51
|
Liu J, Zhang S, Xie P, Wang L, Xue JY, Zhang Y, Lu R, Hang Y, Wang Y, Sun X. Fitness benefits play a vital role in the retention of the Pi-ta susceptible alleles. Genetics 2022; 220:6526399. [PMID: 35143673 PMCID: PMC8982021 DOI: 10.1093/genetics/iyac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
In plants, large numbers of R genes, which segregate as loci with alternative alleles conferring different levels of disease resistance to pathogens, have been maintained over a long period of evolution. The reason why hosts harbor susceptible alleles in view of their null contribution to resistance is unclear. In rice, a single copy gene, Pi-ta, segregates for 2 expressed clades of alleles, 1 resistant and the other susceptible. We simulated loss-of-function of the Pi-ta susceptible allele using the CRISPR/Cas9 system to detect subsequent fitness changes and obtained insights into fitness effects related to the retention of the Pi-ta susceptible allele. Our creation of an artificial knockout of the Pi-ta susceptible allele suffered fitness-related trait declines of up to 49% in terms of filled grain yield upon the loss of Pi-ta function. The Pi-ta susceptible alleles might serve as an off-switch to downstream immune signaling, thus contributing to the fine-tuning of plant defense responses. The results demonstrated that the susceptible Pi-ta alleles should have evolved pleiotropic functions, facilitating their retention in populations. As Pi-ta is a single copy gene with no paralogs in the genome, its function cannot be compensated by an alternative gene; whereas most other R genes form gene clusters by tandem duplications, and the function could be compensated by paralogs with high sequence similarity. This attempt to evaluate the fitness effects of the R gene in crops indicates that not all disease resistance genes incur fitness costs, which also provides a plausible explanation for how host genomes can tolerate the possible genetic load associated with a vast repertoire of R genes.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Suobing Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Pengfei Xie
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jia-Yu Xue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yueyu Hang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. ; Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. ; Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
52
|
Identification of broad-spectrum resistance QTLs against rice blast fungus and their application in different rice genetic backgrounds. J Genet 2022. [DOI: 10.1007/s12041-021-01357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
53
|
Singh R, Kumar K, Bharadwaj C, Verma PK. Broadening the horizon of crop research: a decade of advancements in plant molecular genetics to divulge phenotype governing genes. PLANTA 2022; 255:46. [PMID: 35076815 DOI: 10.1007/s00425-022-03827-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Advancements in sequencing, genotyping, and computational technologies during the last decade (2011-2020) enabled new forward-genetic approaches, which subdue the impediments of precise gene mapping in varied crops. The modern crop improvement programs rely heavily on two major steps-trait-associated QTL/gene/marker's identification and molecular breeding. Thus, it is vital for basic and translational crop research to identify genomic regions that govern the phenotype of interest. Until the advent of next-generation sequencing, the forward-genetic techniques were laborious and time-consuming. Over the last 10 years, advancements in the area of genome assembly, genotyping, large-scale data analysis, and statistical algorithms have led faster identification of genomic variations regulating the complex agronomic traits and pathogen resistance. In this review, we describe the latest developments in genome sequencing and genotyping along with a comprehensive evaluation of the last 10-year headways in forward-genetic techniques that have shifted the focus of plant research from model plants to diverse crops. We have classified the available molecular genetic methods under bulk-segregant analysis-based (QTL-seq, GradedPool-Seq, QTG-Seq, Exome QTL-seq, and RapMap), target sequence enrichment-based (RenSeq, AgRenSeq, and TACCA), and mutation-based groups (MutMap, NIKS algorithm, MutRenSeq, MutChromSeq), alongside improvements in classical mapping and genome-wide association analyses. Newer methods for outcrossing, heterozygous, and polyploid plant genetics have also been discussed. The use of k-mers has enriched the nature of genetic variants which can be utilized to identify the phenotype-causing genes, independent of reference genomes. We envisage that the recent methods discussed herein will expand the repertoire of useful alleles and help in developing high-yielding and climate-resilient crops.
Collapse
Affiliation(s)
- Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110020, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
54
|
Lo KL, Chen YN, Chiang MY, Chen MC, Panibe JP, Chiu CC, Liu LW, Chen LJ, Chen CW, Li WH, Wang CS. Two genomic regions of a sodium azide induced rice mutant confer broad-spectrum and durable resistance to blast disease. RICE (NEW YORK, N.Y.) 2022; 15:2. [PMID: 35006368 PMCID: PMC8748607 DOI: 10.1186/s12284-021-00547-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Rice blast, one of the most destructive epidemic diseases, annually causes severe losses in grain yield worldwide. To manage blast disease, breeding resistant varieties is considered a more economic and environment-friendly strategy than chemical control. For breeding new resistant varieties, natural germplasms with broad-spectrum resistance are valuable resistant donors, but the number is limited. Therefore, artificially induced mutants are an important resource for identifying new broad-spectrum resistant (R) genes/loci. To pursue this approach, we focused on a broad-spectrum blast resistant rice mutant line SA0169, which was previously selected from a sodium azide induced mutation pool of TNG67, an elite japonica variety. We found that SA0169 was completely resistant against the 187 recently collected blast isolates and displayed durable resistance for almost 20 years. Linkage mapping and QTL-seq analysis indicated that a 1.16-Mb region on chromosome 6 (Pi169-6(t)) and a 2.37-Mb region on chromosome 11 (Pi169-11(t)) conferred the blast resistance in SA0169. Sequence analysis and genomic editing study revealed 2 and 7 candidate R genes in Pi169-6(t) and Pi169-11(t), respectively. With the assistance of mapping results, six blast and bacterial blight double resistant lines, which carried Pi169-6(t) and/or Pi169-11(t), were established. The complementation of Pi169-6(t) and Pi169-11(t), like SA0169, showed complete resistance to all tested isolates, suggesting that the combined effects of these two genomic regions largely confer the broad-spectrum resistance of SA0169. The sodium azide induced mutant SA0169 showed broad-spectrum and durable blast resistance. The broad resistance spectrum of SA0169 is contributed by the combined effects of two R regions, Pi169-6(t) and Pi169-11(t). Our study increases the understanding of the genetic basis of the broad-spectrum blast resistance induced by sodium azide mutagenesis, and lays a foundation for breeding new rice varieties with durable resistance against the blast pathogen.
Collapse
Affiliation(s)
- Kuan-Lin Lo
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Nian Chen
- Division of Plant Pathology, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Min-Yu Chiang
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chun Chen
- Division of Plant Pathology, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Jerome P Panibe
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chung-Chun Chiu
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Lu-Wei Liu
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Wei Chen
- Division of Plant Pathology, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan.
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
55
|
Yu S, Ali J, Zhou S, Ren G, Xie H, Xu J, Yu X, Zhou F, Peng S, Ma L, Yuan D, Li Z, Chen D, Zheng R, Zhao Z, Chu C, You A, Wei Y, Zhu S, Gu Q, He G, Li S, Liu G, Liu C, Zhang C, Xiao J, Luo L, Li Z, Zhang Q. From Green Super Rice to green agriculture: Reaping the promise of functional genomics research. MOLECULAR PLANT 2022; 15:9-26. [PMID: 34883279 DOI: 10.1016/j.molp.2021.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge. Here, we review the concept and practices of Green Super Rice (GSR) that have led to a paradigm shift in goals for crop genetic improvement and models of food production for promoting sustainable agriculture. The momentous achievements and global deliveries of GSR have been fueled by the integration of abundant genetic resources, functional gene discoveries, and innovative breeding techniques with precise gene and whole-genome selection and efficient agronomic management to promote resource-saving, environmentally friendly crop production systems. We also provide perspectives on new horizons in genomic breeding technologies geared toward delivering green and nutritious crop varieties to further enhance the development of green agriculture and better nourish the world population.
Collapse
Affiliation(s)
- Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jauhar Ali
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Shaochuan Zhou
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guangjun Ren
- Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Huaan Xie
- Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Fasong Zhou
- China National Seed Group Co., Ltd, Beijing, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangyong Ma
- China National Rice Research Institute, Hangzhou, China
| | | | - Zefu Li
- Anhui Academy of Agricultural Sciences, Hefei, China
| | - Dazhou Chen
- Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | | | | | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Aiqing You
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Wei
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Susong Zhu
- Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Qiongyao Gu
- Yunnan Academy of Agricultural Sciences, Kunming, China
| | | | - Shigui Li
- Sichuan Agricultural University, Chengdu, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Changhua Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China.
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
56
|
Wang L, Ma Z, Kang H, Gu S, Mukhina Z, Wang C, Wang H, Bai Y, Sui G, Zheng W, Ma D. Cloning and functional analysis of the novel rice blast resistance gene Pi65 in japonica rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:173-183. [PMID: 34608507 DOI: 10.1007/s00122-021-03957-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Pi65, a leucine-rich repeat receptor-like kinase (LRR-RLK) domain cloned from Oryza sativa japonica, is a novel rice blast disease resistance gene. Rice blast seriously threatens rice production worldwide. Utilizing the rice blast resistance gene to breed rice blast-resistant varieties is one of the best ways to control rice blast disease. Using a map-based cloning strategy, we cloned a novel rice blast resistance gene, Pi65, from the resistant variety GangYu129 (abbreviated GY129, Oryza sativa japonica). Overexpression of Pi65 in the susceptible variety LiaoXing1 (abbreviated LX1, Oryza sativa japonica) enhanced rice blast resistance, while knockout of Pi65 in GY129 resulted in susceptibility to rice blast disease. Pi65 encodes two transmembrane domains, with 15 LRR domains and one serine/threonine protein kinase catalytic domain, conferring resistance to isolates of Magnaporthe oryzae (abbreviated M. oryzae) collected from Northeast China. There were sixteen amino acid differences between the Pi65 resistance and susceptible alleles. Compared with the Pi65-resistant allele, the susceptible allele exhibited one LRR domain deletion. Pi65 was constitutively expressed in whole plants, and it could be induced in the early stage of M. oryzae infection. Transcriptome analysis revealed that numerous genes associated with disease resistance were specifically upregulated in GY129 24 h post inoculation (HPI); in contrast, photosynthesis and carbohydrate metabolism-related genes were particularly downregulated at 24 HPI, demonstrating that disease resistance-associated genes were activated in GY129 (carrying Pi65) after rice blast fungal infection and that cellular basal metabolism and energy metabolism were inhibited simultaneously. Our study provides genetic resources for improving rice blast resistance and enriches the study of rice blast resistance mechanisms.
Collapse
Affiliation(s)
- Lili Wang
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zuobin Ma
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China
| | - Houxiang Kang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 110193, China
| | - Shuang Gu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhanna Mukhina
- Innovation and R&D Coordination of FSBSI ARRRI, Krasnodar, Russia, 350921
| | - Changhua Wang
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China
| | - Hui Wang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Yuanjun Bai
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China
| | - Guomin Sui
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Wenjing Zheng
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China.
| | - Dianrong Ma
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
57
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
58
|
Hu ZJ, Huang YY, Lin XY, Feng H, Zhou SX, Xie Y, Liu XX, Liu C, Zhao RM, Zhao WS, Feng CH, Pu M, Ji YP, Hu XH, Li GB, Zhao JH, Zhao ZX, Wang H, Zhang JW, Fan J, Li Y, Peng YL, He M, Li DQ, Huang F, Peng YL, Wang WM. Loss and Natural Variations of Blast Fungal Avirulence Genes Breakdown Rice Resistance Genes in the Sichuan Basin of China. FRONTIERS IN PLANT SCIENCE 2022; 13:788876. [PMID: 35498644 PMCID: PMC9040519 DOI: 10.3389/fpls.2022.788876] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/10/2022] [Indexed: 05/11/2023]
Abstract
Magnaporthe oryzae is the causative agent of rice blast, a devastating disease in rice worldwide. Based on the gene-for-gene paradigm, resistance (R) proteins can recognize their cognate avirulence (AVR) effectors to activate effector-triggered immunity. AVR genes have been demonstrated to evolve rapidly, leading to breakdown of the cognate resistance genes. Therefore, understanding the variation of AVR genes is essential to the deployment of resistant cultivars harboring the cognate R genes. In this study, we analyzed the nucleotide sequence polymorphisms of eight known AVR genes, namely, AVR-Pita1, AVR-Pii, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pi9, AVR-Pib, and AVR-Pi54 in a total of 383 isolates from 13 prefectures in the Sichuan Basin. We detected the presence of AVR-Pik, AVR-Pi54, AVR-Pizt, AVR-Pi9, and AVR-Pib in the isolates of all the prefectures, but not AVR-Pita1, AVR-Pii, and AVR-Pia in at least seven prefectures, indicating loss of the three AVRs. We also detected insertions of Pot3, Mg-SINE, and indels in AVR-Pib, solo-LTR of Inago2 in AVR-Pizt, and gene duplications in AVR-Pik. Consistently, the isolates that did not harboring AVR-Pia were virulent to IRBLa-A, the monogenic line containing Pia, and the isolates with variants of AVR-Pib and AVR-Pizt were virulent to IRBLb-B and IRBLzt-t, the monogenic lines harboring Pib and Piz-t, respectively, indicating breakdown of resistance by the loss and variations of the avirulence genes. Therefore, the use of blast resistance genes should be alarmed by the loss and nature variations of avirulence genes in the blast fungal population in the Sichuan Basin.
Collapse
Affiliation(s)
- Zi-Jin Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Yan-Yan Huang
| | - Xiao-Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ying Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Chen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ru-Meng Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wen-Sheng Zhao
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chuan-Hong Feng
- Plant Protection Station, Department of Agriculture Sichuan Province, Chengdu, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yun-Liang Peng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - De-Qiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Wen-Ming Wang
| |
Collapse
|
59
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
60
|
Chen YC, Hu CC, Chang FY, Chen CY, Chen WL, Tung CW, Shen WC, Wu CW, Cheng AH, Liao DJ, Liao CY, Liu LYD, Chung CL. Marker-Assisted Development and Evaluation of Monogenic Lines of Rice cv. Kaohsiung 145 Carrying Blast Resistance Genes. PLANT DISEASE 2021; 105:3858-3868. [PMID: 34181437 DOI: 10.1094/pdis-01-21-0142-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice blast is a serious threat to global rice production. Large-scale and long-term cultivation of rice varieties with a single blast resistance gene usually leads to breakdown of resistance. To effectively control rice blast in Taiwan, marker-assisted backcrossing was conducted to develop monogenic lines carrying different blast resistance genes in the genetic background of an elite japonica rice cultivar, Kaohsiung 145 (KH145). Eleven International Rice Research Institute (IRRI)-bred blast-resistant lines (IRBLs) showing broad-spectrum resistance to local Pyricularia oryzae isolates were used as resistance donors. Sequencing analysis revealed that the recurrent parent, KH145, does not carry known resistance alleles at the target Pi2/9, Pik, Pita, and Ptr loci. For each IRBL × KH145 cross, we screened 21 to 370 (average of 108) plants per generation from the BC1F1 to BC3F1/BC4F1 generation. A total of 1,499 BC3F2/BC4F2 lines carrying homozygous resistance alleles were selected and self-crossed for four to six successive generations. The derived lines were also evaluated for background genotype using genotyping by sequencing, for blast resistance under artificial inoculation and natural infection conditions, and for agronomic performance in multiple field trials. In Chiayi and Taitung blast nurseries in 2018 to 2020, Pi2, Pi9, and Ptr conferred high resistance, Pi20 and Pik-h moderate resistance, and Pi1, Pi7, Pik-p, and Pik susceptibility to leaf blast; only Pi2, Pi9, and Ptr conferred effective resistance against panicle blast. The monogenic lines showed agronomic traits, yield, and grain quality similar to those of KH145, suggesting the potential of growing a mixture of lines to achieve durable resistance in the field.
Collapse
Affiliation(s)
- Yi-Chia Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chih-Chieh Hu
- Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, No. 26, Dehe Rd., Pingtung County 90846, Taiwan
| | - Fang-Yu Chang
- Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, No. 26, Dehe Rd., Pingtung County 90846, Taiwan
| | - Chieh-Yi Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wei-Lun Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chih-Wen Wu
- Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, No. 26, Dehe Rd., Pingtung County 90846, Taiwan
| | - An-Hsiu Cheng
- Tainan District Agricultural Research and Extension Station, No. 70, Muchang Rd., Hsinhua District, Council of Agriculture, Tainan 71246, Taiwan
| | - Dah-Jing Liao
- Department of Agronomy, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Council of Agriculture, No. 2, Minquan Rd., Chiayi City 600015, Taiwan
| | - Ching-Ying Liao
- Taitung District Agricultural Research and Extension Station, Council of Agriculture, No. 675, Chunghua Rd., Sec. 1, Taitung City 95055, Taiwan
| | - Li-Yu D Liu
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
61
|
Ji H, Shin Y, Lee C, Oh H, Yoon IS, Baek J, Cha YS, Lee GS, Kim SL, Kim KH. Genomic Variation in Korean japonica Rice Varieties. Genes (Basel) 2021; 12:genes12111749. [PMID: 34828355 PMCID: PMC8623644 DOI: 10.3390/genes12111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022] Open
Abstract
Next-generation sequencing technologies have enabled the discovery of numerous sequence variations among closely related crop varieties. We analyzed genome resequencing data from 24 Korean temperate japonica rice varieties and discovered 954,233 sequence variations, including 791,121 single nucleotide polymorphisms (SNPs) and 163,112 insertions/deletions (InDels). On average, there was one variant per 391 base-pairs (bp), a variant density of 2.6 per 1 kbp. Of the InDels, 10,860 were longer than 20 bp, which enabled conversion to markers resolvable on an agarose gel. The effect of each variant on gene function was predicted using the SnpEff program. The variants were categorized into four groups according to their impact: high, moderate, low, and modifier. These groups contained 3524 (0.4%), 27,656 (2.9%), 24,875 (2.6%), and 898,178 (94.1%) variants, respectively. To test the accuracy of these data, eight InDels from a pre-harvest sprouting resistance QTL (qPHS11) target region, four highly polymorphic InDels, and four functional sequence variations in known agronomically important genes were selected and successfully developed into markers. These results will be useful to develop markers for marker-assisted selection, to select candidate genes in map-based cloning, and to produce efficient high-throughput genome-wide genotyping systems for Korean temperate japonica rice varieties.
Collapse
|
62
|
Liu Z, Zhu Y, Shi H, Qiu J, Ding X, Kou Y. Recent Progress in Rice Broad-Spectrum Disease Resistance. Int J Mol Sci 2021; 22:11658. [PMID: 34769087 PMCID: PMC8584176 DOI: 10.3390/ijms222111658] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Rice is one of the most important food crops in the world. However, stable rice production is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus diseases. Breeding and cultivation of resistant rice varieties is the most effective method to control the infection of pathogens. Exploitation and utilization of the genetic determinants of broad-spectrum resistance represent a desired way to improve the resistance of susceptible rice varieties. Recently, researchers have focused on the identification of rice broad-spectrum disease resistance genes, which include R genes, defense-regulator genes, and quantitative trait loci (QTL) against two or more pathogen species or many isolates of the same pathogen species. The cloning of broad-spectrum disease resistance genes and understanding their underlying mechanisms not only provide new genetic resources for breeding broad-spectrum rice varieties, but also promote the development of new disease resistance breeding strategies, such as editing susceptibility and executor R genes. In this review, the most recent advances in the identification of broad-spectrum disease resistance genes in rice and their application in crop improvement through biotechnology approaches during the past 10 years are summarized.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Yujun Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Huanbin Shi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yanjun Kou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| |
Collapse
|
63
|
Janaki Ramayya P, Vinukonda VP, Singh UM, Alam S, Venkateshwarlu C, Vipparla AK, Dixit S, Yadav S, Abbai R, Badri J, T. R, Phani Padmakumari A, Singh VK, Kumar A. Marker-assisted forward and backcross breeding for improvement of elite Indian rice variety Naveen for multiple biotic and abiotic stress tolerance. PLoS One 2021; 16:e0256721. [PMID: 34473798 PMCID: PMC8412243 DOI: 10.1371/journal.pone.0256721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
The elite Indian rice variety, Naveen is highly susceptible to major biotic and abiotic stresses such as blast, bacterial blight (BB), gall midge (GM) and drought which limit its productivity in rainfed areas. In the present study, a combined approach of marker-assisted forward (MAFB) and back cross (MABC) breeding was followed to introgress three major genes, viz., Pi9 for blast, Xa21 for bacterial blight (BB), and Gm8 for gall midge (GM) and three major QTLs, viz., qDTY1.1, qDTY2.2 and qDTY4.1 conferring increased yield under drought in the background of Naveen. At each stage of advancement, gene-based/linked markers were used for the foreground selection of biotic and abiotic stress tolerant genes/QTLs. Intensive phenotype-based selections were performed in the field for identification of lines with high level of resistance against blast, BB, GM and drought tolerance without yield penalty under non-stress situation. A set of 8 MAFB lines and 12 MABC lines with 3 to 6 genes/QTLs and possessing resistance/tolerance against biotic stresses and reproductive stage drought stress with better yield performance compared to Naveen were developed. Lines developed through combined MAFB and MABC performed better than lines developed only through MAFB. This study exemplifies the utility of the combined approach of marker-assisted forward and backcrosses breeding for targeted improvement of multiple biotic and abiotic stress resistance in the background of popular mega varieties.
Collapse
Affiliation(s)
| | | | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Shamshad Alam
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Challa Venkateshwarlu
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | | | - Shilpi Dixit
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Shailesh Yadav
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Ragavendran Abbai
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jyothi Badri
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad, India
| | - Ram T.
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad, India
| | | | - Vikas Kumar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Arvind Kumar
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
- * E-mail:
| |
Collapse
|
64
|
Wheatley MS, Yang Y. Versatile Applications of the CRISPR/Cas Toolkit in Plant Pathology and Disease Management. PHYTOPATHOLOGY 2021; 111:1080-1090. [PMID: 33356427 DOI: 10.1094/phyto-08-20-0322-ia] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
New tools and advanced technologies have played key roles in facilitating basic research in plant pathology and practical approaches for disease management and crop health. Recently, the CRISPR/Cas (clustered regularly interspersed short palindromic repeats/CRISPR-associated) system has emerged as a powerful and versatile tool for genome editing and other molecular applications. This review aims to introduce and highlight the CRISPR/Cas toolkit and its current and future impact on plant pathology and disease management. We will cover the rapidly expanding horizon of various CRISPR/Cas applications in the basic study of plant-pathogen interactions, genome engineering of plant disease resistance, and molecular diagnosis of diverse pathogens. Using the citrus greening disease as an example, various CRISPR/Cas-enabled strategies are presented to precisely edit the host genome for disease resistance, to rapidly detect the pathogen for disease management, and to potentially use gene drive for insect population control. At the cutting edge of nucleic acid manipulation and detection, the CRISPR/Cas toolkit will accelerate plant breeding and reshape crop production and disease management as we face the challenges of 21st century agriculture.
Collapse
Affiliation(s)
- Matthew S Wheatley
- Department of Plant Pathology and Environmental Microbiology, and the Huck Institute of the Life Sciences, the Pennsylvania State University, University Park, PA 16802
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, and the Huck Institute of the Life Sciences, the Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
65
|
Guo H, Du Q, Xie Y, Xiong H, Zhao L, Gu J, Zhao S, Song X, Islam T, Liu L. Identification of Rice Blast Loss-of-Function Mutant Alleles in the Wheat Genome as a New Strategy for Wheat Blast Resistance Breeding. Front Genet 2021; 12:623419. [PMID: 34093638 PMCID: PMC8170139 DOI: 10.3389/fgene.2021.623419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Blast is caused by the host-specific lineages of the fungus Magnaporthe oryzae and is the most important destructive disease in major crop plants, including rice and wheat. The first wheat blast outbreak that occurred in Bangladesh in 2016 and the recent epidemic in Zambia were caused by the M. oryzae Triticum (MoT) pathotype, a fungal lineage belonging to M. oryzae. Although a few reported wheat cultivars show modest resistance to MoT, the patterns of genetic variation and diversity of this pathotype make it crucial to identify additional lines of resistant wheat germplasm. Nearly 40 rice blast resistant and susceptible genes have so far been cloned. Here, we used BLAST analysis to locate two rice blast susceptible genes in the wheat reference genome, bsr-d1 and bsr-k1, and identified six identical homologous genes located on subgenomes A, B, and D. We uncovered a total of 171 single nucleotide polymorphisms (SNPs) in an ethyl methanesulfonate (EMS)-induced population, with mutation densities ranging from 1/1107.1 to 1/230.7 kb through Targeting Induced Local Lesions IN Genomes (TILLING) by sequencing. These included 81 SNPs located in exonic and promoter regions, and 13 coding alleles that are predicted to have severe effects on protein function, including two pre-mature mutants that might affect wheat blast resistance. The loss-of-function alleles identified in this study provide insights into new wheat blast resistant lines, which represent a valuable breeding resource.
Collapse
Affiliation(s)
- Huijun Guo
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qidi Du
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yongdun Xie
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongchun Xiong
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Zhao
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiayu Gu
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Zhao
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiyun Song
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Luxiang Liu
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
66
|
Li C, Zhang J, Ren Z, Xie R, Yin C, Ma W, Zhou F, Chen H, Lin Y. Development of 'multiresistance rice' by an assembly of herbicide, insect and disease resistance genes with a transgene stacking system. PEST MANAGEMENT SCIENCE 2021; 77:1536-1547. [PMID: 33201594 DOI: 10.1002/ps.6178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Weeds, diseases and pests pose serious threats to rice production and cause significant economic losses. Cultivation of rice varieties with resistance to herbicides, diseases and pests is believed to be the most economical and environmentally friendly method to deal with these problems. RESULTS In this study, a highly efficient transgene stacking system was used to assembly the synthetic glyphosate-tolerance gene (I. variabilis-EPSPS*), lepidopteran pest resistance gene (Cry1C*), brown planthopper resistance genes (Bph14* and OsLecRK1*), bacterial blight resistance gene (Xa23*) and rice blast resistance gene (Pi9*) onto a transformable artificial chromosome vector. The construct was transferred into ZH11 (a widely used japonica rice cultivar Zhonghua 11) via Agrobacterium-mediated transformation and 'multiresistance rice' (MRR) with desirable agronomic traits was obtained. The results showed that MRR had significantly improved resistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast relative to the recipient cultivar ZH11. Besides, under the natural occurrence of pests and diseases in the field, the yield of MRR was significantly higher than that of ZH11. CONCLUSION A multigene transformation strategy was employed to successfully develop rice lines with multiresistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast, and the obtained MRR is expected to have great application potential. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanxu Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rong Xie
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Luzhou Branch of National Rice Improvement Center, Deyang, China
| | - Changxi Yin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
67
|
Yadav S, Sandhu N, Dixit S, Singh VK, Catolos M, Mazumder RR, Rahman MA, Kumar A. Genomics-assisted breeding for successful development of multiple-stress-tolerant, climate-smart rice for southern and southeastern Asia. THE PLANT GENOME 2021; 14:e20074. [PMID: 33438317 DOI: 10.1002/tpg2.20074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Rice (Oryza sativa L.) in rainfed marginal environments is prone to multiple abiotic and biotic stresses, which can occur in combination in a single cropping season and adversely affect rice growth and yield. The present study was undertaken to develop high-yielding, climate-resilient rice that can provide tolerance to multiple biotic and abiotic stresses. An assembled first-crossing scheme was employed to transfer 15 quantitative trait loci (QTL) and genes-qDTY1.1 , qDTY2.1 , qDTY3.1 , qDTY12.1 (drought), Sub1 (submergence), Gm4 (gall midge), Pi9, Pita2 (blast), Bph3, Bph17 (brown plant hoppers), Xa4, xa5, xa13, Xa21, and Xa23 (bacterial leaf blight)-from eight different parents using genomics-assisted breeding. A funnel mating design was employed to assemble all the targeted QTL and genes into a high-yielding breeding line IR 91648-B-1-B-3-1. Gene-based linked markers were used in each generation from intercrossing to the F6 generation for tracking the presence of desirable alleles of targeted QTL and genes. Single-plant selections were performed from F2 onwards to select desirable recombinants possessing alleles of interest with suitable phenotypes. Phenotyping of 95 homozygous F6 lines carrying six to 10 QTL and genes was performed for nonstress, reproductive-stage (RS) drought, blast, bacterial leaf blight (BLB), gall midge (GM), and for grain quality parameters such as chalkiness, amylose content (AC), gelatinization temperature (GT), and head rice recovery (HRR). Finally, 56 F7 homozygous lines were found promising for multiple-location evaluation for grain yield (GY) and other traits. These multiple-stress-tolerant lines with the desired grain quality profiling can be targeted for varietal release in southern and southeastern Asia through national release systems.
Collapse
Affiliation(s)
- Shailesh Yadav
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Manila, Philippines
| | - Nitika Sandhu
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Manila, Philippines
- Punjab Agricultural University, Ludhiana, Punjab, India
| | - Shalabh Dixit
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Manila, Philippines
| | - Vikas Kumar Singh
- International Rice Research Institute, South Asia Hub, ICRISAT, Patancheru, Hyderabad, India
| | - Margaret Catolos
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Manila, Philippines
| | - Ratna Rani Mazumder
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Manila, Philippines
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | | | - Arvind Kumar
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Manila, Philippines
- IRRI South Asia Regional Centre (ISARC), Varanasi, Uttar Pradesh, 221106, India
| |
Collapse
|
68
|
Saintenac C, Cambon F, Aouini L, Verstappen E, Ghaffary SMT, Poucet T, Marande W, Berges H, Xu S, Jaouannet M, Favery B, Alassimone J, Sánchez-Vallet A, Faris J, Kema G, Robert O, Langin T. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nat Commun 2021; 12:433. [PMID: 33469010 PMCID: PMC7815785 DOI: 10.1038/s41467-020-20685-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
The poverty of disease resistance gene reservoirs limits the breeding of crops for durable resistance against evolutionary dynamic pathogens. Zymoseptoria tritici which causes Septoria tritici blotch (STB), represents one of the most genetically diverse and devastating wheat pathogens worldwide. No fully virulent Z. tritici isolates against synthetic wheats carrying the major resistant gene Stb16q have been identified. Here, we use comparative genomics, mutagenesis and complementation to identify Stb16q, which confers broad-spectrum resistance against Z. tritici. The Stb16q gene encodes a plasma membrane cysteine-rich receptor-like kinase that was recently introduced into cultivated wheat and which considerably slows penetration and intercellular growth of the pathogen.
Collapse
Affiliation(s)
- Cyrille Saintenac
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| | - Florence Cambon
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| | - Lamia Aouini
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,grid.169077.e0000 0004 1937 2197Present Address: Department of Agronomy, Purdue University, West Lafayette, IN 47907 USA
| | - Els Verstappen
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands
| | - Seyed Mahmoud Tabib Ghaffary
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,Present Address: Seed and Plant Improvement Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, AREEO, Dezful, Iran
| | - Théo Poucet
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France ,grid.11480.3c0000000121671098Present Address: Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain ,grid.412041.20000 0001 2106 639XPresent Address: Université de Bordeaux, 146 rue Leo-Saignat, Bordeaux, Cedex 33076 France
| | - William Marande
- grid.507621.7CNRGV (Centre National des Ressources Génomiques Végétales), INRAE, UPR 1258 Castanet-Tolosan, France
| | - Hélène Berges
- grid.507621.7CNRGV (Centre National des Ressources Génomiques Végétales), INRAE, UPR 1258 Castanet-Tolosan, France ,grid.508749.7Present Address: Inari Agriculture, One Kendall Square Building 600/700, Cambridge, MA 02139 USA
| | - Steven Xu
- grid.463419.d0000 0001 0946 3608United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Maëlle Jaouannet
- grid.4444.00000 0001 2112 9282INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Bruno Favery
- grid.4444.00000 0001 2112 9282INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Julien Alassimone
- grid.5801.c0000 0001 2156 2780Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Andrea Sánchez-Vallet
- grid.5801.c0000 0001 2156 2780Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland ,grid.5690.a0000 0001 2151 2978Present Address: Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo-UPM, 28223-Pozuelo de Alarcón Madrid, Spain
| | - Justin Faris
- grid.463419.d0000 0001 0946 3608United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Gert Kema
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Present Address: Wageningen University (Laboratory of Phytopathology), 6700AA Wageningen, The Netherlands
| | - Oliver Robert
- Florimond-Desprez, 3 rue Florimond-Desprez, BP 41, 59242 Cappelle-en-Pevele, France
| | - Thierry Langin
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| |
Collapse
|
69
|
Mao T, Zhu M, Ahmad S, Ye G, Sheng Z, Hu S, Jiao G, Xie L, Tang S, Wei X, Hu P, Shao G. Superior japonica rice variety YJ144 with improved rice blast resistance, yield, and quality achieved using molecular design and multiple breeding strategies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:65. [PMID: 34642568 PMCID: PMC8498087 DOI: 10.1007/s11032-021-01259-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 05/06/2023]
Abstract
UNLABELLED Yanfeng 47 (YF47) is an elite japonica rice variety cultivated in China on nearly 2 million hectares over the past 20 years. However, YF47 is highly susceptible to rice blast (Magnaporthe oryzae), one of the most destructive rice diseases. In this study, we developed novel TPAP (tetra-primer ARMS-PCR) functional markers for the genes Pita, Pib, and Pid2, all of which afford broad-spectrum resistance to blast. A collection of 91 japonica rice germplasms with similar ecological characteristics to YF47 were screened, and Wuyunjing 27 (WYJ27) with Pita and Pib alleles and P135 with the Pid2 allele were identified. Furthermore, the corresponding positive Pita, Pib, and Pid2 alleles were transferred into YF47 using single, mutual, and backcrosses, together with molecular marker-assisted selection (MAS) and anther culture technology. These genetic materials, carrying one, two, or three functional alleles, were generated within 3 years, and compared to YF47, they all showed improved resistance to naturally inoculated rice blast. Further improved lines (IL) 1 to 5 (all containing Pita, Pib, and Pid2 alleles) were evaluated for yield performance, and when no fungicide was applied, all lines except IL-4 showed increased traits compared with those of YF47. IL-5, renamed Yanjing 144 (YJ144), showed yield increases in the Liaoning province regional variety comparison test and superior appearance quality compared to YF47. Our work provides a molecular design strategy for pyramiding multiple beneficial genes to rapidly improve rice blast resistance, yield, and quality using multiple breeding strategies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11032-021-01259-4.
Collapse
Affiliation(s)
- Ting Mao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
- Liaoning Institute of Saline-Alkali and Utilization, Panjin, 124010 China
| | - Mingdong Zhu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
- Hunan Rice Research Institute, Changsha, 410125 China
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
- Maize Research Station, Ayub Agricultural Research Institute, Faisalabad, 38850 Pakistan
| | - Guoyou Ye
- Rice Breeding Innovations Platform, International Rice Research Institute, 1301 Metro Manila, Philippines
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
70
|
Sharma SK, Sharma D, Meena RP, Yadav MK, Hosahatti R, Dubey AK, Sharma P, Kumar S, Pramesh D, Nabi SU, Bhuvaneshwari S, Anand YR, Dubey SK, Singh TS. Recent Insights in Rice Blast Disease Resistance. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
71
|
Tan Y, Yang X, Pei M, Xu X, Wang C, Liu X. A genome-wide survey of interaction between rice and Magnaporthe oryzae via microarray analysis. Bioengineered 2020; 12:108-116. [PMID: 33356807 PMCID: PMC8806351 DOI: 10.1080/21655979.2020.1860479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The main aim of the work is to study the regulation of gene expression in the interaction between rice and Magnaporthe oryzae by gene chip technology. In this study, we mainly focused on changes of gene expression at 24, 48, and 72 hours post-inoculation (hpi), through which we could conduct a more comprehensive analysis of rice blast-related genes in the process of infection. The results showed that the experimental groups contained 460, 1227, and 3937 significant differentially expressed genes at 24, 48, and 72 hpi, respectively. Furthermore, 115 significantly differentially expressed genes were identified in response to rice blast infection at all three time points. By annotating these 115 genes, they were divided into three categories: metabolic pathways, proteins or enzymes, and organelle components. As expected, many of these genes were known rice blast-related genes; however, we discovered new genes with high fold changes. Most of them encoded conserved hypothetical proteins, and some were hypothetically conserved genes. Our study may contribute to finding new resistance genes and understanding the mechanism of rice blast development.
Collapse
Affiliation(s)
- Yanping Tan
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Xiaolin Yang
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences , Wuhan, China
| | - Minghao Pei
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Xin Xu
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Chuntai Wang
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Xinqiong Liu
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| |
Collapse
|
72
|
Tian D, Chen Z, Lin Y, Chen Z, Bui KT, Wang Z, Wang F. Weighted Gene Co-Expression Network Coupled with a Critical-Time-Point Analysis during Pathogenesis for Predicting the Molecular Mechanism Underlying Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2020; 13:81. [PMID: 33306159 PMCID: PMC7732884 DOI: 10.1186/s12284-020-00439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Rice blast, caused by the ascomycete fungus M. oryzae, is one of the most important diseases of rice. Although many blast resistance (R) genes have been identified and deployed in rice varieties, the molecular mechanisms responsible for the R gene-mediated defense responses are yet not fully understood. RESULTS In this study, we used comparative transcriptomic analysis to explore the molecular mechanism involved in Piz-t-mediated resistance in a transgenic line containing Piz-t (NPB-Piz-t) compared to Nipponbare (NPB). Clustering and principal component analysis (PCA) revealed that the time-point at 24-h post inoculation (hpi) was the most important factor distinguishing the four time-points, which consisted of four genes of mitogen-activated protein kinases (MAPKs) signaling pathway, one gene related to WRKY DNA-binding domain containing protein, five pathogenesis-related protein (OsPR1s) genes, and three genes of R proteins involving in the most significant protein-protein interaction (PPI) pathway. Using weighted gene co-expression network analysis (WGCNA) to investigate RNA-seq data across 0, 24, 48, and 72 hpi, nine modules with similar patterns expression pattern (SEP) and three modules with differential expression pattern (DEP) between NPB-Piz-t and NPB across 0, 24, 48, and 72 hpi with KJ201 (referred to as Piz-t-KJ201 and NPB-KJ201) were identified. Among these the most representative SEP green-yellow module is associated with photosynthesis, and DEP pink module comprised of two specific expressed nucleotide-binding domain and leucine-rich repeat (NLR) genes of LOC_Os06g17900 and LOC_Os06g17920 of Pi2/9 homologous, three NLR genes of LOC_Os11g11810, LOC_Os11g11770, and LOC_Os11g11920 which are putatively associated with important agronomic traits, and a B3 DNA binding domain containing protein related genes (LOC_Os10g39190). Knockout of LOC_Os10g39190 via CRISPR-Cas9 resulted in plant death at the seedling stage. CONCLUSIONS The research suggested that Piz-t and multiple NLR network might play important roles in the regulation of the resistance response in the Piz-t-KJ201 interaction system. The identified genes provide an NLR repository to study the rice-M. oryzae interaction system and facilitate the breeding of blast-resistant cultivars in the future.
Collapse
Affiliation(s)
- Dagang Tian
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Zaijie Chen
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Yan Lin
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Khuynh The Bui
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Feng Wang
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
| |
Collapse
|
73
|
Zhou Y, Lei F, Wang Q, He W, Yuan B, Yuan W. Identification of Novel Alleles of the Rice Blast-Resistance Gene Pi9 through Sequence-Based Allele Mining. RICE (NEW YORK, N.Y.) 2020; 13:80. [PMID: 33284383 PMCID: PMC7721961 DOI: 10.1186/s12284-020-00442-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND As rice (Oryza sativa) is the staple food of more than half the world's population, rice production contributes greatly to global food security. Rice blast caused by the fungus Magnaporthe oryzae (M. oryzae) is a devastating disease that affects rice yields and grain quality, resulting in substantial economic losses annually. Because the fungus evolves rapidly, the resistance conferred by most the single blast-resistance genes is broken after a few years of intensive agricultural use. Therefore, effective resistance breeding in rice requires continual enrichment of the reservoir of resistance genes, alleles, or QTLs. Seed banks represent a rich source of genetic diversity; however, they have not been extensively used to identify novel genes and alleles. RESULTS We carried out a large-scale screen for novel blast-resistance alleles in 1883 rice varieties from major rice-producing areas across China. Of these, 361 varieties showed at least moderate resistance to natural infection by rice blast at rice blast nurseries in Enshi and Yichang, Hubei Province. We used sequence-based allele mining to amplify and sequence the allelic variants of the major rice blast-resistance genes at the Pi2/Pi9 locus of chromosome 6 from the 361 blast-resistant varieties, and the full-length coding region of this gene could be amplified from 107 varieties. Thirteen novel Pi9 alleles (named Pi9-Type1 to Pi9-Type13) were identified in these 107 varieties based on comparison to the Pi9 referenced sequence. Based on the sequencing results, the Pi2/Pi9 locus of the 107 varieties was divided into 15 genotypes (including three different genotypes of Pi9-Type5). Fifteen varieties, each representing one genotype, were evaluated for resistance to 34 M. oryzae isolates. The alleles from seven varieties with the highest resistance and widest resistance spectra were selected for transformation into the susceptible variety J23B to construct near-isogenic lines (NILs). These NILs showed resistance in a field test in Enshi and Yichang, indicating that the seven novel rice blast-resistance tandem-repeat regions at the Pi2/Pi9 locus of chromosome 6 could potentially serve as a genetic resource for molecular breeding of resistance to rice blast. CONCLUSIONS The thirteen novel Pi9 alleles identified in this study expand the list of available of blast-resistance alleles. Seven tandem-repeat regions of the Pi2/Pi9 locus from different donors were characterized as broad-spectrum rice blast-resistance fragments; these donors enrich the genetic resources available for rice blast-resistance breeding programs.
Collapse
Affiliation(s)
- Ying Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065 People’s Republic of China
| | - Fang Lei
- Institute of Model Animal of Wuhan University, Basic Medical School of Wuhan University, Wuhan, 430071 People’s Republic of China
| | - Qiong Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065 People’s Republic of China
| | - Weicong He
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065 People’s Republic of China
| | - Bin Yuan
- Key Laboratory of Integrated Management of Crops of Central China, Ministry of Agriculture, Wuhan, 430064 People’s Republic of China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, 430064 People’s Republic of China
| | - Wenya Yuan
- College of Life Sciences, Hubei University, Wuhan, 430062 People’s Republic of China
| |
Collapse
|
74
|
Chandrakanth R, Sunil L, Sadashivaiah L, Devaki NS. In silico modelling and characterization of eight blast resistance proteins in resistant and susceptible rice cultivars. J Genet Eng Biotechnol 2020; 18:75. [PMID: 33237489 PMCID: PMC7688789 DOI: 10.1186/s43141-020-00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes are the largest class of plant resistance genes which play an important role in the plant defense response. These genes are better conserved than others and function as a recognition-based immune system in plants through their encoded proteins. RESULTS Here, we report the effect of Magnaporthe oryzae, the rice blast pathogen inoculation in resistant BR2655 and susceptible HR12 rice cultivars. Transcriptomic profiling was carried out to analyze differential gene expression in these two cultivars. A total of eight NBS-LRR uncharacterized resistance proteins (RP1, RP2, RP3, RP4, RP5, RP6, RP7, and RP8) were selected in these two cultivars for in silico modeling. Modeller 9.22 and SWISS-MODEL servers were used for the homology modeling of eight RPs. ProFunc server was utilized for the prediction of secondary structure and function. The CDvist Web server and Interpro scan server detected the motif and domains in eight RPs. Ramachandran plot of eight RPs confirmed that the modeled structures occupied favorable positions. CONCLUSIONS From the present study, computational analysis of these eight RPs may afford insights into their role, function, and valuable resource for studying the intricate details of the plant defense mechanism. Furthermore, the identification of resistance proteins is useful for the development of molecular markers linked to resistance genes.
Collapse
Affiliation(s)
- R Chandrakanth
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India
| | - L Sunil
- Department of Plant Cell Biotechnology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - L Sadashivaiah
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India
| | - N S Devaki
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India.
| |
Collapse
|
75
|
Deng Y, Ning Y, Yang DL, Zhai K, Wang GL, He Z. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. MOLECULAR PLANT 2020; 13:1402-1419. [PMID: 32979566 DOI: 10.1016/j.molp.2020.09.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 05/24/2023]
Abstract
Crop diseases are major factors responsible for substantial yield losses worldwide, which affects global food security. The use of resistance (R) genes is an effective and sustainable approach to controlling crop diseases. Here, we review recent advances on R gene studies in the major crops and related wild species. Current understanding of the molecular mechanisms underlying R gene activation and signaling, and susceptibility (S) gene-mediated resistance in crops are summarized and discussed. Furthermore, we propose some new strategies for R gene discovery, how to balance resistance and yield, and how to generate crops with broad-spectrum disease resistance. With the rapid development of new genome-editing technologies and the availability of increasing crop genome sequences, the goal of breeding next-generation crops with durable resistance to pathogens is achievable, and will be a key step toward increasing crop production in a sustainable way.
Collapse
Affiliation(s)
- Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
76
|
Yang N, Hu J, Zhou X, Wang A, Yu J, Tao X, Tang J. A rapid detection method of early spore viability based on
AC
impedance measurement. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ning Yang
- School of Electrical and Information Engineering, Jiangsu University Zhenjiang China
| | - Jiaqi Hu
- School of Electrical and Information Engineering, Jiangsu University Zhenjiang China
| | - Xu Zhou
- School of Electrical and Information Engineering, Jiangsu University Zhenjiang China
| | - Aiying Wang
- State Key Laboratory of Rice Biology China National Rice Research Institute Hangzhou China
| | - Junjie Yu
- School of Electrical and Information Engineering, Jiangsu University Zhenjiang China
| | - Xinyi Tao
- Viterbi Engineering School University of Southern California Los Angeles USA
| | - Jian Tang
- State Key Laboratory of Rice Biology China National Rice Research Institute Hangzhou China
| |
Collapse
|
77
|
Dong L, Liu S, Kyaing MS, Xu P, Tharreau D, Deng W, Li X, Bi Y, Zeng L, Li J, Zhou J, Tao D, Yang Q. Identification and Fine Mapping of Pi69(t), a New Gene Conferring Broad-Spectrum Resistance Against Magnaporthe oryzae From Oryza glaberrima Steud. FRONTIERS IN PLANT SCIENCE 2020; 11:1190. [PMID: 32849738 PMCID: PMC7426465 DOI: 10.3389/fpls.2020.01190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/22/2020] [Indexed: 05/28/2023]
Abstract
The discovery and deployment of new broad-spectrum resistance (R) genes from cultivated rice and its wild relatives is a strategy to broaden the genetic basis of modern rice cultivars to combat rice blast disease. Oryza glaberrima possessing many valuable traits for tolerance to biotic and abiotic stresses, is an elite gene pool for improvement of Asian cultivated rice. An introgression line IL106 derived from O. glaberrima (Acc. IRGC100137) confers complete resistance to Magnaporthe oryzae in blast nursery. Genetic analysis using 2185 BC6F2 progenies derived from a cross between IL106 and the recurrent parent Dianjingyou 1 showed that IL106 harbors a single dominant resistance gene against M. oryzae strain 09BSH-10-5A. This gene was preliminarily mapped on the long arm of chromosome 6 of rice in a region of ca. 0.9 cM delimited by two SSR markers (RM20650 and RM20701). In order to finely map this gene, 17,100 additional progenies were further analyzed. As a result, this gene was further narrowed down to a region flanked by two molecular markers STS69-15 and STS69-7, and co-segregated with 3 molecular markers, RM20676, STS69-21 and STS69-22 on the long arm of chromosome 6. Based on reference genome sequences, this R gene was mapped in silico in 76.1-Kb and 67.7-Kb physical intervals, and containing 4 and 3 NBS-LRR candidate genes in O. sativa cultivar Nipponbare and O. glaberrima cultivar CG14, respectively. Because no blast resistance gene was finely mapped in this physical interval before, this R gene was considered as not described yet and designated as Pi69(t), which is the first identified and finely mapped blast R gene from O. glaberrima, as far as we know. Evaluation of IL106 with 151 blast strains collected from 6 countries in Asia showed that 148 strains are avirulent on IL106, suggesting that Pi69(t) is a broad-spectrum blast R gene, and a promising resistant resource for improvement of Asian cultivated rice.
Collapse
Affiliation(s)
- Liying Dong
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Shufang Liu
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - May Sandar Kyaing
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Biotechnology Research Department, Ministry of Education, Mandalay, Myanmar
| | - Peng Xu
- Food Crops Research Institute/Yunnan Key Laboratory for Rice Genetic Improvement, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, China
| | - Didier Tharreau
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR BGPI, TA A 54 K, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRA, Montpellier, SupAgro, Montpellier, France
| | - Wei Deng
- Food Crops Research Institute/Yunnan Key Laboratory for Rice Genetic Improvement, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xundong Li
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yunqing Bi
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Li Zeng
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jing Li
- Food Crops Research Institute/Yunnan Key Laboratory for Rice Genetic Improvement, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jiawu Zhou
- Food Crops Research Institute/Yunnan Key Laboratory for Rice Genetic Improvement, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Dayun Tao
- Food Crops Research Institute/Yunnan Key Laboratory for Rice Genetic Improvement, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qinzhong Yang
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
78
|
Islam MS, Coronejo S, Subudhi PK. Whole-genome sequencing reveals uniqueness of black-hulled and straw-hulled weedy rice genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2461-2475. [PMID: 32488303 DOI: 10.1007/s00122-020-03611-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/13/2020] [Indexed: 05/22/2023]
Abstract
Both SH and BHA weedy rice genotypes evolved independently and have distinct genomic composition. Different genetic mechanisms may be responsible for their competitiveness and adaptation to diverse environmental conditions. Two major types of weedy rice are recognized in the USA based on morphology: straw-hull (SH) and black-hull awned (BHA) weedy rice. We performed whole-genome resequencing of a SH weedy rice 'PSRR-1', a BHA weedy rice 'BHA1115', and a japonica cultivar 'Cypress' to delineate genome-wide differences and their relevance to genetics and evolution of weedy attributes. The high-quality reads were uniformly distributed with 82-88% genome coverage. The number of genotype-specific SNPs and InDels was highest in Cypress, followed by BHA1115 and PSRR-1. However, more genes were affected in BHA1115 compared with other two genotypes which is evident from the number of high-impact SNPs and InDels. Haplotype analysis of selected genes involved in domestication, adaptation, and agronomic performance not only differentiated SH from BHA weedy rice and supported evolution of weedy rice through de-domestication, but also validated the function of several genes such as qAn-1, qAn-2, Bh4, Rc, SD1, OsLG1, and OsC1. Several candidate genes were identified for previously reported seed dormancy and seed shattering QTLs. The SH and BHA weedy rice have distinct genomic composition, and the BHA weedy rice likely diverged earlier than SH weedy rice. The accumulation of plant development, reproduction, and defense-related genes in weedy rice possibly helped them to compete, survive, and spread under a wide range of environmental conditions by employing novel and diverse mechanisms. The genomic resources will be useful for both weed management and rice improvement by exploring the molecular basis of key agronomic, adaptive, and domestication attributes.
Collapse
Affiliation(s)
- Md Shofiqul Islam
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Sapphire Coronejo
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Prasanta Kumar Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
79
|
Zhu Z, Yin J, Chern M, Zhu X, Yang C, He K, Liu Y, He M, Wang J, Song L, Wang L, Wei Y, Wang J, Liu J, Qing H, Bi Y, Li M, Hu K, Qi T, Hou Q, Chen X, Li W. New insights into bsr-d1-mediated broad-spectrum resistance to rice blast. MOLECULAR PLANT PATHOLOGY 2020; 21:951-960. [PMID: 32394633 PMCID: PMC7280026 DOI: 10.1111/mpp.12941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 03/15/2020] [Accepted: 04/09/2020] [Indexed: 05/21/2023]
Abstract
bsr-d1, an allele encoding a transcription factor identified from the rice cultivar Digu, confers durable, broad-spectrum resistance to infections by strains of Magnaporthe oryzae. bsr-d1 was predicted to inhibit M. oryzae-induced expression of Bsr-d1 RNA and degradation of hydrogen peroxide to achieve resistance to M. oryzae. However, the global effect of biological process and molecular function on blast resistance mediated by Bsr-d1 remains unknown. In this study, we compared transcriptomic profiling between Bsr-d1 knockout (Bsr-d1KO) lines and the wild type, TP309. Our study revealed that bsr-d1 mainly regulates the redox state of plant cells, but also affects amino acid and unsaturated fatty acid metabolism. We further found that BSR-D1 indirectly regulates salicylic acid biosynthesis, metabolism, and signal transduction downstream of the activation of H2 O2 signalling in the bsr-d1-mediated immune response. Furthermore, we identified a novel peroxidase-encoding gene, Perox3, as a new BSR-D1 target gene that reduces resistance to M. oryzae when overexpressed in TP309. These results provide new insights into the bsr-d1-mediated blast resistance.
Collapse
Affiliation(s)
- Ziwei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Mawsheng Chern
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Chao Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Yuchen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Yingjie Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Jichun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Hai Qing
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Mingwu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Kun Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Tuo Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaState Key Laboratory of Hybrid RiceKey Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinRice Research InstituteSichuan Agricultural University at WenjiangChengduChina
| |
Collapse
|
80
|
Lu L, Yang D, Tang D, Li S, Chen Z. Transcriptome analysis of different rice cultivars provides novel insights into the rice response to bacterial leaf streak infection. Funct Integr Genomics 2020; 20:681-693. [PMID: 32566966 DOI: 10.1007/s10142-020-00744-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 02/08/2023]
Abstract
Bacterial leaf streak (BLS) is now the fourth-most devastating disease in rice. Dular and H359 are two indica rice varieties with contrasting responses to BLS. Dular displays high resistance, while H359 is susceptible. In this study, RNA-seq was used to examine the early molecular processes deployed during the resistance response of Dular and H359 at different times after inoculation. Differentially expressed gene (DEG) analysis identified 3031 genes in Dular and 7161 in H359 that were modulated in response to infection after 12 and 24 h. There were significantly more DEGs in H359 than in Dular, and there were significantly more downregulated genes than upregulated genes. Gene ontology (GO) and KEGG enrichment analyses revealed a similar set of GO terms and KEGG pathways enriched in both varieties. However, KEGG analysis of upregulated DEGs revealed that some phenylpropane metabolism-related pathways were specially enriched in Dular. Further comparison and analysis showed that the numbers of resistance-related DEGs in the two varieties were significantly reduced at 24 h compared with 12 h after BLS infection and genes critically involved in conferring resistance during the early stage mainly included WRKY transcription factors, receptor kinases and disease, exocyst, MAPK signalling pathway and hormones related genes. Our study suggests that resistance-related genes may play an important role at an early stage of infection and phenylpropane metabolism related genes may partly response for BLS resistance of Dular, thus providing valuable information for future studies on the molecular mechanisms of BLS resistance in rice.
Collapse
Affiliation(s)
- Ling Lu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Plant Immunity Centre, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dewei Yang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Plant Immunity Centre, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
| | - Dingzhong Tang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Plant Immunity Centre, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengping Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Plant Immunity Centre, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhiwei Chen
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Plant Immunity Centre, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
81
|
Li W, Wang K, Chern M, Liu Y, Zhu Z, Liu J, Zhu X, Yin J, Ran L, Xiong J, He K, Xu L, He M, Wang J, Liu J, Bi Y, Qing H, Li M, Hu K, Song L, Wang L, Qi T, Hou Q, Chen W, Li Y, Wang W, Chen X. Sclerenchyma cell thickening through enhanced lignification induced by OsMYB30 prevents fungal penetration of rice leaves. THE NEW PHYTOLOGIST 2020; 226:1850-1863. [PMID: 32112568 DOI: 10.1111/nph.16505] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/17/2020] [Indexed: 05/20/2023]
Abstract
Broad-spectrum resistance is highly preferred in crop breeding programmes. Previously, we have reported the identification of the broad-spectrum resistance-Digu 1 (bsr-d1) allele from rice Digu. The bsr-d1 allele prevents activation of Bsr-d1 expression by Magnaporthe oryzae infection and degradation of H2 O2 by peroxidases, leading to resistance to M. oryzae. However, it remains unknown whether defence pathways other than H2 O2 burst and peroxidases contribute to the bsr-d1-mediated immunity. Blast resistance was determined in rice leaves by spray and punch inoculations. Target genes of OsMYB30 were identified by one-hybrid assays in yeast and electrophoretic mobility shift assay. Lignin content was measured by phloroglucinol-HCl staining, and acetyl bromide and thioacidolysis methods. Here, we report the involvement of the OsMYB30 gene in bsr-d1-mediated blast resistance. Expression of OsMYB30 was induced during M. oryzae infection or when Bsr-d1 was knocked out or downregulated, as occurs in bsr-d1 plants upon infection. We further found that OsMYB30 bound to and activated the promoters of 4-coumarate:coenzyme A ligase genes (Os4CL3 and Os4CL5) resulting in accumulation of lignin subunits G and S. This action led to obvious thickening of sclerenchyma cells near the epidermis, inhibiting M. oryzae penetration at the early stage of infection. Our study revealed novel components required for bsr-d1-mediated resistance and penetration-dependent immunity, and advanced our understanding of broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Kang Wang
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Yuchen Liu
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Ziwei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Jiang Liu
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Li Ran
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Jun Xiong
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Hai Qing
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Mingwu Li
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Kun Hu
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Tuo Qi
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Weilan Chen
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilisation in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| |
Collapse
|
82
|
Liu M, Kang H, Xu Y, Peng Y, Wang D, Gao L, Wang X, Ning Y, Wu J, Liu W, Li C, Liu B, Wang G. Genome-wide association study identifies an NLR gene that confers partial resistance to Magnaporthe oryzae in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1376-1383. [PMID: 31742855 PMCID: PMC7206997 DOI: 10.1111/pbi.13300] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 05/09/2023]
Abstract
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C-RDP-II), which contains 584 rice accessions and are genotyped with 700 000 single-nucleotide polymorphism (SNP) markers. The C-RDP-II accessions were inoculated with three blast strains collected from different rice-growing regions in China. Genome-wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide-binding site leucine-rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up-regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR-Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non-strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.
Collapse
Affiliation(s)
- Ming‐Hao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yucheng Xu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Ye Peng
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Dan Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Lijun Gao
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Jun Wu
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CentreChangshaHunanChina
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest ManagementYunnan Agricultural UniversityKunmingChina
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice BreedingRice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Guo‐Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Department of Plant PathologyOhio State UniversityColumbusOHUSA
| |
Collapse
|
83
|
Jiang H, Feng Y, Qiu L, Gao G, Zhang Q, He Y. Identification of Blast Resistance QTLs Based on Two Advanced Backcross Populations in Rice. RICE (NEW YORK, N.Y.) 2020; 13:31. [PMID: 32488495 PMCID: PMC7266886 DOI: 10.1186/s12284-020-00392-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Rice blast is an economically important and mutable disease of rice. Using host resistance gene to breed resistant varieties has been proven to be the most effective and economical method to control rice blast and new resistance genes or quantitative trait loci (QTLs) are then needed. RESULTS In this study, we constructed two advanced backcross population to mapping blast resistance QTLs. CR071 and QingGuAi3 were as the donor parent to establish two BC3F1 and derived BC3F2 backcross population in the Jin23B background. By challenging the two populations with natural infection in 2011 and 2012, 16 and 13 blast resistance QTLs were identified in Jin23B/CR071 and Jin23B/QingGuAi3 population, respectively. Among Jin23B/CR071 population, 3 major and 13 minor QTLs have explained the phenotypic variation from 3.50% to 34.08% in 2 years. And, among Jin23B/QingGuAi3 population, 2 major and 11 minor QTLs have explained the phenotypic variation from 2.42% to 28.95% in 2 years. CONCLUSIONS Sixteen and thirteen blast resistance QTLs were identified in Jin23B/CR071 and Jin23B/QingGuAi3 population, respectively. QTL effect analyses suggested that major and minor QTLs interaction is the genetic basis for durable blast resistance in rice variety CR071 and QingGuAi3.
Collapse
Affiliation(s)
- Haichao Jiang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yutao Feng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Qiu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
84
|
Singh J, Gupta SK, Devanna BN, Singh S, Upadhyay A, Sharma TR. Blast resistance gene Pi54 over-expressed in rice to understand its cellular and sub-cellular localization and response to different pathogens. Sci Rep 2020; 10:5243. [PMID: 32251298 PMCID: PMC7090074 DOI: 10.1038/s41598-020-59027-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/31/2019] [Indexed: 11/26/2022] Open
Abstract
Rice blast resistance gene, Pi54 provides broad-spectrum resistance against different strains of Magnaporthe oryzae. Understanding the cellular localization of Pi54 protein is an essential step towards deciphering its place of interaction with the cognate Avr-gene. In this study, we investigated the sub-cellular localization of Pi54 with Green Fluorescent Protein (GFP) as a molecular tag through transient and stable expression in onion epidermal cells (Allium cepa) and susceptible japonica cultivar rice Taipei 309 (TP309), respectively. Confocal microscopy based observations of the onion epidermal cells revealed nucleus and cytoplasm specific GFP signals. In the stable transformed rice plants, GFP signal was recorded in the stomata, upper epidermal cells, mesophyll cells, vascular bundle, and walls of bundle sheath and bulliform cells of leaf tissues. These observations were further confirmed by Immunocytochemical studies. Using GFP specific antibodies, it was found that there was sufficient aggregation of GFP::Pi54protein in the cytoplasm of the leaf mesophyll cells and periphery of the epidermal cells. Interestingly, the transgenic lines developed in this study could show a moderate level of resistance to Xanthomonas oryzae and Rhizoctonia solani, the causal agents of the rice bacterial blight and sheath blight diseases, respectively. This study is a first detailed report, which emphasizes the cellular and subcellular distribution of the broad spectrum blast resistance gene Pi54 in rice and the impact of its constitutive expression towards resistance against other fungal and bacterial pathogens of rice.
Collapse
Affiliation(s)
- Jyoti Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Hislop College, R.T.M Nagpur University, Nagpur, India
| | | | - B N Devanna
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Sunil Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Tilak R Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India.
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India.
| |
Collapse
|
85
|
Liang T, Chi W, Huang L, Qu M, Zhang S, Chen ZQ, Chen ZJ, Tian D, Gui Y, Chen X, Wang Z, Tang W, Chen S. Bulked Segregant Analysis Coupled with Whole-Genome Sequencing (BSA-Seq) Mapping Identifies a Novel pi21 Haplotype Conferring Basal Resistance to Rice Blast Disease. Int J Mol Sci 2020; 21:ijms21062162. [PMID: 32245192 PMCID: PMC7139700 DOI: 10.3390/ijms21062162] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/30/2023] Open
Abstract
Basal or partial resistance has been considered race-non-specific and broad-spectrum. Therefore, the identification of genes or quantitative trait loci (QTLs) conferring basal resistance and germplasm containing them is of significance in breeding crops with durable resistance. In this study, we performed a bulked segregant analysis coupled with whole-genome sequencing (BSA-seq) to identify QTLs controlling basal resistance to blast disease in an F2 population derived from two rice varieties, 02428 and LiXinGeng (LXG), which differ significantly in basal resistance to rice blast. Four candidate QTLs, qBBR-4, qBBR-7, qBBR-8, and qBBR-11, were mapped on chromosomes 4, 7, 8, and 11, respectively. Allelic and genotypic association analyses identified a novel haplotype of the durable blast resistance gene pi21 carrying double deletions of 30 bp and 33 bp in 02428 (pi21-2428) as a candidate gene of qBBR-4. We further assessed haplotypes of Pi21 in 325 rice accessions, and identified 11 haplotypes among the accessions, of which eight were novel types. While the resistant pi21 gene was found only in japonica before, three Chinese indica varieties, ShuHui881, Yong4, and ZhengDa4Hao, were detected carrying the resistant pi21-2428 allele. The pi21-2428 allele and pi21-2428-containing rice germplasm, thus, provide valuable resources for breeding rice varieties, especially indica rice varieties, with durable resistance to blast disease. Our results also lay the foundation for further identification and functional characterization of the other three QTLs to better understand the molecular mechanisms underlying rice basal resistance to blast disease.
Collapse
Affiliation(s)
- Tingmin Liang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Wenchao Chi
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
| | - Likun Huang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.H.); (S.Z.)
| | - Mengyu Qu
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
| | - Shubiao Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.H.); (S.Z.)
| | - Zi-Qiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Zai-Jie Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Yijie Gui
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiqi Tang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- Correspondence: (W.T.); (S.C.)
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- Correspondence: (W.T.); (S.C.)
| |
Collapse
|
86
|
Meng X, Xiao G, Telebanco-Yanoria MJ, Siazon PM, Padilla J, Opulencia R, Bigirimana J, Habarugira G, Wu J, Li M, Wang B, Lu GD, Zhou B. The broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita. RICE (NEW YORK, N.Y.) 2020; 13:19. [PMID: 32170462 PMCID: PMC7070119 DOI: 10.1186/s12284-020-00377-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Rice blast is generally considered the most devastating rice disease worldwide. The development of resistant varieties has been proven to be the most economical strategy to control the disease. A cluster of resistant (R) genes on rice chromosome 12 including Pita, Pita2 and Ptr has been studies for decades. However, the relationship between these R genes has not been well established. RESULTS In this study, we compared the resistance spectra controlled by Pita2 and Pita by testing their monogenic lines (MLs) in four hotspots found in the Philippines and Burundi from 2014 to 2018. The reaction patterns were distinct in two countries and that Pita2-mediated field resistance was relatively prevalent. Pathogenicity tests using 328 single-spore isolates in greenhouse further verified that IRBLta2-Re for Pita2 conferred a relatively broader spectrum resistance than those of Pita. Rough and fine mapping of Pita2 were conducted using F2 and F3 populations derived from IRBLta2-Re [CO] and CO 39 consisting of 4344 progeny to delimit Pita2 in a genomic interval flanked by two markers 12 g18530 and 12 g18920 proximal to the centromere of chromosome 12. Alignment of the markers to the genomic sequence of IR64, which harbors Pita2 verified by genetic analysis, approximately delimited the candidate gene(s) within 313-kb genomic fragment. The two Pita2 suppressive mutants that contain mutations within Pita2 were verified and identified. Comparative sequence analysis in these two mutants further identified that each individual allele contains a single nucleotide substitution at a different position resulting in nonsense and missense mutations in the protein product of LOC_Os12g18729. On the contrary, no sequence mutation was detected in other candidate genes, indicating that mutations in LOC_Os12g18729 were responsible for the loss of function of Pita2. Pita2 encodes a novel R protein unique from Pita, which is exactly identical to the previously cloned Ptr. Moreover, based on the resistance gene analysis of rice varieties and mutants containing Pita, it was found that Pita2 rather than Pita was responsible for the specificity to some differential isolates with AvrPita. The diagnosis and survey of Pita2 in IRRI released varieties showed relatively low frequency, implying a high value of its application for breeding resistant varieties against rice blast via marker assisted selection. CONCLUSION Our study clarified the relationship between Pita, Pita2 and Ptr. Pita2 is identical to Ptr and distinct from Pita in both sequence and chromosomal location although Pita2 and Pita are genetically linked to each other. The loss of function of Pita2 but not Pita eliminate the specificity to some AvrPita containing isolates, however, the mechanism underlying the recognition between Pita2/Pita and AvrPita remains elusive.
Collapse
Affiliation(s)
- Xiuli Meng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
- International Rice Research Institute (IRRI), DAPO Box 7777, 1301, Metro Manila, Philippines
| | - Gui Xiao
- China National Hybrid Rice R&D Center/ Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | | | - Paolo Miguel Siazon
- International Rice Research Institute (IRRI), DAPO Box 7777, 1301, Metro Manila, Philippines
- Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Jonas Padilla
- International Rice Research Institute (IRRI), DAPO Box 7777, 1301, Metro Manila, Philippines
| | - Rina Opulencia
- Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Joseph Bigirimana
- International Rice Research Institute (IRRI), DAPO Box 7777, 1301, Metro Manila, Philippines
| | - Georges Habarugira
- International Rice Research Institute (IRRI), DAPO Box 7777, 1301, Metro Manila, Philippines
| | - Jun Wu
- China National Hybrid Rice R&D Center/ Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Mingyang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Baohua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.
| | - Bo Zhou
- International Rice Research Institute (IRRI), DAPO Box 7777, 1301, Metro Manila, Philippines.
| |
Collapse
|
87
|
Devi SJSR, Singh K, Umakanth B, Vishalakshi B, Rao KVS, Suneel B, Sharma SK, Kadambari GKM, Prasad MS, Senguttvel P, Syamaladevi DP, Madhav MS. Identification and Characterization of a Large Effect QTL from Oryza glumaepatula Revealed Pi68(t) as Putative Candidate Gene for Rice Blast Resistance. RICE (NEW YORK, N.Y.) 2020; 13:17. [PMID: 32166467 PMCID: PMC7067966 DOI: 10.1186/s12284-020-00378-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Field resistance is often effective and durable as compared to vertical resistance. The introgression line (INGR15002) derived from O. glumaepatula has proven broad spectrum field resistance for both leaf and neck blast. RESULTS Quantitative Trait Loci (QTL) analysis of INGR15002, led to the identification of two major QTL - qBL3 contributing about 34% and 32% phenotypic variance towards leaf and neck blast resistance, respectively and qBL7 contributing about 25% of phenotypic variance for leaf blast. Further, qBL3 was fine mapped, narrowed down to 300 kb region and a linked SNP maker was identified. By combining mapping with microarray analysis, a candidate gene, Os03g0281466 (malectin-serine threonine kinase), was identified in the fine mapped region and named as Pi68(t). The nucleotide variations in the coding as well as upstream region of the gene was identified through cloning and sequence analysis of Pi68(t) alleles. These significant variations led to the non-synonymous changes in the protein as well as variations (presence/absence) in four important motifs (W-box element; MYC element; TCP element; BIHD1OS) at promoter region those are associated with resistance and susceptible reactions. The effect of qBL3 was validated by its introgression into BPT5204 (susceptible variety) through marker-assisted selection and progeny exhibiting resistance to both leaf and neck blast was identified. Further, the utility of linked markers of Pi68(t) in the blast breeding programs was demonstrated in elite germplasm lines. CONCLUSIONS This is the first report on the identification and characterization of major effect QTL from O. glumaepatula, which led to the identification of a putative candidate gene, Pi68(t), which confers field resistance to leaf as well as neck blast in rice.
Collapse
Affiliation(s)
- S. J. S. Rama Devi
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | - Kuldeep Singh
- Department of Plant Breeding and Genetics, P.A.U, Ludhiana, Punjab India
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- School of Agricultural Biotechnology, P.A.U, Ludhiana, Punjab India
| | - B. Umakanth
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | - B. Vishalakshi
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | | | - B. Suneel
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | - S. K. Sharma
- Plant Pathology Division, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
- Plant Pathology Division, Indian Institute of Rice Research, Hyderabad-30, India
| | | | - M. S. Prasad
- Plant Pathology Division, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - P. Senguttvel
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | - Divya P. Syamaladevi
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | - M. S. Madhav
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
- Crop Improvement Section, IIRR, Hyderabad, 500 030 India
| |
Collapse
|
88
|
Zhang Z, Jia Y, Wang Y, Sun G. A Rapid Survey of Avirulence Genes in Field Isolates of Magnaporthe oryzae. PLANT DISEASE 2020; 104:717-723. [PMID: 31935345 DOI: 10.1094/pdis-08-19-1688-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnaporthe oryzae is the causal agent for the devastating disease rice blast. The avirulence (AVR) genes in M. oryzae are required to initiate robust disease resistance mediated by the corresponding resistance (R) genes in rice. Therefore, monitoring pathogen AVR genes is important to predict the stability of R gene-mediated blast resistance. In the present study, we analyzed the DNA sequence dynamics of five AVR genes, namely, AVR-Pita1, AVR-Pik, AVR-Pizt, AVR-Pia, and AVR-Pii, in field isolates of M. oryzae in order to understand the effectiveness of the R genes, Pi-ta, Pi-k, Pi-zt, Pia, and Pii in the Southern U.S. rice growing region. Genomic DNA of 258 blast isolates collected from commercial fields of the Southern UNITED STATES during 1975-2009 were subjected to PCR amplification with AVR gene-specific PCR markers. PCR products were obtained from 232 isolates. The absence of PCR products in the remaining 26 isolates suggests that these isolates do not contain the tested AVR genes. Amplified PCR products were subsequently gel purified and sequenced. Based on the presence or absence of the five AVR genes, 232 field isolates were classified into 10 haplotype groups. The results revealed that 174 isolates of M. oryzae carried AVR-Pita1, 225 isolates carried AVR-Pizt, 44 isolates carried AVR-Pik, 3 isolates carried AVR-Pia, and one isolate carried AVR-Pii. AVR-Pita1 was highly variable, and 40 AVR-Pita1 haplotypes were identified in avirulent isolates. AVR-Pik had four nucleotide sequence site changes resulting in amino acid substitutions, whereas three other AVR genes, AVR-Pizt, AVR-Pia, and AVR-Pii, were relatively stable. Two AVR genes, AVR-Pik and AVR-Pizt, were found to exist in relatively larger proportions of the tested field isolates, which suggested that their corresponding R genes Pi-k and Pi-zt can be deployed in preventing blast disease in the Southern UNITED STATES in addition to Pi-ta. This study demonstrates that continued AVR gene monitoring in the pathogen population is critical for ensuring the effectiveness of deployed blast R genes in commercial rice fields.
Collapse
Affiliation(s)
- Zhen Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yulin Jia
- USDA-ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, U.S.A
| | - Yanli Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guochang Sun
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
89
|
Xie Z, Yan B, Shou J, Tang J, Wang X, Zhai K, Liu J, Li Q, Luo M, Deng Y, He Z. A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180308. [PMID: 30967012 DOI: 10.1098/rstb.2018.0308] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rice blast caused by Magnaporthe oryzae is the most destructive fungal disease in crops, greatly threatening rice production and food security worldwide. The identification and utilization of broad-spectrum resistance genes are considered to be the most economic and effective method to control the disease. In the past decade, many blast resistance ( R) genes have been identified, which mainly encode nucleotide-binding leucine-rich repeat (NLR) receptor family and confer limited race-specific resistance to the fungal pathogen. Resistance genes conferring broad-spectrum blast resistance are still largely lacking. In this study, we carried out a map-based cloning of the new blast R locus Pizh in variety ZH11. A bacterial artificial chromosome (BAC) clone of 165 kb spanning the Pizh locus was sequenced and identified 9 NLR genes, among which only Pizh-1 and Pizh-2 were expressed. Genetic complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance breeding but also deep insight into NLR association and function in plant immunity. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Zhen Xie
- 1 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai 200032 , People's Republic of China.,2 College of Agriculture and Biotechnology, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Bingxiao Yan
- 1 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai 200032 , People's Republic of China.,3 University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jianyao Shou
- 4 Zhuji Agricultural Technology Promotion Center , Zhejiang 311800 , People's Republic of China
| | - Jun Tang
- 1 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai 200032 , People's Republic of China
| | - Xin Wang
- 1 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai 200032 , People's Republic of China
| | - Keran Zhai
- 1 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai 200032 , People's Republic of China
| | - Jiyun Liu
- 1 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai 200032 , People's Republic of China
| | - Qun Li
- 1 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai 200032 , People's Republic of China
| | - Meizhong Luo
- 5 College of Life Science and Technology, Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| | - Yiwen Deng
- 1 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai 200032 , People's Republic of China
| | - Zuhua He
- 1 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai 200032 , People's Republic of China.,2 College of Agriculture and Biotechnology, Zhejiang University , Hangzhou 310058 , People's Republic of China
| |
Collapse
|
90
|
Xiao G, Yang J, Zhu X, Wu J, Zhou B. Prevalence of Ineffective Haplotypes at the Rice Blast Resistance (R) Gene Loci in Chinese Elite Hybrid Rice Varieties Revealed by Sequence-Based Molecular Diagnosis. RICE (NEW YORK, N.Y.) 2020; 13:6. [PMID: 32002696 PMCID: PMC6990218 DOI: 10.1186/s12284-020-0367-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Multiple haplotypes at the same rice blast R-gene locus share extremely high sequence similarity, which makes the gene diagnostic method using molecular markers less effective in differentiation from one another. The composition and distribution pattern of deployed R genes/haplotypes in elite rice varieties has not been extensively analyzed. In this study, we employed PCR amplification and sequencing approach for the diagnosis of R-gene haplotypes in 54 Chinese elite rice varieties. A varied number of functional and nonfunctional haplotypes of 4 target major R-gene loci, i.e., Pi2/9, Pi5, Pik, and Pib, were deduced by referring to the reference sequences of known R genes. Functional haplotypes accounted for relatively low frequencies for the Pi2/9 (15%) and Pik (9%) loci but for relatively high frequencies for the Pi5 (50%) and Pib (54%) loci. Intriguingly, significant frequencies of 33%, 39%, 46% of non-functional haplotypes at the Pi2/9, Pik, and Pib loci, respectively, with traceable original donors were identified, suggesting that they were most likely unintentionally spread by using undesirable donors in various breeding programs. In the case of Pi5 locus, only a single haplotype, i.e., Pi5 was identified. The reactions of 54 rice varieties to the differential isolates were evaluated, which showed a good correlation to the frequency of cognate avirulence (Avr) genes or haplotypes in the differential isolates. Four R genes, i.e., Pi2, Piz-t, Pi50, and Pikm were found to contribute significantly to the resistance of the elite rice varieties. Other two genes, Pi9 and Pikh, which were not utilized in rice varieties, showed promising values in breeding durable resistance due to their high resistance frequencies to the contemporary rice blast population. The sequence-based molecular diagnosis provided a promising approach for the identification and verification of haplotypes in different R-gene loci and effective R genes valuable for breeding durable rice resistance to rice blast.
Collapse
Affiliation(s)
- Gui Xiao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jianyuan Yang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Xiaoyuan Zhu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan China
| | - Bo Zhou
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
91
|
Zhang Y, Wang J, Yao Y, Jin X, Correll J, Wang L, Pan Q. Dynamics of Race Structures of the Rice Blast Pathogen Population in Heilongjiang Province, China From 2006 Through 2015. PLANT DISEASE 2019; 103:2759-2763. [PMID: 31509496 DOI: 10.1094/pdis-10-18-1741-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice blast caused by the fungus Magnaporthe oryzae is one of the most destructive diseases of rice. Its control through the deployment of host resistance genes would be facilitated by understanding the pathogen's race structure. Here, dynamics of race structures in this decade in Heilongjiang province were characterized by Chinese differential cultivars. Two patterns of dynamics of the race structures emerged: both race diversity and population-specific races increased gradually between 2006 and 2011, but they increased much more sharply between 2011 and 2015, with concomitant falls in both the population-common races and dominant races. Four races (ZD1, ZD3, ZD5, and ZE1) were among the top three dominant races over the whole period, indicating that the core of the race structure remained stable through this decade. On the host side, the composition of resistance in the cultivar differential set could be divided in two: the three indica-type entries of the differential set expressed a higher level of resistance to the population of M. oryzae isolates tested than did the four japonica-type entries. The cultivars Tetep and Zhenlong 13 as well as two additional resistance genes α and ε were confirmed as the most promising donors of blast resistance for the local rice improvement programs.[Formula: see text]Copyright © 2019 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yaling Zhang
- State Key Laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jinyan Wang
- State Key Laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yongxiang Yao
- State Key Laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Dandong Academy of Agricultural Sciences, Dandong 118109, China
| | - Xuehui Jin
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - James Correll
- Department of Plant Pathology, University of Arkansas, Fayetteville 72701, AR, U.S.A
| | - Ling Wang
- State Key Laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Pan
- State Key Laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
92
|
Madhusudhan P, Sinha P, Rajput LS, Bhattacharya M, Sharma T, Bhuvaneshwari V, Gaikwad K, Krishnan SG, Singh AK. Effect of temperature on Pi54-mediated leaf blast resistance in rice. World J Microbiol Biotechnol 2019; 35:148. [PMID: 31549233 DOI: 10.1007/s11274-019-2724-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022]
Abstract
Assessment of temperature effect on plant resistance against diseases has become essential under climate change scenario as temperature rise is anticipated to modify host resistance. To determine temperature influence on resistance gene, a pair of near-isogenic rice lines differing for the Pi54 resistance gene was assessed against leaf blast. Blast resistance was determined as the extent of infection efficiency (IE) and sporulation (SP) at suboptimal (22 °C and 32 °C) and optimal temperature (27 °C) of pathogen aggressiveness. Relative resistance for IE and SP was higher at suboptimal temperature as compared to that of optimal temperature. Maximum level of resistance was at 22 °C where higher levels of expression of Pi54 and defence-regulatory transcription factor WRKY45 were also noted. At 32 °C, although some level of resistance noted, but level of Pi54 and WRKY45 expression was too low, suggesting that resistance recorded at higher temperature was due to reduced pathogen aggressiveness. At the optimal temperature for pathogen aggressiveness, comparatively lower levels of Pi54 and WRKY45 expression suggest possible temperature-induced interruption of the defence processes. The variation in resistance patterns modulated by temperature is appeared to be due to pathogen's sensitivity to temperature that leads to varying levels of Pi54 gene activation. Quick and violent activity of the pathogen at optimal temperature came into sight for the interruption of defence process activated by Pi54 gene. Evaluation of blast resistance genes under variable temperature conditions together with weather data could be applied in screening rice genotypes for selection of resistance having resilience to temperature rise.
Collapse
Affiliation(s)
- P Madhusudhan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Agricultural Research Station, Acharya N G Ranga Agricultural University, Nellore, Andhra Pradesh, 524003, India
| | - P Sinha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - L S Rajput
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Division of Plant Protection, ICAR-Indian Institute of Soybean Research, Indore, Madhya Pradesh, 452001, India
| | - M Bhattacharya
- Department of Agronomy, IOWA State University, Ames, IA, 5001-1051, USA
| | - Taru Sharma
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - V Bhuvaneshwari
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University, Maruteru, Andhra Pradesh, 534122, India
| | - Kishore Gaikwad
- National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India
| | - S Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - A K Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
93
|
Large-scale identification and functional analysis of NLR genes in blast resistance in the Tetep rice genome sequence. Proc Natl Acad Sci U S A 2019; 116:18479-18487. [PMID: 31451649 DOI: 10.1073/pnas.1910229116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tetep is a rice cultivar known for broad-spectrum resistance to blast, a devastating fungal disease. The molecular basis for its broad-spectrum resistance is still poorly understood. Is it because Tetep has many more NLR genes than other cultivars? Or does Tetep possess multiple major NLR genes that can individually confer broad-spectrum resistance to blast? Moreover, are there many interacting NLR pairs in the Tetep genome? We sequenced its genome, obtained a high-quality assembly, and annotated 455 nucleotide-binding site leucine-rich repeat (NLR) genes. We cloned and tested 219 NLR genes as transgenes in 2 susceptible cultivars using 5 to 12 diversified pathogen strains; in many cases, fewer than 12 strains were successfully cultured for testing. Ninety cloned NLRs showed resistance to 1 or more pathogen strains and each strain was recognized by multiple NLRs. However, few NLRs showed resistance to >6 strains, so multiple NLRs are apparently required for Tetep's broad-spectrum resistance to blast. This was further supported by the pedigree analyses, which suggested a correlation between resistance and the number of Tetep-derived NLRs. In developing a method to identify NLR pairs each of which functions as a unit, we found that >20% of the NLRs in the Tetep and 3 other rice genomes are paired. Finally, we designed an extensive set of molecular markers for rapidly introducing clustered and paired NLRs in the Tetep genome for breeding new resistant cultivars. This study increased our understanding of the genetic basis of broad-spectrum blast resistance in rice.
Collapse
|
94
|
Li C, Wang D, Peng S, Chen Y, Su P, Chen J, Zheng L, Tan X, Liu J, Xiao Y, Kang H, Zhang D, Wang GL, Liu Y. Genome-wide association mapping of resistance against rice blast strains in South China and identification of a new Pik allele. RICE (NEW YORK, N.Y.) 2019; 12:47. [PMID: 31309315 PMCID: PMC6629727 DOI: 10.1186/s12284-019-0309-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/30/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Effective management of rice blast, caused by the fungus Magnaporthe oryzae, requires an understanding of the genetic architecture of the resistance to the disease in rice. Rice resistance varies with M. oryzae strains, and many quantitative trait loci (QTLs) affecting rice blast resistance have been mapped using different strains of M. oryzae from different areas. However, little is known about the genetic architecture of rice resistance against the M. oryzae population in Hunan Province, which is a main rice production area in South China. RESULTS In this study, we used three isolates from Hunan Province and the rice diversity panel 1 to perform a genome-wide association study (GWAS) of blast resistance in rice. A total of 56 QTLs were identified. One of the QTLs is localized with the resistance gene Pik locus which confers resistance to all three isolates. Genomic sequence analysis of the resistant cultivars led to the identification of a new Pik allele, which we named Pikx. Yeast two-hybrid and co-immunoprecipitation assays between AvrPiks and Pikx confirmed that Pikx is a new allele at the Pik locus. CONCLUSIONS Our GWAS has identified many new blast resistance QTLs. The identified new Pik allele Pikx will be useful for breeding cultivars with high resistance to blast in Hunan and other South China provinces. Further research on the relationship between AvrPiks and Pikx will provide new insights into the molecular mechanism of rice resistance to M. oryzae.
Collapse
Affiliation(s)
- Chenggang Li
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Dan Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shasha Peng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yue Chen
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Pin Su
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jianbin Chen
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Limin Zheng
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Xinqiu Tan
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jinling Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yinghui Xiao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Houxiang Kang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Deyong Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Guo-Liang Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA.
| | - Yong Liu
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
95
|
Feng X, Lin K, Zhang W, Nan J, Zhang X, Wang C, Wang R, Jiang G, Yuan Q, Lin S. Improving the blast resistance of the elite rice variety Kongyu-131 by updating the pi21 locus. BMC PLANT BIOLOGY 2019; 19:249. [PMID: 31185908 PMCID: PMC6560829 DOI: 10.1186/s12870-019-1868-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/04/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND As an elite japonica rice variety, Kongyu-131 has been cultivated for over 20 years in the third accumulated temperature zone of Heilongjiang Province, China. However, the cultivated area of Kongyu-131 has decreased each year due to extensive outbreaks of rice blast. To achieve the goals of improving blast resistance and preserving other desirable traits in Kongyu-131, a genome-updating method similar to repairing a bug in a computer program was adopted in this study. A new allele of the broad-spectrum blast resistance gene pi21 in the upland rice variety GKGH was mined by genetic analysis and introgressed into the genome of Kongyu-131 to upgrade its blast resistance. RESULT QTL analysis was performed with an F2 population derived from a cross between Kongyu-131 and GKGH, and a blast resistance QTL was detected near the pi21 locus. Parental Pi21 sequence alignment showed that the pi21 of the donor (GKGH) was a new allele. By 5 InDel or SNP markers designed based on the sequence within and around pi21, the introgressed chromosome segment was shortened to less than 634 kb to minimize linkage drag by screening recombinants in the target region. The RRPG was 99.92%, calculated according to 201 SNP markers evenly distributed on 12 chromosomes. Artificial inoculation at the seedling stage showed that the blast resistance of the new Kongyu-131 was improved significantly. Field experiments also indicated that the improved Kongyu-131 had enhanced field resistance to rice blast and grain-quality traits similar to those of the original Kongyu-131. CONCLUSIONS It is feasible to improve resistance to rice blast and preserve other desirable traits by precisely improving the Pi21 locus of Kongyu-131. Linkage drag can be eliminated effectively via recombinant selection on both sides of the target gene.
Collapse
Affiliation(s)
- Xiaomin Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Kangxue Lin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Wenqi Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Jianzong Nan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Xiaohui Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Chen Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Rongsheng Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Guoqiang Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qingbo Yuan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shaoyang Lin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| |
Collapse
|
96
|
Substantial enhancement of high polymorphic SSR marker development using in silico method from 18 available rice blast fungus genome sequences and its application in genetic diversity assessment. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00264-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
97
|
Kalia S, Rathour R. Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice. 3 Biotech 2019; 9:209. [PMID: 31093479 PMCID: PMC6509304 DOI: 10.1007/s13205-019-1738-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Blast disease caused by fungal pathogen Pyricularia oryzae is a major threat to rice productivity worldwide. The rice-blast pathogen can infect both leaves and panicle neck nodes. Nearly, 118 genes for resistance to leaf blast have been identified and 25 of these have been molecularly characterized. A great majority of these genes encode nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins and are organized into clusters as allelic or tightly linked genes. Compared to ever expanding list of leaf-blast-resistance genes, a few major genes mediating protection to neck blast have been identified. A great majority of the genetic studies conducted with the genotypes differing in the degree of susceptibility/resistance to neck blast have suggested quantitative inheritance for the trait. Several reports on co-localization of gene/QTLs for leaf- and neck-blast resistance in rice genome have suggested the existence of common genes for resistance to both phases of the disease albeit inconsistencies in the genomic positions leaf- and neck-blast-resistance genes in some instances have presented the contrasting scenario. There is a strong evidence to suggest that developmentally regulated expression of many blast-resistance genes is a key determinant deciding their effectiveness against leaf or neck blast. Testing of currently characterized leaf-blast-resistance genes for their reaction to neck blast is required to expand the existing repertoire resistance genes against neck blast. Current developments in the understanding of molecular basis of host-pathogen interactions in rice-blast pathosystem offer novel possibilities for achieving durable resistance to blast through exploitation of natural or genetically engineered loss-of-function alleles of host susceptibility genes.
Collapse
Affiliation(s)
- S. Kalia
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062 India
| | - R. Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062 India
| |
Collapse
|
98
|
Mushtaq M, Sakina A, Wani SH, Shikari AB, Tripathi P, Zaid A, Galla A, Abdelrahman M, Sharma M, Singh AK, Salgotra RK. Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:550. [PMID: 31134108 PMCID: PMC6514154 DOI: 10.3389/fpls.2019.00550] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/10/2019] [Indexed: 05/21/2023]
Abstract
Modern genome editing (GE) techniques, which include clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system, transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs) and LAGLIDADG homing endonucleases (meganucleases), have so far been used for engineering disease resistance in crops. The use of GE technologies has grown very rapidly in recent years with numerous examples of targeted mutagenesis in crop plants, including gene knockouts, knockdowns, modifications, and the repression and activation of target genes. CRISPR/Cas9 supersedes all other GE techniques including TALENs and ZFNs for editing genes owing to its unprecedented efficiency, relative simplicity and low risk of off-target effects. Broad-spectrum disease resistance has been engineered in crops by GE of either specific host-susceptibility genes (S gene approach), or cleaving DNA of phytopathogens (bacteria, virus or fungi) to inhibit their proliferation. This review focuses on different GE techniques that can potentially be used to boost molecular immunity and resistance against different phytopathogens in crops, ultimately leading to the development of promising disease-resistant crop varieties.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aafreen Sakina
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Asif B. Shikari
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prateek Tripathi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Aravind Galla
- Department of Entomology, University of Arkansas, Fayetteville, AR, United States
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Sciences, Aswan University, Aswan, Egypt
| | - Manmohan Sharma
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Anil Kumar Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Romesh Kumar Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| |
Collapse
|
99
|
Meng Q, Gupta R, Min CW, Kwon SW, Wang Y, Je BI, Kim YJ, Jeon JS, Agrawal GK, Rakwal R, Kim ST. Proteomics of Rice- Magnaporthe oryzae Interaction: What Have We Learned So Far? FRONTIERS IN PLANT SCIENCE 2019; 10:1383. [PMID: 31737011 PMCID: PMC6828948 DOI: 10.3389/fpls.2019.01383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/07/2019] [Indexed: 05/21/2023]
Abstract
Rice blast disease, caused by Magnaporthe oryzae, is one of the major constraints to rice production, which feeds half of the world's population. Proteomic technologies have been used as effective tools in plant-pathogen interactions to study the biological pathways involved in pathogen infection, plant response, and disease progression. Advancements in mass spectrometry (MS) and apoplastic and plasma membrane protein isolation methods facilitated the identification and quantification of subcellular proteomes during plant-pathogen interaction. Proteomic studies conducted during rice-M. oryzae interaction have led to the identification of several proteins eminently involved in pathogen perception, signal transduction, and the adjustment of metabolism to prevent plant disease. Some of these proteins include receptor-like kinases (RLKs), mitogen-activated protein kinases (MAPKs), and proteins related to reactive oxygen species (ROS) signaling and scavenging, hormone signaling, photosynthesis, secondary metabolism, protein degradation, and other defense responses. Moreover, post-translational modifications (PTMs), such as phosphoproteomics and ubiquitin proteomics, during rice-M. oryzae interaction are also summarized in this review. In essence, proteomic studies carried out to date delineated the molecular mechanisms underlying rice-M. oryzae interactions and provided candidate proteins for the breeding of rice blast resistant cultivars.
Collapse
Affiliation(s)
- Qingfeng Meng
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
- Department of Botany, School of Chemical and Life Science, Jamia Hamdard, New Delhi, India
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Soon Wook Kwon
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Yiming Wang
- Department of Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Byoung Il Je
- Department of Horticultural Bioscience, Pusan National University, Miryang, South Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Birgunj, Nepal
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
- *Correspondence: Sun Tae Kim,
| |
Collapse
|
100
|
Jairin J, Vejchasarn P, Somjai T, Srivilai K, Darwell K, Leelagud P, Kawichai R, Kotcharerk J, Suthanthangjai A, Popa N, Lachanthuek S, Chamarerk V. Identification of QTLs for Blast, Bacterial Blight, and Planthopper Resistance Using SNP-Based Linkage Maps from Two Recombinant Inbred Rice Lines. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/ajps.2019.105056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|