51
|
Lin ZW, Zheng JX, Bai B, Xu GJ, Lin FJ, Chen Z, Sun X, Qu D, Yu ZJ, Deng QW. Characteristics of Hypervirulent Klebsiella pneumoniae: Does Low Expression of rmpA Contribute to the Absence of Hypervirulence? Front Microbiol 2020; 11:436. [PMID: 32256482 PMCID: PMC7090111 DOI: 10.3389/fmicb.2020.00436] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) has been increasingly reported and is now recognized as a significant threat to public health; however, characterization of MDR-hvKP has not been systematically investigated. In the present study, 124 of 428 (28.92%) K. pneumoniae clinical isolates collected from January 2010 to December 2016 were identified with aerobactin and defined as hvKP; these included 94 non-MDR-KP, 20 extended-spectrum β-lactamase-producing K. pneumoniae (ESBL-KP), and 10 carbapenem-resistant K. pneumoniae (CR-KP) isolates. The remaining 304 isolates without presence of virulence factor aerobactin were defined as classic K. pneumoniae (cKP). The antimicrobial resistance rate of cKP was significantly higher than that of the hvKP isolates in the non-MDR-KP group, but showed no significant differences in the ESBL-KP and CR-KP groups. The detection frequencies of capsular serotype K1 (magA), hypermucoviscosity, sequence type 23 (ST23), and the virulence gene rmpA were significantly higher in the hvKP than cKP isolates in all three groups (P < 0.05). Most of the hypervirulent ESBL-KP and CR-KP isolates were K non-typeable (16/30) and harbored at least one gene for virulence (26/30). The hypervirulent ESBL-KP isolates primarily carried blaCTX–M (12/20, 60%) genes, and the hypervirulent CR-KP isolates mainly carried blaNDM–1 (8/10, 80%) genes. Moreover, three hypervirulent ESBL-KP and two hypervirulent CR-KP isolates showed resistance to tigecycline but were sensitive to colistin. The transcriptional levels of rmpA in cKP were much lower than that in hvKP isolates in all three groups. Furthermore, overexpression of rmpA in the rmpA-low-expression cKP isolates could enhance bacterial virulence in the mouse infection experiment. In conclusion, our data suggest that the capsular serotype K1 (magA), rmpA, hypermucoviscosity, and ST23 were strongly associated with hvKP in non-MDR-KP, ESBL-KP, and CR-KP groups, and low rmpA expression levels contributed to the absence of hypervirulent phenotype.
Collapse
Affiliation(s)
- Zhi-Wei Lin
- Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jin-Xin Zheng
- Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Bing Bai
- Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Guang-Jian Xu
- Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Fo-Jun Lin
- Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Zhong Chen
- Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiang Sun
- Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhi-Jian Yu
- Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Qi-Wen Deng
- Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
52
|
Chen Y, Marimuthu K, Teo J, Venkatachalam I, Cherng BPZ, De Wang L, Prakki SRS, Xu W, Tan YH, Nguyen LC, Koh TH, Ng OT, Gan YH. Acquisition of Plasmid with Carbapenem-Resistance Gene bla KPC2 in Hypervirulent Klebsiella pneumoniae, Singapore. Emerg Infect Dis 2020; 26:549-559. [PMID: 32091354 PMCID: PMC7045839 DOI: 10.3201/eid2603.191230] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The convergence of carbapenem-resistance and hypervirulence genes in Klebsiella pneumoniae has led to the emergence of highly drug-resistant superbugs capable of causing invasive disease. We analyzed 556 carbapenem-resistant K. pneumoniae isolates from patients in Singapore hospitals during 2010-2015 and discovered 18 isolates from 7 patients also harbored hypervirulence features. All isolates contained a closely related plasmid (pKPC2) harboring blaKPC-2, a K. pneumoniae carbapenemase gene, and had a hypervirulent background of capsular serotypes K1, K2, and K20. In total, 5 of 7 first patient isolates were hypermucoviscous, and 6 were virulent in mice. The pKPC2 was highly transmissible and remarkably stable, maintained in bacteria within a patient with few changes for months in the absence of antimicrobial drug selection pressure. Intrapatient isolates were also able to acquire additional antimicrobial drug resistance genes when inside human bodies. Our results highlight the potential spread of carbapenem-resistant hypervirulent K. pneumoniae in Singapore.
Collapse
|
53
|
Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, Jorgensen SCJ, Rybak MJ. Evaluation of Eravacycline: A Novel Fluorocycline. Pharmacotherapy 2020; 40:221-238. [PMID: 31944332 DOI: 10.1002/phar.2366] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eravacycline (ERV), formerly known as TP-434, is a novel tetracycline (TET) antibiotic that exhibits in vitro activity against various gram-positive, gram-negative aerobic and anaerobic pathogens, including those exhibiting TET-specific acquired resistance mechanisms. Similar to other TETs, it inhibits protein synthesis through binding to the 30S ribosomal subunit. Eravacycline was approved by the United States Food and Drug Administration (FDA) in August 2018 for the treatment of complicated intraabdominal infections (cIAIs) in adults following the Investigating Gram-Negative Infections Treated with Eravacycline (IGNITE)1 and IGNITE4 phase III trials. In these two, double-blind, multicenter clinical trials, ERV was proven noninferior in terms of clinical response in comparison to ertapenem and meropenem, respectively. Eravacycline was well tolerated with nausea, vomiting, and infusion site reactions being the most commonly reported adverse reactions. Clinicians now have ERV as a novel therapeutic option for the treatment of adults with intraabdominal infections, allergies to β-lactam agents, Clostridioides difficile-associated diarrhea, or if tolerability to other agents is a concern.
Collapse
Affiliation(s)
- Sara Alosaimy
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Jacinda C Abdul-Mutakabbir
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Razie Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Sarah C J Jorgensen
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan.,Department of Pharmacy, Detroit Medical Center, Detroit, Michigan.,Division of Infectious Diseases, Department of Medicine, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
54
|
Omadacycline Efficacy against Enterococcus faecalis Isolated in China: In Vitro Activity, Heteroresistance, and Resistance Mechanisms. Antimicrob Agents Chemother 2020; 64:AAC.02097-19. [PMID: 31871086 PMCID: PMC7038293 DOI: 10.1128/aac.02097-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the in vitro antimicrobial activity, heteroresistance emergence, and resistance mechanism of omadacycline (OMC) in clinical Enterococcus faecalis isolates from China. A total of 276 isolates were collected retrospectively in China from 2011 to 2015. The MICs of OMC, doxycycline (DOX), and minocycline (MIN) against E. faecalis were determined by broth microdilution. Tetracycline (TET)-specific resistance genes and multilocus sequence typing (MLST) of the isolates were investigated using PCR. This study aimed to evaluate the in vitro antimicrobial activity, heteroresistance emergence, and resistance mechanism of omadacycline (OMC) in clinical Enterococcus faecalis isolates from China. A total of 276 isolates were collected retrospectively in China from 2011 to 2015. The MICs of OMC, doxycycline (DOX), and minocycline (MIN) against E. faecalis were determined by broth microdilution. Tetracycline (TET)-specific resistance genes and multilocus sequence typing (MLST) of the isolates were investigated using PCR. The detection frequency of OMC heteroresistance in E. faecalis was evaluated with population analysis profiling (PAP). The mechanism of OMC heteroresistance and resistance in E. faecalis was examined by amplifying 30S ribosomal subunit genes, RNA sequencing (RNA-Seq), and in vitro recombination experiments. The OMC MICs of clinical E. faecalis isolates ranged from ≤0.06 to 1.0 mg/liter, and 42% of the E. faecalis isolates with an OMC MIC of 1.0 mg/liter were found to be sequence type 16 (ST16). Six OMC-heteroresistant isolates with MIC values of ≤0.5 mg/liter were detected among 238 E. faecalis isolates. The resistant subpopulations of heteroresistant isolates showed OMC MICs in the range of 2 to 4 mg/liter and were found without 30S ribosomal subunit gene mutations. Moreover, RNA sequencing and in vitro recombination experiments demonstrated that overexpression of a bone morphogenetic protein (BMP) family ATP-binding cassette (ABC) transporter substrate-binding protein, OG1RF_RS00630, facilitated OMC heteroresistance in E. faecalis. In conclusion, OMC exhibited better activity against clinical E. faecalis isolates from China than that of DOX or MIN, and overexpression of OG1RF_RS00630 in E. faecalis facilitated the development of OMC heteroresistance.
Collapse
|
55
|
Kesavan D, Vasudevan A, Wu L, Chen J, Su Z, Wang S, Xu H. Integrative analysis of outer membrane vesicles proteomics and whole-cell transcriptome analysis of eravacycline induced Acinetobacter baumannii strains. BMC Microbiol 2020; 20:31. [PMID: 32046644 PMCID: PMC7014627 DOI: 10.1186/s12866-020-1722-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is a multidrug-resistant (MDR) hazardous bacterium with very high antimicrobial resistance profiles. Outer membrane vesicles (OMVs) help directly and/or indirectly towards antibiotic resistance in these organisms. The present study aims to look on the proteomic profile of OMV as well as on the bacterial transcriptome upon exposure and induction with eravacycline, a new synthetic fluorocycline. RNA sequencing analysis of whole-cell and LC-MS/MS proteomic profiling of OMV proteome abundance were done to identify the differential expression among the eravacycline-induced A. baumannii ATCC 19606 and A. baumannii clinical strain JU0126. RESULTS The differentially expressed genes from the RNA sequencing were analysed using R package and bioinformatics software and tools. Genes encoding drug efflux and membrane transport were upregulated among the DEGs from both ATCC 19606 and JU0126 strains. As evident with the induction of eravacycline resistance, ribosomal proteins were upregulated in both the strains in the transcriptome profiles and also resistance pumps, such as MFS, RND, MATE and ABC transporters. High expression of stress and survival proteins were predominant in the OMVs proteome with ribosomal proteins, chaperons, OMPs OmpA, Omp38 upregulated in ATCC 19606 strain and ribosomal proteins, toluene tolerance protein, siderophore receptor and peptidases in the JU0126 strain. The induction of resistance to eravacycline was supported by the presence of upregulation of ribosomal proteins, resistance-conferring factors and stress proteins in both the strains of A. baumannii ATCC 19606 and JU0126, with the whole-cell gene transcriptome towards both resistance and stress genes while the OMVs proteome enriched more with survival proteins. CONCLUSION The induction of resistance to eravacycline in the strains were evident with the increased expression of ribosomal and transcription related genes/proteins. Apart from this resistance-conferring efflux pumps, outer membrane proteins and stress-related proteins were also an essential part of the upregulated DEGs. However, the expression profiles of OMVs proteome in the study was independent with respect to the whole-cell RNA expression profiles with low to no correlation. This indicates the possible role of OMVs to be more of back-up additional protection to the existing bacterial cell defence during the antibacterial stress.
Collapse
Affiliation(s)
- DineshKumar Kesavan
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Liang Wu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jianguo Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212001, China
| | - Zhaoliang Su
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Huaxi Xu
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, 212013, China. .,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
56
|
Bai B, Lin Z, Pu Z, Xu G, Zhang F, Chen Z, Sun X, Zheng J, Li P, Deng Q, Yu Z. In vitro Activity and Heteroresistance of Omadacycline Against Clinical Staphylococcus aureus Isolates From China Reveal the Impact of Omadacycline Susceptibility by Branched-Chain Amino Acid Transport System II Carrier Protein, Na/Pi Cotransporter Family Protein, and Fibronectin-Binding Protein. Front Microbiol 2019; 10:2546. [PMID: 31787948 PMCID: PMC6856048 DOI: 10.3389/fmicb.2019.02546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Omadacycline (Omad), a new tetracycline (Tet)-class broad-spectrum aminomethylcycline, has been reported to exhibit excellent potency against Gram-positive bacteria, including Staphylococcus aureus and Enterococci. The aim of this study was to evaluate the in vitro activity and heteroresistance characteristics of Omad in clinical S. aureus isolates from China and investigate Omad resistance mechanisms. A sample of 263 non-duplicate clinical S. aureus isolates [127 methicillin-resistant (MRSA) and 136 methicillin-sensitive (MSSA)] were collected retrospectively. Our data indicated that Omad exhibited excellent in vitro activity against both MRSA and MSSA. Omad heteroresistance frequencies were 3.17% (4/126) in MRSA and 12.78% (17/133) in MSSA. No mutations in Tet target sites, (five 16SrRNA copies and 30S ribosomal protein S10) were present in heteroresistance-derived clones, whereas Tet target site mutations contribute to induced Omad resistance in S. aureus in vitro. RNA sequencing (RNA-Seq) revealed that overexpression of branched-chain amino acid transport system II carrier protein and Na/Pi cotransporter family protein contributes to Omad heteroresistance emergence. Whole-genome sequencing demonstrated that the genetic mutation of fibronectin-binding protein (FnBP) could increase the Omad MIC. In conclusion, Omad heteroresistance risk should be considered in clinical isolates with MICs ≥ 0.5 mg/L and Omad susceptibility in S. aureus may be affected by efflux pump proteins (i.e., a branched-chain amino acid transport system II carrier protein and an Na/Pi cotransporter family protein), and FnBP.
Collapse
Affiliation(s)
- Bing Bai
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, China
| | - Zhangya Pu
- Key Laboratory of Viral Hepatitis of Hunan Province, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Guangjian Xu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, China
| | - Fan Zhang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, China
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, China
| | - Xiang Sun
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
57
|
Yu X, Zhang W, Zhao Z, Ye C, Zhou S, Wu S, Han L, Han Z, Ye H. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae isolates with focus on antimicrobial resistance. BMC Genomics 2019; 20:822. [PMID: 31699025 PMCID: PMC6839148 DOI: 10.1186/s12864-019-6225-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 01/02/2023] Open
Abstract
Background The enhancing incidence of carbapenem-resistant Klebsiella pneumoniae (CRKP)-mediated infections in Mengchao Hepatobiliary Hospital of Fujian Medical University in 2017 is the motivation behind this investigation to study gene phenotypes and resistance-associated genes of emergence regarding the CRKP strains. In current study, seven inpatients are enrolled in the hospital with complete treatments. The carbapenem-resistant K. pneumoniae whole genome is sequenced using MiSeq short-read and Oxford Nanopore long-read sequencing technology. Prophages are identified to assess genetic diversity within CRKP genomes. Results The investigation encompassed eight CRKP strains that collected from the patients enrolled as well as the environment, which illustrate that blaKPC-2 is responsible for phenotypic resistance in six CRKP strains that K. pneumoniae sequence type (ST11) is informed. The plasmid with IncR, ColRNAI and pMLST type with IncF[F33:A-:B-] co-exist in all ST11 with KPC-2-producing CRKP strains. Along with carbapenemases, all K. pneumoniae strains harbor two or three extended spectrum β-lactamase (ESBL)-producing genes. fosA gene is detected amongst all the CRKP strains. The single nucleotide polymorphisms (SNP) markers are indicated and validated among all CRKP strains, providing valuable clues for distinguishing carbapenem-resistant strains from conventional K. pneumoniae. Conclusions ST11 is the main CRKP type, and blaKPC-2 is the dominant carbapenemase gene harbored by clinical CRKP isolates from current investigations. The SNP markers detected would be helpful for characterizing CRKP strain from general K. pneumoniae. The data provides insights into effective strategy developments for controlling CRKP and nosocomial infection reductions.
Collapse
Affiliation(s)
- Xiaoling Yu
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian, People's Republic of China
| | - Wen Zhang
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zhiping Zhao
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian, People's Republic of China
| | - Chengsong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian, People's Republic of China
| | - Shuyan Zhou
- Department of Microbiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian, People's Republic of China
| | - Shaogui Wu
- Department of Microbiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian, People's Republic of China
| | - Lifen Han
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian, People's Republic of China
| | - Zhaofang Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China. .,Xiamen Cingene Science and Technology co., LTD, Xiamen, 361021, Fujian, People's Republic of China.
| | - Hanhui Ye
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian, People's Republic of China.
| |
Collapse
|
58
|
The race between drug introduction and appearance of microbial resistance. Current balance and alternative approaches. Curr Opin Pharmacol 2019; 48:48-56. [DOI: 10.1016/j.coph.2019.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022]
|
59
|
Petrosillo N, Taglietti F, Granata G. Treatment Options for Colistin Resistant Klebsiella pneumoniae: Present and Future. J Clin Med 2019; 8:E934. [PMID: 31261755 PMCID: PMC6678465 DOI: 10.3390/jcm8070934] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/01/2019] [Accepted: 06/25/2019] [Indexed: 01/17/2023] Open
Abstract
Multidrug-resistant (MDR) Klebsiella pneumoniae represents an increasing threat to human health, causing difficult-to-treat infections with a high mortality rate. Since colistin is one of the few treatment options for carbapenem-resistant K. pneumoniae infections, colistin resistance represents a challenge due to the limited range of potentially available effective antimicrobials, including tigecycline, gentamicin, fosfomycin and ceftazidime/avibactam. Moreover, the choice of these antimicrobials depends on their pharmacokinetics/pharmacodynamics properties, the site of infection and the susceptibility profile of the isolated strain, and is sometimes hampered by side effects. This review describes the features of colistin resistance in K. pneumoniae and the characteristics of the currently available antimicrobials for colistin-resistant MDR K. pneumoniae, as well as the characteristics of novel antimicrobial options, such as the soon-to-be commercially available plazomicin and cefiderocol. Finally, we consider the future use of innovative therapeutic strategies in development, including bacteriophages therapy and monoclonal antibodies.
Collapse
Affiliation(s)
- Nicola Petrosillo
- Systemic and Immunocompromised Host Infection Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS-Via Portuense, 292 00149 Rome, Italy.
| | - Fabrizio Taglietti
- Systemic and Immunocompromised Host Infection Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS-Via Portuense, 292 00149 Rome, Italy.
| | - Guido Granata
- Systemic and Immunocompromised Host Infection Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS-Via Portuense, 292 00149 Rome, Italy.
| |
Collapse
|
60
|
Voulgaris GL, Voulgari ML, Falagas ME. Developments on antibiotics for multidrug resistant bacterial Gram-negative infections. Expert Rev Anti Infect Ther 2019; 17:387-401. [PMID: 31006284 DOI: 10.1080/14787210.2019.1610392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Introduction: The constantly increasing spread of severe infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB) is a critical threat to the global medical community. After a long period of antibiotic pipeline pause, new antibiotic compounds are commercially available or are at late stages of clinical evaluation, promising to augment the therapeutic armamentarium of clinicians against deadly pathogens. Areas covered: This review summarizes available data regarding agents with potent activity against critical MDR Gram-negative pathogens, which urgently require new efficient antibiotics. Recently approved antibiotic formulations; and agents in advanced stages of development, including combinations of β-lactam/β-lactamase inhibitor, novel cephalosporins (cefiderocol), tetracyclines (eravacycline), aminoglycosides (plazomicin), quinolones (delafloxacin and finafloxacin) and pleuromutilins (lefamulin) are discussed in this review. Expert opinion: The recent introduction of new antibiotics into clinical practice is an encouraging step after a long period of pipeline stagnation. New formulations will be a useful option for clinicians to treat serious infections caused by several MDR Gram-negative pathogens. However, most of the new compounds are based on modifications of traditional antibiotic structures challenging their longevity as therapeutic options. More investment is needed for the discovery and clinical development of truly innovative and effective antibiotics without cross-resistance to currently used antibiotics.
Collapse
Affiliation(s)
- Georgios L Voulgaris
- a Alfa Institute of Biomedical Sciences , Athens , Greece.,b Laboratory of Pharmacokinetics and Toxicology , Department of Pharmacy, 401 General Military Hospital , Athens , Greece
| | - Maria L Voulgari
- a Alfa Institute of Biomedical Sciences , Athens , Greece.,c Department of Internal Medicine , Hospital Neuwittelsbach of the Sisters of Mercy , Munich , Germany
| | - Matthew E Falagas
- a Alfa Institute of Biomedical Sciences , Athens , Greece.,d Department of Medicine , Henry Dunant Hospital Center , Athens , Greece.,e Department of Medicine , Tufts University School of Medicine , Boston , MA , USA
| |
Collapse
|