51
|
Bozsodi A, Scholtz B, Papp G, Sapi Z, Biczo A, Varga PP, Lazary A. Potential molecular mechanism in self-renewal is associated with miRNA dysregulation in sacral chordoma - A next-generation RNA sequencing study. Heliyon 2022; 8:e10227. [PMID: 36033338 PMCID: PMC9404356 DOI: 10.1016/j.heliyon.2022.e10227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Background Chordoma, the most frequent malignant primary spinal neoplasm, characterized by a high rate of recurrence, is an orphan disease where the clarification of the molecular oncogenesis would be crucial to developing new, effective therapies. Dysregulated expression of non-coding RNAs, especially microRNAs (miRNA) has a significant role in cancer development. Methods Next-generation RNA sequencing (NGS) was used for the combinatorial analysis of mRNA-miRNA gene expression profiles in sacral chordoma and nucleus pulposus samples. Advanced bioinformatics workflow was applied to the data to predict miRNA-mRNA regulatory networks with altered activity in chordoma. Results A large set of significantly dysregulated miRNAs in chordoma and their differentially expressed target genes have been identified. Several molecular pathways related to tumorigenesis and the modulation of the immune system are predicted to be dysregulated due to aberrant miRNA expression in chordoma. We identified a gene set including key regulators of the Hippo pathway, which is targeted by differently expressed miRNAs, and validated their altered expression by RT-qPCR. These newly identified miRNA/RNA interactions are predicted to have a role in the self-renewal process of chordoma stem cells, which might sustain the high rate of recurrence for this tumor. Conclusions Our results can significantly contribute to the designation of possible targets for the development of anti-chordoma therapies.
Collapse
Affiliation(s)
- Arpad Bozsodi
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- School of PhD Studies, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Beata Scholtz
- Genomic Medicine and Bioinformatic Core Facility, Dept. of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Gergo Papp
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Zoltan Sapi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Adam Biczo
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
| | - Peter Pal Varga
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
| | - Aron Lazary
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- Corresponding author.
| |
Collapse
|
52
|
Tu K, Lee S, Roy S, Sawant A, Shukla H. Dysregulated Epigenetics of Chordoma: Prognostic Markers and Therapeutic Targets. Curr Cancer Drug Targets 2022; 22:678-690. [PMID: 35440334 DOI: 10.2174/1568009622666220419122716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Chordoma is a rare, slow-growing sarcoma that is locally aggressive, and typically resistant to conventional chemo- and radiotherapies. Despite its low incidence, chordoma remains a clinical challenge because therapeutic options for chordoma are limited, and little is known about the molecular mechanisms involved in resistance to therapies. Furthermore, there are currently no established predictive or prognostic biomarkers to follow disease progression or treatment. Whole-genome sequencing of chordoma tissues has demonstrated a low-frequency mutation rate compared to other cancers. This has generated interest in the role of epigenetic events in chordoma pathogenesis. In this review, we discuss the current understanding of the epigenetic drivers of chordoma and their potential applications in prognosis and the development of new therapies.
Collapse
Affiliation(s)
- Kevin Tu
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA
| | - Sang Lee
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Sanjit Roy
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA
| | - Amit Sawant
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA
| | - Hem Shukla
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA
| |
Collapse
|
53
|
Passeri T, Dahmani A, Masliah-Planchon J, Naguez A, Michou M, El Botty R, Vacher S, Bouarich R, Nicolas A, Polivka M, Franck C, Schnitzler A, Némati F, Roman-Roman S, Bourdeaut F, Adle-Biassette H, Mammar H, Froelich S, Bièche I, Decaudin D. Dramatic In Vivo Efficacy of the EZH2-Inhibitor Tazemetostat in PBRM1-Mutated Human Chordoma Xenograft. Cancers (Basel) 2022; 14:cancers14061486. [PMID: 35326637 PMCID: PMC8946089 DOI: 10.3390/cancers14061486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Chordomas are rare bone tumors characterized by a high recurrence rate. Presently, no medical treatment is available for advanced diseases due to the lack of molecular data and preclinical models. The current study showed the establishment and characterization of the largest panel chordoma xenografts, allowing pharmacological studies. In one PBRM1-mutated model, we demonstrated a strong therapeutic efficacy of the EZH2-inhibitor tazemetostat, encouraging further research on EZH2-inhibitors in chordomas. Abstract Chordomas are rare neoplasms characterized by a high recurrence rate and a poor long-term prognosis. Considering their chemo-/radio-resistance, alternative treatment strategies are strongly required, but their development is limited by the paucity of relevant preclinical models. Mutations affecting genes of the SWI/SNF complexes are frequently found in chordomas, suggesting a potential therapeutic effect of epigenetic regulators in this pathology. Twelve PDX models were established and characterized on histological and biomolecular features. Patients whose tumors were able to grow into mice had a statistically significant lower progression-free survival than those whose tumors did not grow after in vivo transplantation (p = 0.007). All PDXs maintained the same histopathological features as patients’ tumors. Homozygous deletions of CDKN2A/2B (58.3%) and PBRM1 (25%) variants were the most common genomic alterations found. In the tazemetostat treated PDX model harboring a PBRM1 variant, an overall survival of 100% was observed. Our panel of chordoma PDXs represents a useful preclinical tool for both pharmacologic and biological assessments. The first demonstration of a high antitumor activity of tazemetostat in a PDX model harboring a PBRM1 variant supports further evaluation for EZH2-inhibitors in this subgroup of chordomas.
Collapse
Affiliation(s)
- Thibault Passeri
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, 75010 Paris, France;
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Julien Masliah-Planchon
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Adnan Naguez
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Marine Michou
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Sophie Vacher
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Rachida Bouarich
- Integrated Cancer Research Site, Institut Curie, 75005 Paris, France; (R.B.); (F.B.)
| | - André Nicolas
- Department of Tumor Biology, Institut Curie, 75005 Paris, France;
| | - Marc Polivka
- Department of Pathology, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, UMR 1141 Inserm, 75010 Paris, France; (M.P.); (H.A.-B.)
| | - Coralie Franck
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Anne Schnitzler
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Fariba Némati
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, University of Paris Saclay, 75005 Paris, France;
| | - Franck Bourdeaut
- Integrated Cancer Research Site, Institut Curie, 75005 Paris, France; (R.B.); (F.B.)
| | - Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, UMR 1141 Inserm, 75010 Paris, France; (M.P.); (H.A.-B.)
| | - Hamid Mammar
- Proton Therapy Center, Institut Curie, 91400 Orsay, France;
| | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, 75010 Paris, France;
| | - Ivan Bièche
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
- Department of Medical Oncology, Institut Curie, 75005 Paris, France
- Correspondence: ; Tel.: +33-1-56-24-62-40
| |
Collapse
|
54
|
Bi WL, Santagata S. Skull Base Tumors: Neuropathology and Clinical Implications. Neurosurgery 2022; 90:243-261. [PMID: 34164689 DOI: 10.1093/neuros/nyab209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Tumors that arise in and around the skull base comprise a wide range of common and rare entities. Recent studies have advanced our understanding of their pathogenesis, which in some cases, have significantly influenced clinical practice. The genotype of meningiomas is strongly associated with their phenotype, including histologic subtype and tumor location, and clinical outcome. A single molecular alteration, NAB2-STAT6 fusion, has redefined the category of solitary fibrous tumors to include the previous entity hemangiopericytomas. Schwannomas, both sporadic and familial, are characterized by near ubiquitous alterations in NF2 , with additional mutations in SMARCB1 or LZTR1 in schwannomatosis. In pituitary adenohypophyseal tumors, cell lineage transcription factors such as SF-1, T-PIT, and PIT-1 are now essential for classification, providing a more rigorous taxonomy for tumors that were previously considered null cell adenomas. The pituicyte lineage transcription factor TTF-1 defines neurohypophyseal tumors, which may represent a single nosological entity with a spectrum of morphologic manifestations (ie, granular cell tumor, pituicytoma, and spindle cell oncocytoma). Likewise, the notochord cell lineage transcription factor brachyury defines chordoma, discriminating them from chondrosarcomas. The identification of nonoverlapping genetic drivers of adamantinomatous craniopharyngiomas and papillary craniopharyngiomas indicates that these are distinct tumor entities and has led to successful targeted treatment of papillary craniopharyngiomas using BRAF and/or mitogen-activated protein kinase inhibitors. Similarly, dramatic therapeutic responses have been achieved in patients with Langerhans cell histiocytosis, both with BRAF -mutant and BRAF -wildtype tumors. Familiarity with the pathology of skull base tumors, their natural history, and molecular features is essential for optimizing patient care.
Collapse
Affiliation(s)
- Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts , USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts , USA
- Laboratory of Systems Pharmacology, Harvard Medical School , Boston , Massachusetts , USA
- Ludwig Center at Harvard, Harvard Medical School , Boston , Massachusetts , USA
| |
Collapse
|
55
|
Al Shihabi A, Davarifar A, Nguyen HTL, Tavanaie N, Nelson SD, Yanagawa J, Federman N, Bernthal N, Hornicek F, Soragni A. Personalized chordoma organoids for drug discovery studies. SCIENCE ADVANCES 2022; 8:eabl3674. [PMID: 35171675 PMCID: PMC8849332 DOI: 10.1126/sciadv.abl3674] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/21/2021] [Indexed: 05/03/2023]
Abstract
Chordomas are rare tumors of notochordal origin, most commonly arising in the sacrum or skull base. Chordomas are considered insensitive to conventional chemotherapy, and their rarity complicates running timely and adequately powered trials to identify effective treatments. Therefore, there is a need for discovery of novel therapeutic approaches. Patient-derived organoids can accelerate drug discovery and development studies and predict patient responses to therapy. In this proof-of-concept study, we successfully established organoids from seven chordoma tumor samples obtained from five patients presenting with tumors in different sites and stages of disease. The organoids recapitulated features of the original parent tumors and inter- as well as intrapatient heterogeneity. High-throughput screenings performed on the organoids highlighted targeted agents such as PI3K/mTOR, EGFR, and JAK2/STAT3 inhibitors among the most effective molecules. Pathway analysis underscored how the NF-κB and IGF-1R pathways are sensitive to perturbations and potential targets to pursue for combination therapy of chordoma.
Collapse
Affiliation(s)
- Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ardalan Davarifar
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nasrin Tavanaie
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott D. Nelson
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane Yanagawa
- Division of Thoracic Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah Federman
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francis Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
56
|
Heft Neal ME, Michmerhuizen NL, Kovatch KJ, Owen JHJ, Zhai J, Jiang H, McKean EL, Prince ME, Brenner JC. Advancement of PI3 Kinase Inhibitor Combination Therapies for PI3K-Aberrant Chordoma. J Neurol Surg B Skull Base 2022; 83:87-98. [PMID: 35155075 PMCID: PMC8824629 DOI: 10.1055/s-0040-1716694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022] Open
Abstract
Objectives Targeted inhibitors of the PI3 kinase (PI3K) pathway have shown promising but incomplete antitumor activity in preclinical chordoma models. The aim of this study is to advance methodology for a high-throughput drug screen using chordoma models to identify new combination therapies for chordoma. Study Design Present work is an in vitro study. Setting The study conducted at an academic research laboratory. Materials and Methods An in vitro study on automated high-throughput screening of chordoma cells was performed using a library of 1,406 drugs as both mono- and combination therapies with PI3K inhibitors. Combination indices were determined for dual therapies and synergistic outliers were identified as potential therapeutic agents. T (brachyury) siRNA knockdown in combination with PI3K pathway inhibition was also assessed. Results Fifty-nine combination therapies were identified as having potential therapeutic efficacy. Effective combinations included PI3K inhibitors with GSK1838705A (ALK/IGF-1R inhibitor), LY2874455 (VEGFR/FGFR inhibitor), El1 (selective Ezh2 inhibitor), and (-)-p-bromotetramisole oxalate (alkaline phosphatase inhibitor). The top ranking targets identified included ALK, PDGFR, VEGFR, aurora kinase, and BCL-2. T (brachyury) inhibition produced significant reduction in cell viability and growth; however PI3K inhibition in combination with T (brachyury) knockdown did not result in further reduction in growth and viability in vitro. Conclusion High throughput with in vitro combination screening is feasible with chordoma cells and allows for rapid identification of synergistic dual-therapies. Potential combination therapies and targetable pathways were identified. T (brachyury) knockdown produced significant reduction in cell viability, but did not show additional benefit with PI3K pathway inhibition in this model. Further in vitro and in vivo validation of these therapeutic combinations is warranted.
Collapse
Affiliation(s)
- Molly E. Heft Neal
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Nicole L. Michmerhuizen
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Kevin J. Kovatch
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - John Henry J. Owen
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Jingyi Zhai
- Department of Biostatistics, School of Public Heath, University of Michigan, Ann Arbor, Michigan, United States
| | - Hui Jiang
- Department of Biostatistics, School of Public Heath, University of Michigan, Ann Arbor, Michigan, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Erin L. McKean
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Mark E.P. Prince
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - J. Chad Brenner
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
57
|
Guinebretière JM, de Pinieux G. Les tumeurs notochordales : de la notochorde au chordome. Ann Pathol 2022; 42:249-258. [DOI: 10.1016/j.annpat.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
|
58
|
Xu Z, Zhang L, Wen L, Chao H, Wang Q, Sun M, Shen H, Chen S, Wang Z, Lu J. Clinical and molecular features of sacrum chordoma in Chinese patients. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:61. [PMID: 35282040 PMCID: PMC8848402 DOI: 10.21037/atm-21-6617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022]
Abstract
Background Chordoma is a rare malignant bone tumor with high recurrence and metastasis rates. Little is known about the mutational process of this incurable disease. The aim of our research was to explore the potential driver genes and signal pathways in the pathogenesis of chordoma and provide a new idea for the study of molecular biological therapy of chordoma. Methods We performed whole-exome-sequencing (WES) on 8 sacrum chordoma tissue samples (matched to peripheral blood samples that had been drawn from patients before surgery) to identify genetic alterations in Chinese patients. We analyzed the sequencing data from known driver genes, pathway enrichment analysis and significantly mutated genes (SMGs) after quality control of sequencing, comparison of reference genomes, analysis of mutations and identification of somatic mutations. Immunohistochemistry staining, Sanger sequencing and GeneChip were used to verify the related genes obtained from the analysis of sequencing data. Results The driver genes Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA), Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1), and Phosphatase And Tensin Homolog (PTEN) were enriched in the Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway and could be potential therapeutic targets for the treatment of sacrum chordoma. The significantly mutated gene Claudin 9 (CLDN9) may play a critical role in the development and progression of sacrum chordoma. Conclusions Collectively, our results identified the genetic signature of sacrum chordoma and could be used to develop a potential promising therapeutic strategy for the treatment of sacrum chordoma in Chinese patients.
Collapse
Affiliation(s)
- Zonghan Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Ling Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hongying Chao
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
| | - Qinrong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Miao Sun
- Department of Hematology, Jingjiang People's Hospital, Jingjiang, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zheng Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Suzhou Jsuniwell Medical Laboratory, Suzhou, China
| | - Jian Lu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
59
|
Long C, Li G, Zhang C, Jiang T, Li Y, Duan X, Zhong G. B7-H3 as a Target for CAR-T Cell Therapy in Skull Base Chordoma. Front Oncol 2021; 11:659662. [PMID: 34868903 PMCID: PMC8634710 DOI: 10.3389/fonc.2021.659662] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023] Open
Abstract
Objective chordomas are rare bone tumors with few therapeutic options. Skull base and sacrum are the two most common origin sites. Immunotherapies are emerging as the most promising approaches to fight various cancers. This study tends to identify new cell surface targets for immunotherapeutic options of skull base chordomas. Methods we profiled 45 skull base chordoma clinical samples by immunohistochemistry for the expression of six CAR-Targets (PD-L1, B7-H3, B7-H4, VISTA, HER2 and HER3). In addition, we generated B7-H3 targeted CAR-T-cells and evaluated their antitumor activities in vitro. Results We found that B7-H3 was positively stained in 7 out of 45 (16%) chordoma samples and established an expression hierarchy for these antigens (B7-H3 > HER3 > PD-L1 > HER2 = VISTA = B7-H4). We then generated a B7-H3 targeted CAR vector and demonstrated that B7-H3-CAR-T-cells recognized antigen positive cells and exhibited significant antitumor effects, including suppression of tumor spheroid formation, CAR-T-cell activation and cytokine secretion. Conclusions Our results support B7-H3 might serve as a promising target for CAR-T-cell therapies against chordomas.
Collapse
Affiliation(s)
- Cheng Long
- Orthopedics Department, West China Hospital, Sichuan University, Chengdu, China
| | - Gaowei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyun Zhang
- Orthopedics Department, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Jiang
- Orthopedics Department, Xiandai Hospital of Sichuan Province, Chengdu, China
| | - Yanjun Li
- Orthopedics Department, Fukang Hospital of Tibet, Chengdu, China
| | - Xin Duan
- Orthopedics Department, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Zhong
- Orthopedics Department, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Scheipl S, Barnard M, Lohberger B, Zettl R, Brcic I, Liegl-Atzwanger B, Rinner B, Meindl C, Fröhlich E. Drug combination screening as a translational approach toward an improved drug therapy for chordoma. Cell Oncol (Dordr) 2021; 44:1231-1242. [PMID: 34550531 PMCID: PMC8648636 DOI: 10.1007/s13402-021-00632-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Drug screening programmes have revealed epidermal growth factor receptor inhibitors (EGFRis) as promising therapeutics for chordoma, an orphan malignant bone tumour, in the absence of a known genetic driver. Concurrently, the irreversible EGFRi afatinib (Giotrif®) is being evaluated in a multicentric Phase II trial. As tyrosine kinase inhibitor (TKI) monotherapies are invariably followed by resistance, we aimed to evaluate potential therapeutic combinations with EGFRis. METHODS We screened 133 clinically approved anticancer drugs as single agents and in combination with two EGFRis (afatinib and erlotinib) in the clival chordoma cell line UM-Chor1. Synergistic combinations were analysed in a 7 × 7 matrix format. The most promising combination was further explored in clival (UM-Chor1, MUG-CC1) and sacral (MUG-Chor1, U-CH1) chordoma cell lines. Secretomes were analysed for receptor tyrosine kinase ligands (EGF, TGF-α, FGF-2 and VEGF-A) upon drug treatment. RESULTS Drugs that were active as single agents (n = 45) included TKIs, HDAC and proteasome inhibitors, and cytostatic drugs. Six combinations were analysed in a matrix format: n = 4 resulted in a significantly increased cell killing (crizotinib, dabrafenib, panobinostat and doxorubicin), and n = 2 exhibited no or negligible effects (regorafenib, venetoclax). Clival chordoma cell lines were more responsive to combined EGFR-MET inhibition. EGFR-MET cross-talk (e.g. via TGF-α secretion) likely accounts for the synergistic effects of EGFR-MET inhibition. CONCLUSION Our screen revealed promising combinations with EGFRis, such as the ALK/MET-inhibitor crizotinib, the HDAC-inhibitor panobinostat or the topoisomerase-II-inhibitor doxorubicin, which are part of standard chemotherapy regimens for various bone and soft-tissue sarcomas.
Collapse
Affiliation(s)
- Susanne Scheipl
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Michelle Barnard
- Cancer Research UK - AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria.
| | - Richard Zettl
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Iva Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Claudia Meindl
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
61
|
Abstract
This review provides an overview of the spectrum of tumors showing notochordal differentiation. This spectrum encompasses benign entities that are mostly discovered incidentally on imaging, reported as benign notochordal cell tumor, usually not requiring surgical intervention; slowly growing and histologically low-grade tumors referred to as conventional chordoma but associated with a significant metastatic potential and mortality; and more aggressive disease represented by histologically higher-grade tumors including dedifferentiated chordoma, a high-grade biphasic tumor characterized by a conventional chordoma juxtaposed to a high-grade sarcoma, usually with a spindle or pleomorphic cell morphology, and associated with a poor prognosis and poorly differentiated chordoma.
Collapse
Affiliation(s)
- Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK.
| | - Paul O'Donnell
- Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK; UCL Cancer Institute, University College London, 72 Huntley Street, London WC1 E 6DD, UK
| |
Collapse
|
62
|
Brčić I, Rosenberg AE. Pathology of pleomorphic/undifferentiated and dedifferentiated bone neoplasms. Semin Diagn Pathol 2021; 38:163-169. [PMID: 34049746 DOI: 10.1053/j.semdp.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 11/11/2022]
Abstract
Primary malignant bone tumors are uncommon and their accurate classification requires careful correlation of clinical, radiological, and pathologic findings. It is a heterogeneous group of tumors with a wide spectrum of morphology and their biological potential can be of low- or high-grade, depending on their risk for developing metastases. Over the past several decades, the classification of bone sarcomas has remained largely constant. However, some of the tumors have been reclassified and several new entities have emerged. In this review, we will focus on pleomorphic fibrosarcoma/UPS and dedifferentiated bone tumors, discuss their key diagnostic features, differential diagnosis, and their relation to prognosis.
Collapse
Affiliation(s)
- Iva Brčić
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, Division of Bone and Soft tissue, University of Miami, Sylvester Comprehensive Cancer Center, and Jackson Memorial Hospitals, Miami, FL, USA.
| |
Collapse
|
63
|
Zuccato JA, Patil V, Mansouri S, Liu JC, Nassiri F, Mamatjan Y, Chakravarthy A, Karimi S, Almeida JP, Bernat AL, Hasen M, Singh O, Khan S, Kislinger T, Sinha N, Froelich S, Adle-Biassette H, Aldape KD, De Carvalho DD, Zadeh G. DNA Methylation based prognostic subtypes of chordoma tumors in tissue and plasma. Neuro Oncol 2021; 24:442-454. [PMID: 34614192 DOI: 10.1093/neuonc/noab235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chordomas are rare malignant bone cancers of the skull-base and spine. Patient survival is variable and not reliably predicted using clinical factors or molecular features. This study identifies prognostic epigenetic chordoma subtypes that are detected non-invasively using plasma methylomes. METHODS Methylation profiles of 68 chordoma surgical samples were obtained between 1996-2018 across three international centres along with matched plasma methylomes where available. RESULTS Consensus clustering identified two stable tissue clusters with a disease-specific survival difference that was independent of clinical factors in a multivariate Cox analysis (HR=14.2, 95%CI: 2.1-94.8, p=0.0063). Immune-related pathways with genes hypomethylated at promoters and increased immune cell abundance were observed in the poor-performing "Immune-infiltrated" subtype. Cell-to-cell interaction plus extracellular matrix pathway hypomethylation and higher tumor purity was observed in the better-performing "Cellular" subtype. The findings were validated in additional DNA methylation and RNA sequencing datasets as well as with immunohistochemical staining. Plasma methylomes distinguished chordomas from other clinical differential diagnoses by applying fifty chordoma-versus-other binomial generalized linear models in random 20% testing sets (mean AUROC=0.84, 95%CI: 0.52-1.00). Tissue-based and plasma-based methylation signals were highly correlated in both prognostic clusters. Additionally, leave-one-out models accurately classified all tumors into their correct cluster based on plasma methylation data. CONCLUSIONS Here, we show the first identification of prognostic epigenetic chordoma subtypes and first use of plasma methylome-based biomarkers to non-invasively diagnose and subtype chordomas. These results may transform patient management by allowing treatment aggressiveness to be balanced with patient risk according to prognosis.
Collapse
Affiliation(s)
- Jeffrey A Zuccato
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Vikas Patil
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Sheila Mansouri
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey C Liu
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Farshad Nassiri
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Yasin Mamatjan
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shirin Karimi
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Joao Paulo Almeida
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Laure Bernat
- Neurosurgery Department, Hôpital Lariboisiere, APHP, Université Paris Diderot, Paris, France
| | - Mohammed Hasen
- Section of Neurosurgery, Division of Surgery, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada.,Department of Neurosurgery, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Olivia Singh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Namita Sinha
- Department of Pathology, Shared Health, HSC, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sébastien Froelich
- Neurosurgery Department, Hôpital Lariboisiere, APHP, Université Paris Diderot, Paris, France
| | - Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, Assistance Publique - Hôpitaux de Paris, Université de Paris, Paris, France
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
64
|
Yoon JY, Jiang W, Orr CR, Rushton C, Gargano S, Song SJ, Modi M, Hozack B, Abraham J, Mallick AB, Brooks JSJ, Rosenbaum JN, Zhang PJ. TERT gene rearrangement in chordomas and comparison to other TERT-rearranged solid tumors. Cancer Genet 2021; 258-259:74-79. [PMID: 34583232 DOI: 10.1016/j.cancergen.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 11/27/2022]
Abstract
Chordomas are rare, slow-growing neoplasms thought to arise from the foetal notochord remnant. A limited number of studies that examined the mutational profiles in chordomas identified potential driver mutations, including duplication in the TBXT gene (encoding brachyury), mutations in the PI3K/AKT signaling pathway, and loss of the CDKN2A gene. Most chordomas remain without clear driver mutations, and no fusion genes have been identified thus far. We discovered a novel TERT in-frame fusion involving RPH3AL (exon 5) and TERT (exon 2) in the index chordoma case. We screened a discovery cohort of 18 additional chordoma cases for TERT gene rearrangement by FISH, in which TERT rearrangement was identified in one additional case. In our independent, validation cohort of 36 chordomas, no TERT rearrangement was observed by FISH. Immunohistochemistry optimized for nuclear TERT expression showed at least focal TERT expression in 40/55 (72.7%) chordomas. Selected cases underwent molecular genetic profiling, which showed low tumor mutational burdens (TMBs) without obvious driver oncogenic mutations. We next examined a cohort of 1,913 solid tumor patients for TERT rearrangements, and TERT fusions involving exon 2 were observed in 7/1,913 (0.4%) cases. The seven tumors comprised five glial tumors, and two poorly differentiated carcinomas. In contrast to chordomas, the other TERT-rearranged tumors were notable for higher TMBs, frequent TP53 mutations (6/7) and presence of other driver oncogenic mutations, including a concurrent fusion (TRIM24-MET). In conclusion, TERT gene rearrangements are seen in a small subset (2/55, 3.6%) of chordomas. In contrast to other TERT-rearranged tumors, where the TERT rearrangements are likely passenger events, the possibility that TERT protein overexpression representing a key event in chordoma tumorigenesis is left open.
Collapse
Affiliation(s)
- Ju-Yoon Yoon
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States; Department of Laboratory Medicine, St. Michael's Hospital/Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Wei Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States
| | - Christopher R Orr
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Chase Rushton
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Stacey Gargano
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States
| | - Sharon J Song
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Mitul Modi
- Department of Pathology, Pennsylvania Hospital, Philadelphia, Pennsylvania, United States
| | - Bryan Hozack
- Rothman Orthopedic Institute, Philadelphia, Pennsylvania, United States
| | - John Abraham
- Rothman Orthopedic Institute, Philadelphia, Pennsylvania, United States; Division of Sarcoma and Bone Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States
| | - Atrayee Basu Mallick
- Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States
| | - John S J Brooks
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States; Department of Pathology, Pennsylvania Hospital, Philadelphia, Pennsylvania, United States
| | - Jason N Rosenbaum
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States; Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Paul J Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
| |
Collapse
|
65
|
Nicoll JAR, Bloom T, Clarke A, Boche D, Hilton D. BRAIN UK: Accessing NHS tissue archives for neuroscience research. Neuropathol Appl Neurobiol 2021; 48:e12766. [PMID: 34528715 DOI: 10.1111/nan.12766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The purpose of BRAIN UK (the UK BRain Archive Information Network) is to make the very extensive and comprehensive National Health Service (NHS) Neuropathology archives available to the national and international neuroscience research community. The archives comprise samples of tumours and a wide range of other neurological disorders, not only from the brain but also spinal cord, peripheral nerve, muscle, eye and other organs when relevant. BRAIN UK was founded after the recognition of the importance of this large tissue resource, which was not previously readily accessible for research use. BRAIN UK has successfully engaged the majority of the regional clinical neuroscience centres in the United Kingdom to produce a centralised database of the extensive autopsy and biopsy archive. Together with a simple application process and its broad ethical approval, BRAIN UK offers researchers easy access to most of the national archives of neurological tissues and tumours (http://www.brain-uk.org). The range of tissues available reflects the spectrum of disease in society, including many conditions not covered by disease-specific brain banks, and also allows relatively large numbers of cases of uncommon conditions to be studied. BRAIN UK has supported 141 studies (2010-2020) that have generated 70 publications employing methodology as diverse as morphometrics, genetics, proteomics and methylomics. Tissue samples that would otherwise have been unused have supported valuable neuroscience research. The importance of this unique resource will only increase as molecular techniques applicable to human tissues continue to develop and technical advances permit large-scale high-throughput studies.
Collapse
Affiliation(s)
- James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Cellular Pathology, University Hospital Southampton, Southampton, UK
| | - Tabitha Bloom
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Amelia Clarke
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Hilton
- Neuropathology, Derriford Hospital, Plymouth, UK
| |
Collapse
|
66
|
van Oost S, Meijer DM, Kuijjer ML, Bovée JVMG, de Miranda NFCC. Linking Immunity with Genomics in Sarcomas: Is Genomic Complexity an Immunogenic Trigger? Biomedicines 2021; 9:1048. [PMID: 34440251 PMCID: PMC8391750 DOI: 10.3390/biomedicines9081048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Sarcomas comprise a collection of highly heterogeneous malignancies that can be grossly grouped in the categories of sarcomas with simple or complex genomes. Since the outcome for most sarcoma patients has barely improved in the last decades, there is an urgent need for improved therapies. Immunotherapy, and especially T cell checkpoint blockade, has recently been a game-changer in cancer therapy as it produced significant and durable treatment responses in several cancer types. Currently, only a small fraction of sarcoma patients benefit from immunotherapy, supposedly due to a general lack of somatically mutated antigens (neoantigens) and spontaneous T cell immunity in most cancers. However, genomic events resulting from chromosomal instability are frequent in sarcomas with complex genomes and could drive immunity in those tumors. Improving our understanding of the mechanisms that shape the immune landscape of sarcomas will be crucial to overcoming the current challenges of sarcoma immunotherapy. This review focuses on what is currently known about the tumor microenvironment in sarcomas and how this relates to their genomic features. Moreover, we discuss novel therapeutic strategies that leverage the tumor microenvironment to increase the clinical efficacy of immunotherapy, and which could provide new avenues for the treatment of sarcomas.
Collapse
Affiliation(s)
- Siddh van Oost
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Debora M. Meijer
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Marieke L. Kuijjer
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
- Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Noel F. C. C. de Miranda
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| |
Collapse
|
67
|
Wen X, Cimera R, Aryeequaye R, Abhinta M, Athanasian E, Healey J, Fabbri N, Boland P, Zhang Y, Hameed M. Recurrent loss of chromosome 22 and SMARCB1 deletion in extra-axial chordoma: A clinicopathological and molecular analysis. Genes Chromosomes Cancer 2021; 60:796-807. [PMID: 34392582 DOI: 10.1002/gcc.22992] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Extra-axial chordoma is a rare neoplasm of extra-axial skeleton and soft tissue that shares identical histomorphologic and immunophenotypic features with midline chordoma. While genetic changes in conventional chordoma have been well-studied, the genomic alterations of extra-axial chordoma have not been reported. It is well known that conventional chordoma is a tumor with predominantly non-random copy number alterations and low mutational burden. Herein we describe the clinicopathologic and genomic characteristics of six cases of extra-axial chordoma, with genome-wide high-resolution single nucleotide polymorphism array, fluorescence in situ hybridization and targeted next-generation sequencing (NGS) analysis. The patients presented at a mean age of 33 years (range: 21-54) with a female to male ratio of 5:1. Four cases were histologically conventional type, presented with bone lesions and three of them had local recurrence. Two cases were poorly differentiated chordomas, presented with intra-articular soft tissue masses and both developed distant metastases. All cases showed brachyury positivity and the two poorly differentiated chordomas showed in addition loss of INI-1 expression by immunohistochemical analysis. Three of four extra-axial conventional chordomas showed simple genome with loss of chromosome 22 or a heterozygous deletion of SMARCB1. Both poorly differentiated chordomas demonstrated a complex hyperdiploid genomic profile with gain of multiple chromosomes and homozygous deletion of SMARCB1. Our findings show that heterozygous deletion of SMARCB1 or the loss of chromosome 22 is a consistent abnormality in extra-axial chordoma and transformation to poorly differentiated chordoma is characterized by homozygous loss of SMARCB1 associated with genomic complexity and instability such as hyperdiploidy.
Collapse
Affiliation(s)
- Xiaoyun Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Cimera
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ruth Aryeequaye
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mohanty Abhinta
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Edward Athanasian
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nicola Fabbri
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick Boland
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
68
|
Seeling C, Lechel A, Svinarenko M, Möller P, Barth TFE, Mellert K. Molecular features and vulnerabilities of recurrent chordomas. J Exp Clin Cancer Res 2021; 40:244. [PMID: 34330313 PMCID: PMC8325178 DOI: 10.1186/s13046-021-02037-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
Background Tumor recurrence is one of the major challenges in clinical management of chordoma. Despite R0-resection, approximately 50% of chordomas recur within ten years after initial surgery. The underlying molecular processes are poorly understood resulting in the lack of associated therapeutic options. This is not least due to the absence of appropriate cell culture models of this orphan disease. Methods The intra-personal progression model cell lines U-CH11 and U-CH11R were compared using array comparative genomic hybridization, expression arrays, RNA-seq, and immunocytochemistry. Cell line origin was confirmed by short tandem repeat analysis. Inter-personal cell culture models (n = 6) were examined to validate whether the new model is representative. Cell viability after HOX/PBX complex inhibition with small peptides was determined by MTS assays. Results Using whole genome microarray analyses, striking differences in gene expression between primary and recurrent chordomas were identified. These expression differences were confirmed in the world’s first intra-personal model of chordoma relapse consisting of cell lines established from a primary (U-CH11) and the corresponding recurrent tumor (U-CH11R). Array comparative genomic hybridization and RNA-sequencing analyses revealed profound genetic similarities between both cell lines pointing to transcriptomic reprogramming as a key mechanism of chordoma progression. Network analysis of the recurrence specific genes highlighted HOX/PBX signaling as a common dysregulated event. Hence, HOX/PBX complexes were used as so far unknown therapeutic targets in recurrent chordomas. Treating chordoma cell lines with the complex formation inhibiting peptide HXR9 induced cFOS mediated apoptosis in all chordoma cell lines tested. This effect was significantly stronger in cell lines established from chordoma relapses. Conclusion Clearly differing gene expression patterns and vulnerabilities to HOX/PBX complex inhibition in highly therapy resistant chordoma relapses were identified using the first intra-personal loco-regional and further inter-personal chordoma progression models. For the first time, HOX/PBX interference was used to induce cell death in chordoma and might serve as the basic concept of an upcoming targeted therapy for chordomas of all progression stages. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02037-y.
Collapse
Affiliation(s)
- Carolin Seeling
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, 89081, Ulm, Germany
| | - Michael Svinarenko
- Department of Internal Medicine I, University Hospital Ulm, 89081, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Thomas F E Barth
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
69
|
Abstract
CONTEXT.— Chordomas are uncommon malignant neoplasms with notochordal differentiation encountered by neuropathologists, bone/soft tissue pathologists, and general surgical pathologists. These lesions most commonly arise in the axial skeleton. Optimal therapy typically involves complete surgical resection, which is often technically difficult owing to the anatomic location, leading to a high rate of recurrence. Lesions have been generally resistant to radiation and chemotherapy; however, experimental studies involving targeted therapy and immunotherapy are currently underway. OBJECTIVE.— To summarize the clinical and pathologic findings of the various types of chordoma (conventional chordoma, dedifferentiated chordoma, and poorly differentiated chordoma), the differential diagnosis, and recent advances in molecular pathogenesis and therapeutic modalities that are reliant on accurate diagnosis. DATA SOURCES.— Literature review based on PubMed searches containing the term "chordoma" that address novel targeted and immunomodulatory therapeutic modalities; ongoing clinical trials involved in treating chordoma with novel therapeutic modalities identified through the Chordoma Foundation and ClinicalTrials.gov; and the authors' practice experience combined with various authoritative texts concerning the subject. CONCLUSIONS.— Chordoma is a clinically and histologically unique malignant neoplasm, and numerous diagnostic considerations must be excluded to establish the correct diagnosis. Treatment options have largely been centered on surgical excision with marginal results; however, novel therapeutic options including targeted therapy and immunotherapy are promising means to improve prognosis.
Collapse
Affiliation(s)
- Veronica Ulici
- From the Department of Pathology and Laboratory Medicine, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
| | - Jesse Hart
- From the Department of Pathology and Laboratory Medicine, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
| |
Collapse
|
70
|
Tehrani SG, Kaltoft NS, Melchior LC, Loya AC. Extra-axial chordoma of the thumb: Report of a rare case with clinicopathologic and molecular analysis. Pathol Res Pract 2021; 225:153564. [PMID: 34340129 DOI: 10.1016/j.prp.2021.153564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022]
Abstract
Chordoma is a very rare malignant tumor, with a phenotype that recapitulates notochord, and is chiefly located in the axial skeleton with only few cases reported in the extra-axial skeleton and soft tissues. The diagnosis can be challenging for both clinicians, radiologists and pathologists because of the rarity of tumor, its unspecific radiological pattern and histomorphological similarities to other tumors like extra-skeletal myxoid chondrosarcoma, soft tissue myoepithelioma and metastatic adenocarcinomas, more so on small biopsies. We present a case of a recurrent extra-axial chordoma with a prominent soft tissue component in the left thumb around proximal phalanx of an 80-year-old man, with detailed report of the histopathological, imaging and most importantly molecular features, which are in conformity with the typical profile of notochordal neoplasms. To the best of our knowledge, we report the first DNA-methylation- and the copy number variation analysis of an extra-axial chordoma with a very rare localization, thumb. With this case study we try to give a better understanding of tumor's specification, lessen the diagnostic confusion by highlighting its extra-axial occurrence, and more importantly present substantial molecular data, which might help in providing more therapeutic opportunities in the future.
Collapse
Affiliation(s)
| | | | | | - Anand C Loya
- Department of Pathology, Rigshospitalet, University Hospital of Copenhagen, Denmark.
| |
Collapse
|
71
|
Meng T, Huang R, Jin J, Gao J, Liu F, Wei Z, Xu X, Chang Z, Lin J, Ta N, Huang Z, Yin H, Zhou W, Song D. The comparative integrated multi-omics analysis identifies CA2 as a novel target for chordoma. Neuro Oncol 2021; 23:1709-1722. [PMID: 34214167 DOI: 10.1093/neuonc/noab156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chordoma is a rare mesenchymal malignancy, with a high recurrence rate and unclear tumorigenic mechanism. Genetic alterations, epigenetic regulators, and chromatin spatial organization play crucial roles in the initiation and progression of chordoma. In the current study, we aim to uncover the novel therapeutical targets for chordoma via using integrated multi-omics analysis. METHODS The RNA-sequencing (RNA-seq), assay for transposable accessible chromatin by high throughput sequencing (ATAC-seq) and Hi-C were performed between chordoma and human nucleus pulposus (HNP), along with imageological examination and clinical information. The expressions of identified targets were validated by clinical samples and their function were further evaluated by cell and animal experiments via gene knockdown and inhibitors. RESULTS The integrated multi-omics analysis revealed the important roles of bone microenvironment in chordoma tumorigenesis. By comparing the hierarchical structures, CA2 and THNSL2 were identified in the switched compartments, cell-specific boundaries and loops. Additionally, CA2 was highly expressed in chordoma, but barely found in HNP. The cell growth and migration of chordoma cells were dramatically suppressed via inhibition of CA2 either with genetic deletion or pharmaceutical treatment with Dorzolamide HCl. Furthermore, Dorzolamide HCl also regulated the bone microenvironment by blocking the osteoclast differentiation of bone marrow monocytes. CONCLUSION This study uncovers the roles of bone microenvironment in the chordoma tumorigenesis and identifies CA2 as a novel therapeutic target for chordoma. Besides, our findings suggest Dorzolamide HCl as a promising therapeutic option for chordoma.
Collapse
Affiliation(s)
- Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Runzhi Huang
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China.,Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianxuan Gao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fuyan Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Ziheng Wei
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaowen Xu
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Na Ta
- Department of Pathology, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wang Zhou
- Departments of Neurovascular Center, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China.,The Musculoskeletal laboratory, Institute of Biotechnology, University of Shanghai for Science and Technology, Shanghai, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
72
|
Yepes S, Shah NN, Bai J, Koka H, Li C, Gui S, McMaster ML, Xiao Y, Jones K, Wang M, Vogt A, Zhu B, Zhu B, Hutchinson A, Yeager M, Hicks B, Carter B, Freedman ND, Beane-Freeman L, Chanock SJ, Zhang Y, Parry DM, Yang XR, Goldstein AM. Rare Germline Variants in Chordoma-Related Genes and Chordoma Susceptibility. Cancers (Basel) 2021; 13:cancers13112704. [PMID: 34070849 PMCID: PMC8197919 DOI: 10.3390/cancers13112704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Chordoma is an extremely rare bone cancer that has not been fully characterized and few risk factors have been identified, highlighting the need for improving our understanding of the disease biology. Our study aims to identify chordoma susceptibility genes by investigating 265 genes involved in chordoma-related signaling pathways and other biological processes on germline DNA of 138 chordoma patients of European ancestry compared to internal control datasets and general population databases. Results were intersected with whole genome sequencing data from 80 skull-base chordoma patients of Chinese ancestry. Several rare loss-of-function and predicted deleterious missense variants were enriched in chordoma cases in both datasets, suggesting a complex model of pathways potentially involved in chordoma development and susceptibility, warranting further investigation in larger studies. Abstract Background: Chordoma is a rare bone cancer with an unknown etiology. TBXT is the only chordoma susceptibility gene identified to date; germline single nucleotide variants and copy number variants in TBXT have been associated with chordoma susceptibility in familial and sporadic chordoma. However, the genetic susceptibility of chordoma remains largely unknown. In this study, we investigated rare germline genetic variants in genes involved in TBXT/chordoma-related signaling pathways and other biological processes in chordoma patients from North America and China. Methods: We identified variants that were very rare in general population and internal control datasets and showed evidence for pathogenicity in 265 genes in a whole exome sequencing (WES) dataset of 138 chordoma patients of European ancestry and in a whole genome sequencing (WGS) dataset of 80 Chinese patients with skull base chordoma. Results: Rare and likely pathogenic variants were identified in 32 of 138 European ancestry patients (23%), including genes that are part of notochord development, PI3K/AKT/mTOR, Sonic Hedgehog, SWI/SNF complex and mesoderm development pathways. Rare pathogenic variants in COL2A1, EXT1, PDK1, LRP2, TBXT and TSC2, among others, were also observed in Chinese patients. Conclusion: We identified several rare loss-of-function and predicted deleterious missense variants in germline DNA from patients with chordoma, which may influence chordoma predisposition and reflect a complex susceptibility, warranting further investigation in large studies.
Collapse
Affiliation(s)
- Sally Yepes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Correspondence: (S.Y.); (A.M.G.)
| | - Nirav N. Shah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Jiwei Bai
- Beijing Tiantan Hospital, Beijing 100070, China; (J.B.); (C.L.); (S.G.); (Y.Z.)
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Chuzhong Li
- Beijing Tiantan Hospital, Beijing 100070, China; (J.B.); (C.L.); (S.G.); (Y.Z.)
| | - Songbai Gui
- Beijing Tiantan Hospital, Beijing 100070, China; (J.B.); (C.L.); (S.G.); (Y.Z.)
| | - Mary Lou McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Mingyi Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Brian Carter
- American Cancer Society, Inc, Atlanta, GA 30303, USA;
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Yazhuo Zhang
- Beijing Tiantan Hospital, Beijing 100070, China; (J.B.); (C.L.); (S.G.); (Y.Z.)
| | - Dilys M. Parry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.N.S.); (H.K.); (M.L.M.); (Y.X.); (K.J.); (M.W.); (A.V.); (B.Z.); (B.Z.); (A.H.); (M.Y.); (B.H.); (N.D.F.); (L.B.-F.); (S.J.C.); (D.M.P.); (X.R.Y.)
- Correspondence: (S.Y.); (A.M.G.)
| |
Collapse
|
73
|
Kovac M, Ameline B, Ribi S, Kovacova M, Cross W, Barenboim M, Witt O, Bielack S, Krieg A, Hartmann W, Nathrath M, Baumhoer D. The early evolutionary landscape of osteosarcoma provides clues for targeted treatment strategies. J Pathol 2021; 254:556-566. [PMID: 33963544 PMCID: PMC8361660 DOI: 10.1002/path.5699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022]
Abstract
Osteosarcomas are aggressive primary tumors of bone that are typically detected in locally advanced stages; however, which genetic mutations drive the cancer before its clinical detection remain unknown. To identify these events, we performed longitudinal genome-sequencing analysis of 12 patients with metastatic or refractory osteosarcoma. Phylogenetic and molecular clock analyses were carried out next to identify actionable mutations, and these were validated by integrating data from additional 153 osteosarcomas and pre-existing functional evidence from mouse PDX models. We found that the earliest and thus clinically most promising mutations affect the cell cycle G1 transition, which is guarded by cyclins D3, E1, and cyclin-dependent kinases 2, 4, and 6. Cell cycle G1 alterations originate no more than a year before the primary tumor is clinically detected and occur in >90% and 50% of patients of the discovery and validation cohorts, respectively. In comparison, other cancer driver mutations could be acquired at any evolutionary stage and often do not become pervasive. Consequently, our data support that the repertoire of actionable mutations present in every osteosarcoma cell is largely limited to cell cycle G1 mutations. Since they occur in mutually exclusive combinations favoring either CDK2 or CDK4/6 pathway activation, we propose a new genomically-based algorithm to direct patients to correct clinical trial options. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Michal Kovac
- Bone Tumor Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.,Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - Baptiste Ameline
- Bone Tumor Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastian Ribi
- Bone Tumor Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Monika Kovacova
- Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - William Cross
- Evolution and Cancer Laboratory, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Barbican, London, UK
| | - Maxim Barenboim
- Department of Pediatrics and Children's Cancer Research Center, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg, German Cancer Research Center and University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Bielack
- Klinikum Stuttgart - Olgahospital, Stuttgart Cancer Center, Stuttgart, Germany
| | - Andreas Krieg
- Paediatric Orthopaedic Department, University Children's Hospital Basel, Basel, Switzerland
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institut of Pathology, University Hospital Münster, Münster, Germany
| | | | - Daniel Baumhoer
- Bone Tumor Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
74
|
Traylor JI, Pernik MN, Plitt AR, Lim M, Garzon-Muvdi T. Immunotherapy for Chordoma and Chondrosarcoma: Current Evidence. Cancers (Basel) 2021; 13:2408. [PMID: 34067530 PMCID: PMC8156915 DOI: 10.3390/cancers13102408] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Chordomas and chondrosarcomas are rare but devastating neoplasms that are characterized by chemoradiation resistance. For both tumors, surgical resection is the cornerstone of management. Immunotherapy agents are increasingly improving outcomes in multiple cancer subtypes and are being explored in chordoma and chondrosarcoma alike. In chordoma, brachyury has been identified as a prominent biomarker and potential molecular immunotherapy target as well as PD-1 inhibition. While studies on immunotherapy in chondrosarcoma are sparse, there is emerging evidence and ongoing clinical trials for PD-1 as well as IDH inhibitors. This review highlights potential biomarkers and targets for immunotherapy in chordoma and chondrosarcoma, as well as current clinical evidence and ongoing trials.
Collapse
Affiliation(s)
- Jeffrey I. Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Mark N. Pernik
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Aaron R. Plitt
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Michael Lim
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94305, USA;
| | - Tomas Garzon-Muvdi
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| |
Collapse
|
75
|
Wang L, Guan X, Hu Q, Wu Z, Chen W, Song L, Wang K, Tian K, Cao C, Zhang D, Ma J, Tong X, Zhang B, Zhang J, Zeng C. TGFB3 downregulation causing chordomagenesis and its tumor suppression role maintained by Smad7. Carcinogenesis 2021; 42:913-923. [PMID: 34057989 DOI: 10.1093/carcin/bgab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chordoma is a rare bone tumor arising from notochordal remnants, but the underlying mechanism remains elusive. By integrated mRNA and microRNA analyses, we found significant downregulation of TGFB3 along with upregulation of its inhibitor, miR-29 family in chordoma comparing with notochord. Somatic copy number gains of miR-29 loci in chordoma highlighted a mechanism of inactivation of TGFB3 signaling in tumor formation. In zebrafish, knockout and knockdown homologous tgfb3 resulted in a chordoma-like neoplasm. On the other hand, Smad7 negative feedback regulation of transforming growth factor-β (TGF-β) signaling is retentive in chordoma cell UM-Chor1 despite its disruption in most cancer cells (e.g. A549). Therefore, contrary to other cancers, exogenous TGF-β activated Smad7 by downregulating miR-182 and inhibited cell migration and invasion in UM-Chor1. Meanwhile, TGF-β decreased chordoma characteristic protein Brachyury. Altogether, downregulation of TGFB3 causes chordomagenesis, showing a feasible target for therapies. The retention of Smad7 negative regulation may maintain the suppressor role of TGF-β in chordoma.
Collapse
Affiliation(s)
- Liang Wang
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China.,China National Clinical Research Center for Neurological Diseases, NCRC-ND, Tiantan Xili, Dongcheng District, Beijing, China
| | - Xiaonan Guan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingtao Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Wu
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China.,China National Clinical Research Center for Neurological Diseases, NCRC-ND, Tiantan Xili, Dongcheng District, Beijing, China
| | - Wei Chen
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lairong Song
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China.,China National Clinical Research Center for Neurological Diseases, NCRC-ND, Tiantan Xili, Dongcheng District, Beijing, China
| | - Ke Wang
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China.,China National Clinical Research Center for Neurological Diseases, NCRC-ND, Tiantan Xili, Dongcheng District, Beijing, China
| | - Kaibing Tian
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China.,China National Clinical Research Center for Neurological Diseases, NCRC-ND, Tiantan Xili, Dongcheng District, Beijing, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dake Zhang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Junpeng Ma
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China.,China National Clinical Research Center for Neurological Diseases, NCRC-ND, Tiantan Xili, Dongcheng District, Beijing, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Junting Zhang
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China.,China National Clinical Research Center for Neurological Diseases, NCRC-ND, Tiantan Xili, Dongcheng District, Beijing, China
| | - Changqing Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
76
|
Levine AB, Wong D, Fatehi M, Yip S. Ependymoma and Chordoma. Neurosurgery 2021; 87:860-870. [PMID: 33057707 DOI: 10.1093/neuros/nyaa329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/31/2020] [Indexed: 11/14/2022] Open
Abstract
Ependymoma and chordoma are 2 tumors that occur throughout the craniospinal axis, and for which the extent of neurosurgical resection has a key prognostic role. Both tumors have distinctive pathologic features, yet can present significant diagnostic challenges to pathologists in cases without classical histology. The molecular understanding of ependymoma has had significant advances in the past decade, with the identification of 9 molecular groups with significant prognostic and clinical implications, while a comprehensive study of chordoma further emphasized the key role of brachyury overexpression in its pathogenesis. In this review, we discuss the pathogenesis, radiology and gross pathology, histology, and molecular features of these 2 tumors, as well as active research into targeted therapies, with an emphasis on practical diagnostic challenges, and the use of immunohistochemical and molecular tests in routine diagnostic practice.
Collapse
Affiliation(s)
- Adrian B Levine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek Wong
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mostafa Fatehi
- Department of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
77
|
Locquet MA, Dechaume AL, Berchard P, Abbes L, Pissaloux D, Tirode F, Ramos I, Bedoucha J, Valantin J, Karanian M, Perret R, Gille O, Blay JY, Dutour A. Aldehyde Dehydrogenase, a Therapeutic Target in Chordoma: Analysis in 3D Cellular Models. Cells 2021; 10:cells10020399. [PMID: 33672032 PMCID: PMC7919493 DOI: 10.3390/cells10020399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chordomas are rare, slow-growing tumors of the axial skeleton. These tumors are locally aggressive and refractory to conventional therapies. Radical surgery and radiation remain the first-line treatments. Despite these aggressive treatments, chordomas often recur and second-line treatment options are limited. The mechanisms underlying chordoma radioresistance remain unknown, although several radioresistant cancer cells have been shown to respond favorably to aldehyde dehydrogenase (ALDH) inhibition. The study of chordoma has been delayed by small patient cohorts and few available models due to the scarcity of these tumors. We thus created cellular 3D models of chordoma by using low-adherence culture systems. Then, we evaluated their radiosensitivity using colony-forming and spheroid size assays. Finally, we determined whether pharmacologically inhibiting ALDH increased their radiosensitivity. We found that 3D cellular models of chordoma (derived from primary, relapse, and metastatic tumors) reproduce the histological and gene expression features of the disease. The metastatic, relapse, and primary spheroids displayed high, medium, and low radioresistance, respectively. Moreover, inhibiting ALDH decreased the radioresistance in all three models.
Collapse
Affiliation(s)
- Marie-Anaïs Locquet
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Anne-Lise Dechaume
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Paul Berchard
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Lhorra Abbes
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Daniel Pissaloux
- Department of Biopathology, Centre Leon Berard, F-69008 Lyon, France;
- Team Genetics, Epigenetics and Biology of Sarcomas, Univ Lyon, Université Claude Bernard Lyon 1, INSERM1052, CNRS5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008 Lyon, France; (F.T.); (M.K.)
| | - Franck Tirode
- Team Genetics, Epigenetics and Biology of Sarcomas, Univ Lyon, Université Claude Bernard Lyon 1, INSERM1052, CNRS5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008 Lyon, France; (F.T.); (M.K.)
| | - Inès Ramos
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Julie Bedoucha
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Julie Valantin
- Research Pathology Platform, Department of Translational Research and Innovation, Centre Leon Berard, F-69008 Lyon, France;
- Fondation Synergie Lyon Cancer, F-69008 Lyon, France
| | - Marie Karanian
- Department of Biopathology, Centre Leon Berard, F-69008 Lyon, France;
- Team Genetics, Epigenetics and Biology of Sarcomas, Univ Lyon, Université Claude Bernard Lyon 1, INSERM1052, CNRS5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008 Lyon, France; (F.T.); (M.K.)
| | - Raul Perret
- Department of Biopathology, Institut Bergonié, F-33000 Bordeaux, France;
| | - Olivier Gille
- Orthopedic Spinal Surgery Unit 1, Bordeaux University Hospital, F-33000 Bordeaux, France;
| | - Jean-Yves Blay
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
- Medical Oncology Department, Centre Leon Berard, F-69008 Lyon, France
| | - Aurélie Dutour
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
- Correspondence:
| |
Collapse
|
78
|
Mattox AK, Yang B, Douville C, Lo SF, Sciubba D, Wolinsky JP, Gokaslan ZL, Robison J, Blair C, Jiao Y, Bettegowda C. The mutational landscape of spinal chordomas and their sensitive detection using circulating tumor DNA. Neurooncol Adv 2021; 3:vdaa173. [PMID: 33543146 PMCID: PMC7850091 DOI: 10.1093/noajnl/vdaa173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Chordomas are the most common primary spinal column malignancy in the United States. The aim of this study was to determine whether chordomas may be detected by evaluating mutations in circulating tumor DNA (ctDNA). Methods Thirty-two patients with a biopsy-confirmed diagnosis of chordoma had blood drawn pre-operatively and/or at follow-up appointments. Mutations in the primary tumor were identified by whole exome sequencing and liquid biopsy by ddPCR and/or RACE-Seq was used to detect one or more of these mutations in plasma ctDNA at concurrent or later time points. Results At the time of initial blood draw, 87.1% of patients were ctDNA positive (P <.001). Follow-up blood draws in twenty of the patients suggest that ctDNA levels may reflect the clinical status of the disease. Patients with positive ctDNA levels were more likely to have greater mutant allele frequencies in their primary tumors (P = .004) and undergo radiotherapy (P = .02), and the presence of ctDNA may correlate with response to systemic chemotherapy and/or disease recurrence. Conclusions Detection of ctDNA mutations may allow for the detection and monitoring of disease progression for chordomas.
Collapse
Affiliation(s)
- Austin K Mattox
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Beibei Yang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Christopher Douville
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng-Fu Lo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean Paul Wolinsky
- Department of Neurosurgery, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Jamie Robison
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Cherie Blair
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
79
|
Bai J, Shi J, Li C, Wang S, Zhang T, Hua X, Zhu B, Koka H, Wu HH, Song L, Wang D, Wang M, Zhou W, Ballew BJ, Zhu B, Hicks B, Mirabello L, Parry DM, Zhai Y, Li M, Du J, Wang J, Zhang S, Liu Q, Zhao P, Gui S, Goldstein AM, Zhang Y, Yang XR. Whole genome sequencing of skull-base chordoma reveals genomic alterations associated with recurrence and chordoma-specific survival. Nat Commun 2021; 12:757. [PMID: 33536423 PMCID: PMC7859411 DOI: 10.1038/s41467-021-21026-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Chordoma is a rare bone tumor with an unknown etiology and high recurrence rate. Here we conduct whole genome sequencing of 80 skull-base chordomas and identify PBRM1, a SWI/SNF (SWItch/Sucrose Non-Fermentable) complex subunit gene, as a significantly mutated driver gene. Genomic alterations in PBRM1 (12.5%) and homozygous deletions of the CDKN2A/2B locus are the most prevalent events. The combination of PBRM1 alterations and the chromosome 22q deletion, which involves another SWI/SNF gene (SMARCB1), shows strong associations with poor chordoma-specific survival (Hazard ratio [HR] = 10.55, 95% confidence interval [CI] = 2.81-39.64, p = 0.001) and recurrence-free survival (HR = 4.30, 95% CI = 2.34-7.91, p = 2.77 × 10-6). Despite the low mutation rate, extensive somatic copy number alterations frequently occur, most of which are clonal and showed highly concordant profiles between paired primary and recurrence/metastasis samples, indicating their importance in chordoma initiation. In this work, our findings provide important biological and clinical insights into skull-base chordoma.
Collapse
Affiliation(s)
- Jiwei Bai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuai Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xing Hua
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Ho-Hsiang Wu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mingyi Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bari J Ballew
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Dilys M Parry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yixuan Zhai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingxuan Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiang Du
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Junmei Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuheng Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Anshan Central Hospital, Anshan, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China.
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
80
|
Traylor JI, Sheppard HE, Ravikumar V, Breshears J, Raza SM, Lin CY, Patel SR, DeMonte F. Computational Drug Repositioning Identifies Potentially Active Therapies for Chordoma. Neurosurgery 2021; 88:428-436. [PMID: 33017025 PMCID: PMC7803434 DOI: 10.1093/neuros/nyaa398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Chordomas are aggressive bone tumors that often recur despite maximal resection and adjuvant radiation. To date there are no Food and Drug Administration (FDA)-approved chemotherapies. Computational drug repositioning is an expanding approach to identify pharmacotherapies for clinical trials. OBJECTIVE To identify FDA-approved compounds for repurposing in chordoma. METHODS Previously identified highly differentially expressed genes from chordoma tissue samples at our institution were compared with pharmacogenomic interactions in the Comparative Toxicogenomics Database (CTD) using ksRepo, a drug-repositioning platform. Compounds selected by ksRepo were then validated in CH22 and UM-Chor1 human chordoma cells in Vitro. RESULTS A total of 13 chemical compounds were identified in silico from the CTD, and 6 were selected for preclinical validation in human chordoma cell lines based on their clinical relevance. Of these, 3 identified drugs are FDA-approved chemotherapies for other malignancies (cisplatin, cytarabine, and lucanthone). Cytarabine, a deoxyribonucleic acid polymerase inhibitor approved for the treatment of various leukemias, exhibited a significant concentration-dependent effect against CH22 and UM-Chor1 cells when compared to positive (THZ1) and negative (venetoclax) controls. Tretinoin exhibited a significant concentration-dependent cytotoxic effect in CH22, sacral chordoma-derived cell lines but to a much lesser extent in UM-Chor1, a cell line derived from skull base chordoma. CONCLUSION Cytarabine administration reduces the viability of human chordoma cells. The equally effective reduction in viability seen with tretinoin seems to be cell line dependent. Based on our findings, we recommend the evaluation of cytarabine and tretinoin in an expanded set of human chordoma cell lines and animal models.
Collapse
Affiliation(s)
- Jeffrey I Traylor
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hadley E Sheppard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Visweswaran Ravikumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan Breshears
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaan M Raza
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Kronos Bio, Cambridge, Massachusetts
| | - Shreyaskumar R Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Franco DeMonte
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
81
|
Reid BM, Fridley BL. DNA Methylation in Ovarian Cancer Susceptibility. Cancers (Basel) 2020; 13:E108. [PMID: 33396385 PMCID: PMC7795210 DOI: 10.3390/cancers13010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic alterations are somatically acquired over the lifetime and during neoplastic transformation but may also be inherited as widespread 'constitutional' alterations in normal tissues that can cause cancer predisposition. Epithelial ovarian cancer (EOC) has an established genetic susceptibility and mounting epidemiological evidence demonstrates that DNA methylation (DNAm) intermediates as well as independently contributes to risk. Targeted studies of known EOC susceptibility genes (CSGs) indicate rare, constitutional BRCA1 promoter methylation increases familial and sporadic EOC risk. Blood-based epigenome-wide association studies (EWAS) for EOC have detected a total of 2846 differentially methylated probes (DMPs) with 71 genes replicated across studies despite significant heterogeneity. While EWAS detect both symptomatic and etiologic DMPs, adjustments and analytic techniques may enrich risk associations, as evidenced by the detection of dysregulated methylation of BNC2-a known CSG identified by genome-wide associations studies (GWAS). Integrative genetic-epigenetic approaches have mapped methylation quantitative trait loci (meQTL) to EOC risk, revealing DNAm variations that are associated with nine GWAS loci and, further, one novel risk locus. Increasing efforts to mapping epigenome variation across populations and cell types will be key to decoding both the genomic and epigenomic causal pathways to EOC.
Collapse
Affiliation(s)
- Brett M. Reid
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
82
|
Konieczkowski DJ, DeLaney TF, Yamada YJ. Radiation Strategies for Spine Chordoma: Proton Beam, Carbon Ions, and Stereotactic Body Radiation Therapy. Neurosurg Clin N Am 2020; 31:263-288. [PMID: 32147017 DOI: 10.1016/j.nec.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surgery alone provides suboptimal local control of spine and sacral chordomas. Radiotherapy (RT) may improve local control in patients undergoing surgery and be used as definitive-intent treatment in patients not undergoing surgery. Although conventional-dose RT is inadequate for these radioresistant tumors, newer techniques allow treatment of the tumor to higher, more effective doses while limiting spinal cord dose to safe levels. The best local control is achieved when RT is delivered in the primary setting; RT dose is a critical determinant of local control. RT should be considered for all spine and sacral chordoma patients.
Collapse
Affiliation(s)
- David J Konieczkowski
- Harvard Radiation Oncology Program, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Thomas F DeLaney
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Yoshiya Josh Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
83
|
Shifting from targeted therapies to personalised treatment in chordoma – Authors' reply. Lancet Oncol 2020; 21:e548. [DOI: 10.1016/s1470-2045(20)30696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022]
|
84
|
Genetic Testing Distinguishes Multiple Chondroid Chordomas with Neuraxial Bone Metastases from Multicentric Tumors. Case Rep Genet 2020; 2020:8877722. [PMID: 33312743 PMCID: PMC7719490 DOI: 10.1155/2020/8877722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chordomas are rare malignant bone tumors preferentially forming in neuraxial bones. Chondroid chordoma is a subtype of chordoma. Chordomas reportedly present as synchronous multiple lesions upon initial diagnosis. However, it remains unknown whether these lesions are multicentric or metastatic multiple chordoma tumors. Case Presentation. Here, we present the case of a 57-year-old woman with multiple chordomas at the clivus, C6, and T12 upon initial presentation. Sequential surgeries and radiotherapy were performed for these lesions, and postoperative histological diagnosis revealed that all lesions were chondroid chordomas. Next-generation sequencing revealed that these lesions harbored a common somatic mutation in epidermal growth factor receptor (EGFR), c.3617A>C, which is not considered a pathogenic chordoma mutation, thus indicating that these lesions were not multicentric but rather multiple metastatic tumors. Subsequent multiple metastases to the lung and appendicular and axial bones were detected 15 months after the initial surgery. Recurrent lesions at the clivus progressed despite EGFR-targeted therapy, surgery, and radiotherapy. Conclusion The present evidence indicates that multiple chordomas in this case were caused by multiple metastases rather than multicentric lesions. Multiple presentations of chordoma imply systemic dissemination of tumor cells, and novel efficient systemic therapy is required to treat this disease.
Collapse
|
85
|
Bonneville R, Paruchuri A, Wing MR, Krook MA, Reeser JW, Chen HZ, Dao T, Samorodnitsky E, Smith AM, Yu L, Nowacki N, Chen W, Roychowdhury S. Characterization of Clonal Evolution in Microsatellite Unstable Metastatic Cancers through Multiregional Tumor Sequencing. Mol Cancer Res 2020; 19:465-474. [PMID: 33229401 DOI: 10.1158/1541-7786.mcr-19-0955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 07/10/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022]
Abstract
Microsatellites are short, repetitive segments of DNA, which are dysregulated in mismatch repair-deficient (MMRd) tumors resulting in microsatellite instability (MSI). MSI has been identified in many human cancer types with varying incidence, and microsatellite instability-high (MSI-H) tumors often exhibit increased sensitivity to immune-enhancing therapies such as PD-1/PD-L1 inhibition. Next-generation sequencing (NGS) has permitted advancements in MSI detection, and recent computational advances have enabled characterization of tumor heterogeneity via NGS. However, the evolution and heterogeneity of microsatellite changes in MSI-positive tumors remains poorly described. We determined MSI status in 6 patients using our previously published algorithm, MANTIS, and inferred subclonal composition and phylogeny with Canopy and SuperFreq. We developed a simulated annealing-based method to characterize microsatellite length distributions in specific subclones and assessed the evolution of MSI in the context of tumor heterogeneity. We identified three to eight tumor subclones per patient, and each subclone exhibited MMRd-associated base substitution signatures. We noted that microsatellites tend to shorten over time, and that MMRd fosters heterogeneity by introducing novel mutations throughout the disease course. Some microsatellites are altered among all subclones in a patient, whereas other loci are only altered in particular subclones corresponding to subclonal phylogenetic relationships. Overall, our results indicate that MMRd is a substantial driver of heterogeneity, leading to both MSI and subclonal divergence. IMPLICATIONS: We leveraged subclonal inference to assess clonal evolution based on somatic mutations and microsatellites, which provides insight into MMRd as a dynamic mutagenic process in MSI-H malignancies.
Collapse
Affiliation(s)
- Russell Bonneville
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Anoosha Paruchuri
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Michele R Wing
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Melanie A Krook
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Julie W Reeser
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Hui-Zi Chen
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Thuy Dao
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | | | - Amy M Smith
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Nicholas Nowacki
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Wei Chen
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Sameek Roychowdhury
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. .,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
86
|
Ball S, Dash A, Igid HP, Thein KZ, Sharma U, Tijani L. Primary Extra-axial Chordoma Masquerading as Lung Cancer: Case Report and Review of the Literature. Clin Lung Cancer 2020; 21:e560-e563. [DOI: 10.1016/j.cllc.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/04/2020] [Accepted: 05/01/2020] [Indexed: 01/19/2023]
|
87
|
Dedifferentiated Chordoma: Clinicopathologic and Molecular Characteristics With Integrative Analysis. Am J Surg Pathol 2020; 44:1213-1223. [PMID: 32427623 DOI: 10.1097/pas.0000000000001501] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dedifferentiated chordoma is a rare chordoma subtype characterized by a high-grade sarcoma juxtaposed to conventional chordoma. We identified a series of dedifferentiated chordomas, reviewed clinicopathologic features, performed next-generation sequencing in select cases, and analyzed all related English-language publications. Our series included 7 men and 3 women (age 15 to 80 y [median: 54 y]; <1% of >1000 chordomas surveyed). The tumor (2.8 to 24.5 cm [median: 5.8 cm] in size) presented de novo or as recurrence (including postradiotherapy) in sacrum (n=5), skull base (n=2), lumbar spine (n=1), thoracic/mediastinum (n=1), and lung (n=1; as metastasis). Histologically, the dedifferentiated component (3% to 95% [median: 60%]) was pleomorphic-to-fibrosarcomatous, juxtaposed to conventional (n=8) or chondroid (n=2) component. By immunohistochemistry, the conventional/chondroid component consistently expressed cytokeratin and brachyury, whereas the dedifferentiated component showed loss of both. We identified a sacral conventional chordoma with INI1 loss, with one of the lung metastases showing biphasic histology with loss of cytokeratin and brachyury in the dedifferentiated component. Sequencing identified tumor suppressor mutations in 4 tumors, including TP53 mutations in the dedifferentiated component in 3 tumors. Of 7 patients with follow-up, 6 developed metastases; 4 died at 15 to 99 months (median: 24 mo) after dedifferentiated chordoma diagnosis. Collectively, of 87 dedifferentiated chordoma patients described in 1913-2020 (including 10 herein), the median overall survival was 20 months. In summary, dedifferentiated chordoma involves diverse sites and presents de novo, postradiotherapy, or as recurrence/metastasis months-to-years after initial diagnosis. The dedifferentiated component shows loss of brachyury and cytokeratin staining and harbors recurrent TP53 mutations, implicating tumor suppressor dysregulation in chordoma dedifferentiation.
Collapse
|
88
|
Cottone L, Cribbs AP, Khandelwal G, Wells G, Ligammari L, Philpott M, Tumber A, Lombard P, Hookway ES, Szommer T, Johansson C, Brennan PE, Pillay N, Jenner RG, Oppermann U, Flanagan AM. Inhibition of Histone H3K27 Demethylases Inactivates Brachyury (TBXT) and Promotes Chordoma Cell Death. Cancer Res 2020; 80:4540-4551. [PMID: 32855205 PMCID: PMC7616956 DOI: 10.1158/0008-5472.can-20-1387] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/08/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022]
Abstract
Expression of the transcription factor brachyury (TBXT) is normally restricted to the embryo, and its silencing is epigenetically regulated. TBXT promotes mesenchymal transition in a subset of common carcinomas, and in chordoma, a rare cancer showing notochordal differentiation, TBXT acts as a putative oncogene. We hypothesized that TBXT expression is controlled through epigenetic inhibition to promote chordoma cell death. Screening of five human chordoma cell lines revealed that pharmacologic inhibition of the histone 3 lysine 27 demethylases KDM6A (UTX) and KDM6B (JMJD3) leads to cell death. This effect was phenocopied by dual genetic inactivation of KDM6A/B using CRISPR/Cas9. Inhibition of KDM6A/B with a novel compound KDOBA67 led to a genome-wide increase in repressive H3K27me3 marks with concomitant reduction in active H3K27ac, H3K9ac, and H3K4me3 marks. TBXT was a KDM6A/B target gene, and chromatin changes at TBXT following KDOBA67 treatment were associated with a reduction in TBXT protein levels in all models tested, including primary patient-derived cultures. In all models tested, KDOBA67 treatment downregulated expression of a network of transcription factors critical for chordoma survival and upregulated pathways dominated by ATF4-driven stress and proapoptotic responses. Blocking the AFT4 stress response did not prevent suppression of TBXT and induction of cell death, but ectopic overexpression of TBXT increased viability, therefore implicating TBXT as a potential therapeutic target of H3K27 demethylase inhibitors in chordoma. Our work highlights how knowledge of normal processes in fetal development can provide insight into tumorigenesis and identify novel therapeutic approaches. SIGNIFICANCE: Pharmacologic inhibition of H3K27-demethylases in human chordoma cells promotes epigenetic silencing of oncogenic TBXT, alters gene networks critical to survival, and represents a potential novel therapy.
Collapse
Affiliation(s)
- Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Garima Khandelwal
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Graham Wells
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Lorena Ligammari
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anthony Tumber
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Patrick Lombard
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Edward S Hookway
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Tamas Szommer
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Paul E Brennan
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Nischalan Pillay
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Richard G Jenner
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
- FRIAS - Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Adrienne M Flanagan
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom.
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| |
Collapse
|
89
|
Prendergast SC, Strobl A, Cross W, Pillay N, Strauss SJ, Ye H, Lindsay D, Tirabosco R, Chalker J, Mahamdallie SS, Sosinsky A, Flanagan AM, Amary F. Sarcoma and the 100,000 Genomes Project: our experience and changes to practice. J Pathol Clin Res 2020; 6:297-307. [PMID: 32573957 PMCID: PMC7578291 DOI: 10.1002/cjp2.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 11/06/2022]
Abstract
The largest whole genome sequencing (WGS) endeavour involving cancer and rare diseases was initiated in the UK in 2015 and ran for 5 years. Despite its rarity, sarcoma ranked third overall among the number of patients' samples sent for sequencing. Herein, we recount the lessons learned by a specialist sarcoma centre that recruited close to 1000 patients to the project, so that we and others may learn from our experience. WGS data was generated from 597 patients, but samples from the remaining approximately 400 patients were not sequenced. This was largely accounted for by unsuitability due to extensive necrosis, secondary to neoadjuvant radiotherapy or chemotherapy, or being placed in formalin. The number of informative genomes produced was reduced further by a PCR amplification step. We showed that this loss of genomic data could be mitigated by sequencing whole genomes from needle core biopsies. Storage of resection specimens at 4 °C for up to 96 h overcame the challenge of freezing tissue out of hours including weekends. Removing access to formalin increased compliance to these storage arrangements. With over 70 different sarcoma subtypes described, WGS was a useful tool for refining diagnoses and identifying novel alterations. Genomes from 350 of the cohort of 597 patients were analysed in this study. Overall, diagnoses were modified for 3% of patients following review of the WGS findings. Continued refinement of the variant-calling bioinformatic pipelines is required as not all alterations were identified when validated against histology and standard of care diagnostic tests. Further research is necessary to evaluate the impact of germline mutations in patients with sarcoma, and sarcomas with evidence of hypermutation. Despite 50% of the WGS exhibiting domain 1 alterations, the number of patients with sarcoma who were eligible for clinical trials remains small, highlighting the need to revaluate clinical trial design.
Collapse
Affiliation(s)
- Sophie C Prendergast
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
| | - Anna‐Christina Strobl
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - William Cross
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
| | - Nischalan Pillay
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - Sandra J Strauss
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
- Department of OncologyUniversity College London Hospital NHS Foundation TrustLondonUK
| | - Hongtao Ye
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - Daniel Lindsay
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - Roberto Tirabosco
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - Jane Chalker
- SHIMDS Acquired GenomicsGreat Ormond Street Hospital for Children NHS TrustLondonUK
| | - Shazia S Mahamdallie
- Rare and Inherited Disease LaboratoryGreat Ormond Street Hospital for Children NHS TrustLondonUK
| | | | | | | | - Adrienne M Flanagan
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - Fernanda Amary
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| |
Collapse
|
90
|
Li F, Hu S, Kong K, Cao P, Han P, Deng Y, Zhao B. Next-Generation Sequencing Analysis Identified Genomic Alterations in Pathological Morphologies of 3 Cases of Pulmonary Carcinosarcoma. Onco Targets Ther 2020; 13:7963-7972. [PMID: 32848420 PMCID: PMC7429410 DOI: 10.2147/ott.s264617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/27/2020] [Indexed: 11/30/2022] Open
Abstract
Background Pulmonary carcinosarcomas (PCSs) are a heterogeneous group of non-small-cell lung carcinomas (NSCLCs) with aggressiveness and a poor prognosis. Although genetic mutations of some common lung cancer subtypes have been extensively studied, the molecular characteristics of PCSs and the existence of abnormal target genes are unknown. Methods In this study, the clinical and molecular characterization in 3 pulmonary sarcomatoid carcinomas (PSCs) were presented using microscope analysis and next-generation sequencing (NGS) analysis. Results The results revealed a carcinosarcomas subtype presenting squamous cell carcinoma and sarcoma components in all 3 cases. NGS analysis showed that 182, 316 and 230 shared mutations were detected between sarcoma and lung carcinoma from 3 patients. Two identical alterations in two genes (CSMD3 and RYR3) that were all shared by the two components in 3 patients. Tumor suppressor gene TP53 (5/6, 83%) showed the highest mutation frequency for driver genes here. Additionally, we focused on an LYST mutation which was mainly present in the sarcoma components. Moreover, the clonal evolution and signature analysis confirm that lung squamous cell carcinoma and sarcoma in each PCS patient may have come from a common ancestor, and mutagenesis was possibly related to indirect effects of tobacco, age or other unknown factors. Conclusion Our results indicate that genetic analysis and molecular targeted therapy are necessary for the identification and treatment of these rare lung tumors. CSMD3 and LYST, as common mutation genes, may be a potential therapeutic target in PCS.
Collapse
Affiliation(s)
- Fan Li
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shan Hu
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Peng Han
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
91
|
Gill CM, Fowkes M, Shrivastava RK. Emerging Therapeutic Targets in Chordomas: A Review of the Literature in the Genomic Era. Neurosurgery 2020; 86:E118-E123. [PMID: 31504814 DOI: 10.1093/neuros/nyz342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
Chordomas are rare primary malignant tumors of the bones that occur along the skull base, spine, and sacrum. Long-term survival and neurological outcome continue to be challenging with continued low percentages of long-term survival. Recent studies have used genome, exome, transcriptome, and proteome sequencing to assess the mutational profile of chordomas. Most notably, Brachyury, or T-protein, has been shown to be an early mutational event in chordoma evolution. Clinically actionable mutations, including in the PI3K pathway, were identified. Preliminary evidence suggests that there may be mutational differences associated with primary tumor location. In this study, we review the therapeutic landscape of chordomas and discuss emerging targets in the genomic era.
Collapse
Affiliation(s)
- Corey M Gill
- Department of Neurosurgery, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mary Fowkes
- Department of Pathology, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Raj K Shrivastava
- Department of Neurosurgery, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
92
|
Zhu GG, Ramirez D, Chen W, Lu C, Wang L, Frosina D, Jungbluth A, Ntiamoah P, Nafa K, Boland PJ, Hameed MR. Chromosome 3p loss of heterozygosity and reduced expression of H3K36me3 correlate with longer relapse-free survival in sacral conventional chordoma. Hum Pathol 2020; 104:73-83. [PMID: 32795465 DOI: 10.1016/j.humpath.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022]
Abstract
Conventional chordoma is a rare slow-growing malignant tumor of notochordal origin primarily arising at the base of the skull and sacrococcygeal bones. Chordoma may arise from its benign counterpart, benign notochordal cell tumors, and can also undergo dedifferentiation progressing into dedifferentiated chordoma. No study has directly compared the genomic alterations among these tumors comprising a morphologic continuum. Our prior study identified frequent chromosome 3p loss of heterozygosity and minimal deleted regions on chromosome 3 encompassing SETD2, encoding a histone methyltransferase involved in histone H3 lysine 36 trimethylation (H3K36me3). In the present study, we expanded our study to include 65 sacral conventional chordoma cases, 3 benign notochordal cell tumor cases, and 2 dedifferentiated chordoma cases using single nucleotide polymorphism (SNP) array, targeted next-generation sequencing analysis, and immunohistochemistry. We performed immunohistochemical analysis of histone, H3K36me3, and investigated whether there is any association between the clinical behavior and recurrent chromosome or aneuploidy or H3K36me3 protein expression. We found that there is increased genomic instability from benign notochordal cell tumor to conventional chordoma to dedifferentiated chordoma. The highly recurrent genomic aberration, chromosome 3p loss of heterozygosity (occurred in 70% of conventional chordomas), is correlated with longer relapse-free survival, but not with overall survival or metastasis-free survival in sacral chordoma. Chordomas demonstrate variable patterns and levels of H3K36me3 expression, and reduced expression of H3K36me3 showed marginally significant correlation with longer relapse-free survival. Copy number alterations in the genes encoding the H3K36me3 methylation transferase complex and demethylase may account for the altered H3K36me3 expression levels.
Collapse
Affiliation(s)
- Guo Gord Zhu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Pathology, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, 08003, USA
| | - Daniel Ramirez
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Pathology, Northwell Health, Great Neck, NY, 11021, USA
| | - Wen Chen
- Department of Pathology, Washington DC VA Medical Center, Washington, DC, 20422, USA
| | - Chao Lu
- Department of Genetics & Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Denise Frosina
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter Ntiamoah
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Khedoudja Nafa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick J Boland
- Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Meera R Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
93
|
Salle H, Pocard M, Lehmann-Che J, Bourthoumieu S, Labrousse F, Pimpie C, Lemnos L, Guichard JP, Froelich S, Adle-Biassette H. Development of a Novel Orthotopic Primary Human Chordoma Xenograft Model: A Relevant Support for Future Research on Chordoma. J Neuropathol Exp Neurol 2020; 79:314-324. [PMID: 31841164 DOI: 10.1093/jnen/nlz121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/18/2019] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
Abstract
Chordomas are slow-growing rare malignant neoplasms. The aim of this study was to establish a primary model of chordoma in the lumbosacral orthotopic area, to compare the growth rate to the subcutaneous site, and to show that this new graft site optimizes tumor growth and bony invasion. Eleven chordoma samples were transplanted subcutaneously in the flank and/or in contact with the lumbosacral region and grown into nude mice. Engraftment rate was significantly more successful in the lumbosacral environment compared with the flank at P0. Two xenografts from 2 patients showed bone invasion. One tumor was maintained through multiple rounds of serial transplantation, creating a model for study. Histological and immunostaining analysis confirmed that tumor grafts recapitulated the primary tumor from which they were derived, consisting of a myxoid chordoma expressing brachyury, cytokeratin AE1, EMA, and VEGF. Clear destruction of the bone by the tumor cells could be demonstrated. Molecular studies revealed PIK3CA and PTEN mutations involved in PI3K signaling pathway and most of the frequently reported chromosomal alterations. We present a novel orthotopic primary xenograft model of chordoma implanted for the first time in the lumbosacral area showing bone invasion, PIK3CA, and PTEN mutations that will facilitate preclinical studies.
Collapse
Affiliation(s)
- Henri Salle
- From the Université Paris-Diderot, Unité INSERM U965-Paris 7, Paris, France.,Service Neurochirurgie, Hôpital Lariboisière - AP-HP, Paris, France.,Hôpital Dupuytren, CHU Limoges, Université de Limoges, Limoges, France.,Hôpital Dupuytren, CHU Limoges, Service Neurochirurgie, Limoges, France
| | - Marc Pocard
- From the Université Paris-Diderot, Unité INSERM U965-Paris 7, Paris, France.,Service Neurochirurgie, Hôpital Lariboisière - AP-HP, Paris, France
| | - Jacqueline Lehmann-Che
- Université de Paris, HIPI INSERM U976, Paris, France.,Molecular Oncology Unit, AP-HP, Hôpital Saint Louis, Paris, France
| | - Sylvie Bourthoumieu
- Université de Limoges, EA6309 Maintenance myélinique et neuropathie périphérique, Limoges, France
| | | | - Cynthia Pimpie
- From the Université Paris-Diderot, Unité INSERM U965-Paris 7, Paris, France
| | - Leslie Lemnos
- Hôpital Dupuytren, CHU Limoges, Service Neurochirurgie, Limoges, France
| | | | - Sebastien Froelich
- From the Université Paris-Diderot, Unité INSERM U965-Paris 7, Paris, France
| | - Homa Adle-Biassette
- Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisère - AP-HP, Paris, France.,Plateforme de Bio-Pathologie et de Technologies Innovantes en Santé, Centre de Ressources Biologiques BB-0033-00064, Hôpital Lariboisière-APHP, Paris, France.,Université Paris, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
94
|
Hoffman SE, Al Abdulmohsen SA, Gupta S, Hauser BM, Meredith DM, Dunn IF, Bi WL. Translational Windows in Chordoma: A Target Appraisal. Front Neurol 2020; 11:657. [PMID: 32733369 PMCID: PMC7360834 DOI: 10.3389/fneur.2020.00657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Chordomas are rare tumors that are notoriously refractory to chemotherapy and radiotherapy when radical surgical resection is not achieved or upon recurrence after maximally aggressive treatment. The study of chordomas has been complicated by small patient cohorts and few available model systems due to the rarity of these tumors. Emerging next-generation sequencing technologies have broadened understanding of this disease by implicating novel pathways for possible targeted therapy. Mutations in cell-cycle regulation and chromatin remodeling genes have been identified in chordomas, but their significance remains unknown. Investigation of the immune microenvironment of these tumors suggests that checkpoint protein expression may influence prognosis, and adjuvant immunotherapy may improve patient outcome. Finally, growing evidence supports aberrant growth factor signaling as potential pathogenic mechanisms in chordoma. In this review, we characterize the impact on treatment opportunities offered by the genomic and immunologic landscape of this tumor.
Collapse
Affiliation(s)
- Samantha E Hoffman
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Sally A Al Abdulmohsen
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Saksham Gupta
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Blake M Hauser
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - David M Meredith
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
95
|
Chordomas: A review with emphasis on their pathophysiology, pathology, molecular biology, and genetics. Pathol Res Pract 2020; 216:153089. [PMID: 32825957 DOI: 10.1016/j.prp.2020.153089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Chordomas are uncommon, bone, axial, or (rarely) extra-axial tumors that are malignant and frequently recur but less commonly metastasize. They usually affect adults, with a very small proportion being pediatric tumors. For children, such tumors present a different biology, since they are more common as scull rather than sacral tumors, with aggressive histological features, including a loss of SMARCB1/INI1 and a dismal prognosis. Histologically, chordomas, believed to derive from notochordal tissue, characteristically show physaliphorous cells in a myxoid or chondroid matrix. Dedifferentiated and poorly differentiated forms can be observed. Moreover, a grading scale for chordomas has been proposed. Cytokeratin, EMA, S100, and brachyury are expressed by most chordomas. These are chemo-resistant tumors, for which surgical resection and/or radiotherapy are the treatments of choice. In this review, the histological, immunohistochemical, molecular, and clinical data of chordomas are discussed.
Collapse
|
96
|
Scheipl S, Igrec J, Leithner A, Smolle M, Haybäck J, Liegl B. [Chordoma: is there a molecular basis for diagnosis and treatment?]. DER PATHOLOGE 2020; 41:153-162. [PMID: 32100085 DOI: 10.1007/s00292-020-00761-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chordomas are malignant bone tumours with a reported annual incidence of 0.08 per 100,000 cases. They show a notochordal differentiation and are characterised by their nuclear expression of brachyury (TBXT). Chordomas are localised in the axial skeleton, where they occur from the clivus to the sacrococcygeal region. They are slow growing, locally destructive tumours, and are often not diagnosed until they have reached an advanced stage. Putative precursor-lesions are benign notochordal cell lesions, which are microscopically small and intraosseous. Different histological chordoma subtypes exist, which differ in their prognosis. To date, there are no known recurrent genetic drivers for this disease. Brachyury seems to play a key role in the pathogenesis of chordoma, though the detailed mechanism still needs to be elucidated. Surgical en bloc resection with negative margins is the only curative treatment for this disease. High-dose irradiation, particularly with protons and carbon ions, is a therapeutic alternative in cases of inoperable tumours. Currently, there is no approved medical treatment for chordoma. Clinical trials exploring additional therapeutic modalities are ongoing.
Collapse
Affiliation(s)
- Susanne Scheipl
- Univ.-Klinik für Orthopädie und Traumatologie, Medizinische Universität Graz, Auenbruggerplatz 5, 8036, Graz, Österreich.
| | - Jasminka Igrec
- Univ.-Klinik für Radiologie, Medizinische Universität Graz, Auenbruggerplatz 9, 8036, Graz, Österreich
| | - Andreas Leithner
- Univ.-Klinik für Orthopädie und Traumatologie, Medizinische Universität Graz, Auenbruggerplatz 5, 8036, Graz, Österreich
| | - Maria Smolle
- Univ.-Klinik für Orthopädie und Traumatologie, Medizinische Universität Graz, Auenbruggerplatz 5, 8036, Graz, Österreich
| | - Johannes Haybäck
- Institut für Pathologie, Neuropathologie und Molekularpathologie, Medizinische Universität Innsbruck, Müllerstraße 44, 6020, Innsbruck, Österreich
- Institut für Pathologie, Univ.-Klinikum Magdeburg A.ö.R., Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Deutschland
- Diagnostik- und Forschungsinstitut für Pathologie, Medizinische Universität Graz, Neue Stiftingtalstraße 6, 8010, Graz, Österreich
| | - Bernadette Liegl
- Diagnostik- und Forschungsinstitut für Pathologie, Medizinische Universität Graz, Neue Stiftingtalstraße 6, 8010, Graz, Österreich
| |
Collapse
|
97
|
Asioli S, Zoli M, Guaraldi F, Sollini G, Bacci A, Gibertoni D, Ricci C, Morandi L, Pasquini E, Righi A, Mazzatenta D. Peculiar pathological, radiological and clinical features of skull‐base de‐differentiated chordomas. Results from a referral centre case–series and literature review. Histopathology 2020; 76:731-739. [DOI: 10.1111/his.14024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Sofia Asioli
- Section of Anatomic Pathology ‘M. Malpighi’ Bellaria Hospital BolognaItaly
- Department of Biomedical and Neuromotor Sciences (DIBINEM) University of Bologna Bologna Italy
- Pituitary Unit Department of Biomedical and Neuromotor Sciences (DIBINEM) of Neurological Sciences of Bologna Center for the Diagnosis and Treatment of Hypothalamic and Pituitary Diseases Bologna Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences (DIBINEM) University of Bologna Bologna Italy
- Pituitary Unit Department of Biomedical and Neuromotor Sciences (DIBINEM) of Neurological Sciences of Bologna Center for the Diagnosis and Treatment of Hypothalamic and Pituitary Diseases Bologna Italy
| | - Federica Guaraldi
- Department of Biomedical and Neuromotor Sciences (DIBINEM) University of Bologna Bologna Italy
- Pituitary Unit Department of Biomedical and Neuromotor Sciences (DIBINEM) of Neurological Sciences of Bologna Center for the Diagnosis and Treatment of Hypothalamic and Pituitary Diseases Bologna Italy
| | | | - Antonella Bacci
- Division of Neuroradiology IRCCS Institute of Neurological Sciences of Bologna Bologna Italy
| | - Dino Gibertoni
- Unit of Hygiene, Public Health and Biostatistics Department of Biomedical and Neuromotor Sciences University of Bologna Bologna Italy
| | - Costantino Ricci
- Section of Anatomic Pathology ‘M. Malpighi’ Bellaria Hospital BolognaItaly
| | - Luca Morandi
- Section of Anatomic Pathology ‘M. Malpighi’ Bellaria Hospital BolognaItaly
| | | | - Alberto Righi
- Service of Anatomic Pathology IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences (DIBINEM) University of Bologna Bologna Italy
- Pituitary Unit Department of Biomedical and Neuromotor Sciences (DIBINEM) of Neurological Sciences of Bologna Center for the Diagnosis and Treatment of Hypothalamic and Pituitary Diseases Bologna Italy
| |
Collapse
|
98
|
Ozair MZ, Shah PP, Mathios D, Lim M, Moss NS. New Prospects for Molecular Targets for Chordomas. Neurosurg Clin N Am 2020; 31:289-300. [PMID: 32147018 DOI: 10.1016/j.nec.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chordomas are malignant, highly recurrent tumors of the midline skeleton that arise from the remnants of the notochord. The development of systemic therapy is critically important to ultimately managing this tumor. Several ongoing trials are attempting to use molecular targeted therapies for mutated pathways in recurrent and advanced chordomas and have shown promise. In addition, immunotherapies, including brachyury-directed vaccination and checkpoint inhibition, have also been attempted with encouraging results. This article discusses the major pathways that have been implicated in the pathogenesis of chordoma with an emphasis on molecular vulnerabilities that future therapies are attempting to exploit.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Pavan Pinkesh Shah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Dimitrios Mathios
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Nelson S Moss
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
99
|
Cottone L, Eden N, Usher I, Lombard P, Ye H, Ligammari L, Lindsay D, Brandner S, Pižem J, Pillay N, Tirabosco R, Amary F, Flanagan AM. Frequent alterations in p16/CDKN2A identified by immunohistochemistry and FISH in chordoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 6:113-123. [PMID: 31916407 PMCID: PMC7164370 DOI: 10.1002/cjp2.156] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
The expression of p16/CDKN2A, the second most commonly inactivated tumour suppressor gene in cancer, is lost in the majority of chordomas. However, the mechanism(s) leading to its inactivation and contribution to disease progression have only been partially addressed using small patient cohorts. We studied 384 chordoma samples from 320 patients by immunohistochemistry and found that p16 protein was lost in 53% of chordomas and was heterogeneously expressed in these tumours. To determine if CDKN2A copy number loss could explain the absence of p16 protein expression we performed fluorescence in situ hybridisation (FISH) for CDKN2A on consecutive tissue sections. CDKN2A copy number status was altered in 168 of 274 (61%) of samples and copy number loss was the most frequent alteration acquired during clinical disease progression. CDKN2A homozygous deletion was always associated with p16 protein loss but only accounted for 33% of the p16‐negative cases. The remaining immunonegative cases were associated with disomy (27%), monosomy (12%), heterozygous loss (20%) and copy number gain (7%) of CDKN2A, supporting the hypothesis that loss of protein expression might be achieved via epigenetic or post‐transcriptional regulatory mechanisms. We identified that mRNA levels were comparable in tumours with and without p16 protein expression, but other events including DNA promoter hypermethylation, copy number neutral loss of heterozygosity and expression of candidate microRNAs previously implicated in the regulation of CDKN2A expression were not identified to explain the protein loss. The data argue that p16 loss in chordoma is commonly caused by a post‐transcriptional regulatory mechanism that is yet to be defined.
Collapse
Affiliation(s)
- Lucia Cottone
- UCL Cancer Institute, University College London, London, UK
| | - Nadia Eden
- UCL Cancer Institute, University College London, London, UK
| | - Inga Usher
- UCL Cancer Institute, University College London, London, UK
| | | | - Hongtao Ye
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | | | - Daniel Lindsay
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Sebastian Brandner
- UCL Queen Square Institute of Neurology, University College London, London, UK.,Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Foundation Trust, London, UK
| | - Jože Pižem
- Institute of Pathology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Nischalan Pillay
- UCL Cancer Institute, University College London, London, UK.,Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Fernanda Amary
- UCL Cancer Institute, University College London, London, UK.,Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Adrienne M Flanagan
- UCL Cancer Institute, University College London, London, UK.,Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| |
Collapse
|
100
|
Manojlovic-Gacic E, Rostami E, Karavitaki N, Casar-Borota O. Histopathology of Parasellar Neoplasms. Neuroendocrinology 2020; 110:740-752. [PMID: 32155632 PMCID: PMC7490502 DOI: 10.1159/000507084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/09/2020] [Indexed: 01/28/2023]
Abstract
The anatomical and histological complexity of the parasellar region as well as the presence of embryonic remnants determine the huge diversity of parasellar neoplasms. Some of them are only located in the parasellar region, whereas others can occur elsewhere, within or outside the central nervous system. Their spectrum ranges from histologically benign and low-grade malignant to high-grade malignant tumours. Although rare, metastases can pose differential diagnostic dilemmas. The severity of the clinical picture, the challenges of surgery and the risk of adverse sequelae related to surgery or radiotherapy make parasellar tumours interesting entities for the clinicians irrespective of their histological malignancy grade. Due to the different cell origins of parasellar tumours, the World Health Organization classification system does not categorise them as a distinct group. Detailed criteria for classification and malignancy grading are presented in the classification systems covering central nervous system tumours, haematological malignancies and tumours of the soft tissue and bone. In the last few years, molecular genetic features have been integrated into the diagnosis of several types of the parasellar tumours enhancing diagnostic accuracy and providing information of the value for targeting therapies. In this review, we will present histopathological and molecular genetic features, updated classification criteria and recent advances in the diagnostics and rationale for novel pharmacological therapies of selected types of parasellar neoplasms.
Collapse
Affiliation(s)
| | - Elham Rostami
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niki Karavitaki
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden,
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden,
| |
Collapse
|