthesis. Additionally, the relative abundance of bacteria from the Firmicutes, Proteobacteria, and Actinobacteria phyla and the Acinetobacter, Weissella, and Pseudomonas genus was significantly reduced in the group with low natural mating behavior. These findings imply that the inhibition of arginine synthesis induced by environmental changes could be related to the poor libido and failure of mate selection in captive giant pandas during the breeding period. The results also demonstrate the relationship between the altered urinary microbes and metabolites related to arginine and neurotransmitter synthesis. These findings may aid in understanding the mechanism underlying environment-induced mate selection in captive giant pandas and propose a novel strategy for determining the sexual desire of giant pandas based on urinary microbes. The method would be of great significance in improving the natural reproductive success rate of captive giant pandas.
Collapse
Affiliation(s)
- Ming-Yue Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Xue-Ying Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - James Ayala
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Yu-Liang Liu
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Jun-Hui An
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Dong-Hui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Zhi-Gang Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Kai-Lai Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
- Sichuan Academy of Giant Panda, Chengdu, China
| |
Collapse
|
73
|
Liu J, Liu Z, Wei Y, Zhang Y, Womer FY, Jia D, Wei S, Wu F, Kong L, Jiang X, Zhang L, Tang Y, Zhang X, Wang F. Combinatorial panel with endophenotypes from multilevel information of diffusion tensor imaging and lipid profile as predictors for depression. Aust N Z J Psychiatry 2022; 56:1187-1198. [PMID: 35632993 DOI: 10.1177/00048674211031477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Clinical heterogeneity in major depressive disorder likely reflects the range of etiology and contributing factors in the disorder, such as genetic risk. Identification of more refined subgroups based on biomarkers such as white matter integrity and lipid-related metabolites could facilitate precision medicine in major depressive disorder. METHODS A total of 148 participants (15 genetic high-risk participants, 57 patients with first-episode major depressive disorder and 76 healthy controls) underwent diffusion tensor imaging and plasma lipid profiling. Alterations in white matter integrity and lipid metabolites were identified in genetic high-risk participants and patients with first-episode major depressive disorder. Then, shared alterations between genetic high-risk and first-episode major depressive disorder were used to develop an imaging x metabolite diagnostic panel for genetically based major depressive disorder via factor analysis and logistic regression. A fivefold cross-validation test was performed to evaluate the diagnostic panel. RESULTS Alterations of white matter integrity in corona radiata, superior longitudinal fasciculus and the body of corpus callosum and dysregulated unsaturated fatty acid metabolism were identified in both genetic high-risk participants and patients with first-episode major depressive disorder. An imaging x metabolite diagnostic panel, consisting of measures for white matter integrity and unsaturated fatty acid metabolism, was identified that achieved an area under the receiver operating characteristic curve of 0.86 and had a significantly higher diagnostic performance than that using either measure alone. And cross-validation confirmed the adequate reliability and accuracy of the diagnostic panel. CONCLUSION Combining white matter integrity in corpus callosum, superior longitudinal fasciculus and corona radiata, and unsaturated fatty acid profile may improve the identification of genetically based endophenotypes in major depressive disorder to advance precision medicine strategies.
Collapse
Affiliation(s)
- Juan Liu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Zhuang Liu
- School of Public health, China Medical University, Shenyang, Liaoning, PR China
| | - Yange Wei
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Fay Y Womer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, USA
| | - Duan Jia
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Shengnan Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Feng Wu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lingtao Kong
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiaowei Jiang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Luheng Zhang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, PR China.,Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, PR China.,School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, PR China.,Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, PR China
| |
Collapse
|
74
|
Li Y, Li J, Shi Y, Zhou X, Feng W, Han L, Ma D, Jiang H, Yuan Y. Urinary Aromatic Amino Acid Metabolites Associated With Postoperative Emergence Agitation in Paediatric Patients After General Anaesthesia: Urine Metabolomics Study. Front Pharmacol 2022; 13:932776. [PMID: 35928271 PMCID: PMC9343964 DOI: 10.3389/fphar.2022.932776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Emergence agitation (EA) is very common in paediatric patients during recovery from general anaesthesia, but underlying mechanisms remain unknown. This prospective study was designed to profile preoperative urine metabolites and identify potential biomarkers that can predict the occurrence of EA. Methods: A total of 224 patients were screened for recruitment; of those, preoperative morning urine samples from 33 paediatric patients with EA and 33 non-EA gender- and age-matched patients after being given sevoflurane general anaesthesia were analysed by ultra-high-performance liquid chromatography (UHPLC) coupled with a Q Exactive Plus mass spectrometer. Univariate analysis and orthogonal projection to latent structures squares-discriminant analysis (OPLS-DA) were used to analyse these metabolites. The least absolute shrinkage and selection operator (LASSO) regression was used to identify predictive variables. The predictive model was evaluated through the receiver operating characteristic (ROC) analysis and then further assessed with 10-fold cross-validation. Results: Seventy-seven patients completed the study, of which 33 (42.9%) patients developed EA. EA and non-EA patients had many differences in preoperative urine metabolic profiling. Sixteen metabolites including nine aromatic amino acid metabolites, acylcarnitines, pyridoxamine, porphobilinogen, 7-methylxanthine, and 5′-methylthioadenosine were found associated with an increased risk of EA, and they all exhibited higher levels in the EA group than in the non-EA group. The main metabolic pathways involved in these metabolic changes included phenylalanine, tyrosine and tryptophan metabolisms. Among these potential biomarkers, L-tyrosine had the best predictive value with an odds ratio (OR) (95% CI) of 5.27 (2.20–12.63) and the AUC value of 0.81 (0.70–0.91) and was robust with internal 10-fold cross-validation. Conclusion: Urinary aromatic amino acid metabolites are closely associated with EA in paediatric patients, and further validation with larger cohorts and mechanistic studies is needed. Clinical Trial Registration:clinicaltrials.gov, identifier NCT04807998
Collapse
Affiliation(s)
- Yueyue Li
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jingjie Li
- Department of Anaesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhuan Shi
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xuhui Zhou
- Department of Anaesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqing Feng
- Department of Anaesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Han
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Hong Jiang
- Department of Anaesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hong Jiang, ; Yongfang Yuan,
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- *Correspondence: Hong Jiang, ; Yongfang Yuan,
| |
Collapse
|
75
|
Chen J, Li T, Qin X, Du G, Zhou Y. Integration of Non-Targeted Metabolomics and Targeted Quantitative Analysis to Elucidate the Synergistic Antidepressant Effect of Bupleurum Chinense DC-Paeonia Lactiflora Pall Herb Pair by Regulating Purine Metabolism. Front Pharmacol 2022; 13:900459. [PMID: 35847012 PMCID: PMC9280301 DOI: 10.3389/fphar.2022.900459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Bupleurum chinense DC (Chaihu)-Paeonia lactiflora Pall (Baishao) is among the most accepted herb pairs in many classic antidepressant prescriptions. Our previous study has shown that the Chaihu–Baishao herb pair (CBHP) had a better antidepressant effect than Chaihu or Baishao. Nevertheless, the synergistic antidepressant mechanism of this herb pair was not clearly understood. This study aimed to investigate the compatibility mechanism of Chaihu and Baishao for treating depression through a strategy of non-targeted metabolomics combined with targeted quantitative analysis and molecular biology techniques. First, the compatibility effects of CBHP were assessed by the chronic unpredictable mild stress (CUMS) rat model. Next, cortex metabolomics based on ultra-high-performance liquid chromatography combined with quadrupole orbitrap mass spectrometry (UPLC-Q-Orbitrap/MS) was used to discover the metabolic pathway that was synergistically regulated by CBHP. Based on the results of metabolomics analysis, metabolites were quantitatively validated by UPLC-MS/MS combined with the MRM mode in the crucial metabolic pathway. In addition, the signaling pathway associated with this metabolic pathway was detected by molecular biology techniques to further identify the biological meaning of the crucial metabolite on the synergistic antidepressant effect of CBHP. The antidepressant effect of CBHP was significantly better than that of Chaihu or Baishao single administrated in the behavioral test. According to cortex metabolomics, a total of 21 differential metabolites were screened out, and purine metabolism was selected as the crucial metabolic pathway by the enrichment analysis of differential metabolites. Subsequently, purine metabolism was confirmed as disorder in the CUMS group by targeted quantitative analysis, CBHP regulated more purine metabolites (six) than individual administration (two and two). The results showed that purine metabolism was modulated by CBHP through synergistically decreasing xanthine levels and inhibiting the conversion of xanthine dehydrogenase (XDH) to xanthine oxidase (XOD). Finally, the synergistic regulation effect of CBHP on xanthine synthesis was found to be related to inhibition of malondialdehyde (MDA) production, Nod-like receptor protein 3 (NLRP3) inflammasome expression, and interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α secretion. The present study demonstrated that the regulation of purine metabolism, the suppression of oxidative stress, and inflammatory responses in the cortex were involved in the synergistic antidepressant effect of CBHP.
Collapse
Affiliation(s)
- Jiajun Chen
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Tian Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
- *Correspondence: Yuzhi Zhou,
| |
Collapse
|
76
|
Wang L, Nong Q, Zhou Y, Sun Y, Chen W, Xie J, Zhu X, Shan T. Changes in Serum Fatty Acid Composition and Metabolome-Microbiome Responses of Heigai Pigs Induced by Dietary N-6/n-3 Polyunsaturated Fatty Acid Ratio. Front Microbiol 2022; 13:917558. [PMID: 35814644 PMCID: PMC9257074 DOI: 10.3389/fmicb.2022.917558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Changing fatty acid composition is a potential nutritional strategy to shape microbial communities in pigs. However, the effect of different n-6/n-3 polyunsaturated fatty acid (PUFA) ratios on serum fatty acid composition, microbiota, and their metabolites in the intestine of pigs remains unclear. Our study investigated the changes in serum fatty acid composition and metabolome–microbiome responses induced by dietary n-6/n-3 PUFA ratio based on a Heigai-pig model. A total of 54 Heigai finishing pigs (body weight: 71.59 ± 2.16 kg) fed with 3 types of diets (n-6/n-3 PUFA ratios are 8:1, 5:1, and 3:1) were randomly divided into 3 treatments with 6 replications (3 pigs per replication) for 75 days. Results showed that dietary n-6/n-3 PUFA ratio significantly affected biochemical immune indexes including glucose (Glu), triglycerides (TG), total cholesterol (TChol), non-esterified fatty acid (NEFA), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and total thyroxine (TT4), and medium- and long-chain fatty acid composition, especially n-3 PUFA and n-6/n-3 PUFA ratio in the serum. However, no significant effects were found in the SCFAs composition and overall composition of the gut microbiota community. In the low dietary n-6/n-3 PUFA ratio group, the relative abundance of Cellulosilyticum, Bacteroides, and Alloprevotella decreased, Slackia and Sporobacter increased. Based on the metabolomic analysis, dietary n-6/n-3 PUFA ratio altered the metabolome profiles in the colon. Moreover, Pearson’s correlation analysis indicated that differential microbial genera and metabolites induced by different n-6/n-3 PUFA ratio had tight correlations and were correlated with the n-6 PUFA and n-3 PUFA content in longissimus dorsi muscle (LDM) and subcutaneous adipose tissue (SAT). Taken together, these results showed that lower dietary n-6/n-3 PUFA ratio improved serum fatty acid composition and metabolome–microbiome responses of Heigai pigs and may provide a new insight into regulating the metabolism of pigs and further better understanding the crosstalk with host and microbes in pigs.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Ye Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Jintang Xie
- Shandong Chunteng Food Co. Ltd., Zaozhuang, China
| | - Xiaodong Zhu
- Shandong Chunteng Food Co. Ltd., Zaozhuang, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- *Correspondence: Tizhong Shan,
| |
Collapse
|
77
|
Huang D, Wang L, Wu Y, Qin X, Du G, Zhou Y. Metabolomics Based on Peripheral Blood Mononuclear Cells to Dissect the Mechanisms of Chaigui Granules for Treating Depression. ACS OMEGA 2022; 7:8466-8482. [PMID: 35309492 PMCID: PMC8928523 DOI: 10.1021/acsomega.1c06046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Chaigui granules were a traditional Chinese medicine (TCM) preparation with antidepressant effects derived from a famous antidepressant prescription. It was of great significance to clarify the antidepressant mechanism of Chaigui granules for the clinical application of this drug. In this study, a chronic unpredictable mild stress (CUMS) depression model was successfully established, and behavioral indicators were used to evaluate the antidepressant effect. Second, the CD4+, CD8+, and CD4+/CD8+ levels were detected in peripheral blood. Meanwhile, the amount of inflammatory cytokines was determined in serum. Correspondingly, LC/MS-based peripheral blood mononuclear cell (PBMC) metabolomics was used to investigate vital metabolic pathways participating in the antidepressive effects of Chaigui granules. Finally, bioinformatics technology was further employed to discover the potential antidepressant mechanism of Chaigui granules regulating the immune system. The results suggested that the administration of Chaigui granules significantly improved CUMS-induced depressive symptoms. Chaigui granules could improve immune function by regulating T lymphocyte subsets, increasing anti-inflammatory cytokine levels of IL-2 and IL-10, and reducing pro-inflammatory cytokine levels of TNF-α, IL-1β, and IL-6. In addition, metabolomics results of PBMCs showed that Chaigui granules improved 14 of the 25 potential biomarkers induced by CUMS. Metabolic pathway analyses indicated that purine metabolism was the critical metabolic pathway regulated by Chaigui granules. Furthermore, correlation analysis indicated that 13 key biomarkers were related to immune-related indicators. The metabolite-gene network of 13 key biomarkers was investigated by using bioinformatics. The investigation showed that 10 targets (5'-nucleotidase ecto; 5'-nucleotidase, cytosolic IB; 5'-nucleotidase, cytosolic II; etc.), mainly belong to the purine metabolism, might be potential targets for Chaigui granules to exert their antidepressant effects by improving immune function impairment. Together, our results suggested that Chaigui granules might exert antidepressant effects by improving immune function and regulating the purine metabolic pathway in PBMCs. This work used PBMCs metabolomics as an entry point to study the antidepressant mechanism of Chaigui granules, which provided a new way to elucidate the mechanism of a traditional Chinese medicine prescription.
Collapse
Affiliation(s)
- Dehua Huang
- Modern
Research Center for Traditional Chinese Medicine, Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
| | - Liwen Wang
- Modern
Research Center for Traditional Chinese Medicine, Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
| | - Yanfei Wu
- Department
of Traditional Chinese Medicine, First Hospital
of Shanxi Medical University, Yingze District, Taiyuan 030001, Shanxi, China
| | - Xuemei Qin
- Modern
Research Center for Traditional Chinese Medicine, Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
| | - Guanhua Du
- Modern
Research Center for Traditional Chinese Medicine, Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Institute
of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Xicheng District, Beijing 100050, P. R. China
| | - Yuzhi Zhou
- Modern
Research Center for Traditional Chinese Medicine, Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
| |
Collapse
|
78
|
Grant CW, Barreto EF, Kumar R, Kaddurah-Daouk R, Skime M, Mayes T, Carmody T, Biernacka J, Wang L, Weinshilboum R, Trivedi MH, Bobo WV, Croarkin PE, Athreya AP. Multi-Omics Characterization of Early- and Adult-Onset Major Depressive Disorder. J Pers Med 2022; 12:jpm12030412. [PMID: 35330412 PMCID: PMC8949112 DOI: 10.3390/jpm12030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023] Open
Abstract
Age at depressive onset (AAO) corresponds to unique symptomatology and clinical outcomes. Integration of genome-wide association study (GWAS) results with additional “omic” measures to evaluate AAO has not been reported and may reveal novel markers of susceptibility and/or resistance to major depressive disorder (MDD). To address this gap, we integrated genomics with metabolomics using data-driven network analysis to characterize and differentiate MDD based on AAO. This study first performed two GWAS for AAO as a continuous trait in (a) 486 adults from the Pharmacogenomic Research Network-Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS), and (b) 295 adults from the Combining Medications to Enhance Depression Outcomes (CO-MED) study. Variants from top signals were integrated with 153 p180-assayed metabolites to establish multi-omics network characterizations of early (<age 18) and adult-onset depression. The most significant variant (p = 8.77 × 10−8) localized to an intron of SAMD3. In silico functional annotation of top signals (p < 1 × 10−5) demonstrated gene expression enrichment in the brain and during embryonic development. Network analysis identified differential associations between four variants (in/near INTU, FAT1, CNTN6, and TM9SF2) and plasma metabolites (phosphatidylcholines, carnitines, biogenic amines, and amino acids) in early- compared with adult-onset MDD. Multi-omics integration identified differential biosignatures of early- and adult-onset MDD. These biosignatures call for future studies to follow participants from childhood through adulthood and collect repeated -omics and neuroimaging measures to validate and deeply characterize the biomarkers of susceptibility and/or resistance to MDD development.
Collapse
Grants
- R01 MH124655 NIMH NIH HHS
- R01 MH113700 NIMH NIH HHS
- K23 AI143882 NIAID NIH HHS
- U19GM61388, R01GM028157, R01AA027486, R01MH108348, R24GM078233, RC2GM092729, U19AG063744, N01MH90003, R01AG04617, U01AG061359, RF1AG051550, R01MH113700, R01MH124655, K23AI143882 NIH HHS
Collapse
Affiliation(s)
- Caroline W. Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Erin F. Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN 55901, USA;
| | - Rakesh Kumar
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27701, USA;
- Department of Medicine, Duke University, Durham, NC 27708, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Taryn Mayes
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - Thomas Carmody
- Department Population and Data Sciences, University of Texas Southwestern Medical Center in Dallas, Dallas, TX 75390, USA;
| | - Joanna Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55901, USA;
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Madhukar H. Trivedi
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - William V. Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| | - Arjun P. Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| |
Collapse
|
79
|
Uekusa S, Onozato M, Umino M, Sakamoto T, Ichiba H, Tsujino N, Funatogawa T, Tagata H, Nemoto T, Mizuno M, Fukushima T. Increased inosine levels in drug-free individuals with at-risk mental state: A serum metabolomics study. Early Interv Psychiatry 2022; 16:247-255. [PMID: 33779047 DOI: 10.1111/eip.13148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
AIM At-risk mental state (ARMS) has been recently attracting attention with respect to the improvement of the management and outcome of psychiatric diseases, such as schizophrenia. Since only a few studies have reported on biological alterations in ARMS, serum metabolomics was carried out in ARMS subjects and healthy controls using liquid chromatography with high-resolution mass spectrometry. METHODS Serum samples were collected from ARMS subjects (n = 24; male: 12; female 12) and age- and sex-matched healthy controls (n = 23 male: 11, female: 12). After serum pre-treatment, liquid chromatography with high-resolution mass spectrometry was performed. Multivariate analyses, such as orthogonal partial least-squares discriminant and volcano plot analyses, were performed. RESULTS Serum inosine, lactate, taurine, 2,3-dihydroxypropanoate and glutamate levels differed between the two groups. A significant increase in inosine levels was detected in the positive- and negative-ion modes; however, significant differences were not observed in the levels of other purine-related metabolites (hypoxanthine, xanthine and urate) between the two groups. CONCLUSION Increased inosine levels may serve as biological markers for ARMS, in addition to alterations in the levels of lactate and certain amino acids.
Collapse
Affiliation(s)
- Shusuke Uekusa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan.,Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Maho Umino
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Tatsuya Sakamoto
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Hideaki Ichiba
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Naohisa Tsujino
- Department of Psychiatry, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan.,Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Tomoyuki Funatogawa
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Hiromi Tagata
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| |
Collapse
|
80
|
Li N, Yang P, Tang M, Liu Y, Guo W, Lang B, Wang J, Wu H, Tang H, Yu Y, Wu X, Zeng C, Cao T, Cai H. Reduced erythrocyte membrane polyunsaturated fatty acid levels indicate diminished treatment response in patients with multi- versus first-episode schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:7. [PMID: 35217671 PMCID: PMC8881498 DOI: 10.1038/s41537-022-00214-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022]
Abstract
Antipsychotic effects seem to decrease in relapsed schizophrenia patients and the underlying mechanisms remain to be elucidated. Based on the essential role of polyunsaturated fatty acids in brain function and the treatment of schizophrenia, we hypothesize that disordered fatty acid metabolism may contribute to treatment resistance in multi-episode patients. We analyzed the erythrocyte membrane fatty acids in 327 schizophrenia patients under various episodes (numbers of patients: first-episode drug naïve 89; 2–3 episodes 110; 4–6 episodes 80; over 6 episodes 48) and 159 age- and gender-matched healthy controls. Membrane fatty acid levels and PANSS scales were assessed at baseline of antipsychotic-free period and one-month of follow-up after treatment. Totally, both saturated and unsaturated fatty acids were reduced at baseline when compared to healthy controls. Subgroup analyses among different episodes indicated that in response to atypical antipsychotic treatment, the membrane fatty acids were only increased in patients within 3 episodes, and this therapeutic effects on omega-3 index were merely present in the first episode. Results of fatty acid ratios suggested that dysregulations of enzymes such as D6 desaturase, D5 desaturase, and elongases for polyunsaturated fatty acids in patients with multi-episode schizophrenia could account for the differences. Additionally, certain fatty acid level/ratio changes were positively correlated with symptom improvement. The alterations of C22:5n3 and omega-3 index, gender, and the number of episodes were significant risk factors correlated with treatment responsiveness. Using targeted metabolomic approach, we revealed the potential mechanisms underlying abnormal fatty acid metabolism responsible for reduced treatment response in patients with multi-episode schizophrenia.
Collapse
Affiliation(s)
- Nana Li
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan Province, China
| | - Ping Yang
- Department of Psychiatry, the Second People's Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,Institute of Hospital Pharmacy, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Jianjian Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Hui Tang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Yan Yu
- Department of Psychiatry, Changsha Psychiatric Hospital, Changsha, Hunan Province, China
| | - Xiangxin Wu
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan Province, China
| | - Cuirong Zeng
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan Province, China
| | - Ting Cao
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan Province, China
| | - Hualin Cai
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China. .,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
81
|
Borovcanin MM, Janicijevic SM, Mijailovic NR, Jovanovic IP, Arsenijevic NN, Vesic K. Uric Acid Potential Role in Systemic Inflammation and Negative Symptoms After Acute Antipsychotic Treatment in Schizophrenia. Front Psychiatry 2022; 12:822579. [PMID: 35237183 PMCID: PMC8882684 DOI: 10.3389/fpsyt.2021.822579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Uric acid (UA) has been shown to have neuroprotective or neurotoxic properties, in relation to specific tissues and diseases that have been studied. Previous studies provided contradictory results on the role of UA in schizophrenia as a neurodegenerative disorder. The aim of this brief report was an additional analysis of UA sera levels in different phases of schizophrenia. Here, 86 patients with first-episode psychosis (FEP) vs. 45 patients with schizophrenia in relapse (SC in relapse) vs. 35 healthy control subjects (HC) were studied before and 1 month after antipsychotic therapy. Further, we aimed to explore the possible correlation of UA with scores presenting clinical features and with serum concentrations of the proinflammatory cytokines interleukin (IL)-6 and IL-17. When comparing the data between all three groups, we did not find significant differences in UA levels, either before or after the applied therapy. Also, comparing sera concentrations of UA in every single group, the analysis did not reveal statistically significant differences between FEP patients, but statistically, a significant difference was found in SC in relapse before and after treatment (334.71 ± 116.84 vs. 289.37 ± 109.15 μmol/L, p = 0.05). Uric acid serum levels correlated with negative sub-score (p = 0.001, r = 0.306), general sub-score (p = 0.015, r = 0.236), and total PANSS score (p = 0.009, r = 0.3) after 1 month of therapy. We have established a statistically significant positive correlation between serum concentrations of UA and IL-6 in exacerbation (p = 0.01, r = 0.220) and with IL-17 after treatment and in the stabilization of psychosis (p = 0.01, r = 0.34), suggesting potential cascades in different phases of schizophrenia that potentiate inflammation.
Collapse
Affiliation(s)
- Milica M. Borovcanin
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slavica Minic Janicijevic
- Doctor of Philosophy Studies, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Natasa R. Mijailovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan P. Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa N. Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Katarina Vesic
- Department of Neurology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
82
|
Liu Y, Wen M, He Q, Dang X, Feng S, Liu T, Ding X, Li X, He X. Lipid metabolism contribute to the pathogenesis of IgA Vasculitis. Diagn Pathol 2022; 17:28. [PMID: 35148801 PMCID: PMC8840790 DOI: 10.1186/s13000-021-01185-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
Background and objectives The underlying mechanism of IgA vasculitis (IgAV) and IgA vasculitis with nephritis (IgAVN) remains unclear. Therefore, there are no accurate diagnostic methods. Lipid metabolism is related to many immune related diseases, so this study set out to explore the relationship of lipids and IgAV and IgAVN. Methods Fifty-eighth patients with IgAV and 28 healthy controls were recruited, which were divided into six separate pools to investigate the alterations of serum lipids according to the clinical characteristics: healthy controls group (HCs) and IgAV group (IgAVs), IgAVN group (IgAV-N) and IgAV without nephritis group (IgAV-C), initial IgAV group (IgAV0) and IgAV in treatment with glucocorticoids group (IgAV1). Results 31 identified lipid ions significantly changed in IgAVs with p < 0.05, variable importance of the projection (VIP) > 1 and fold change (FC) > 1.5. All these 31 lipid ions belong to 6 classes: triacylglycerols (TG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine, ceramide, and lysophosphatidylcholine. TG (16:0/18:1/22:6) +NH4 over 888875609.05, PC (32:1) +H over 905307459.90 and PE (21:4)-H less than 32236196.59 increased the risk of IgAV significantly (OR>1). PC (38:6) +H was significantly decreased (p < 0.05, VIP>1 and FC>1.5) in IgAVN. PC (38:6) less than 4469726623 conferred greater risks of IgAV (OR=45.833, 95%CI: 6.689~341.070). Conclusion We suggest that lipid metabolism may affect the pathogenesis of IgAV via cardiovascular disease, insulin resistance, cell apoptosis, and inflammation. The increase of TG(16:0/18:1/22:6) + NH4, and PC(32:1) + H as well as PE (21:4)-H allow a good prediction of IgAV. PE-to-PC conversion may participate in the damage of kidney in IgAV. PC (38:6) + H may be a potential biomarker for IgAVN. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-021-01185-1.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Wen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqiang Dang
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shipin Feng
- Department of Pediatric Nephrology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Taohua Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Li
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China. .,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
83
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Transl Stroke Res 2022; 13:1-11. [PMID: 34224107 PMCID: PMC8727632 DOI: 10.1007/s12975-021-00927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
84
|
Wang Z, Yuan K, Ji YB, Li SX, Shi L, Wang Z, Zhou XY, Bao YP, Xie W, Han Y, Shi J, Lu L, Yan W, Chen WH. Alterations of the Gut Microbiota in Response to Total Sleep Deprivation and Recovery Sleep in Rats. Nat Sci Sleep 2022; 14:121-133. [PMID: 35115853 PMCID: PMC8800865 DOI: 10.2147/nss.s334985] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Accumulating evidence suggests that both sleep loss and gut dysbiosis can lead to metabolic disorders. However, less is known about the impact of total sleep deprivation (SD) and sleep recovery on the composition, function, and metabolic dynamics of the gut microbiota. METHODS Specific-pathogen free Sprague-Dawley rats were subjected to 48 h of SD with gentle handling and then allowed to recover for 1 week. Taxonomic profiles of fecal microbiota were obtained at baseline, 24 h of SD, 48 h of SD, and 1 week of recovery. We used 16S rRNA gene sequencing to analyze the gut microbial composition and function and further characterize microbiota-derived metabolites in rats. RESULTS The microbiota composition analysis revealed that gut microbial composition and metabolites did not change in the rats after 24 h of SD but were significantly altered after 48 h of SD. These changes were reversible after 1 week of sleep recovery. A functional analysis was performed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, indicating that 19 KEGG pathways were significantly altered in the gut microbiota in SD rats. These functional changes occurred within 24 h of SD, were more apparent after 48 h of SD, and did not fully recover after 1 week of sleep recovery. CONCLUSION These results indicate that acute total SD leads to significant compositional and functional changes in the gut microbiota, and these changes are reversible.
Collapse
Affiliation(s)
- Zhong Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People’s Republic of China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People’s Republic of China
| | - Yan-Bin Ji
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, People’s Republic of China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People’s Republic of China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People’s Republic of China
| | - Zhe Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People’s Republic of China
| | - Xin-Yu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yan-Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People’s Republic of China
| | - Wen Xie
- Mental Health Center of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People’s Republic of China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People’s Republic of China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People’s Republic of China
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People’s Republic of China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, People’s Republic of China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People’s Republic of China
| | - Wen-Hao Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People’s Republic of China
| |
Collapse
|
85
|
Zhao H, Jin K, Jiang C, Pan F, Wu J, Luan H, Zhao Z, Chen J, Mou T, Wang Z, Lu J, Lu S, Hu S, Xu Y, Huang M. A pilot exploration of multi-omics research of gut microbiome in major depressive disorders. Transl Psychiatry 2022; 12:8. [PMID: 35013099 PMCID: PMC8748871 DOI: 10.1038/s41398-021-01769-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
The pathophysiology of major depressive disorder (MDD) remains obscure. Recently, the microbiota-gut-brain (MGB) axis's role in MDD has an increasing attention. However, the specific mechanism of the multi-level effects of gut microbiota on host metabolism, immunity, and brain structure is unclear. Multi-omics approaches based on the analysis of different body fluids and tissues using a variety of analytical platforms have the potential to provide a deeper understanding of MGB axis disorders. Therefore, the data of metagenomics, metabolomic, inflammatory factors, and MRI scanning are collected from the two groups including 24 drug-naïve MDD patients and 26 healthy controls (HCs). Then, the correlation analysis is performed in all omics. The results confirmed that there are many markedly altered differences, such as elevated Actinobacteria abundance, plasma IL-1β concentration, lipid, vitamin, and carbohydrate metabolism disorder, and diminished grey matter volume (GMV) of inferior frontal gyrus (IFG) in the MDD patients. Notably, three kinds of discriminative bacteria, Ruminococcus bromii, Lactococcus chungangensis, and Streptococcus gallolyticus have an extensive correlation with metabolome, immunology, GMV, and clinical symptoms. All three microbiota are closely related to IL-1β and lipids (as an example, phosphoethanolamine (PEA)). Besides, Lactococcus chungangensis is negatively related to the GMV of left IFG. Overall, this study demonstrate that the effects of gut microbiome exert in MDD is multifactorial.
Collapse
Affiliation(s)
- Haoyang Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Chaonan Jiang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Fen Pan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Jing Wu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics the College of Laboratory Medicine Chongqing Medical University, Chongqing, 400016, China
| | - Honglin Luan
- Department of Psychiatry, Wen Zhou seventh People's Hospital, Wenzhou, 325006, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China
| | - Jingkai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Zheng Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Shaojia Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Yi Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Manli Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
| |
Collapse
|
86
|
Chen J, Wang W, Kong J, Yue Y, Dong Y, Zhang J, Liu L. Application of UHPLC-Q-TOF MS based untargeted metabolomics reveals variation and correlation amongst different tissues of Eucommia ulmoides Oliver. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
87
|
Wang H, Liu L, Chen X, Zhou C, Rao X, Li W, Li W, Liu Y, Fang L, Zhang H, Song J, Ji P, Xie P. MicroRNA-Messenger RNA Regulatory Network Mediates Disrupted TH17 Cell Differentiation in Depression. Front Psychiatry 2022; 13:824209. [PMID: 35449567 PMCID: PMC9017773 DOI: 10.3389/fpsyt.2022.824209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Accumulating evidence indicates an important role for microRNA (miRNA)-messenger RNA (mRNA) regulatory networks in human depression. However, the mechanisms by which these networks act are complex and remain poorly understood. We used data mining to identify differentially expressed miRNAs from GSE81152 and GSE152267 datasets, and differentially expressed mRNAs were identified from the Netherlands Study of Depression and Anxiety, the GlaxoSmithKline-High-Throughput Disease-specific target Identification Program, and the Janssen-Brain Resource Company study. We constructed a miRNA-mRNA regulatory network based on differentially expressed mRNAs that intersected with target genes of differentially expressed miRNAs, and then performed bioinformatics analysis of the network. The key candidate genes were assessed in the prefrontal cortex of chronic social defeat stress (CSDS) depression mice by quantitative real-time polymerase chain reaction (qRT-PCR). Three differentially expressed miRNAs were commonly identified across the two datasets, and 119 intersecting differentially expressed mRNAs were identified. A miRNA-mRNA regulatory network including these three key differentially expressed miRNAs and 119 intersecting differentially expressed mRNAs was constructed. Functional analysis of the intersecting differentially expressed mRNAs revealed that an abnormal inflammatory response characterized by disturbed T-helper cell 17 (Th17) differentiation was the primary altered biological function. qRT-PCR validated the decreased expression of Th17 cell differentiation-related genes, including interleukin (IL)17A, IL21, IL22, and IL1β, and the increased expression of retinoic acid receptor-related orphan receptor gamma-t (RORγt) in CSDS mice, which showed significant depressive- and anxiety-like behaviors. This study indicates that an abnormal inflammatory response characterized by disturbed Th17 cell differentiation is the primary altered biological process in major depressive disorder. Our findings indicate possible biomarkers and treatment targets and provide novel clues to understand the pathogenesis of major depressive disorder.
Collapse
Affiliation(s)
- Haiyang Wang
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyi Chen
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuechen Rao
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Li
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Jinlin Song
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Ping Ji
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Peng Xie
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
88
|
Jiang Y, Qin M, Teng T, Li X, Yu Y, Wang J, Wu H, He Y, Zhou X, Xie P. Identification of Sex-Specific Plasma Biomarkers Using Metabolomics for Major Depressive Disorder in Children and Adolescents. Front Psychiatry 2022; 13:929207. [PMID: 35911235 PMCID: PMC9329558 DOI: 10.3389/fpsyt.2022.929207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Children and adolescents are at a high risk of major depressive disorder (MDD) with known sex differences in epidemiology. However, there are currently no objective laboratory-based sex-specific biomarkers available to support the diagnoses of male and female patients with MDD. METHODS Here, a male set of 42 cases and 27 healthy controls (HCs) and a female set of 42 cases and 22 HCs were recruited. This study investigated the sex differences of plasma metabolite biomarkers in young patients with MDD by the application of ultra-high-performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry. RESULTS The metabolic profiles showed clear separations in both male and female sets. In total, this study identified 57 male-related and 53 female-related differential metabolites. Compared with HCs, both male and female subjects with MDD displayed four significantly altered pathways. Notably, biliverdin was selected as an independent diagnostic male-specific biomarker with an area under the receiver operating characteristic curve of 0.966, and phosphatidylcholine (10:0/14:1) was selected as a female-specific biomarker, achieving an area under the curve (AUC) of 0.957. CONCLUSION This metabolomics study may aid in the development of a plasma-based test for the diagnosis of male and female children and adolescents with MDD, as well as give new insight into the pathophysiology of sex differences in children and adolescents with MDD.
Collapse
Affiliation(s)
- Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengchang Qin
- National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
89
|
Liu Y, Chen K, Luo Y, Wu J, Xiang Q, Peng L, Zhang J, Zhao W, Li M, Zhou X. Distinguish bipolar and major depressive disorder in adolescents based on multimodal neuroimaging: Results from the Adolescent Brain Cognitive Development study ®. Digit Health 2022; 8:20552076221123705. [PMID: 36090673 PMCID: PMC9452797 DOI: 10.1177/20552076221123705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023] Open
Abstract
Background Major depressive disorder and bipolar disorder in adolescents are prevalent and are associated with cognitive impairment, executive dysfunction, and increased mortality. Early intervention in the initial stages of major depressive disorder and bipolar disorder can significantly improve personal health. Methods We collected 309 samples from the Adolescent Brain Cognitive Development study, including 116 adolescents with bipolar disorder, 64 adolescents with major depressive disorder, and 129 healthy adolescents, and employed a support vector machine to develop classification models for identification. We developed a multimodal model, which combined functional connectivity of resting-state functional magnetic resonance imaging and four anatomical measures of structural magnetic resonance imaging (cortical thickness, area, volume, and sulcal depth). We measured the performances of both multimodal and single modality classifiers. Results The multimodal classifiers showed outstanding performance compared with all five single modalities, and they are 100% for major depressive disorder versus healthy controls, 100% for bipolar disorder versus healthy control, 98.5% (95% CI: 95.4–100%) for major depressive disorder versus bipolar disorder, 100% for major depressive disorder versus depressed bipolar disorder and the leave-one-site-out analysis results are 77.4%, 63.3%, 79.4%, and 81.7%, separately. Conclusions The study shows that multimodal classifiers show high classification performances. Moreover, cuneus may be a potential biomarker to differentiate major depressive disorder, bipolar disorder, and healthy adolescents. Overall, this study can form multimodal diagnostic prediction workflows for clinically feasible to make more precise diagnose at the early stage and potentially reduce loss of personal pain and public society.
Collapse
Affiliation(s)
- Yujun Liu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Kai Chen
- School of Public Health, University of Texas Health Science Center at Houston, Houston, USA
| | - Yangyang Luo
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jiqiu Wu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Qu Xiang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Li Peng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jian Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Weiling Zhao
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, USA
| | - Mingliang Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, USA
| |
Collapse
|
90
|
Li XL, Liu H, Liu SH, Cheng Y, Xie GJ. Intranasal Administration of Brain-Derived Neurotrophic Factor Rescues Depressive-Like Phenotypes in Chronic Unpredictable Mild Stress Mice. Neuropsychiatr Dis Treat 2022; 18:1885-1894. [PMID: 36062024 PMCID: PMC9438797 DOI: 10.2147/ndt.s369412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Major depression disorder is the most common diagnosed mental illnesses, and it bring a high social and economic burden. However, the current treatment for depression has limitations with side effects. Hence, there is an urgent need to search more effective treatment for major depressive disorder. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons. METHODS We administered BDNF into chronic unpredictable mild stress (CUMS)-induced depression mice and assessed the effects of intranasal delivery of BDNF in depression by the tail suspension test, forced swimming test, novelty suppressed feeding test, and open-field test. RESULTS We find that the intranasal administration of BDNF reversed the depressive-like behaviors in CUMS mice as measured Further analyses suggested that BDNF treatment reduced pro-inflammatory cytokine (IL-6, TNF-α, iNOS and IL-1β) expressions in the hippocampus of CUMS mice. In addition, our results showed that BDNF markedly reduced oxidative stress in the hippocampus and blood of CUMS mice. Moreover, our data suggested that BDNF treatment increased neurogenesis in the hippocampus of CUMS mice. DISCUSSION Taken together, our results for the first time demonstrated that intranasal delivery of BDNF protein exhibited anti-depressant-like effects in mice, and therefore may represent a new therapeutic strategy for major depressive disorder.
Collapse
Affiliation(s)
- Xiao-Ling Li
- The Third People's Hospital of Foshan, Foshan, People's Republic of China
| | - Hua Liu
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China
| | - Shu-Han Liu
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China
| | - Yong Cheng
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China.,Institute of National Security, Minzu University of China, Beijing, People's Republic of China
| | - Guo-Jun Xie
- The Third People's Hospital of Foshan, Foshan, People's Republic of China
| |
Collapse
|
91
|
Fang Y, Zhang C, Shi H, Wei W, Shang J, Zheng R, Yu L, Wang P, Yang J, Deng X, Zhang Y, Tang S, Shi X, Liu Y, Yang H, Yuan Q, Zhai R, Yuan H. Characteristics of the Gut Microbiota and Metabolism in Patients With Latent Autoimmune Diabetes in Adults: A Case-Control Study. Diabetes Care 2021; 44:2738-2746. [PMID: 34620611 PMCID: PMC8669532 DOI: 10.2337/dc20-2975] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/22/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 1 and type 2 diabetes are associated with gut dysbiosis. However, the relationship between the gut microbiota and latent autoimmune diabetes in adults (LADA), sharing clinical and metabolic features with classic type 1 and type 2 diabetes, remains unclear. Here, we used a multiomics approach to identify the characteristics of the gut microbiota and metabolic profiles in patients with LADA. RESEARCH DESIGN AND METHODS This age- and sex-matched case-control study included 30 patients with LADA, 31 patients with classic type 1 diabetes, 30 patients with type 2 diabetes, and 29 healthy individuals. The gut microbiota profiles were identified through the 16S rRNA gene, and fecal and serum metabolites were measured through untargeted liquid chromatography-mass spectrometry. RESULTS Patients with LADA had a significantly different structure and composition of the gut microbiota and their metabolites as well as a severe deficiency of short-chain fatty acid-producing bacteria. The gut microbiota structure of the patients with LADA was more similar to that of patients with type 1 diabetes who were positive for GAD antibody. We identified seven serum metabolite modules and eight fecal metabolite modules that differed between the LADA group and the other groups. CONCLUSIONS The characteristic gut microbiota and related metabolites of patients with LADA are associated with autoantibodies, glucose metabolism, islet function, and inflammatory factors, which may contribute to the pathogenesis of LADA. Future longitudinal studies should explore whether modulating the gut microbiota and related metabolites can alter the natural course of autoimmune diabetes in the quest for new therapeutics.
Collapse
Affiliation(s)
- Yuanyuan Fang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongcai Shi
- Department of Endocrinology of People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wei Wei
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Shang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruizhi Zheng
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Yu
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pingping Wang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junpeng Yang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinru Deng
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Zhang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Tang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yalei Liu
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huihui Yang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Yuan
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Zhai
- Adfontes (Shanghai) Biotechnology Co., Ltd., Shanghai, China
| | - Huijuan Yuan
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
92
|
Yuan D, Kuan T, Ling H, Wang H, Feng L, Zhao Q, Li J, Ran J. Serum metabolomics of end-stage renal disease patients with depression: potential biomarkers for diagnosis. Ren Fail 2021; 43:1479-1491. [PMID: 34723750 PMCID: PMC8567927 DOI: 10.1080/0886022x.2021.1994995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background End-stage renal disease (ESRD) is the final stage during the development of renal failure. Depression is the most common psychiatric disorder in patients with ESRD, which in turn aggravates the progression of renal failure, however, its underlying mechanism remains unclear. This study aimed to reveal the pathogenesis and to discover novel peripheral biomarkers for ESRD patients with depression through metabolomic analysis. Methods Ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used to explore changes of serum metabolites among healthy controls, ESRD patients with or without depression. The differential metabolites between groups were subjected to clustering analysis, pathway analysis, receiver operating characteristic (ROC) curve analysis. Results A total of 57 significant serum differential metabolites were identified between ESRD patients with or without depression, which were involved in 19 metabolic pathways, such as energy metabolism, glycerolipid metabolism, and glutamate-centered metabolism. Moreover, the area under the ROC curve of gentisic acid, uric acid, 5-hydroxytryptamine, 2-phosphoglyceric acid, leucyl-phenylalanine, propenyl carnitine, naloxone, pregnenolone, 6-thioxanthene 5'-monophosphate, hydroxyl ansoprazole, zileuton O-glucuronide, cabergoline, PA(34:2), PG(36:1), probucol and their combination was greater than 0.90. Conclusions Inflammation, oxidative stress and energy metabolism abnormalities, glycerolipid metabolism, and glutamate-centered metabolism are associated with the pathogenesis of ESRD with depression, which may be promising targets for therapy. Furthermore, the identified differential metabolites may serve as biomarkers for the diagnosis of ESRD patients with depression.
Collapse
Affiliation(s)
- Dezhi Yuan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Kuan
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hu Ling
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hongkai Wang
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Liping Feng
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuye Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinfang Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Ran
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
93
|
Borsini A, Nicolaou A, Camacho-Muñoz D, Kendall AC, Di Benedetto MG, Giacobbe J, Su KP, Pariante CM. Omega-3 polyunsaturated fatty acids protect against inflammation through production of LOX and CYP450 lipid mediators: relevance for major depression and for human hippocampal neurogenesis. Mol Psychiatry 2021; 26:6773-6788. [PMID: 34131267 PMCID: PMC8760043 DOI: 10.1038/s41380-021-01160-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023]
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can exert antidepressant, anti-inflammatory and neuroprotective properties, but the exact molecular mechanism underlying their effects is still not fully understood. We conducted both in vitro and clinical investigations to test which EPA or DHA metabolites are involved in these anti-inflammatory, neuroprotective and antidepressant effects. In vitro, we used the human hippocampal progenitor cell line HPC0A07/03C, and pre-treated cells with either EPA or DHA, followed by interleukin 1beta (IL1β), IL6 and interferon-alpha (IFN-α). Both EPA and DHA prevented the reduction in neurogenesis and the increase in apoptosis induced by these cytokines; moreover, these effects were mediated by the lipoxygenase (LOX) and cytochrome P450 (CYP450) EPA/DHA metabolites, 5-hydroxyeicosapentaenoic acid (HEPE), 4-hydroxydocosahexaenoic acid (HDHA), 18-HEPE, 20-HDHA, 17(18)-epoxyeicosatetraenoic acid (EpETE) and 19(20)-epoxydocosapentaenoic acid (EpDPA), detected here for the first time in human hippocampal neurones using mass spectrometry lipidomics of the supernatant. In fact, like EPA/DHA, co-treatment with these metabolites prevented cytokines-induced reduction in neurogenesis and apoptosis. Moreover, co-treatment with 17(18)-EpETE and 19(20)-EpDPA and the soluble epoxide hydroxylase (sEH) inhibitor, TPPU (which prevents their conversion into dihydroxyeicosatetraenoic acid (DiHETE)/ dihydroxydocosapentaenoic acid (DiHDPA) metabolites) further enhanced their neurogenic and anti-apoptotic effects. Interestingly, these findings were replicated in a sample of n = 22 patients with a DSM-IV Major Depressive Disorder, randomly assigned to treatment with either EPA (3.0 g/day) or DHA (1.4 g/day) for 12 weeks, with exactly the same LOX and CYP450 lipid metabolites increased in the plasma of these patients following treatment with their precursor, EPA or DHA, and some evidence that higher levels of these metabolites were correlated with less severe depressive symptoms. Overall, our study provides the first evidence for the relevance of LOX- and CYP450-derived EPA/DHA bioactive lipid metabolites as neuroprotective molecular targets for human hippocampal neurogenesis and depression, and highlights the importance of sEH inhibitors as potential therapeutic strategy for patients suffering from depressive symptoms.
Collapse
Affiliation(s)
- Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Maria Grazia Di Benedetto
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Kuan-Pin Su
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
- College of Medicine, China Medical University, Taichung, Taiwan.
- Depression Center, An-Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| |
Collapse
|
94
|
Based on UPLC-Q-TOF-MS/MS, Systematic Network Pharmacology, and Molecular Docking to Explore the Potential Mechanism of Fructus Aurantii for Major Depression Disorder. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6486287. [PMID: 34659436 PMCID: PMC8519718 DOI: 10.1155/2021/6486287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Background Major Depression Disorder (MDD) is a common mental disease that has become one of the world's major medical diseases. Currently, the Fructus Aurantii (FA) has been widely used to treat depression. However, the active substance ingredients and potential mechanisms of the shell antidepression have not yet been clarified. Method First, we used ultraperformance liquid chromatography-quadrupole/time-of-flight tandem mass (UPLC-QTOF-MS/MS) technology to identify the chemical composition of the FA. Then, it is predicted for active ingredients, pharmaceutical disease target screening by DiscoveryStudio 2016 (DS), Metascape, and other databases, PPI network diagram, and FC core pathway. Finally, the system network pharmacology results are verified by molecular contact verification. Results Forty-six compounds in FA were identified, and twelve active ingredients were determined. Various database information, PPI network analysis of 41 intersections, and 20 core targets including DRD2, MTOR, FASP3, and PIK3P1 were integrated. Finally, the MDD treatment is indicated by molecular docking, and the most relevant potential signal pathway is the PI3K-Akt signaling pathway.
Collapse
|
95
|
Rosdy MS, Rofiee MS, Samsulrizal N, Salleh MZ, Teh LK. Understanding the effects of Moringa oleifera in chronic unpredictable stressed zebrafish using metabolomics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114290. [PMID: 34090909 DOI: 10.1016/j.jep.2021.114290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa leaves have been used for thousands of years to maintain skin health and mental fitness. People also use it to relieves pain and stress. AIM OF THE STUDY To determine the effects of Moringa oleifera leaves ethanol-aqueous (ratio 7:3) extract (MOLE) on the chronically stressed zebrafish. METHOD The changes in the stress-related behaviour and the metabolic pathways in response to MOLE treatment in zebrafish were studied. A chronic unpredictable stress model was adopted in which zebrafish were induced with different stressors for 14 days. Stress-related behaviour was assessed using a depth-preference test and a light and dark test. Three doses of MOLE (500, 1000, and 2000 mg/L) were administered to the zebrafish. Upon sacrifice, the brains were harvested and processed for LC-MS QTOF based, global metabolomics analysis. RESULTS We observed significant changes in the behavioural parameters, where the swimming time at the light phase and upper phase of the tank were increased in the chronically stressed zebrafish treated with MOLE compared to those zebrafish which were not treated. Further, distinctive metabolite profiles were observed in zebrafish with different treatments. Several pathways that shed light on effects of MOLE were identified. MOLE is believed to relieve stress by regulating pathways that are involved in the metabolism of purine, glutathione, arginine and proline, D-glutamine, and D-glutamate. CONCLUSION MOLE is potentially an effective stress reliever. However, its effects in human needs to be confirmed with a systematic randomised control trial.
Collapse
Affiliation(s)
- Muhammad Shazly Rosdy
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Mohd Salleh Rofiee
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | | | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia.
| |
Collapse
|
96
|
Liu X, Teng T, Li X, Fan L, Xiang Y, Jiang Y, Du K, Zhang Y, Zhou X, Xie P. Impact of Inosine on Chronic Unpredictable Mild Stress-Induced Depressive and Anxiety-Like Behaviors With the Alteration of Gut Microbiota. Front Cell Infect Microbiol 2021; 11:697640. [PMID: 34595128 PMCID: PMC8476956 DOI: 10.3389/fcimb.2021.697640] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Current antidepressants do not confer a clear advantage in children and adolescents with major depressive disorder (MDD). Accumulating evidence highlights the potential antidepressant-like effects of inosine on adult MDD, and gut microbiomes are significantly associated with MDD via the microbiota-gut-brain axis. However, few studies have investigated possible associations between inosine and gut microbiota in adolescents with MDD. The current study investigated the potential antidepressant effects of inosine in adolescent male C57BL/6 mice. After 4 weeks of chronic unpredictable mild stress (CUMS) stimulation, the mice were assessed by body weight, the sucrose preference test (SPT), open field test, and the elevated plus maze (EPM). The microbiota compositions of feces were determined by 16S rRNA gene sequencing. Inosine significantly improved CUMS-induced depressive and anxiety-like behaviors in adolescent mice including SPT and EPM results. Fecal microbial composition differed in the CON+saline, CUMS+saline, and CUMS+inosine groups, which were characterized by 126 discriminative amplicon sequence variants belonging to Bacteroidetes and Firmicute at the phylum level and Muribaculaceae and Lachnospiraceae at the family level. Muribaculaceae was positively associated with depressive and anxiety-like behaviors. KEGG functional analysis suggested that inosine might affect gut microbiota through carbohydrate metabolism and lipid metabolism pathways. The results of the study indicated that inosine improved depressive and anxiety-like behaviors in adolescent mice, in conjunction with the alteration of fecal microbial composition. Our findings may provide a novel perspective on the antidepressant effects of inosine in children and adolescents.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yuanliang Jiang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kang Du
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
97
|
Zhou G, Lu J, Xu T, Lu Y, Chen W, Wang J, Ke M, Shen Q, Zhu Y, Shan J, Liu S. Clinical lipidomics analysis reveals biomarkers of lipid peroxidation in serum from patients with rheumatoid arthritis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
98
|
Abstract
Evidence suggests that around 30 % of patients with depression do not respond to antidepressant treatment, with most of them having sub-chronic levels of inflammation. Soluble epoxide hydrolases (sEH) are enzymes present in all living organisms, which metabolize cytochrome P (CYP)-derived epoxy fatty acids to their corresponding diols. Accumulating evidence suggests that sEH plays a key role in the anti-inflammatory properties exerted by the metabolism of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Crucial evidence demonstrates that protein expression of sEH in the brain of mice experiencing depressive-like behaviour, as well as in patients with major depressive disorder is higher than in controls. Of note, treatment with sEH inhibitors exert anti-inflammatory, neurogenic and antidepressant-like effects in pre-clinical models of depression. In this review, the author discusses the role of sEH in the metabolism of ω-3 PUFAs in the context of depression, and the clinical value of sEH inhibitors as alternative therapeutic strategies for patients suffering from this condition.
Collapse
Affiliation(s)
- Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, UK
| |
Collapse
|
99
|
Nascimento FP, Macedo-Júnior SJ, Lapa-Costa FR, Cezar-Dos-Santos F, Santos ARS. Inosine as a Tool to Understand and Treat Central Nervous System Disorders: A Neglected Actor? Front Neurosci 2021; 15:703783. [PMID: 34504414 PMCID: PMC8421806 DOI: 10.3389/fnins.2021.703783] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Since the 1970s, when ATP was identified as a co-transmitter in sympathetic and parasympathetic nerves, it and its active metabolite adenosine have been considered relevant signaling molecules in biological and pathological processes in the central nervous system (CNS). Meanwhile, inosine, a naturally occurring purine nucleoside formed by adenosine breakdown, was considered an inert adenosine metabolite and remained a neglected actor on the purinergic signaling scene in the CNS. However, this scenario began to change in the 1980s. In the last four decades, an extensive group of shreds of evidence has supported the importance of mediated effects by inosine in the CNS. Also, inosine was identified as a natural trigger of adenosine receptors. This evidence has shed light on the therapeutic potential of inosine on disease processes involved in neurological and psychiatric disorders. Here, we highlight the clinical and preclinical studies investigating the involvement of inosine in chronic pain, schizophrenia, epilepsy, depression, anxiety, and in neural regeneration and neurodegenerative diseases, such as Parkinson and Alzheimer. Thus, we hope that this review will strengthen the knowledge and stimulate more studies about the effects promoted by inosine in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Francisney Pinto Nascimento
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | | | | | - Fernando Cezar-Dos-Santos
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Adair R S Santos
- Programa de Pós-Graduação em Neurociências, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
100
|
Zhang Y, Zhang T, Liang Y, Jiang L, Sui X. Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8929-8943. [PMID: 34161727 DOI: 10.1021/acs.jafc.1c01369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary lipids are an indispensable source of energy and nutrition in human life. Numerous studies have shown that dietary bioactive lipids have many health benefits, including prevention or treatment of chronic diseases. The different chemical compositions and structural characteristics of bioactive lipids not only affect their digestion, absorption, and metabolism but also affect their health properties. In this review, the major dietary bioactive lipids (fatty acids, carotenoids, phytosterols, phenolic lipids, fat-soluble vitamins, and sphingomyelins) in foods are systematically summarized, from the aspects of composition, digestion, absorption, metabolism, source, structural characteristics, and their health properties. In particular, the relationship between the compositional and structural changes of bioactive lipids and their absorption and metabolism is discussed as well as their effect on health properties. This review provides a comprehensive summary toward health properties of dietary bioactive lipids.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yan Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|