51
|
Nikolaou KC, Vatandaslar H, Meyer C, Schmid MW, Tuschl T, Stoffel M. The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. Cell Rep 2020; 29:283-300.e8. [PMID: 31597092 DOI: 10.1016/j.celrep.2019.08.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
The regulation of hepatic gene expression has been extensively studied at the transcriptional level; however, the control of metabolism through posttranscriptional gene regulation by RNA-binding proteins in physiological and disease states is less understood. Here, we report a major role for the hormone-sensitive RNA-binding protein (RBP) APOBEC1 complementation factor (A1CF) in the generation of hepatocyte-specific and alternatively spliced transcripts. Among these transcripts are isoforms for the dominant and high-affinity fructose-metabolizing ketohexokinase C and glycerol kinase, two key metabolic enzymes that are linked to hepatic gluconeogenesis and found to be markedly reduced upon hepatic ablation of A1cf. Consequently, mice lacking A1CF exhibit improved glucose tolerance and are protected from fructose-induced hyperglycemia, hepatic steatosis, and development of obesity. Our results identify a previously unreported function of A1CF as a regulator of alternative splicing of a subset of genes influencing hepatic glucose production through fructose and glycerol metabolism.
Collapse
Affiliation(s)
- Kostas C Nikolaou
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
52
|
Kew C, Huang W, Fischer J, Ganesan R, Robinson N, Antebi A. Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. eLife 2020; 9:57591. [PMID: 32538777 PMCID: PMC7332298 DOI: 10.7554/elife.57591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/14/2020] [Indexed: 12/25/2022] Open
Abstract
Splicing is a vital cellular process that modulates important aspects of animal physiology, yet roles in regulating innate immunity are relatively unexplored. From genetic screens in C. elegans, we identified splicing factor RNP-6/PUF60 whose activity suppresses immunity, but promotes longevity, suggesting a tradeoff between these processes. Bacterial pathogen exposure affects gene expression and splicing in a rnp-6 dependent manner, and rnp-6 gain and loss-of-function activities reveal an active role in immune regulation. Another longevity promoting splicing factor, SFA-1, similarly exerts an immuno-suppressive effect, working downstream or parallel to RNP-6. RNP-6 acts through TIR-1/PMK-1/MAPK signaling to modulate immunity. The mammalian homolog, PUF60, also displays anti-inflammatory properties, and its levels swiftly decrease after bacterial infection in mammalian cells, implying a role in the host response. Altogether our findings demonstrate an evolutionarily conserved modulation of immunity by specific components of the splicing machinery.
Collapse
Affiliation(s)
- Chun Kew
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Julia Fischer
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Division of Infectious Diseases, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Raja Ganesan
- Cellular-Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Nirmal Robinson
- Cellular-Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
53
|
Kiss T, Tarantini S, Csipo T, Balasubramanian P, Nyúl-Tóth Á, Yabluchanskiy A, Wren JD, Garman L, Huffman DM, Csiszar A, Ungvari Z. Circulating anti-geronic factors from heterochonic parabionts promote vascular rejuvenation in aged mice: transcriptional footprint of mitochondrial protection, attenuation of oxidative stress, and rescue of endothelial function by young blood. GeroScience 2020; 42:727-748. [PMID: 32172434 PMCID: PMC7205954 DOI: 10.1007/s11357-020-00180-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Aging-induced functional and phenotypic alterations of the vasculature (e.g., endothelial dysfunction, oxidative stress) have a central role in morbidity and mortality of older adults. It has become apparent in recent years that cell autonomous mechanisms alone are inadequate to explain all aspects of vascular aging. The present study was designed to test the hypothesis that age-related changes in circulating anti-geronic factors contribute to the regulation of vascular aging processes in a non-cell autonomous manner. To test this hypothesis, through heterochronic parabiosis we determined the extent, if any, to which endothelial function, vascular production of ROS, and shifts in the vascular transcriptome (RNA-seq) are modulated by the systemic environment. We found that in aortas isolated from isochronic parabiont aged (20-month-old) C57BL/6 mice [A-(A); parabiosis for 8 weeks] acetylcholine-induced endothelium-dependent relaxation was impaired and ROS production (dihydroethidium fluorescence) was increased as compared with those in aortas from young isochronic parabiont (6-month-old) mice [Y-(Y)]. The presence of young blood derived from young parabionts significantly improved endothelium-dependent vasorelaxation and attenuated ROS production in vessels of heterochronic parabiont aged [A-(Y)] mice. In aortas derived from heterochronic parabiont young [Y-(A)] mice, acetylcholine-induced relaxation and ROS production were comparable with those in aortas derived from Y-(Y) mice. Using RNA-seq we assessed transcriptomic changes in the aortic arch associated with aging and heterochronic parabiosis. We identified 347 differentially expressed genes in A-(A) animals compared with Y-(Y) controls. We have identified 212 discordant genes, whose expression levels differed in the aged phenotype, but have shifted back toward the young phenotype by the presence of young blood in aged A-(Y) animals. Pathway analysis shows that vascular protective effects mediated by young blood-regulated genes include mitochondrial rejuvenation. In conclusion, a relatively short-term exposure to young blood can rescue vascular aging phenotypes, including attenuation of oxidative stress, mitochondrial rejuvenation, and improved endothelial function. Our findings provide additional evidence supporting the significant plasticity of vascular aging and evidence for the existence of anti-geronic factors capable of exerting rejuvenating effects on the aging vasculature.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Department of Cardiology, Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Jonathan D. Wren
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK USA
| | - Derek M. Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
54
|
Cohen-Berkman M, Dudkevich R, Ben-Hamo S, Fishman A, Salzberg Y, Waldman Ben-Asher H, Lamm AT, Henis-Korenblit S. Endogenous siRNAs promote proteostasis and longevity in germline-less Caenorhabditis elegans. eLife 2020; 9:e50896. [PMID: 32213289 PMCID: PMC7136021 DOI: 10.7554/elife.50896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
How lifespan and the rate of aging are set is a key problem in biology. Small RNAs are conserved molecules that impact diverse biological processes through the control of gene expression. However, in contrast to miRNAs, the role of endo-siRNAs in aging remains unexplored. Here, by combining deep sequencing and genomic and genetic approaches in Caenorhabditis elegans, we reveal an unprecedented role for endo-siRNA molecules in the maintenance of proteostasis and lifespan extension in germline-less animals. Furthermore, we identify an endo-siRNA-regulated tyrosine phosphatase, which limits the longevity of germline-less animals by restricting the activity of the heat shock transcription factor HSF-1. Altogether, our findings point to endo-siRNAs as a link between germline removal and the HSF-1 proteostasis and longevity-promoting somatic pathway. This establishes a role for endo siRNAs in the aging process and identifies downstream genes and physiological processes that are regulated by the endo siRNAs to affect longevity.
Collapse
Affiliation(s)
- Moran Cohen-Berkman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Reut Dudkevich
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Shani Ben-Hamo
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Alla Fishman
- Faculty of Biology, Technion-Israel Institute of Technology, Technion CityHaifaIsrael
| | - Yehuda Salzberg
- Department of Neurobiology, Weizmann Institute of ScienceRehovotIsrael
| | | | - Ayelet T Lamm
- Faculty of Biology, Technion-Israel Institute of Technology, Technion CityHaifaIsrael
| | - Sivan Henis-Korenblit
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| |
Collapse
|
55
|
Song H, Wang L, Chen D, Li F. The Function of Pre-mRNA Alternative Splicing in Mammal Spermatogenesis. Int J Biol Sci 2020; 16:38-48. [PMID: 31892844 PMCID: PMC6930371 DOI: 10.7150/ijbs.34422] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Alternative pre-mRNA splicing plays important roles in co-transcriptional and post-transcriptional regulation of gene expression functioned during many developmental processes, such as spermatogenesis. The studies focusing on alternative splicing on spermatogenesis supported the notion that the development of testis is regulated by a higher level of alternative splicing than other tissues. Here, we aim to review the mechanisms underlying alternative splicing, particularly the splicing variants functioned in the process of spermatogenesis and the male infertility. There are five points regarding the alternative splicing including ⅰ) a brief introduction of alternative pre-mRNA splicing; ⅱ) the alternative splicing events in spermatogenesis-associated genes enriched in different stages of spermatogenesis; ⅲ) the mechanisms of alternative splicing regulation, such as splicing factors and m6A demethylation; ⅳ) the splice site recognition and alternative splicing, including the production and degradation of abnormal transcripts caused by gene variations and nonsense-mediated mRNA decay, respectively; ⅴ) abnormal alternative splicing correlated with male infertility. Taking together, this review highlights the impacts of alternative splicing and splicing variants in mammal spermatogenesis and provides new insights of the potential application of the alternative splicing into the therapy of male infertility.
Collapse
Affiliation(s)
- Huibin Song
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ling Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dake Chen
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fenge Li
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| |
Collapse
|
56
|
Bhadra M, Howell P, Dutta S, Heintz C, Mair WB. Alternative splicing in aging and longevity. Hum Genet 2019; 139:357-369. [PMID: 31834493 DOI: 10.1007/s00439-019-02094-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022]
Abstract
Alternative pre-mRNA splicing increases the complexity of the proteome that can be generated from the available genomic coding sequences. Dysregulation of the splicing process has been implicated in a vast repertoire of diseases. However, splicing has recently been linked to both the aging process itself and pro-longevity interventions. This review focuses on recent research towards defining RNA splicing as a new hallmark of aging. We highlight dysfunctional alternative splicing events that contribute to the aging phenotype across multiple species, along with recent efforts toward deciphering mechanistic roles for RNA splicing in the regulation of aging and longevity. Further, we discuss recent research demonstrating a direct requirement for specific splicing factors in pro-longevity interventions, and specifically how nutrient signaling pathways interface to splicing factor regulation and downstream splicing targets. Finally, we review the emerging potential of using splicing profiles as a predictor of biological age and life expectancy. Understanding the role of RNA splicing components and downstream targets altered in aging may provide opportunities to develop therapeutics and ultimately extend healthy lifespan in humans.
Collapse
Affiliation(s)
- Malini Bhadra
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Porsha Howell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Sneha Dutta
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Caroline Heintz
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
57
|
Pal S, Medatwal N, Kumar S, Kar A, Komalla V, Yavvari PS, Mishra D, Rizvi ZA, Nandan S, Malakar D, Pillai M, Awasthi A, Das P, Sharma RD, Srivastava A, Sengupta S, Dasgupta U, Bajaj A. A Localized Chimeric Hydrogel Therapy Combats Tumor Progression through Alteration of Sphingolipid Metabolism. ACS CENTRAL SCIENCE 2019; 5:1648-1662. [PMID: 31660434 PMCID: PMC6813554 DOI: 10.1021/acscentsci.9b00551] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 05/14/2023]
Abstract
Rapid proliferation of cancer cells assisted by endothelial cell-mediated angiogenesis and acquired inflammation at the tumor microenvironment (TME) lowers the success rate of chemotherapeutic regimens. Therefore, targeting these processes using localized delivery of a minimally toxic drug combination may be a promising strategy. Here, we present engineering of a biocompatible self-assembled lithocholic acid-dipeptide derived hydrogel (TRI-Gel) that can maintain sustained delivery of antiproliferating doxorubicin, antiangiogenic combretastatin-A4 and anti-inflammatory dexamethasone. Application of TRI-Gel therapy to a murine tumor model promotes enhanced apoptosis with a concurrent reduction in angiogenesis and inflammation, leading to effective abrogation of tumor proliferation and increased median survival with reduced drug resistance. In-depth RNA-sequencing analysis showed that TRI-Gel therapy induced transcriptome-wide alternative splicing of many genes responsible for oncogenic transformation including sphingolipid genes. We demonstrate that TRI-Gel therapy targets the reversal of a unique intron retention event in β-glucocerebrosidase 1 (Gba1), thereby increasing the availability of functional Gba1 protein. An enhanced Gba1 activity elevates ceramide levels responsible for apoptosis and decreases glucosylceramides to overcome drug resistance. Therefore, TRI-Gel therapy provides a unique system that affects the TME via post-transcriptional modulations of sphingolipid metabolic genes, thereby opening a new and rational approach to cancer therapy.
Collapse
Affiliation(s)
- Sanjay Pal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- Kalinga
Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Nihal Medatwal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sandeep Kumar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Animesh Kar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Varsha Komalla
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Prabhu Srinivas Yavvari
- Department
of Chemistry, Indian Institute of Science
Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Deepakkumar Mishra
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Zaigham Abbas Rizvi
- Translational
Health Science and Technology
Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Shiv Nandan
- Amity Institute
of Integrative Sciences and Health, Amity
University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Dipankar Malakar
- SCIEX, 121 Udyog Vihar,
Phase IV, Gurgaon 122015, Haryana, India
| | - Manoj Pillai
- SCIEX, 121 Udyog Vihar,
Phase IV, Gurgaon 122015, Haryana, India
| | - Amit Awasthi
- Translational
Health Science and Technology
Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Prasenjit Das
- Department
of Pathology, All India Institute of Medical
Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ravi Datta Sharma
- Amity Institute
of Integrative Sciences and Health, Amity
University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Aasheesh Srivastava
- Department
of Chemistry, Indian Institute of Science
Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Sagar Sengupta
- National
Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ujjaini Dasgupta
- Amity Institute
of Integrative Sciences and Health, Amity
University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
- E-mail: . (U.D.)
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- E-mail: . (A.B.)
| |
Collapse
|
58
|
Dietary restriction improves proteostasis and increases life span through endoplasmic reticulum hormesis. Proc Natl Acad Sci U S A 2019; 116:17383-17392. [PMID: 31413197 PMCID: PMC6717303 DOI: 10.1073/pnas.1900055116] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) deteriorates with age and fails to mount an effective stress response against misfolded proteins (UPRER), leading to protein folding disorders. However, preconditioning the ER using a mild ER stress (ER hormesis) can protect against future insults. We show that dietary restriction, an intervention that protects against protein misfolding disorders and increases life span across species, uses ER hormesis as a mechanism of action. Simply mimicking the ER hormesis in Caenorhabditis elegans by transient treatment with pharmacological reagents leads to delayed age-onset failure of UPRER, better capacity to process misfolded proteins, and increased life span. We also show that this process may be conserved in a mammalian cellular model of neurodegenerative disease. Unfolded protein response (UPR) of the endoplasmic reticulum (UPRER) helps maintain proteostasis in the cell. The ability to mount an effective UPRER to external stress (iUPRER) decreases with age and is linked to the pathophysiology of multiple age-related disorders. Here, we show that a transient pharmacological ER stress, imposed early in development on Caenorhabditis elegans, enhances proteostasis, prevents iUPRER decline with age, and increases adult life span. Importantly, dietary restriction (DR), that has a conserved positive effect on life span, employs this mechanism of ER hormesis for longevity assurance. We found that only the IRE-1–XBP-1 branch of UPRER is required for the longevity effects, resulting in increased ER-associated degradation (ERAD) gene expression and degradation of ER resident proteins during DR. Further, both ER hormesis and DR protect against polyglutamine aggregation in an IRE-1–dependent manner. We show that the DR-specific FOXA transcription factor PHA-4 transcriptionally regulates the genes required for ER homeostasis and is required for ER preconditioning-induced life span extension. Finally, we show that ER hormesis improves proteostasis and viability in a mammalian cellular model of neurodegenerative disease. Together, our study identifies a mechanism by which DR offers its benefits and opens the possibility of using ER-targeted pharmacological interventions to mimic the prolongevity effects of DR.
Collapse
|
59
|
MDT-15/MED15 permits longevity at low temperature via enhancing lipidostasis and proteostasis. PLoS Biol 2019; 17:e3000415. [PMID: 31408455 PMCID: PMC6692015 DOI: 10.1371/journal.pbio.3000415] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022] Open
Abstract
Low temperatures delay aging and promote longevity in many organisms. However, the metabolic and homeostatic aspects of low-temperature–induced longevity remain poorly understood. Here, we show that lipid homeostasis regulated by Caenorhabditis elegans Mediator 15 (MDT-15 or MED15), a transcriptional coregulator, is essential for low-temperature–induced longevity and proteostasis. We find that inhibition of mdt-15 prevents animals from living long at low temperatures. We show that MDT-15 up-regulates fat-7, a fatty acid desaturase that converts saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), at low temperatures. We then demonstrate that maintaining a high UFA/SFA ratio is essential for proteostasis at low temperatures. We show that dietary supplementation with a monounsaturated fatty acid, oleic acid (OA), substantially mitigates the short life span and proteotoxicity in mdt-15(-) animals at low temperatures. Thus, lipidostasis regulated by MDT-15 appears to be a limiting factor for proteostasis and longevity at low temperatures. Our findings highlight the crucial roles of lipid regulation in maintaining normal organismal physiology under different environmental conditions. Low temperatures delay aging and promote longevity in many organisms. This study shows that at low ambient temperatures, Mediator 15, a transcriptional coregulator, allows the nematode Caenorhabditis elegans to live longer by increasing the levels of unsaturated lipids, helping to maintain protein homeostasis.
Collapse
|
60
|
Pan-cancer analysis of clinical relevance of alternative splicing events in 31 human cancers. Oncogene 2019; 38:6678-6695. [PMID: 31391553 DOI: 10.1038/s41388-019-0910-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 01/16/2023]
Abstract
Alternative splicing represents a critical posttranscriptional regulation of gene expression, which contributes to the protein complexity and mRNA processing. Defects of alternative splicing including genetic alteration and/or altered expression of both pre-mRNA and trans-acting factors give rise to many cancers. By integrally analyzing clinical data and splicing data from TCGA and SpliceSeq databases, a number of splicing events were found clinically relevant in tumor samples. Alternative splicing of KLK2 (KLK2_51239) was found as a potential inducement of nonsense-mediated mRNA decay and associated with poor survival in prostate cancer. Consensus K-means clustering analysis indicated that alternative splicing events could be potentially used for molecular subtype classification of cancers. By random forest survival algorithm, prognostic prediction signatures with well performances were constructed for 31 cancers by using survival-associated alternative splicing events. Furthermore, an online tool for visualization of Kaplan-Meier plots of splicing events in 31 cancers was explored. Briefly, alternative splicing was found of significant clinical relevance with cancers.
Collapse
|
61
|
Rollins JA, Shaffer D, Snow SS, Kapahi P, Rogers AN. Dietary restriction induces posttranscriptional regulation of longevity genes. Life Sci Alliance 2019; 2:2/4/e201800281. [PMID: 31253655 PMCID: PMC6600014 DOI: 10.26508/lsa.201800281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary restriction (DR) increases life span through adaptive changes in gene expression. To understand more about these changes, we analyzed the transcriptome and translatome of Caenorhabditis elegans subjected to DR. Transcription of muscle regulatory and structural genes increased, whereas increased expression of amino acid metabolism and neuropeptide signaling genes was controlled at the level of translation. Evaluation of posttranscriptional regulation identified putative roles for RNA-binding proteins, RNA editing, miRNA, alternative splicing, and nonsense-mediated decay in response to nutrient limitation. Using RNA interference, we discovered several differentially expressed genes that regulate life span. We also found a compensatory role for translational regulation, which offsets dampened expression of a large subset of transcriptionally down-regulated genes. Furthermore, 3' UTR editing and intron retention increase under DR and correlate with diminished translation, whereas trans-spliced genes are refractory to reduced translation efficiency compared with messages with the native 5' UTR. Finally, we find that smg-6 and smg-7, which are genes governing selection and turnover of nonsense-mediated decay targets, are required for increased life span under DR.
Collapse
Affiliation(s)
- Jarod A Rollins
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Dan Shaffer
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Santina S Snow
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aric N Rogers
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| |
Collapse
|
62
|
Xu W, Bao P, Jiang X, Wang H, Qin M, Wang R, Wang T, Yang Y, Lorenzini I, Liao L, Sattler R, Xu J. Reactivation of nonsense-mediated mRNA decay protects against C9orf72 dipeptide-repeat neurotoxicity. Brain 2019; 142:1349-1364. [PMID: 30938419 PMCID: PMC6487333 DOI: 10.1093/brain/awz070] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/04/2019] [Accepted: 01/27/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis is a deleterious neurodegenerative disease without effective treatment options. Recent studies have indicated the involvement of the dysregulation of RNA metabolism in the pathogenesis of amyotrophic lateral sclerosis. Among the various RNA regulatory machineries, nonsense-mediated mRNA decay (NMD) is a stress responsive cellular surveillance system that degrades selected mRNA substrates to prevent the translation of defective or harmful proteins. Whether this pathway is affected in neurodegenerative diseases is unclear. Here we report the inhibition of NMD by arginine-rich dipeptide repeats derived from C9orf72 hexanucleotide repeat expansion, the most common cause of familial amyotrophic lateral sclerosis. Bioinformatic analysis of multiple transcriptome profiles revealed significant overlap of upregulated genes in NMD-defective cells with those in the brain tissues, micro-dissected motor neurons, or induced pluripotent stem cell-derived motor neurons specifically from amyotrophic lateral sclerosis patients carrying C9orf72 hexanucleotide repeat expansion, suggesting the suppression of NMD pathway in these patients. Using Drosophila as a model, we have validated that the C9orf72 hexanucleotide repeat expansion products could lead to the accumulation of the NMD substrates and identified arginine-rich dipeptide repeats, including poly glycine-arginine and poly proline-arginine, as the main culprits of NMD inhibition. Furthermore, in human SH-SY5Y neuroblastoma cells and in mouse brains, expression of glycine-arginine with 36 repeats (GR36) was sufficient to cause NMD inhibition. In cells expressing GR36, stress granule accumulation was accompanied by decreased processing body formation, which contributed to the inhibition of NMD. Remarkably, expression of UPF1, a core gene in the NMD pathway, efficiently blocked neurotoxicity caused by arginine-rich dipeptide repeats in both cellular and Drosophila models. Although not as effective as UPF1, expression of another NMD gene UPF2 also ameliorated the degenerative phenotypes in dipeptide repeat-expressing flies, indicating that genetically reactivating the NMD pathway could suppress dipeptide repeat toxicity. Finally, after validating tranilast as an NMD-activating drug, we demonstrated the therapeutic potential of this asthma drug in cellular and Drosophila models of C9orf72 dipeptide repeat neurotoxicity. Therefore, our study has revealed a cellular mechanism whereby arginine-rich C9orf72 dipeptide repeats could inhibit NMD activities by reducing the abundance of processing bodies. Furthermore, our results suggested that activation of the NMD pathway could be a potential therapeutic strategy for amyotrophic lateral sclerosis with defective RNA metabolism.
Collapse
Affiliation(s)
- Wangchao Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Puhua Bao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiling Qin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruiqi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Ileana Lorenzini
- Barrow Neurological Institute, Dignity Health, St. Joseph’s Hospital and Medical Center, Phoenix AZ, USA
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Rita Sattler
- Barrow Neurological Institute, Dignity Health, St. Joseph’s Hospital and Medical Center, Phoenix AZ, USA
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
63
|
Ri H, Lee J, Sonn JY, Yoo E, Lim C, Choe J. Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors. Mol Cells 2019; 42:301-312. [PMID: 31091556 PMCID: PMC6530642 DOI: 10.14348/molcells.2019.2451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5 ) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB ) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.
Collapse
Affiliation(s)
- Hwajung Ri
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jongbin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jun Young Sonn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Eunseok Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
64
|
Zhou X, Sen I, Lin XX, Riedel CG. Regulation of Age-related Decline by Transcription Factors and Their Crosstalk with the Epigenome. Curr Genomics 2018; 19:464-482. [PMID: 30258277 PMCID: PMC6128382 DOI: 10.2174/1389202919666180503125850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
Aging is a complex phenomenon, where damage accumulation, increasing deregulation of biological pathways, and loss of cellular homeostasis lead to the decline of organismal functions over time. Interestingly, aging is not entirely a stochastic process and progressing at a constant rate, but it is subject to extensive regulation, in the hands of an elaborate and highly interconnected signaling network. This network can integrate a variety of aging-regulatory stimuli, i.e. fertility, nutrient availability, or diverse stresses, and relay them via signaling cascades into gene regulatory events - mostly of genes that confer stress resistance and thus help protect from damage accumulation and homeostasis loss. Transcription factors have long been perceived as the pivotal nodes in this network. Yet, it is well known that the epigenome substantially influences eukaryotic gene regulation, too. A growing body of work has recently underscored the importance of the epigenome also during aging, where it not only undergoes drastic age-dependent changes but also actively influences the aging process. In this review, we introduce the major signaling pathways that regulate age-related decline and discuss the synergy between transcriptional regulation and the epigenetic landscape.
Collapse
Affiliation(s)
| | | | | | - Christian G. Riedel
- Address correspondence to this author at the Integrated Cardio Metabolic Centre (ICMC), Department of Biosciences and Nutrition, Karolinska Institutet, Blickagången 6, Novum, 7 floor Huddinge, Stockholm 14157, Sweden; Tel: +46-736707008; E-mail:
| |
Collapse
|
65
|
Denzel MS, Lapierre LR, Mack HID. Emerging topics in C. elegans aging research: Transcriptional regulation, stress response and epigenetics. Mech Ageing Dev 2018; 177:4-21. [PMID: 30134144 PMCID: PMC6696993 DOI: 10.1016/j.mad.2018.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Key discoveries in aging research have been made possible with the use of model organisms. Caenorhabditis elegans is a short-lived nematode that has become a well-established system to study aging. The practicality and powerful genetic manipulations associated with this metazoan have revolutionized our ability to understand how organisms age. 25 years after the publication of the discovery of the daf-2 gene as a genetic modifier of lifespan, C. elegans remains as relevant as ever in the quest to understand the process of aging. Nematode aging research has proven useful in identifying transcriptional regulators, small molecule signals, cellular mechanisms, epigenetic modifications associated with stress resistance and longevity, and lifespan-extending compounds. Here, we review recent discoveries and selected topics that have emerged in aging research using this incredible little worm.
Collapse
Affiliation(s)
- Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | | |
Collapse
|
66
|
Lin JC. Multi-posttranscriptional regulations lessen the repressive effect of SRPK1 on brown adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:503-514. [PMID: 29474929 DOI: 10.1016/j.bbalip.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 01/28/2023]
Abstract
Alternative splicing has been widely demonstrated to function as pivotal regulation in specifying cellular fates and biological functions. The relative expression or cellular localization of a splicing factor constitutes an important mechanism in spatiotemporal programming of cell- and stage-specific splicing profiles. In this study, results of deep RNA-sequencing (RNA-Seq) analyses first revealed the reprogrammed splicing profile and reduced expression of serine/arginine-rich splicing factor protein kinase 1 (SRPK1) throughout the development of brown adipose tissue (BAT). A gradual increase in the exon 10-skipped SRPK1 transcript, a potential target of a nonsense-mediated decay (NMD) mechanism, was noted during brown adipogenesis. Elevated RBM4a constituted the regulatory mechanism that led to skipping of SRPK1 exon 10. Moreover, brown adipogenesis-induced upregulation of microRNA (miR)-485 interfered with SRPK1 expression by targeting its 3'-untranslated region (UTR). Depletion of endogenous SRPK1 enhanced the development of C3H10T1/2 cells toward brown adipocytes. Taking our results together, multiple post-transcriptional regulations reduced SRPK1 expression, which subsequently affected brown adipogenesis.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; PhD program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
67
|
|