51
|
Elevated temperature and CO 2 strongly affect the growth strategies of soil bacteria. Nat Commun 2023; 14:391. [PMID: 36693873 PMCID: PMC9873651 DOI: 10.1038/s41467-023-36086-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
The trait-based strategies of microorganisms appear to be phylogenetically conserved, but acclimation to climate change may complicate the scenario. To study the roles of phylogeny and environment on bacterial responses to sudden moisture increases, we determine bacterial population-specific growth rates by 18O-DNA quantitative stable isotope probing (18O-qSIP) in soils subjected to a free-air CO2 enrichment (FACE) combined with warming. We find that three growth strategies of bacterial taxa - rapid, intermediate and slow responders, defined by the timing of the peak growth rates - are phylogenetically conserved, even at the sub-phylum level. For example, members of class Bacilli and Sphingobacteriia are mainly rapid responders. Climate regimes, however, modify the growth strategies of over 90% of species, partly confounding the initial phylogenetic pattern. The growth of rapid bacterial responders is more influenced by phylogeny, whereas the variance for slow responders is primarily explained by environmental conditions. Overall, these results highlight the role of phylogenetic and environmental constraints in understanding and predicting the growth strategies of soil microorganisms under global change scenarios.
Collapse
|
52
|
Jiang Y, Qin X, Zhu F, Zhang Y, Zhang X, Hartley W, Xue S. Halving gypsum dose by Penicillium oxalicum on alkaline neutralization and microbial community reconstruction in bauxite residue. CHEMICAL ENGINEERING JOURNAL 2023; 451:139008. [DOI: 10.1016/j.cej.2022.139008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
53
|
Nuccio EE, Blazewicz SJ, Lafler M, Campbell AN, Kakouridis A, Kimbrel JA, Wollard J, Vyshenska D, Riley R, Tomatsu A, Hestrin R, Malmstrom RR, Firestone M, Pett-Ridge J. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. MICROBIOME 2022; 10:199. [PMID: 36434737 PMCID: PMC9700909 DOI: 10.1186/s40168-022-01391-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Linking the identity of wild microbes with their ecophysiological traits and environmental functions is a key ambition for microbial ecologists. Of many techniques that strive for this goal, Stable-isotope probing-SIP-remains among the most comprehensive for studying whole microbial communities in situ. In DNA-SIP, actively growing microorganisms that take up an isotopically heavy substrate build heavier DNA, which can be partitioned by density into multiple fractions and sequenced. However, SIP is relatively low throughput and requires significant hands-on labor. We designed and tested a semi-automated, high-throughput SIP (HT-SIP) pipeline to support well-replicated, temporally resolved amplicon and metagenomics experiments. We applied this pipeline to a soil microhabitat with significant ecological importance-the hyphosphere zone surrounding arbuscular mycorrhizal fungal (AMF) hyphae. AMF form symbiotic relationships with most plant species and play key roles in terrestrial nutrient and carbon cycling. RESULTS Our HT-SIP pipeline for fractionation, cleanup, and nucleic acid quantification of density gradients requires one-sixth of the hands-on labor compared to manual SIP and allows 16 samples to be processed simultaneously. Automated density fractionation increased the reproducibility of SIP gradients compared to manual fractionation, and we show adding a non-ionic detergent to the gradient buffer improved SIP DNA recovery. We applied HT-SIP to 13C-AMF hyphosphere DNA from a 13CO2 plant labeling study and created metagenome-assembled genomes (MAGs) using high-resolution SIP metagenomics (14 metagenomes per gradient). SIP confirmed the AMF Rhizophagus intraradices and associated MAGs were highly enriched (10-33 atom% 13C), even though the soils' overall enrichment was low (1.8 atom% 13C). We assembled 212 13C-hyphosphere MAGs; the hyphosphere taxa that assimilated the most AMF-derived 13C were from the phyla Myxococcota, Fibrobacterota, Verrucomicrobiota, and the ammonia-oxidizing archaeon genus Nitrososphaera. CONCLUSIONS Our semi-automated HT-SIP approach decreases operator time and improves reproducibility by targeting the most labor-intensive steps of SIP-fraction collection and cleanup. We illustrate this approach in a unique and understudied soil microhabitat-generating MAGs of actively growing microbes living in the AMF hyphosphere (without plant roots). The MAGs' phylogenetic composition and gene content suggest predation, decomposition, and ammonia oxidation may be key processes in hyphosphere nutrient cycling. Video Abstract.
Collapse
Affiliation(s)
- Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Marissa Lafler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Ashley N. Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Anne Kakouridis
- Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | | | | | | | - Rachel Hestrin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA USA
| | | | - Mary Firestone
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA USA
| |
Collapse
|
54
|
Rijkers R, Rousk J, Aerts R, Sigurdsson BD, Weedon JT. Optimal growth temperature of Arctic soil bacterial communities increases under experimental warming. GLOBAL CHANGE BIOLOGY 2022; 28:6050-6064. [PMID: 35838347 PMCID: PMC9546092 DOI: 10.1111/gcb.16342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Future climate warming in the Arctic will likely increase the vulnerability of soil carbon stocks to microbial decomposition. However, it remains uncertain to what extent decomposition rates will change in a warmer Arctic, because extended soil warming could induce temperature adaptation of bacterial communities. Here we show that experimental warming induces shifts in the temperature-growth relationships of bacterial communities, which is driven by community turnover and is common across a diverse set of 8 (sub) Arctic soils. The optimal growth temperature (Topt ) of the soil bacterial communities increased 0.27 ± 0.039 (SE) and 0.07 ± 0.028°C per °C of warming over a 0-30°C gradient, depending on the sampling moment. We identify a potential role for substrate depletion and time-lag effects as drivers of temperature adaption in soil bacterial communities, which possibly explain discrepancies between earlier incubation and field studies. The changes in Topt were accompanied by species-level shifts in bacterial community composition, which were mostly soil specific. Despite the clear physiological responses to warming, there was no evidence for a common set of temperature-responsive bacterial amplicon sequence variants. This implies that community composition data without accompanying physiological measurements may have limited utility for the identification of (potential) temperature adaption of soil bacterial communities in the Arctic. Since bacterial communities in Arctic soils are likely to adapt to increasing soil temperature under future climate change, this adaptation to higher temperature should be implemented in soil organic carbon modeling for accurate predictions of the dynamics of Arctic soil carbon stocks.
Collapse
Affiliation(s)
- Ruud Rijkers
- Amsterdam Institute for Life and Environment, Section of Systems EcologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Johannes Rousk
- Microbial Ecology, Department of BiologyLund UniversityLundSweden
| | - Rien Aerts
- Amsterdam Institute for Life and Environment, Section of Systems EcologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Bjarni D. Sigurdsson
- Faculty of Environmental and Forest SciencesAgricultural University of IcelandBorgarnesIceland
| | - James T. Weedon
- Amsterdam Institute for Life and Environment, Section of Systems EcologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
55
|
Xu X, Zhang Q, Song M, Zhang X, Bi R, Zhan L, Dong Y, Xiong Z. Soil organic carbon decomposition responding to warming under nitrogen addition across Chinese vegetable soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113932. [PMID: 35914399 DOI: 10.1016/j.ecoenv.2022.113932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Chemical fertilization in excess and warming disrupt the soil microbes and alter resource stoichiometry, particularly in intensive vegetable soils, while the effects of these variables on the temperature sensitivity of soil organic carbon (SOC) decomposition (Q10) and SOC stability remain elusive. Thus, we collected six long-term vegetable soils along a climatic gradient to examine the microbial mechanisms and resource stoichiometry effects on fluctuations in Q10 and SOC stability induced by warming and fertilization from vegetable soils. Our results showed that the SOC decomposition was dominated by microbes and regulated by stoichiometry. Compared to cold sites, higher Q10 of SOC decomposition was observed in warm sites, accompanied by lower enzyme activities, microbial CUE, and C:N ratio. In this context, warming reduced SOC stability as evidenced by up to 31.8% greater Q10 (1.45) at warm sites than at cold sites (1.10) owing to less richness of microbial communities and lower microbial CUE. The relatively lower pH and labile organic C value restricted the development of microbial richness, and decreased C- and N-related enzyme activities and a lower C:N ratio resulted in microbial CUE reduction. Additionally, N fertilization altered the C:N imbalance and enhanced SOC stability in vegetable soils, exhibiting an increase of Q10 values, particularly of great importance in warm sites. Collectively, our findings emphasize the importance of the microbial mechanism and resource stoichiometry in predicting variations in Q10 and fluctuations in SOC stability, and provide theoretical advice on improving management policies in the context of warming and fertilization from vegetable soils.
Collapse
Affiliation(s)
- Xintong Xu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianqian Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Mengxin Song
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiyu Bi
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liping Zhan
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yubing Dong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huaian 223001, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
56
|
Tian W, Sun H, Zhang Y, Xu J, Yao J, Li J, Li B, Nie M. Thermal adaptation occurs in the respiration and growth of widely distributed bacteria. GLOBAL CHANGE BIOLOGY 2022; 28:2820-2829. [PMID: 35090074 DOI: 10.1111/gcb.16102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Soil microbial respiration is an important factor in regulating carbon (C) exchange between the soil and atmosphere. Thermal adaptation of soil microorganisms will lead to a weakening of the positive feedback between climate warming and soil respiration. The thermal adaptation of microbial communities and fungal species has been proven. However, studies on the thermal adaptation of bacterial species, the most important decomposers in the soil, are still lacking. Here, we isolated six species of widely distributed dominant bacteria and studied the effects of constant warming and temperature fluctuations on those species. The results showed that constant warming caused a downregulation of respiratory temperature sensitivity (Q10 ) of the bacterial species, accompanied by an elevation of the minimum temperature (Tmin ) required for growth. Similar results were seen with the addition of temperature fluctuations, suggesting that both scenarios caused a significant thermal adaptation among the bacterial species. Fluctuating and increasing temperatures are considered an important component of future warming. Therefore, the inclusion of physiological responses of bacteria to these changes is essential to understand relationships between microbiota and temperature and enhance the prediction of global soil-atmosphere C feedbacks.
Collapse
Affiliation(s)
- Weitao Tian
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Huimin Sun
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianjun Xu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jia Yao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinquan Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Li
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming, Yunnan, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Kan ZR, Liu WX, Liu WS, Lal R, Dang YP, Zhao X, Zhang HL. Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective. GLOBAL CHANGE BIOLOGY 2022; 28:693-710. [PMID: 34726342 DOI: 10.1111/gcb.15968] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Mechanisms of soil organic carbon (SOC) stabilization have been widely studied due to their relevance in the global carbon cycle. No-till (NT) has been frequently adopted to sequester SOC; however, limited information is available regarding whether sequestered SOC will be stabilized for long term. Thus, we reviewed the mechanisms affecting SOC stability in NT systems, including the priming effects (PE), molecular structure of SOC, aggregate protection, association with soil minerals, microbial properties, and environmental effects. Although a more steady-state molecular structure of SOC is observed in NT compared with conventional tillage (CT), SOC stability may depend more on physical and chemical protection. On average, NT improves macro-aggregation by 32.7%, and lowers SOC mineralization in macro-aggregates compared with CT. Chemical protection is also important due to the direct adsorption of organic molecules and the enhancement of aggregation by soil minerals. Higher microbial activity in NT could also produce binding agents to promote aggregation and the formation of metal-oxidant organic complexes. Thus, microbial residues could be stabilized in soils over the long term through their attachment to mineral surfaces and entrapment of aggregates under NT. On average, NT reduces SOC mineralization by 18.8% and PE intensities after fresh carbon inputs by 21.0% compared with CT (p < .05). Although higher temperature sensitivity (Q10 ) is observed in NT due to greater Q10 in macro-aggregates, an increase of soil moisture regime in NT could potentially constrain the improvement of Q10 . This review improves process-based understanding of the physical and chemical mechanism of protection that can act, independently or interactively, to enhance SOC preservation. It is concluded that SOC sequestered in NT systems is likely to be stabilized over the long term.
Collapse
Affiliation(s)
- Zheng-Rong Kan
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Wen-Xuan Liu
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Wen-Sheng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Yash Pal Dang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Xin Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Hai-Lin Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| |
Collapse
|
58
|
Jiang Y, Qin X, Zhu F, Zhang Y, Zhang X, Hartley W, Xue S. Halving Gypsum Dose by Penicillium Oxalicum on Alkaline Neutralization and Microbial Community Reconstruction in Bauxite Residue. SSRN ELECTRONIC JOURNAL 2022. [DOI: 10.2139/ssrn.4106099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
59
|
Zhang S, Fang Y, Luo Y, Li Y, Ge T, Wang Y, Wang H, Yu B, Song X, Chen J, Zhou J, Li Y, Chang SX. Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149717. [PMID: 34425443 DOI: 10.1016/j.scitotenv.2021.149717] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Despite fresh and pyrogenic organic matter have been widely used as amendments to improve soil organic carbon (SOC) storage, mineralization that links to C quality and soil temperature, microbial community composition and enzyme activity remain poorly understood. This study aims to explore the effects of amendments (bamboo leaves and its biochar) and incubation temperature on mineralization, and disentangle the relationships of SOC mineralization with chemical composition of SOC, labile organic C, microbial community composition, and activities of enzymes in a subtropical bamboo forest soil. Results showed that cumulative soil CO2 emissions ranked as bamboo leaf (Leaf) > bamboo leaf biochar (Biochar) > Control, regardless of the incubation temperature. Compared to the control, the Leaf treatment markedly increased, whereas the Biochar treatment decreased, the temperature sensitivity of SOC mineralization (P < 0.05). The cumulative soil CO2 emission was positively correlated (P < 0.05) with water-soluble organic C (WSOC), microbial biomass C (MBC), O-alkyl C and alkyl C contents, and activities of β-glucosidase and dehydrogenase, but negatively correlated (P < 0.01) with aromatic C content, regardless of the incubation temperature. This indicated that the lower SOC mineralization rate and lower temperature sensitivity in the Biochar (cf. Leaf) treatment were intimately associated with the lower WSOC, MBC, O-alkyl C content, and β-glucosidase and dehydrogenase activities, and higher aromatic C content in the Biochar. The high relative abundance of bacteria relating SOC mineralization included Rhizobiales, Sphingobacteriales and JG30-KF-AS9, whereas that of fungi included Eurotiales, Sordariales, Agaricales and Helotiales. Our results revealed that the application of pyrogenic organic matter, as compared to the application of fresh organic matter, can reduce SOC mineralization and its temperature sensitivity in a subtropical forest soil by limiting the availability of C and microbial activity, and thus has a great potential for maintaining soil carbon stock in subtropical forest ecosystems.
Collapse
Affiliation(s)
- Shaobo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunying Fang
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Yu Luo
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yongchun Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Yixiang Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Bing Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Junhui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiashu Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| |
Collapse
|
60
|
Hicks LC, Frey B, Kjøller R, Lukac M, Moora M, Weedon JT, Rousk J. Toward a function-first framework to make soil microbial ecology predictive. Ecology 2021; 103:e03594. [PMID: 34807459 DOI: 10.1002/ecy.3594] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/27/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023]
Abstract
Soil microbial communities perform vital ecosystem functions, such as the decomposition of organic matter to provide plant nutrition. However, despite the functional importance of soil microorganisms, attribution of ecosystem function to particular constituents of the microbial community has been impeded by a lack of information linking microbial function to community composition and structure. Here, we propose a function-first framework to predict how microbial communities influence ecosystem functions. We first view the microbial community associated with a specific function as a whole and describe the dependence of microbial functions on environmental factors (e.g., the intrinsic temperature dependence of bacterial growth rates). This step defines the aggregate functional response curve of the community. Second, the contribution of the whole community to ecosystem function can be predicted, by combining the functional response curve with current environmental conditions. Functional response curves can then be linked with taxonomic data in order to identify sets of "biomarker" taxa that signal how microbial communities regulate ecosystem functions. Ultimately, such indicator taxa may be used as a diagnostic tool, enabling predictions of ecosystem function from community composition. In this paper, we provide three examples to illustrate the proposed framework, whereby the dependence of bacterial growth on environmental factors, including temperature, pH, and salinity, is defined as the functional response curve used to interlink soil bacterial community structure and function. Applying this framework will make it possible to predict ecosystem functions directly from microbial community composition.
Collapse
Affiliation(s)
- Lettice C Hicks
- Section of Microbial Ecology, Department of Biology, Lund University, Ecology Building, Lund, 22362, Sweden
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Rasmus Kjøller
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, Copenhagen, 2100, Denmark
| | - Martin Lukac
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, United Kingdom.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 16500, Czech Republic
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - James T Weedon
- Systems Ecology, Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Johannes Rousk
- Section of Microbial Ecology, Department of Biology, Lund University, Ecology Building, Lund, 22362, Sweden
| |
Collapse
|
61
|
Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME JOURNAL 2021; 16:272-283. [PMID: 34316016 PMCID: PMC8692354 DOI: 10.1038/s41396-021-01064-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/04/2023]
Abstract
Nitrification, the oxidation of ammonia to nitrate, is an essential process in the biogeochemical nitrogen cycle. The first step of nitrification, ammonia oxidation, is performed by three, often co-occurring guilds of chemolithoautotrophs: ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox). Substrate kinetics are considered to be a major niche-differentiating factor between these guilds, but few AOA strains have been kinetically characterized. Here, the ammonia oxidation kinetic properties of 12 AOA representing all major cultivated phylogenetic lineages were determined using microrespirometry. Members of the genus Nitrosocosmicus have the lowest affinity for both ammonia and total ammonium of any characterized AOA, and these values are similar to previously determined ammonia and total ammonium affinities of AOB. This contrasts previous assumptions that all AOA possess much higher substrate affinities than their comammox or AOB counterparts. The substrate affinity of ammonia oxidizers correlated with their cell surface area to volume ratios. In addition, kinetic measurements across a range of pH values supports the hypothesis that—like for AOB—ammonia and not ammonium is the substrate for the ammonia monooxygenase enzyme of AOA and comammox. Together, these data will facilitate predictions and interpretation of ammonia oxidizer community structures and provide a robust basis for establishing testable hypotheses on competition between AOB, AOA, and comammox.
Collapse
|