51
|
Fan L, Wang J, Ma C. Pretreatment of bone mesenchymal stem cells with miR181-c facilitates craniofacial defect reconstruction via activating AMPK-Mfn1 signaling pathways. J Recept Signal Transduct Res 2019; 39:199-207. [PMID: 31466503 DOI: 10.1080/10799893.2019.1652649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Context: Bone mesenchymal stem cells (BMSC)-based regenerative therapy is critical for the craniofacial defect reconstruction. However, oxidative stress micro-environment after transplantation limits the therapeutic efficiency of BMSC. The miR-181c has been found to be associated with cell survival and proliferation. Objective: Herein, we investigated whether prior miR-181c treatment promoted BMSC proliferation and survival under oxidative stress injury. Materials and methods: Cells were treated with hydrogen peroxide (H2O2) and then cell viability was determined via MTT assay, TUNEL staining and ELISA. Western blotting and immunofluorescence assay were used to detect those alterations of mitochondrial function. Results: H2O2 treatment reduced BMSC viability and this effect could be reversed via additional supplementation of miR181-c. Mechanistically, oxidative stress increased cell apoptosis, augmented caspase-3 activity, promoted reactive oxygen species (ROS) synthesis, impaired mitochondrial potential, and induced mitochondrial dynamics imbalance. However, miR-181c pretreatment reversed these effects of oxidative stress on BMSC. Moreover, miR-181c treatment improved BMSC proliferation, migration and paracrine, which are very important for craniofacial reconstruction. In addition, we identified that AMPK-Mfn1 axis was the direct targets of miR-181c in BMSC. Mfn1 silencing impaired the protective effects miR-181c on BMSC viability and proliferation under oxidative stress environment. Conclusions: Collectively, our results indicate that miR-181c participates in oxidative stress-mediated BMSC damage by modulating the AMPK-Mfn1 signaling pathway, suggesting miR-181c-AMPK-Mfn1 axis may serves as novel therapeutic targets to facilitate craniofacial defect reconstruction.
Collapse
Affiliation(s)
- Longkun Fan
- Department of Medical Plastic Surgery, Cangzhou Central Hospital , Cangzhou , China
| | - Jingxian Wang
- Department of Medical Plastic Surgery, Cangzhou Central Hospital , Cangzhou , China
| | - Chao Ma
- Department of Medical Plastic Surgery, Cangzhou Central Hospital , Cangzhou , China
| |
Collapse
|
52
|
Song X, Li T. Ripk3 mediates cardiomyocyte necrosis through targeting mitochondria and the JNK-Bnip3 pathway under hypoxia-reoxygenation injury. J Recept Signal Transduct Res 2019; 39:331-340. [PMID: 31658855 DOI: 10.1080/10799893.2019.1676259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
Context: Cardiomyocyte necrosis following myocardial infarction drastically the progression of heart failure.Objective: In the current study, we explored the upstream mediator for cardiomyocytes necrosis induced by hypoxia-reoxygenation (HR) injury with a focus on mitochondrial function and JNK-Bnip3 pathway.Materials and methods: Cell necrosis was determined via MTT assay, TUNEL staining and PI staining. siRNA transfection was performed to inhibit Ripk3 activation in response to HR injury. Pathway blocker was applied to prevent JNK activation.Results: Ripk3 was rapidly increased in HR-treated cardiomyocytes and correlated with the necrosis of cardiomyocytes. Interestingly, silencing of Ripk3 attenuated HR-mediated cardiomyocytes necrosis. At the molecular levels, Ripk3 deletion sustained mitochondrial bioenergetics and stabilized mitochondrial glucose metabolism. Besides, Ripk3 deletion also reduced mitochondrial oxidative stress and inhibited mPTP opening. To the end, we found Ripk3 activation was along with JNK pathway activation and Bnip3 upregulation. Interestingly, blockade of JNK pathway abolished the harmful effects of HR injury on mitochondrial function, energy metabolism and redox balance. Moreover, overexpression of Bnip3 abrogated the protection action played by Ripk3 deletion on cardiomyocytes survival.Conclusions: Taken together, these data may identify Ripk3 upregulation, mitochondrial dysfunction and JNK-Bnip3 axis activation as the novel mechanisms underlying cardiomyocytes necrosis achieved by HR injury. Thereby, approaches targeted to the Ripk3-JNK-Bnip3-mitochondria cascade have the potential to ameliorate the progression of HR-related cardiomyocytes necrosis in the clinical practice.
Collapse
Affiliation(s)
- Xinyu Song
- Department of Cardiology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Tianchang Li
- Department of Cardiology, Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
53
|
Haploinsufficiency of GCP4 induces autophagy and leads to photoreceptor degeneration due to defective spindle assembly in retina. Cell Death Differ 2019; 27:556-572. [PMID: 31209365 PMCID: PMC7206048 DOI: 10.1038/s41418-019-0371-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023] Open
Abstract
Retinopathy, owing to damage to the retina, often causes vision impairment, and the underlying molecular mechanisms are largely unknown. Using a gene targeting strategy, we generated mice with the essential gene Tubgcp4 knocked out. Homozygous mutation of Tubgcp4 resulted in early embryonic lethality due to abnormal spindle assembly caused by GCP4 (gamma-tubulin complex protein 4, encoded by Tubgcp4) depletion. Heterozygotes were viable through dosage compensation of one wild-type allele. However, haploinsufficiency of GCP4 affected the assembly of γ-TuRCs (γ-tubulin ring complexes) and disrupted autophagy homeostasis in retina, thus leading to photoreceptor degeneration and retinopathy. Notably, GCP4 exerted autophagy inhibition by competing with ATG3 for interaction with ATG7, thus interfering with lipidation of LC3B. Our findings justify dosage effects of essential genes that compensate for null alleles in viability of mutant mice and uncover dosage-dependent roles of GCP4 in embryo development and retinal homeostasis. These data have also clinical implications in genetic counseling on embryonic lethality and in development of potential therapeutic targets associated with retinopathy.
Collapse
|
54
|
Xie X, Bi HL, Lai S, Zhang YL, Li N, Cao HJ, Han L, Wang HX, Li HH. The immunoproteasome catalytic β5i subunit regulates cardiac hypertrophy by targeting the autophagy protein ATG5 for degradation. SCIENCE ADVANCES 2019; 5:eaau0495. [PMID: 31086810 PMCID: PMC6506244 DOI: 10.1126/sciadv.aau0495] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/25/2019] [Indexed: 05/03/2023]
Abstract
Pathological cardiac hypertrophy eventually leads to heart failure without adequate treatment. The immunoproteasome is an inducible form of the proteasome that is intimately involved in inflammatory diseases. Here, we found that the expression and activity of immunoproteasome catalytic subunit β5i were significantly up-regulated in angiotensin II (Ang II)-treated cardiomyocytes and in the hypertrophic hearts. Knockout of β5i in cardiomyocytes and mice markedly attenuated the hypertrophic response, and this effect was aggravated by β5i overexpression in cardiomyocytes and transgenic mice. Mechanistically, β5i interacted with and promoted ATG5 degradation thereby leading to inhibition of autophagy and cardiac hypertrophy. Further, knockdown of ATG5 or inhibition of autophagy reversed the β5i knockout-mediated reduction of cardiomyocyte hypertrophy induced by Ang II or pressure overload. Together, this study identifies a novel role for β5i in the regulation of cardiac hypertrophy. The inhibition of β5i activity may provide a new therapeutic approach for hypertrophic diseases.
Collapse
Affiliation(s)
- Xin Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hai-Lian Bi
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Song Lai
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yun-Long Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Nan Li
- Department of Physiology and Physiopathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100038, China
| | - Hua-Jun Cao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Ling Han
- Department of Cardiology, Fuxing Hospital of the Capital Medical University, Beijing 100038, China
| | - Hong-Xia Wang
- Department of Physiology and Physiopathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100038, China
- Corresponding author. (H.-H.L.); (H.-X.W.)
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
- Corresponding author. (H.-H.L.); (H.-X.W.)
| |
Collapse
|
55
|
Huang S, Lin Y, Liang Z, Wu Z, Chen Y, Chen C. Erythropoietin helix B surface peptide modulates miR-21/Atg12 axis to alleviates cardiomyocyte hypoxia-reoxygenation injury. Am J Transl Res 2019; 11:2422-2430. [PMID: 31105848 PMCID: PMC6511769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The erythropoietin helix B surface peptide (HBSP) has been shown to have neuroprotective and repair-damaging myocardium effects similar to erythropoietin (EPO). However, the protective mechanism of HBSP on cardiomyocyte hypoxia-reoxygenation (H/R) injury is not clear. METHODS H9C2 cells were pretreated with HBSP and subjected to hypoxia/reoxygenation (H/R), changes in cell function, autophagy and apoptosis were assessed, respectively. Cells were transfected with miR-21 mimic and miR-NC, and the relative expression of miR-21 and Atg12 were detected by qRT-PCR. The target role of miR-21 and Atg12 was evaluated by dual-luciferase reporter. After transfected with si-Atg12 and si-NC, western blot was used to assess autophagy and apoptosis proteins, flow cytometry assay was used to detect apoptosis rate. RESULTS We found the expression of miR-21 was significantly down-regulated, accompanied by remarkably activated of autophagy and apoptosis in H9C2 cells during H/R injury. Pleasantly, HBSP pretreatment has a similar effect as transfection of miR-21 mimic, which is to evidently inhibit autophagy and apoptosis by up-regulating miR-21 expression. Moreover, Bioinformatics analysis and luciferase reporter assay revealed that Atg12 was directly bond to miR-21. To further understand whether Atg12 is involved in the process of miR-21 regulating autophagy, si-Atg12 and si-NC were transfected into H9C2 cell, the results showed that knockdown of Atg12 enhances the inhibition autophagy and apoptosis effect of HBSP. CONCLUSION These results demonstrate that HBSP inhibits myocardial H/R injury induced by autophagy over-activation and apoptosis via miR-21/Atg12 axis.
Collapse
Affiliation(s)
- Song Huang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Yongluan Lin
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Zhanbo Liang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Zhuomin Wu
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Yequn Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Chang Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| |
Collapse
|
56
|
Wei F, Duan Y. Crosstalk between Autophagy and Nanomaterials: Internalization, Activation, Termination. ACTA ACUST UNITED AC 2018; 3:e1800259. [PMID: 32627344 DOI: 10.1002/adbi.201800259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/02/2018] [Indexed: 12/12/2022]
Abstract
Nanomaterials (NMs) are comprehensively applied in biomedicine due to their unique physical and chemical properties. Autophagy, as an evolutionarily conserved cellular quality control process, is closely associated with the effect of NMs on cells. In this review, the recent advances in NM-induced/inhibited autophagy (NM-phagy) are summarized, with an aim to present a comprehensive description of the mechanisms of NM-phagy from the perspective of internalization, activation, and termination, thereby bridging autophagy and nanomaterials. Several possible mechanisms are extensively reviewed including the endocytosis pathway of NMs and the related cross components (clathrin and adaptor protein 2 (AP-2), adenosine diphosphate (ADP)-ribosylation factor 6 (Arf6), Rab, UV radiation resistance associated gene (UVRAG)), three main stress mechanisms (oxidative stress, damaged organelles stress, and toxicity stress), and several signal pathway-related molecules. The mechanistic insight is beneficial to understand the autophagic response to NMs or NMs' regulation of autophagy. The challenges currently encountered and research trend in the field of NM-phagy are also highlighted. It is hoped that the NM-phagy discussion in this review with the focus on the mechanistic aspects may serve as a guideline for future research in this field.
Collapse
Affiliation(s)
- Fujing Wei
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-enviroment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P. R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-enviroment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P. R. China
| |
Collapse
|
57
|
Cho SH, Kuo IY, Lu PJF, Tzeng HT, Lai WW, Su WC, Wang YC. Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness. Cell Death Dis 2018; 9:868. [PMID: 30158579 PMCID: PMC6115395 DOI: 10.1038/s41419-018-0915-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
Recent studies have revealed that dysregulated Rab small GTPase-mediated vesicle trafficking pathways are associated with cancer progression. However, whether any of the Rabs plays a suppressor role in cancer stemness is least explored. Rab37 has been postulated as a tumor suppressive small GTPase for trafficking anti-tumor cargos. Here, we report a previously uncharacterized mechanism by which Rab37 mediates exocytosis of secreted frizzled-related protein-1 (SFRP1), an extracellular antagonist of Wnt, to suppress Wnt signaling and cancer stemness in vitro and in vivo. Reconstitution experiments indicate that SFRP1 secretion is crucial for Rab37-mediated cancer stemness suppression and treatment with SRPP1 recombinant protein reduces xenograft tumor initiation ability. Clinical results confirm that concordantly low Rab37, low SFRP1, and high Oct4 stemness protein expression profile can be used as a biomarker to predict poor prognosis in lung cancer patients. Our findings reveal that Rab37-mediated SFRP1 secretion suppresses cancer stemness, and dysregulated Rab37-SFRP1 pathway confers cancer stemness via the activation of Wnt signaling. Rab37-SFRP1-Wnt axis could be a potential therapeutic target for attenuating lung cancer stemness.
Collapse
Affiliation(s)
- Shu-Huei Cho
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Pei-Jung Frank Lu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Hong-Tai Tzeng
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Wu-Wei Lai
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Wu-Chou Su
- Division of Oncology, Department of Internal Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan.
| |
Collapse
|
58
|
Rab GTPases in Osteoclastic Endomembrane Systems. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4541538. [PMID: 30186859 PMCID: PMC6114073 DOI: 10.1155/2018/4541538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
Osteoclasts (OCs) are bone-resorbing cells that maintain bone homeostasis. OC differentiation, survival, and activity are regulated by numerous small GTPases, including those of the Rab family, which are involved in plasma membrane delivery and lysosomal and autophagic degradation pathways. In resorbing OCs, polarized vesicular trafficking pathways also result in formation of the ruffled membrane, the resorbing organelle, and in transcytosis.
Collapse
|