51
|
Roy D, Huguet KT, Grenier F, Burrus V. IncC conjugative plasmids and SXT/R391 elements repair double-strand breaks caused by CRISPR-Cas during conjugation. Nucleic Acids Res 2020; 48:8815-8827. [PMID: 32556263 PMCID: PMC7498323 DOI: 10.1093/nar/gkaa518] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Bacteria have evolved defence mechanisms against bacteriophages. Restriction-modification systems provide innate immunity by degrading invading DNAs that lack proper methylation. CRISPR-Cas systems provide adaptive immunity by sampling the genome of past invaders and cutting the DNA of closely related DNA molecules. These barriers also restrict horizontal gene transfer mediated by conjugative plasmids. IncC conjugative plasmids are important contributors to the global dissemination of multidrug resistance among pathogenic bacteria infecting animals and humans. Here, we show that IncC conjugative plasmids are highly resilient to host defence systems during entry into a new host by conjugation. Using a TnSeq strategy, we uncover a conserved operon containing five genes (vcrx089-vcrx093) that confer a novel host defence evasion (hde) phenotype. We show that vcrx089-vcrx090 promote resistance against type I restriction-modification, whereas vcrx091-vcxr093 promote CRISPR-Cas evasion by repairing double-strand DNA breaks via recombination between short sequence repeats. vcrx091, vcrx092 and vcrx093 encode a single-strand binding protein, and a single-strand annealing recombinase and double-strand exonuclease related to Redβ and λExo of bacteriophage λ, respectively. Homologous genes of the integrative and conjugative element R391 also provide CRISPR-Cas evasion. Hence, the conserved hde operon considerably broadens the host range of large families of mobile elements spreading multidrug resistance.
Collapse
Affiliation(s)
- David Roy
- Département de biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Kevin T Huguet
- Département de biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Frédéric Grenier
- Département de biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Vincent Burrus
- Département de biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| |
Collapse
|
52
|
Song G, Zhang F, Zhang X, Gao X, Zhu X, Fan D, Tian Y. AcrIIA5 Inhibits a Broad Range of Cas9 Orthologs by Preventing DNA Target Cleavage. Cell Rep 2020; 29:2579-2589.e4. [PMID: 31775029 DOI: 10.1016/j.celrep.2019.10.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/15/2019] [Accepted: 10/18/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas9 is an adaptive immune system for prokaryotes to defend against invasive genetic elements such as phages and has been used as a powerful tool for genome editing and modulation. To overcome CRISPR immunity, phages encode anti-CRISPR proteins (Acrs) to inhibit Cas9, providing an efficient "off-switch" tool for Cas9-based applications. Here, we characterized AcrIIA5, which is a Cas9 inhibitor discovered in a virulent phage of Streptococcus thermophilus. We found that AcrIIA5 is a potent and broad-spectrum inhibitor of CRISPR-Cas9, which can inhibit diverse Cas9 orthologs of type II-A, type II-B, and type II-C. AcrIIA5 inhibits Cas9 by preventing DNA target cleavage, but DNA target binding of Cas9 is unaffected. Importantly, it can affect the activity of the RuvC nuclease domain of Cas9 independent of the HNH nuclease domain. Our work expands the diversity of the inhibitory mechanisms used by Acrs and provides the guidance for developing controlling tools in Cas9-based applications.
Collapse
Affiliation(s)
- Guoxu Song
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Zhang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewen Zhang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xing Gao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxiao Zhu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongdong Fan
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tian
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
53
|
Niu Y, Yang L, Gao T, Dong C, Zhang B, Yin P, Hopp AK, Li D, Gan R, Wang H, Liu X, Cao X, Xie Y, Meng X, Deng H, Zhang X, Ren J, Hottiger MO, Chen Z, Zhang Y, Liu X, Feng Y. A Type I-F Anti-CRISPR Protein Inhibits the CRISPR-Cas Surveillance Complex by ADP-Ribosylation. Mol Cell 2020; 80:512-524.e5. [PMID: 33049228 DOI: 10.1016/j.molcel.2020.09.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
CRISPR-Cas systems are bacterial anti-viral systems, and phages use anti-CRISPR proteins (Acrs) to inactivate these systems. Here, we report a novel mechanism by which AcrIF11 inhibits the type I-F CRISPR system. Our structural and biochemical studies demonstrate that AcrIF11 functions as a novel mono-ADP-ribosyltransferase (mART) to modify N250 of the Cas8f subunit, a residue required for recognition of the protospacer-adjacent motif, within the crRNA-guided surveillance (Csy) complex from Pseudomonas aeruginosa. The AcrIF11-mediated ADP-ribosylation of the Csy complex results in complete loss of its double-stranded DNA (dsDNA) binding activity. Biochemical studies show that AcrIF11 requires, besides Cas8f, the Cas7.6f subunit for binding to and modifying the Csy complex. Our study not only reveals an unprecedented mechanism of type I CRISPR-Cas inhibition and the evolutionary arms race between phages and bacteria but also suggests an approach for designing highly potent regulatory tools in the future applications of type I CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yiying Niu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingguang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Teng Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changpeng Dong
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang 110866, China
| | - Buyu Zhang
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peipei Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ann-Katrin Hopp
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Dongdong Li
- The Protein Preparation and Characterization Core Facility of Tsinghua University, The China National Center for Protein Sciences (Beijing) Tsinghua University Branch, Beijing 100084, China
| | - Rui Gan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Hongou Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xi Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xueli Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongchao Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Zeliang Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang 110866, China.
| | - Yi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
54
|
Wang J, Dai W, Li J, Xie R, Dunstan RA, Stubenrauch C, Zhang Y, Lithgow T. PaCRISPR: a server for predicting and visualizing anti-CRISPR proteins. Nucleic Acids Res 2020; 48:W348-W357. [PMID: 32459325 PMCID: PMC7319593 DOI: 10.1093/nar/gkaa432] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
Anti-CRISPRs are widespread amongst bacteriophage and promote bacteriophage infection by inactivating the bacterial host's CRISPR–Cas defence system. Identifying and characterizing anti-CRISPR proteins opens an avenue to explore and control CRISPR–Cas machineries for the development of new CRISPR–Cas based biotechnological and therapeutic tools. Past studies have identified anti-CRISPRs in several model phage genomes, but a challenge exists to comprehensively screen for anti-CRISPRs accurately and efficiently from genome and metagenome sequence data. Here, we have developed an ensemble learning based predictor, PaCRISPR, to accurately identify anti-CRISPRs from protein datasets derived from genome and metagenome sequencing projects. PaCRISPR employs different types of feature recognition united within an ensemble framework. Extensive cross-validation and independent tests show that PaCRISPR achieves a significantly more accurate performance compared with homology-based baseline predictors and an existing toolkit. The performance of PaCRISPR was further validated in discovering anti-CRISPRs that were not part of the training for PaCRISPR, but which were recently demonstrated to function as anti-CRISPRs for phage infections. Data visualization on anti-CRISPR relationships, highlighting sequence similarity and phylogenetic considerations, is part of the output from the PaCRISPR toolkit, which is freely available at http://pacrispr.erc.monash.edu/.
Collapse
Affiliation(s)
- Jiawei Wang
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC 3800, Australia
| | - Wei Dai
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC 3800, Australia
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jiahui Li
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruopeng Xie
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Rhys A Dunstan
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC 3800, Australia
| | - Christopher Stubenrauch
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC 3800, Australia
| | - Yanju Zhang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Trevor Lithgow
- To whom correspondence should be addressed. Tel: +61 3 9902 9217; Fax: +61 3 9905 3726;
| |
Collapse
|
55
|
Abstract
Over a thousand diseases are caused by mutations that alter gene expression levels. The potential of nuclease-deficient zinc fingers, TALEs or CRISPR fusion systems to treat these diseases by modulating gene expression has recently emerged. These systems can be applied to modify the activity of gene-regulatory elements - promoters, enhancers, silencers and insulators, subsequently changing their target gene expression levels to achieve therapeutic benefits - an approach termed cis-regulation therapy (CRT). Here, we review emerging CRT technologies and assess their therapeutic potential for treating a wide range of diseases caused by abnormal gene dosage. The challenges facing the translation of CRT into the clinic are discussed.
Collapse
|
56
|
Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene Editing by Extracellular Vesicles. Int J Mol Sci 2020; 21:E7362. [PMID: 33028045 PMCID: PMC7582630 DOI: 10.3390/ijms21197362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
CRISPR/Cas technologies have advanced dramatically in recent years. Many different systems with new properties have been characterized and a plethora of hybrid CRISPR/Cas systems able to modify the epigenome, regulate transcription, and correct mutations in DNA and RNA have been devised. However, practical application of CRISPR/Cas systems is severely limited by the lack of effective delivery tools. In this review, recent advances in developing vehicles for the delivery of CRISPR/Cas in the form of ribonucleoprotein complexes are outlined. Most importantly, we emphasize the use of extracellular vesicles (EVs) for CRISPR/Cas delivery and describe their unique properties: biocompatibility, safety, capacity for rational design, and ability to cross biological barriers. Available molecular tools that enable loading of desired protein and/or RNA cargo into the vesicles in a controllable manner and shape the surface of EVs for targeted delivery into specific tissues (e.g., using targeting ligands, peptides, or nanobodies) are discussed. Opportunities for both endogenous (intracellular production of CRISPR/Cas) and exogenous (post-production) loading of EVs are presented.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Valery Smirnov
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Elena Volchkova
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Alexander Lukashev
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| |
Collapse
|
57
|
An SY, Ka D, Kim I, Kim EH, Kim NK, Bae E, Suh JY. Intrinsic disorder is essential for Cas9 inhibition of anti-CRISPR AcrIIA5. Nucleic Acids Res 2020; 48:7584-7594. [PMID: 32544231 PMCID: PMC7367191 DOI: 10.1093/nar/gkaa512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide adaptive immunity to prokaryotes against invading phages and plasmids. As a countermeasure, phages have evolved anti-CRISPR (Acr) proteins that neutralize the CRISPR immunity. AcrIIA5, isolated from a virulent phage of Streptococcus thermophilus, strongly inhibits diverse Cas9 homologs, but the molecular mechanism underlying the Cas9 inhibition remains unknown. Here, we report the solution structure of AcrIIA5, which features a novel α/β fold connected to an N-terminal intrinsically disordered region (IDR). Remarkably, truncation of the N-terminal IDR abrogates the inhibitory activity against Cas9, revealing that the IDR is essential for Cas9 inhibition by AcrIIA5. Progressive truncations and mutations of the IDR illustrate that the disordered region not only modulates the association between AcrIIA5 and Cas9-sgRNA, but also alters the catalytic efficiency of the inhibitory complex. The length of IDR is critical for the Cas9-sgRNA recognition by AcrIIA5, whereas the charge content of IDR dictates the inhibitory activity. Conformational plasticity of IDR may be linked to the broad-spectrum inhibition of Cas9 homologs by AcrIIA5. Identification of the IDR as the main determinant for Cas9 inhibition expands the inventory of phage anti-CRISPR mechanisms.
Collapse
Affiliation(s)
- So Young An
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Donghyun Ka
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Iktae Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eun-Hee Kim
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang, Chungbuk 28119, South Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
58
|
Garcia B, Lee J, Edraki A, Hidalgo-Reyes Y, Erwood S, Mir A, Trost CN, Seroussi U, Stanley SY, Cohn RD, Claycomb JM, Sontheimer EJ, Maxwell KL, Davidson AR. Anti-CRISPR AcrIIA5 Potently Inhibits All Cas9 Homologs Used for Genome Editing. Cell Rep 2020; 29:1739-1746.e5. [PMID: 31722192 PMCID: PMC6910239 DOI: 10.1016/j.celrep.2019.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/24/2019] [Accepted: 10/03/2019] [Indexed: 11/03/2022] Open
Abstract
CRISPR-Cas9 systems provide powerful tools for genome editing. However, optimal employment of this technology will require control of Cas9 activity so that the timing, tissue specificity, and accuracy of editing may be precisely modulated. Anti-CRISPR proteins, which are small, naturally occurring inhibitors of CRISPR-Cas systems, are well suited for this purpose. A number of anti-CRISPR proteins have been shown to potently inhibit subgroups of CRISPR-Cas9 systems, but their maximal inhibitory activity is generally restricted to specific Cas9 homologs. Since Cas9 homologs vary in important properties, differing Cas9s may be optimal for particular genome-editing applications. To facilitate the practical exploitation of multiple Cas9 homologs, here we identify one anti-CRISPR, called AcrIIA5, that potently inhibits nine diverse type II-A and type II-C Cas9 homologs, including those currently used for genome editing. We show that the activity of AcrIIA5 results in partial in vivo cleavage of a single-guide RNA (sgRNA), suggesting that its mechanism involves RNA interaction.
Collapse
Affiliation(s)
- Bianca Garcia
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Jooyoung Lee
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alireza Edraki
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yurima Hidalgo-Reyes
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Steven Erwood
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Aamir Mir
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chantel N Trost
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Uri Seroussi
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sabrina Y Stanley
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ronald D Cohn
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Pediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada.
| | - Alan R Davidson
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
59
|
Eitzinger S, Asif A, Watters KE, Iavarone AT, Knott GJ, Doudna JA, Minhas FUAA. Machine learning predicts new anti-CRISPR proteins. Nucleic Acids Res 2020; 48:4698-4708. [PMID: 32286628 PMCID: PMC7229843 DOI: 10.1093/nar/gkaa219] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/30/2023] Open
Abstract
The increasing use of CRISPR–Cas9 in medicine, agriculture, and synthetic biology has accelerated the drive to discover new CRISPR–Cas inhibitors as potential mechanisms of control for gene editing applications. Many anti-CRISPRs have been found that inhibit the CRISPR–Cas adaptive immune system. However, comparing all currently known anti-CRISPRs does not reveal a shared set of properties for facile bioinformatic identification of new anti-CRISPR families. Here, we describe AcRanker, a machine learning based method to aid direct identification of new potential anti-CRISPRs using only protein sequence information. Using a training set of known anti-CRISPRs, we built a model based on XGBoost ranking. We then applied AcRanker to predict candidate anti-CRISPRs from predicted prophage regions within self-targeting bacterial genomes and discovered two previously unknown anti-CRISPRs: AcrllA20 (ML1) and AcrIIA21 (ML8). We show that AcrIIA20 strongly inhibits Streptococcus iniae Cas9 (SinCas9) and weakly inhibits Streptococcus pyogenes Cas9 (SpyCas9). We also show that AcrIIA21 inhibits SpyCas9, Streptococcus aureus Cas9 (SauCas9) and SinCas9 with low potency. The addition of AcRanker to the anti-CRISPR discovery toolkit allows researchers to directly rank potential anti-CRISPR candidate genes for increased speed in testing and validation of new anti-CRISPRs. A web server implementation for AcRanker is available online at http://acranker.pythonanywhere.com/.
Collapse
Affiliation(s)
- Simon Eitzinger
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Amina Asif
- Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), PO Nilore, Islamabad, Pakistan.,FAST School of Computing, National University of Computer and Emerging Sciences (NUCES), Islamabad, Pakistan
| | - Kyle E Watters
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, USA.,Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158.,Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fayyaz Ul Amir Afsar Minhas
- Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), PO Nilore, Islamabad, Pakistan.,Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
60
|
Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality. ACTA ACUST UNITED AC 2020; 1:500-510. [PMID: 37128079 DOI: 10.1038/s43016-020-0129-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 07/14/2020] [Indexed: 01/29/2023]
Abstract
A detailed understanding of the cheese microbiome is key to the optimization of flavour, appearance, quality and safety. Accordingly, we conducted a high-resolution meta-analysis of cheese microbiomes and corresponding volatilomes. Using 77 new samples from 55 artisanal cheeses from 27 Irish producers combined with 107 publicly available cheese metagenomes, we recovered 328 metagenome-assembled genomes, including 47 putative new species that could influence taste or colour through the secretion of volatiles or biosynthesis of pigments. Additionally, from a subset of samples, we found that differences in the abundances of strains corresponded with levels of volatiles. Genes encoding bacteriocins and other antimicrobials, such as pseudoalterin, were common, potentially contributing to the control of undesirable microorganisms. Although antibiotic-resistance genes were detected, evidence suggested they are not of major concern with respect to dissemination to other microbiomes. Phages, a potential cause of fermentation failure, were abundant and evidence for phage-mediated gene transfer was detected. The anti-phage defence mechanism CRISPR was widespread and analysis thereof, and of anti-CRISPR proteins, revealed a complex interaction between phages and bacteria. Overall, our results provide new and substantial technological and ecological insights into the cheese microbiome that can be applied to further improve cheese production.
Collapse
|
61
|
Mathony J, Harteveld Z, Schmelas C, Upmeier Zu Belzen J, Aschenbrenner S, Sun W, Hoffmann MD, Stengl C, Scheck A, Georgeon S, Rosset S, Wang Y, Grimm D, Eils R, Correia BE, Niopek D. Computational design of anti-CRISPR proteins with improved inhibition potency. Nat Chem Biol 2020; 16:725-730. [PMID: 32284602 DOI: 10.1038/s41589-020-0518-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 02/12/2020] [Accepted: 03/12/2020] [Indexed: 11/09/2022]
Abstract
Anti-CRISPR (Acr) proteins are powerful tools to control CRISPR-Cas technologies. However, the available Acr repertoire is limited to naturally occurring variants. Here, we applied structure-based design on AcrIIC1, a broad-spectrum CRISPR-Cas9 inhibitor, to improve its efficacy on different targets. We first show that inserting exogenous protein domains into a selected AcrIIC1 surface site dramatically enhances inhibition of Neisseria meningitidis (Nme)Cas9. Then, applying structure-guided design to the Cas9-binding surface, we converted AcrIIC1 into AcrIIC1X, a potent inhibitor of the Staphylococcus aureus (Sau)Cas9, an orthologue widely applied for in vivo genome editing. Finally, to demonstrate the utility of AcrIIC1X for genome engineering applications, we implemented a hepatocyte-specific SauCas9 ON-switch by placing AcrIIC1X expression under regulation of microRNA-122. Our work introduces designer Acrs as important biotechnological tools and provides an innovative strategy to safeguard CRISPR technologies.
Collapse
Affiliation(s)
- Jan Mathony
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany
| | - Zander Harteveld
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Carolin Schmelas
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg, Germany
| | - Julius Upmeier Zu Belzen
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany
- Health Data Science Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Aschenbrenner
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany
- Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mareike D Hoffmann
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany
- Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christina Stengl
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Andreas Scheck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Sandrine Georgeon
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Stéphane Rosset
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yanli Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Roland Eils
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany
- Health Data Science Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Dominik Niopek
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany.
- Health Data Science Unit, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
62
|
Osuna BA, Karambelkar S, Mahendra C, Christie KA, Garcia B, Davidson AR, Kleinstiver BP, Kilcher S, Bondy-Denomy J. Listeria Phages Induce Cas9 Degradation to Protect Lysogenic Genomes. Cell Host Microbe 2020; 28:31-40.e9. [DOI: 10.1016/j.chom.2020.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
|
63
|
Trasanidou D, Gerós AS, Mohanraju P, Nieuwenweg AC, Nobrega FL, Staals RHJ. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs. FEMS Microbiol Lett 2020; 366:5488435. [PMID: 31077304 PMCID: PMC6538845 DOI: 10.1093/femsle/fnz098] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
CRISPR-Cas represents the only adaptive immune system of prokaryotes known to date. These immune systems are widespread among bacteria and archaea, and provide protection against invasion of mobile genetic elements, such as bacteriophages and plasmids. As a result of the arms-race between phages and their prokaryotic hosts, phages have evolved inhibitors known as anti-CRISPR (Acr) proteins to evade CRISPR immunity. In the recent years, several Acr proteins have been described in both temperate and virulent phages targeting diverse CRISPR-Cas systems. Here, we describe the strategies of Acr discovery and the multiple molecular mechanisms by which these proteins operate to inhibit CRISPR immunity. We discuss the biological relevance of Acr proteins and speculate on the implications of their activity for the development of improved CRISPR-based research and biotechnological tools.
Collapse
Affiliation(s)
- Despoina Trasanidou
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Ana Sousa Gerós
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Prarthana Mohanraju
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Anna Cornelia Nieuwenweg
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Franklin L Nobrega
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
64
|
Davidson AR, Lu WT, Stanley SY, Wang J, Mejdani M, Trost CN, Hicks BT, Lee J, Sontheimer EJ. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems. Annu Rev Biochem 2020; 89:309-332. [PMID: 32186918 PMCID: PMC9718424 DOI: 10.1146/annurev-biochem-011420-111224] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying cas (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Alan R Davidson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , , ,
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Wang-Ting Lu
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Sabrina Y Stanley
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , , ,
| | - Jingrui Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , , ,
| | - Marios Mejdani
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Chantel N Trost
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , , ,
| | - Brian T Hicks
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Jooyoung Lee
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; ,
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; ,
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
65
|
Abstract
CRISPR research began over 30 years ago with the incidental discovery of an unusual nucleotide arrangement in the Escherichia coli genome. It took 20 years to find the main function of CRISPR-Cas systems as an adaptive defence mechanism against invading nucleic acids, and our knowledge of their biology has steadily increased ever since. In parallel, the number of applications derived from CRISPR-Cas systems has risen spectacularly. The CRISPR-based genome editing tool is arguably the most exciting application in both basic and applied research. Lately, CRISPR-Cas research has partially shifted to the least understood aspect of its biology: the ability of CRISPR-Cas systems to acquire new immunities during the so-called adaptation step. To date, the most efficient natural system to readily acquire new spacers is the type II-A system of the gram-positive dairy bacterium Streptococcus thermophilus. The discovery of additional systems able to acquire new spacers will hopefully draw more attention to this step of CRISPR-Cas biology. This review focuses on the breakthroughs that have helped to unravel the adaptation phase and on questions that remain to be answered.
Collapse
Affiliation(s)
- Cas Mosterd
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, QC G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, QC G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, QC G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada
| |
Collapse
|
66
|
Novel Genus of Phages Infecting Streptococcus thermophilus: Genomic and Morphological Characterization. Appl Environ Microbiol 2020; 86:AEM.00227-20. [PMID: 32303549 DOI: 10.1128/aem.00227-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022] Open
Abstract
Streptococcus thermophilus is a lactic acid bacterium commonly used for the manufacture of yogurt and specialty cheeses. Virulent phages represent a major risk for milk fermentation processes worldwide, as they can inactivate the added starter bacterial cells, leading to low-quality fermented dairy products. To date, four genetically distinct groups of phages infecting S. thermophilus have been described. Here, we describe a fifth group. Phages P738 and D4446 are virulent siphophages that infect a few industrial strains of S. thermophilus The genomes of phages P738 and D4446 were sequenced and found to contain 34,037 and 33,656 bp as well as 48 and 46 open reading frames, respectively. Comparative genomic analyses revealed that the two phages are closely related to each other but display very limited similarities to other S. thermophilus phages. In fact, these two novel S. thermophilus phages share similarities with streptococcal phages of nondairy origin, suggesting that they emerged recently in the dairy environment.IMPORTANCE Despite decades of research and adapted antiphage strategies such as CRISPR-Cas systems, virulent phages are still a persistent risk for the milk fermentation industry worldwide, as they can cause manufacturing failures and alter product quality. Phages P738 and D4446 are novel virulent phages that infect the food-grade Gram-positive bacterial species Streptococcus thermophilus These two related viruses represent a fifth group of S. thermophilus phages, as they are significantly distinct from other known S. thermophilus phages. Both phages share similarities with phages infecting nondairy streptococci, suggesting their recent emergence and probable coexistence in dairy environments. These findings highlight the necessity of phage surveillance programs as the phage population evolves in response to the application of antiphage strategies.
Collapse
|
67
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Cañas B, Rama JLR, Villa TG, Calo-Mata P. Characterization of Bacteriophage Peptides of Pathogenic Streptococcus by LC-ESI-MS/MS: Bacteriophage Phylogenomics and Their Relationship to Their Host. Front Microbiol 2020; 11:1241. [PMID: 32582130 PMCID: PMC7296060 DOI: 10.3389/fmicb.2020.01241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023] Open
Abstract
The present work focuses on LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analysis of phage-origin tryptic digestion peptides from mastitis-causing Streptococcus spp. isolated from milk. A total of 2,546 non-redundant peptides belonging to 1,890 proteins were identified and analyzed. Among them, 65 phage-origin peptides were determined as specific Streptococcus spp. peptides. These peptides belong to proteins such as phage repressors, phage endopeptidases, structural phage proteins, and uncharacterized phage proteins. Studies involving bacteriophage phylogeny and the relationship between phages encoding the peptides determined and the bacteria they infect were also performed. The results show how specific peptides are present in closely related phages, and a link exists between bacteriophage phylogeny and the Streptococcus spp. they infect. Moreover, the phage peptide M∗ATNLGQAYVQIM∗PSAK is unique and specific for Streptococcus agalactiae. These results revealed that diagnostic peptides, among others, could be useful for the identification and characterization of mastitis-causing Streptococcus spp., particularly peptides that belong to specific functional proteins, such as phage-origin proteins, because of their specificity to bacterial hosts.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Jose L. R. Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
68
|
Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Annu Rev Microbiol 2020; 74:21-37. [PMID: 32503371 DOI: 10.1146/annurev-micro-020518-120107] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than 50 protein families have been identified that inhibit CRISPR (clustered regularly interspaced short palindromic repeats)-Cas-mediated adaptive immune systems. Here, we analyze the available anti-CRISPR (Acr) structures and describe common themes and unique mechanisms of stoichiometric and enzymatic suppressors of CRISPR-Cas. Stoichiometric inhibitors often function as molecular decoys of protein-binding partners or nucleic acid targets, while enzymatic suppressors covalently modify Cas ribonucleoprotein complexes or degrade immune signaling molecules. We review mechanistic insights that have been revealed by structures of Acrs, discuss some of the trade-offs associated with each of these strategies, and highlight how Acrs are regulated and deployed in the race to overcome adaptive immunity.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA;
| | - Shweta Karambelkar
- Department of Microbiology and Immunology and Quantitative Biosciences Institute, University of California, San Francisco, California 94143, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology and Quantitative Biosciences Institute, University of California, San Francisco, California 94143, USA.,Innovative Genomics Institute, Berkeley, California 94720, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
69
|
Peng X, Mayo-Muñoz D, Bhoobalan-Chitty Y, Martínez-Álvarez L. Anti-CRISPR Proteins in Archaea. Trends Microbiol 2020; 28:913-921. [PMID: 32499102 DOI: 10.1016/j.tim.2020.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/26/2022]
Abstract
Anti-CRISPR (Acr) proteins are natural inhibitors of CRISPR-Cas immune systems. To date, Acrs inhibiting types I, II, III, V, and VI CRISPR-Cas systems have been characterized. While most known Acrs are derived from bacterial phages and prophages, very few have been characterized in the domain Archaea, despite the nearly ubiquitous presence of CRISPR-Cas in archaeal cells. Here we summarize the discovery and characterization of the archaeal Acrs with the representatives encoded by a model archaeal virus, Sulfolobus islandicus rod-shaped virus 2 (SIRV2). AcrID1 inhibits subtype I-D CRISPR-Cas immunity through direct interaction with the large subunit Cas10d of the effector complex, and AcrIIIB1 inhibits subtype III-B CRISPR-Cas immunity through a mechanism interfering with middle/late gene targeting. Future development of efficient screening methods will be key to uncovering the diversity of archaeal Acrs.
Collapse
Affiliation(s)
- Xu Peng
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| | - David Mayo-Muñoz
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | | |
Collapse
|
70
|
CRISPR-Cas13 Inhibitors Block RNA Editing in Bacteria and Mammalian Cells. Mol Cell 2020; 78:850-861.e5. [PMID: 32348779 DOI: 10.1016/j.molcel.2020.03.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 02/08/2023]
Abstract
Cas13 has demonstrated unique and broad utility in RNA editing, nucleic acid detection, and disease diagnosis; however, a constantly active Cas enzyme may induce unwanted effects. Bacteriophage- or prophage-region-encoded anti-CRISPR (acr) gene molecules provide the potential to control targeting specificity and potency to allow for optimal RNA editing and nucleic acid detection by spatiotemporally modulating endonuclease activities. Using integrated approaches to screen acrVI candidates and evaluate their effects on Cas13 function, we discovered a series of acrVIA1-7 genes that block the activities of Cas13a. These VI-A CRISPR inhibitors substantially attenuate RNA targeting and editing by Cas13a in human cells. Strikingly, type VI-A anti-CRISPRs (AcrVIAs) also significantly muffle the single-nucleic-acid editing ability of the dCas13a RNA-editing system. Mechanistically, AcrVIA1, -4, -5, and -6 bind LwaCas13a, while AcrVIA2 and -3 can only bind the LwaCas13-crRNA (CRISPR RNA) complex. These identified acr molecules may enable precise RNA editing in Cas13-based application and study of phage-bacterium interaction.
Collapse
|
71
|
Domingo-Calap P, Mora-Quilis L, Sanjuán R. Social Bacteriophages. Microorganisms 2020; 8:E533. [PMID: 32272765 PMCID: PMC7232179 DOI: 10.3390/microorganisms8040533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 01/21/2023] Open
Abstract
Despite their simplicity, viruses can display social-like interactions such as cooperation, communication, and cheating. Focusing on bacteriophages, here we review features including viral product sharing, cooperative evasion of antiviral defenses, prudent host exploitation, superinfection exclusion, and inter-phage peptide-mediated signaling. We argue that, in order to achieve a better understanding of these processes, their mechanisms of action need to be considered in the context of social evolution theory, paying special attention to key population-level factors such as genetic relatedness and spatial structure.
Collapse
Affiliation(s)
- Pilar Domingo-Calap
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Paterna, Spain; (P.D.-C.); (L.M.-Q.)
- Department of Genetics, Universitat de València, 46980 Paterna, Spain
| | - Lucas Mora-Quilis
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Paterna, Spain; (P.D.-C.); (L.M.-Q.)
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Paterna, Spain; (P.D.-C.); (L.M.-Q.)
| |
Collapse
|
72
|
Mahendra C, Christie KA, Osuna BA, Pinilla-Redondo R, Kleinstiver BP, Bondy-Denomy J. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat Microbiol 2020; 5:620-629. [PMID: 32218510 PMCID: PMC7194981 DOI: 10.1038/s41564-020-0692-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas adaptive immune systems protect bacteria and archaea against their invading genetic parasites, including bacteriophages/viruses and plasmids. In response to this immunity, many phages have anti-CRISPR (Acr) proteins that inhibit CRISPR-Cas targeting. To date, anti-CRISPR genes have primarily been discovered in phage or prophage genomes. Here, we uncovered acr loci on plasmids and other conjugative elements present in Firmicutes using the Listeria acrIIA1 gene as a marker. The four identified genes, found in Listeria, Enterococcus, Streptococcus and Staphylococcus genomes, can inhibit type II-A SpyCas9 or SauCas9, and are thus named acrIIA16-19. In Enterococcus faecalis, conjugation of a Cas9-targeted plasmid was enhanced by anti-CRISPRs derived from Enterococcus conjugative elements, highlighting a role for Acrs in the dissemination of plasmids. Reciprocal co-immunoprecipitation showed that each Acr protein interacts with Cas9, and Cas9-Acr complexes were unable to cleave DNA. Northern blotting suggests that these anti-CRISPRs manipulate single guide RNA length, loading or stability. Mirroring their activity in bacteria, AcrIIA16 and AcrIIA17 provide robust and highly potent broad-spectrum inhibition of distinct Cas9 proteins in human cells (for example, SpyCas9, SauCas9, SthCas9, NmeCas9 and CjeCas9). This work presents a focused analysis of non-phage Acr proteins, demonstrating a role in horizontal gene transfer bolstered by broad-spectrum CRISPR-Cas9 inhibition.
Collapse
Affiliation(s)
- Caroline Mahendra
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen A Christie
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Beatriz A Osuna
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, Copenhagen, Denmark
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
73
|
Watters KE, Shivram H, Fellmann C, Lew RJ, McMahon B, Doudna JA. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes. Proc Natl Acad Sci U S A 2020; 117:6531-6539. [PMID: 32156733 PMCID: PMC7104187 DOI: 10.1073/pnas.1917668117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Anti-CRISPRs (Acrs) are small proteins that inhibit the RNA-guided DNA targeting activity of CRISPR-Cas enzymes. Encoded by bacteriophage and phage-derived bacterial genes, Acrs prevent CRISPR-mediated inhibition of phage infection and can also block CRISPR-Cas-mediated genome editing in eukaryotic cells. To identify Acrs capable of inhibiting Staphylococcus aureus Cas9 (SauCas9), an alternative to the most commonly used genome editing protein Streptococcus pyogenes Cas9 (SpyCas9), we used both self-targeting CRISPR screening and guilt-by-association genomic search strategies. Here we describe three potent inhibitors of SauCas9 that we name AcrIIA13, AcrIIA14, and AcrIIA15. These inhibitors share a conserved N-terminal sequence that is dispensable for DNA cleavage inhibition and have divergent C termini that are required in each case for inhibition of SauCas9-catalyzed DNA cleavage. In human cells, we observe robust inhibition of SauCas9-induced genome editing by AcrIIA13 and moderate inhibition by AcrIIA14 and AcrIIA15. We also find that the conserved N-terminal domain of AcrIIA13-AcrIIA15 binds to an inverted repeat sequence in the promoter of these Acr genes, consistent with its predicted helix-turn-helix DNA binding structure. These data demonstrate an effective strategy for Acr discovery and establish AcrIIA13-AcrIIA15 as unique bifunctional inhibitors of SauCas9.
Collapse
Affiliation(s)
- Kyle E Watters
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Haridha Shivram
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Christof Fellmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, CA 94158
| | - Rachel J Lew
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
| | - Blake McMahon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720;
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
- Department of Chemistry, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
74
|
Chabas H, Nicot A, Meaden S, Westra ER, Tremblay DM, Pradier L, Lion S, Moineau S, Gandon S. Variability in the durability of CRISPR-Cas immunity. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180097. [PMID: 30905283 DOI: 10.1098/rstb.2018.0097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The durability of host resistance is challenged by the ability of pathogens to escape the defence of their hosts. Understanding the variability in the durability of host resistance is of paramount importance for designing more effective control strategies against infectious diseases. Here, we study the durability of various clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) alleles of the bacteria Streptococcus thermophilus against lytic phages. We found substantial variability in durability among different resistant bacteria. Since the escape of the phage is driven by a mutation in the phage sequence targeted by CRISPR-Cas, we explored the fitness costs associated with these escape mutations. We found that, on average, escape mutations decrease the fitness of the phage. Yet, the magnitude of this fitness cost does not predict the durability of CRISPR-Cas immunity. We contend that this variability in the durability of resistance may be because of variations in phage mutation rate or in the proportion of lethal mutations across the phage genome. These results have important implications on the coevolutionary dynamics between bacteria and phages and for the optimal deployment of resistance strategies against pathogens and pests. Understanding the durability of CRISPR-Cas immunity may also help develop more effective gene-drive strategies based on CRISPR-Cas9 technology. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Hélène Chabas
- 1 CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE , 1919, Route de Mende, 34293 Montpellier Cedex 5, Paris , France
| | - Antoine Nicot
- 1 CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE , 1919, Route de Mende, 34293 Montpellier Cedex 5, Paris , France
| | - Sean Meaden
- 2 Environment and Sustainability Institute, University of Exeter , Penryn Campus, Penryn, Cornwall TR10 9FE , UK
| | - Edze R Westra
- 2 Environment and Sustainability Institute, University of Exeter , Penryn Campus, Penryn, Cornwall TR10 9FE , UK
| | - Denise M Tremblay
- 3 Département de Biochimie, Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval , 1045 Avenue de la Médecine, Québec City, Quebec , Canada G1V 0A6.,4 Félix d'Hérelle Reference Center for Bacterial Viruses and Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval , Québec City, Qubec , Canada G1V 0A6
| | - Léa Pradier
- 1 CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE , 1919, Route de Mende, 34293 Montpellier Cedex 5, Paris , France
| | - Sébastien Lion
- 1 CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE , 1919, Route de Mende, 34293 Montpellier Cedex 5, Paris , France
| | - Sylvain Moineau
- 3 Département de Biochimie, Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval , 1045 Avenue de la Médecine, Québec City, Quebec , Canada G1V 0A6.,4 Félix d'Hérelle Reference Center for Bacterial Viruses and Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval , Québec City, Qubec , Canada G1V 0A6
| | - Sylvain Gandon
- 1 CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE , 1919, Route de Mende, 34293 Montpellier Cedex 5, Paris , France
| |
Collapse
|
75
|
Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nat Methods 2020; 17:471-479. [DOI: 10.1038/s41592-020-0771-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
|
76
|
Inhibition mechanisms of AcrF9, AcrF8, and AcrF6 against type I-F CRISPR-Cas complex revealed by cryo-EM. Proc Natl Acad Sci U S A 2020; 117:7176-7182. [PMID: 32170016 PMCID: PMC7132274 DOI: 10.1073/pnas.1922638117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Prokaryotes and viruses have fought a long battle against each other. Prokaryotes use CRISPR-Cas-mediated adaptive immunity, while conversely, viruses evolve multiple anti-CRISPR (Acr) proteins to defeat these CRISPR-Cas systems. The type I-F CRISPR-Cas system in Pseudomonas aeruginosa requires the crRNA-guided surveillance complex (Csy complex) to recognize the invading DNA. Although some Acr proteins against the Csy complex have been reported, other relevant Acr proteins still need studies to understand their mechanisms. Here, we obtain three structures of previously unresolved Acr proteins (AcrF9, AcrF8, and AcrF6) bound to the Csy complex using electron cryo-microscopy (cryo-EM), with resolution at 2.57 Å, 3.42 Å, and 3.15 Å, respectively. The 2.57-Å structure reveals fine details for each molecular component within the Csy complex as well as the direct and water-mediated interactions between proteins and CRISPR RNA (crRNA). Our structures also show unambiguously how these Acr proteins bind differently to the Csy complex. AcrF9 binds to key DNA-binding sites on the Csy spiral backbone. AcrF6 binds at the junction between Cas7.6f and Cas8f, which is critical for DNA duplex splitting. AcrF8 binds to a distinct position on the Csy spiral backbone and forms interactions with crRNA, which has not been seen in other Acr proteins against the Csy complex. Our structure-guided mutagenesis and biochemistry experiments further support the anti-CRISPR mechanisms of these Acr proteins. Our findings support the convergent consequence of inhibiting degradation of invading DNA by these Acr proteins, albeit with different modes of interactions with the type I-F CRISPR-Cas system.
Collapse
|
77
|
McDonnell B, Hanemaaijer L, Bottacini F, Kelleher P, Lavelle K, Sadovskaya I, Vinogradov E, Ver Loren van Themaat E, Kouwen T, Mahony J, van Sinderen D. A cell wall-associated polysaccharide is required for bacteriophage adsorption to the Streptococcus thermophilus cell surface. Mol Microbiol 2020; 114:31-45. [PMID: 32073719 DOI: 10.1111/mmi.14494] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Abstract
Streptococcus thermophilus strain ST64987 was exposed to a member of a recently discovered group of S. thermophilus phages (the 987 phage group), generating phage-insensitive mutants, which were then characterized phenotypically and genomically. Decreased phage adsorption was observed in selected bacteriophage-insensitive mutants, and was partnered with a sedimenting phenotype and increased cell chain length or aggregation. Whole genome sequencing of several bacteriophage-insensitive mutants identified mutations located in a gene cluster presumed to be responsible for cell wall polysaccharide production in this strain. Analysis of cell surface-associated glycans by methylation and NMR spectroscopy revealed a complex branched rhamno-polysaccharide in both ST64987 and phage-insensitive mutant BIM3. In addition, a second cell wall-associated polysaccharide of ST64987, composed of hexasaccharide branched repeating units containing galactose and glucose, was absent in the cell wall of mutant BIM3. Genetic complementation of three phage-resistant mutants was shown to restore the carbohydrate and phage resistance profiles of the wild-type strain, establishing the role of this gene cluster in cell wall polysaccharide production and phage adsorption and, thus, infection.
Collapse
Affiliation(s)
- Brian McDonnell
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Francesca Bottacini
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Philip Kelleher
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Katherine Lavelle
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Irina Sadovskaya
- Équipe BPA, Université du Littoral Côte d'Opale, Institut Régional Charles Violette EA 7394, USC Anses-ULCO, Boulogne-sur-Mer, France
| | - Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada
| | | | - Thijs Kouwen
- DSM Biotechnology Center, Delft, the Netherlands
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
78
|
Cui YR, Wang SJ, Chen J, Li J, Chen W, Wang S, Meng B, Zhu W, Zhang Z, Yang B, Jiang B, Yang G, Ma P, Liu J. Allosteric inhibition of CRISPR-Cas9 by bacteriophage-derived peptides. Genome Biol 2020; 21:51. [PMID: 32102684 PMCID: PMC7045643 DOI: 10.1186/s13059-020-01956-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND CRISPR-Cas9 has been developed as a therapeutic agent for various infectious and genetic diseases. In many clinically relevant applications, constitutively active CRISPR-Cas9 is delivered into human cells without a temporal control system. Excessive and prolonged expression of CRISPR-Cas9 can lead to elevated off-target cleavage. The need for modulating CRISPR-Cas9 activity over time and dose has created the demand of developing CRISPR-Cas off switches. Protein and small molecule-based CRISPR-Cas inhibitors have been reported in previous studies. RESULTS We report the discovery of Cas9-inhibiting peptides from inoviridae bacteriophages. These peptides, derived from the periplasmic domain of phage major coat protein G8P (G8PPD), can inhibit the in vitro activity of Streptococcus pyogenes Cas9 (SpCas9) proteins in an allosteric manner. Importantly, the inhibitory activity of G8PPD on SpCas9 is dependent on the order of guide RNA addition. Ectopic expression of full-length G8P (G8PFL) or G8PPD in human cells can inactivate the genome-editing activity of SpyCas9 with minimum alterations of the mutation patterns. Furthermore, unlike the anti-CRISPR protein AcrII4A that completely abolishes the cellular activity of CRISPR-Cas9, G8P co-transfection can reduce the off-target activity of co-transfected SpCas9 while retaining its on-target activity. CONCLUSION G8Ps discovered in the current study represent the first anti-CRISPR peptides that can allosterically inactivate CRISPR-Cas9. This finding may provide insights into developing next-generation CRISPR-Cas inhibitors for precision genome engineering.
Collapse
Affiliation(s)
- Yan-Ru Cui
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shao-Jie Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhang Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Meng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264005, Yantai, Shandong, People's Republic of China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
79
|
Gramelspacher MJ, Hou Z, Zhang Y. Biochemical characterization of RNA-guided ribonuclease activities for CRISPR-Cas9 systems. Methods 2020; 172:32-41. [PMID: 31228550 PMCID: PMC6923617 DOI: 10.1016/j.ymeth.2019.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 11/20/2022] Open
Abstract
The majority of bacteria and archaea rely on CRISPR-Cas systems for RNA-guided, adaptive immunity against mobile genetic elements. The Cas9 family of type II CRISPR-associated DNA endonucleases generates programmable double strand breaks in the CRISPR-complementary DNA targets flanked by the PAM motif. Nowadays, CRISPR-Cas9 provides a set of powerful tools for precise genome manipulation in eukaryotes and prokaryotes. Recently, a few Cas9 orthologs have been reported to possess intrinsic CRISPR-guided, sequence-specific ribonuclease activities. These discoveries fundamentally expanded the targeting capability of CRISPR-Cas9 systems, and promise to provide new CRISPR tools to manipulate specific cellular RNA transcripts. Here we present a detailed method for the biochemical characterization of Cas9's RNA-targeting potential.
Collapse
Affiliation(s)
- Max J Gramelspacher
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Zhonggang Hou
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Yan Zhang
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
80
|
Liu Q, Zhang H, Huang X. Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering. FEBS J 2020; 287:626-644. [PMID: 31730297 DOI: 10.1111/febs.15139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas adaptive immune defense systems, which are widely distributed in bacteria and Archaea, can provide sequence-specific protection against foreign DNA or RNA in some cases. However, the evolution of defense systems in bacterial hosts did not lead to the elimination of phages, and some phages carry anti-CRISPR genes that encode products that bind to the components mediating the defense mechanism and thus antagonize CRISPR-Cas immune systems of bacteria. Given the extensive application of CRISPR-Cas9 technologies in gene editing, in this review, we focus on the anti-CRISPR proteins (Acrs) that inhibit CRISPR-Cas systems for gene editing. We describe the discovery of Acrs in immune systems involving type I, II, and V CRISPR-Cas immunity, discuss the potential function of Acrs in inactivating type II and V CRISPR-Cas systems for gene editing and gene modulation, and provide an outlook on the development of important biotechnology tools for genetic engineering using Acrs.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, China
| | - Hongxia Zhang
- Department of Medical Microbiology, School of Medicine, Nanchang University, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, China
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, China
| |
Collapse
|
81
|
Hoffmann MD, Aschenbrenner S, Grosse S, Rapti K, Domenger C, Fakhiri J, Mastel M, Börner K, Eils R, Grimm D, Niopek D. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res 2020; 47:e75. [PMID: 30982889 PMCID: PMC6648350 DOI: 10.1093/nar/gkz271] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
The rapid development of CRISPR–Cas technologies brought a personalized and targeted treatment of genetic disorders into closer reach. To render CRISPR-based therapies precise and safe, strategies to confine the activity of Cas(9) to selected cells and tissues are highly desired. Here, we developed a cell type-specific Cas-ON switch based on miRNA-regulated expression of anti-CRISPR (Acr) proteins. We inserted target sites for miR-122 or miR-1, which are abundant specifically in liver and cardiac muscle cells, respectively, into the 3′UTR of Acr transgenes. Co-expressing these with Cas9 and sgRNAs resulted in Acr knockdown and released Cas9 activity solely in hepatocytes or cardiomyocytes, while Cas9 was efficiently inhibited in off-target cells. We demonstrate control of genome editing and gene activation using a miR-dependent AcrIIA4 in combination with different Streptococcus pyogenes (Spy)Cas9 variants (full-length Cas9, split-Cas9, dCas9-VP64). Finally, to showcase its modularity, we adapted our Cas-ON system to the smaller and more target-specific Neisseria meningitidis (Nme)Cas9 orthologue and its cognate inhibitors AcrIIC1 and AcrIIC3. Our Cas-ON switch should facilitate cell-specific activity of any CRISPR–Cas orthologue, for which a potent anti-CRISPR protein is known.
Collapse
Affiliation(s)
- Mareike D Hoffmann
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sabine Aschenbrenner
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Stefanie Grosse
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Kleopatra Rapti
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg 69120, Germany
| | - Claire Domenger
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg 69120, Germany
| | - Julia Fakhiri
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg 69120, Germany
| | - Manuel Mastel
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Kathleen Börner
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg 69120, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg 69120, Germany
| | - Roland Eils
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany.,Health Data Science Unit, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg 69120, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg 69120, Germany
| | - Dominik Niopek
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
82
|
Agudelo D, Carter S, Velimirovic M, Duringer A, Rivest JF, Levesque S, Loehr J, Mouchiroud M, Cyr D, Waters PJ, Laplante M, Moineau S, Goulet A, Doyon Y. Versatile and robust genome editing with Streptococcus thermophilus CRISPR1-Cas9. Genome Res 2020; 30:107-117. [PMID: 31900288 PMCID: PMC6961573 DOI: 10.1101/gr.255414.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Targeting definite genomic locations using CRISPR-Cas systems requires a set of enzymes with unique protospacer adjacent motif (PAM) compatibilities. To expand this repertoire, we engineered nucleases, cytosine base editors, and adenine base editors from the archetypal Streptococcus thermophilus CRISPR1-Cas9 (St1Cas9) system. We found that St1Cas9 strain variants enable targeting to five distinct A-rich PAMs and provide a structural basis for their specificities. The small size of this ortholog enables expression of the holoenzyme from a single adeno-associated viral vector for in vivo editing applications. Delivery of St1Cas9 to the neonatal liver efficiently rewired metabolic pathways, leading to phenotypic rescue in a mouse model of hereditary tyrosinemia. These robust enzymes expand and complement current editing platforms available for tailoring mammalian genomes.
Collapse
Affiliation(s)
- Daniel Agudelo
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Sophie Carter
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Minja Velimirovic
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Alexis Duringer
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Jean-François Rivest
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Sébastien Levesque
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Mathilde Mouchiroud
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ)-Université Laval, Québec, Québec G1V 4G5, Canada
| | - Denis Cyr
- Service de Génétique médicale, Département de Pédiatrie, Centre Hospitalier Universitaire de Sherbrooke (CHUS), et CRCHUS, Sherbrooke, Québec J1H 5N4, Canada
| | - Paula J Waters
- Service de Génétique médicale, Département de Pédiatrie, Centre Hospitalier Universitaire de Sherbrooke (CHUS), et CRCHUS, Sherbrooke, Québec J1H 5N4, Canada
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ)-Université Laval, Québec, Québec G1V 4G5, Canada
- Université Laval Cancer Research Centre, Québec, Québec G1V 0A6, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Québec G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, Québec G1V 0A6, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille Cedex 09, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
83
|
Li B, Zeng C, Li W, Zhang X, Luo X, Zhao W, Zhang C, Dong Y. Synthetic Oligonucleotides Inhibit CRISPR-Cpf1-Mediated Genome Editing. Cell Rep 2019; 25:3262-3272.e3. [PMID: 30566855 PMCID: PMC6326575 DOI: 10.1016/j.celrep.2018.11.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/12/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Previously, researchers discovered a series of anti-CRISPR proteins that inhibit CRISPR-Cas activity, such as Cas9 and Cpf1 (Cas12a). Herein, we constructed crRNA variants consisting of chemically modified DNA-crRNA and RNA-crRNA duplexes and identified that phosphorothioate (PS)-modified DNA-crRNA duplex completely blocked the function of Cpf1. More important, without prehybridization, these PS-modified DNA oligonucleotides showed the ability to suppress DNA double-strand breaks induced by two Cpf1 orthologs, AsCpf1 and LbCpf1. Time-dependent inhibitory effects were validated in multiple loci of different human cells. Further studies demonstrated that PS-modified DNA oligo-nucleotides were able to serve as Cpf1 inhibitors in a sequence-independent manner. Mechanistic studies indicate that PS-modified DNA oligonucleotides hinder target DNA binding and recognition by Cpf1. Consequently, these synthetic DNA molecules expand the sources of CRISPR inhibitors, providing a platform to inactivate Cpf1-mediated genome editing. Li et al. show that phosphorothioate-modified DNA (psDNA) oligonucleotides inhibit Cpf1-mediated genome-editing activity in a sequence-independent manner in human cells. These psDNA oligonucleotides interact with Cpf1 protein and block the formation of Cpf1-crRNA-target DNA complex. They also display inhibitory effects on the CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Bin Li
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Chunxi Zeng
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Wenqing Li
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Xinfu Zhang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Xiao Luo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Weiyu Zhao
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
84
|
Lee J, Mou H, Ibraheim R, Liang SQ, Liu P, Xue W, Sontheimer EJ. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA (NEW YORK, N.Y.) 2019; 25:1421-1431. [PMID: 31439808 PMCID: PMC6795140 DOI: 10.1261/rna.071704.119] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/09/2019] [Indexed: 05/20/2023]
Abstract
CRISPR-Cas systems are bacterial adaptive immune pathways that have revolutionized biotechnology and biomedical applications. Despite the potential for human therapeutic development, there are many hurdles that must be overcome before its use in clinical settings. Some clinical safety concerns arise from editing activity in unintended cell types or tissues upon in vivo delivery (e.g., by adeno-associated virus (AAV) vectors). Although tissue-specific promoters and serotypes with tissue tropisms can be used, suitably compact promoters are not always available for desired cell types, and AAV tissue tropism specificities are not absolute. To reinforce tissue-specific editing, we exploited anti-CRISPR proteins (Acrs) that have evolved as natural countermeasures against CRISPR immunity. To inhibit Cas9 in all ancillary tissues without compromising editing in the target tissue, we established a flexible platform in which an Acr transgene is repressed by endogenous, tissue-specific microRNAs (miRNAs). We demonstrate that miRNAs regulate the expression of an Acr transgene bearing miRNA-binding sites in its 3'-UTR and control subsequent genome editing outcomes in a cell-type specific manner. We also show that the strategy is applicable to multiple Cas9 orthologs and their respective anti-CRISPRs. Furthermore, we validate this approach in vivo by demonstrating that AAV9 delivery of Nme2Cas9, along with an AcrIIC3 Nme construct that is targeted for repression by liver-specific miR-122, allows editing in the liver while repressing editing in an unintended tissue (heart muscle) in adult mice. This strategy provides safeguards against off-tissue genome editing by confining Cas9 activity to selected cell types.
Collapse
Affiliation(s)
- Jooyoung Lee
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Raed Ibraheim
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Shun-Qing Liang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Pengpeng Liu
- Program in Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
85
|
Swarts DC. Making the cut(s): how Cas12a cleaves target and non-target DNA. Biochem Soc Trans 2019; 47:1499-1510. [PMID: 31671185 DOI: 10.1042/bst20190564] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
CRISPR-Cas12a (previously named Cpf1) is a prokaryotic deoxyribonuclease that can be programmed with an RNA guide to target complementary DNA sequences. Upon binding of the target DNA, Cas12a induces a nick in each of the target DNA strands, yielding a double-stranded DNA break. In addition to inducing cis-cleavage of the targeted DNA, target DNA binding induces trans-cleavage of non-target DNA. As such, Cas12a-RNA guide complexes can provide sequence-specific immunity against invading nucleic acids such as bacteriophages and plasmids. Akin to CRISPR-Cas9, Cas12a has been repurposed as a genetic tool for programmable genome editing and transcriptional control in both prokaryotic and eukaryotic cells. In addition, its trans-cleavage activity has been applied for high-sensitivity nucleic acid detection. Despite the demonstrated value of Cas12a for these applications, the exact molecular mechanisms of both cis- and trans-cleavage of DNA were not completely understood. Recent studies have revealed mechanistic details of Cas12a-mediates DNA cleavage: base pairing of the RNA guide and the target DNA induces major conformational changes in Cas12a. These conformational changes render Cas12a in a catalytically activated state in which it acts as deoxyribonuclease. This deoxyribonuclease activity mediates cis-cleavage of the displaced target DNA strand first, and the RNA guide-bound target DNA strand second. As Cas12a remains in the catalytically activated state after cis-cleavage, it subsequently demonstrates trans-cleavage of non-target DNA. Here, I review the mechanistic details of Cas12a-mediated cis- and trans-cleavage of DNA. In addition, I discuss how bacteriophage-derived anti-CRISPR proteins can inhibit Cas12a activity.
Collapse
Affiliation(s)
- Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
86
|
Cas9 Allosteric Inhibition by the Anti-CRISPR Protein AcrIIA6. Mol Cell 2019; 76:922-937.e7. [PMID: 31604602 DOI: 10.1016/j.molcel.2019.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022]
Abstract
In the arms race against bacteria, bacteriophages have evolved diverse anti-CRISPR proteins (Acrs) that block CRISPR-Cas immunity. Acrs play key roles in the molecular coevolution of bacteria with their predators, use a variety of mechanisms of action, and provide tools to regulate Cas-based genome manipulation. Here, we present structural and functional analyses of AcrIIA6, an Acr from virulent phages, exploring its unique anti-CRISPR action. Our cryo-EM structures and functional data of AcrIIA6 binding to Streptococcus thermophilus Cas9 (St1Cas9) show that AcrIIA6 acts as an allosteric inhibitor and induces St1Cas9 dimerization. AcrIIA6 reduces St1Cas9 binding affinity for DNA and prevents DNA binding within cells. The PAM and AcrIIA6 recognition sites are structurally close and allosterically linked. Mechanistically, AcrIIA6 affects the St1Cas9 conformational dynamics associated with PAM binding. Finally, we identify a natural St1Cas9 variant resistant to AcrIIA6 illustrating Acr-driven mutational escape and molecular diversification of Cas9 proteins.
Collapse
|
87
|
Bhoobalan-Chitty Y, Johansen TB, Di Cianni N, Peng X. Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein. Cell 2019; 179:448-458.e11. [PMID: 31564454 DOI: 10.1016/j.cell.2019.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/23/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022]
Abstract
Bacteria and archaea possess a striking diversity of CRISPR-Cas systems divided into six types, posing a significant barrier to viral infection. As part of the virus-host arms race, viruses encode protein inhibitors of type I, II, and V CRISPR-Cas systems, but whether there are natural inhibitors of the other, mechanistically distinct CRISPR-Cas types is unknown. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB1, encoded by the Sulfolobus virus SIRV2. AcrIIIB1 exclusively inhibits CRISPR-Cas subtype III-B immunity mediated by the RNase activity of the accessory protein Csx1. AcrIIIB1 does not appear to bind Csx1 but, rather, interacts with two distinct subtype III-B effector complexes-Cmr-α and Cmr-γ-which, in response to protospacer transcript binding, are known to synthesize cyclic oligoadenylates (cOAs) that activate the Csx1 "collateral" RNase. Taken together, we infer that AcrIIIB1 inhibits type III-B CRISPR-Cas immunity by interfering with a Csx1 RNase-related process.
Collapse
Affiliation(s)
- Yuvaraj Bhoobalan-Chitty
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark; Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Thomas Baek Johansen
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Nadia Di Cianni
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Xu Peng
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark; Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
88
|
Labrie SJ, Mosterd C, Loignon S, Dupuis MÈ, Desjardins P, Rousseau GM, Tremblay DM, Romero DA, Horvath P, Fremaux C, Moineau S. A mutation in the methionine aminopeptidase gene provides phage resistance in Streptococcus thermophilus. Sci Rep 2019; 9:13816. [PMID: 31554834 PMCID: PMC6761271 DOI: 10.1038/s41598-019-49975-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022] Open
Abstract
Streptococcus thermophilus is a lactic acid bacterium widely used by the dairy industry for the manufacture of yogurt and specialty cheeses. It is also a Gram-positive bacterial model to study phage-host interactions. CRISPR-Cas systems are one of the most prevalent phage resistance mechanisms in S. thermophilus. Little information is available about other host factors involved in phage replication in this food-grade streptococcal species. We used the model strain S. thermophilus SMQ-301 and its virulent phage DT1, harboring the anti-CRISPR protein AcrIIA6, to show that a host gene coding for a methionine aminopeptidase (metAP) is necessary for phage DT1 to complete its lytic cycle. A single mutation in metAP provides S. thermophilus SMQ-301 with strong resistance against phage DT1. The mutation impedes a late step of the lytic cycle since phage adsorption, DNA replication, and protein expression were not affected. When the mutated strain was complemented with the wild-type version of the gene, the phage sensitivity phenotype was restored. When this mutation was introduced into other S. thermophilus strains it provided resistance against cos-type (Sfi21dt1virus genus) phages but replication of pac-type (Sfi11virus genus) phages was not affected. The mutation in the gene coding for the MetAP induces amino acid change in a catalytic domain conserved across many bacterial species. Introducing the same mutation in Streptococcus mutans also provided a phage resistance phenotype, suggesting the wide-ranging importance of the host methionine aminopeptidase in phage replication.
Collapse
Affiliation(s)
- Simon J Labrie
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.,SyntBioLab Inc., 4820-250, rue de la Pascaline, Lévis, G6W 0L9, Canada
| | - Cas Mosterd
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Stéphanie Loignon
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Marie-Ève Dupuis
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Philippe Desjardins
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Denise M Tremblay
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Dennis A Romero
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr, Madison, WI, 53716, USA
| | - Philippe Horvath
- DuPont Nutrition and Biosciences, BP10, Dangé-Saint-Romain, 86220, France
| | - Christophe Fremaux
- DuPont Nutrition and Biosciences, BP10, Dangé-Saint-Romain, 86220, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada. .,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada. .,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
89
|
Peng R, Li Z, Xu Y, He S, Peng Q, Wu LA, Wu Y, Qi J, Wang P, Shi Y, Gao GF. Structural insight into multistage inhibition of CRISPR-Cas12a by AcrVA4. Proc Natl Acad Sci U S A 2019; 116:18928-18936. [PMID: 31467167 PMCID: PMC6754591 DOI: 10.1073/pnas.1909400116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prokaryotes possess CRISPR-Cas systems to exclude parasitic predators, such as phages and mobile genetic elements (MGEs). These predators, in turn, encode anti-CRISPR (Acr) proteins to evade the CRISPR-Cas immunity. Recently, AcrVA4, an Acr protein inhibiting the CRISPR-Cas12a system, was shown to diminish Lachnospiraceae bacterium Cas12a (LbCas12a)-mediated genome editing in human cells, but the underlying mechanisms remain elusive. Here we report the cryo-EM structures of AcrVA4 bound to CRISPR RNA (crRNA)-loaded LbCas12a and found AcrVA4 could inhibit LbCas12a at several stages of the CRISPR-Cas working pathway, different from other characterized type I/II Acr inhibitors which target only 1 stage. First, it locks the conformation of the LbCas12a-crRNA complex to prevent target DNA-crRNA hybridization. Second, it interacts with the LbCas12a-crRNA-dsDNA complex to release the bound DNA before cleavage. Third, AcrVA4 binds the postcleavage LbCas12a complex to possibly block enzyme recycling. These findings highlight the multifunctionality of AcrVA4 and provide clues for developing regulatory genome-editing tools.
Collapse
Affiliation(s)
- Ruchao Peng
- Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zhiteng Li
- Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ying Xu
- School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Shaoshuai He
- Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qi Peng
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lian-Ao Wu
- Institute of Physical Science and Information Technology, Anhui University, 230039 Hefei, China
| | - Ying Wu
- School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, China
| | - Jianxun Qi
- Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Peiyi Wang
- Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Yi Shi
- Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China;
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences, 100101 Beijing, China
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, 518112 Shenzhen, China
| | - George F Gao
- Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China;
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences, 100101 Beijing, China
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, 518112 Shenzhen, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| |
Collapse
|
90
|
Forsberg KJ, Bhatt IV, Schmidtke DT, Javanmardi K, Dillard KE, Stoddard BL, Finkelstein IJ, Kaiser BK, Malik HS. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome. eLife 2019; 8:e46540. [PMID: 31502535 PMCID: PMC6739867 DOI: 10.7554/elife.46540] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
CRISPR-Cas systems protect bacteria and archaea from phages and other mobile genetic elements, which use small anti-CRISPR (Acr) proteins to overcome CRISPR-Cas immunity. Because Acrs are challenging to identify, their natural diversity and impact on microbial ecosystems are underappreciated. To overcome this discovery bottleneck, we developed a high-throughput functional selection to isolate ten DNA fragments from human oral and fecal metagenomes that inhibit Streptococcus pyogenes Cas9 (SpyCas9) in Escherichia coli. The most potent Acr from this set, AcrIIA11, was recovered from a Lachnospiraceae phage. We found that AcrIIA11 inhibits SpyCas9 in bacteria and in human cells. AcrIIA11 homologs are distributed across diverse bacteria; many distantly-related homologs inhibit both SpyCas9 and a divergent Cas9 from Treponema denticola. We find that AcrIIA11 antagonizes SpyCas9 using a different mechanism than other previously characterized Type II-A Acrs. Our study highlights the power of functional selection to uncover widespread Cas9 inhibitors within diverse microbiomes.
Collapse
Affiliation(s)
- Kevin J Forsberg
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Ishan V Bhatt
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Danica T Schmidtke
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Kamyab Javanmardi
- Department of Molecular Biosciences and Institute of Cellular and Molecular BiologyUniversity of Texas at AustinAustinUnited States
| | - Kaylee E Dillard
- Department of Molecular Biosciences and Institute of Cellular and Molecular BiologyUniversity of Texas at AustinAustinUnited States
| | - Barry L Stoddard
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute of Cellular and Molecular BiologyUniversity of Texas at AustinAustinUnited States
- Center for Systems Biology and Synthetic BiologyUniversity of Texas at AustinAustinUnited States
| | - Brett K Kaiser
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of BiologySeattle UniversitySeattleUnited States
| | - Harmit S Malik
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
91
|
Bioinformatics Identification of Anti-CRISPR Loci by Using Homology, Guilt-by-Association, and CRISPR Self-Targeting Spacer Approaches. mSystems 2019; 4:4/5/e00455-19. [PMID: 31506266 PMCID: PMC6739104 DOI: 10.1128/msystems.00455-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
As a naturally occurring adaptive immune system, CRISPR-Cas (clustered regularly interspersed short palindromic repeats–CRISPR-associated genes) systems are widely found in bacteria and archaea to defend against viruses. Since 2013, the application of various bacterial CRISPR-Cas systems has become very popular due to their development into targeted and programmable genome engineering tools with the ability to edit almost any genome. As the natural off-switch of CRISPR-Cas systems, anti-CRISPRs have a great potential to serve as regulators of CRISPR-Cas tools and enable safer and more controllable genome editing. This study will help understand the relative usefulness of the three bioinformatics approaches for new Acr discovery, as well as guide the future development of new bioinformatics tools to facilitate anti-CRISPR research. The thousands of Acr homologs and hundreds of new anti-CRISPR loci identified in this study will be a valuable data resource for genome engineers to search for new CRISPR-Cas regulators. Anti-CRISPR (Acr) loci/operons encode Acr proteins and Acr-associated (Aca) proteins. Forty-five Acr families have been experimentally characterized inhibiting seven subtypes of CRISPR-Cas systems. We have developed a bioinformatics pipeline to identify genomic loci containing Acr homologs and/or Aca homologs by combining three computational approaches: homology, guilt-by-association, and self-targeting spacers. Homology search found thousands of Acr homologs in bacterial and viral genomes, but most are homologous to AcrIIA7 and AcrIIA9. Investigating the gene neighborhood of these Acr homologs revealed that only a small percentage (23.0% in bacteria and 8.2% in viruses) of them have neighboring Aca homologs and thus form Acr-Aca operons. Surprisingly, although a self-targeting spacer is a strong indicator of the presence of Acr genes in a genome, a large percentage of Acr-Aca loci are found in bacterial genomes without self-targeting spacers or even without complete CRISPR-Cas systems. Additionally, for Acr homologs from genomes with self-targeting spacers, homology-based Acr family assignments do not always agree with the self-targeting CRISPR-Cas subtypes. Last, by investigating Acr genomic loci coexisting with self-targeting spacers in the same genomes, five known subtypes (I-C, I-E, I-F, II-A, and II-C) and five new subtypes (I-B, III-A, III-B, IV-A, and V-U4) of Acrs were inferred. Based on these findings, we conclude that the discovery of new anti-CRISPRs should not be restricted to genomes with self-targeting spacers and loci with Acr homologs. The evolutionary arms race of CRISPR-Cas systems and anti-CRISPR systems may have driven the adaptive and rapid gain and loss of these elements in closely related genomes. IMPORTANCE As a naturally occurring adaptive immune system, CRISPR-Cas (clustered regularly interspersed short palindromic repeats–CRISPR-associated genes) systems are widely found in bacteria and archaea to defend against viruses. Since 2013, the application of various bacterial CRISPR-Cas systems has become very popular due to their development into targeted and programmable genome engineering tools with the ability to edit almost any genome. As the natural off-switch of CRISPR-Cas systems, anti-CRISPRs have a great potential to serve as regulators of CRISPR-Cas tools and enable safer and more controllable genome editing. This study will help understand the relative usefulness of the three bioinformatics approaches for new Acr discovery, as well as guide the future development of new bioinformatics tools to facilitate anti-CRISPR research. The thousands of Acr homologs and hundreds of new anti-CRISPR loci identified in this study will be a valuable data resource for genome engineers to search for new CRISPR-Cas regulators.
Collapse
|
92
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
93
|
Divya Ganeshan S, Hosseinidoust Z. Phage Therapy with a Focus on the Human Microbiota. Antibiotics (Basel) 2019; 8:E131. [PMID: 31461990 PMCID: PMC6783874 DOI: 10.3390/antibiotics8030131] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/12/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria. After their discovery in the early 1900s, bacteriophages were a primary cure against infectious disease for almost 25 years, before being completely overshadowed by antibiotics. With the rise of antibiotic resistance, bacteriophages are being explored again for their antibacterial activity. One of the critical apprehensions regarding bacteriophage therapy, however, is the possibility of genome evolution, development of phage resistance, and subsequent perturbations to our microbiota. Through this review, we set out to explore the principles supporting the use of bacteriophages as a therapeutic agent, discuss the human gut microbiome in relation to the utilization of phage therapy, and the co-evolutionary arms race between host bacteria and phage in the context of the human microbiota.
Collapse
Affiliation(s)
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
94
|
Kim Y, Lee SJ, Yoon H, Kim N, Lee B, Suh J. Anti‐CRISPR AcrIIC3 discriminates between Cas9 orthologs via targeting the variable surface of the HNH nuclease domain. FEBS J 2019; 286:4661-4674. [DOI: 10.1111/febs.15037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Youngim Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences Seoul National University Korea
| | - Sang Jae Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy Seoul National University Gwanak‐gu Korea
- PAL‐XFEL, Pohang Accelerator Laboratory Pohang University of Science and Technology Korea
| | - Hye‐Jin Yoon
- Department of Chemistry, College of Natural Sciences Seoul National University Gwanak‐gu Korea
| | - Nak‐Kyoon Kim
- Advanced Analysis Center Korea Institute of Science and Technology Seoul Korea
| | - Bong‐Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy Seoul National University Gwanak‐gu Korea
| | - Jeong‐Yong Suh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences Seoul National University Korea
- Institute for Biomedical Sciences Shinshu University Nagano Japan
| |
Collapse
|
95
|
Lam TJ, Ye Y. Long reads reveal the diversification and dynamics of CRISPR reservoir in microbiomes. BMC Genomics 2019; 20:567. [PMID: 31288753 PMCID: PMC6617893 DOI: 10.1186/s12864-019-5922-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sequencing of microbiomes has accelerated the characterization of the diversity of CRISPR-Cas immune systems. However, the utilization of next generation short read sequences for the characterization of CRISPR-Cas dynamics remains limited due to the repetitive nature of CRISPR arrays. CRISPR arrays are comprised of short spacer segments (derived from invaders' genomes) interspaced between flanking repeat sequences. The repetitive structure of CRISPR arrays poses a computational challenge for the accurate assembly of CRISPR arrays from short reads. In this paper we evaluate the use of long read sequences for the analysis of CRISPR-Cas system dynamics in microbiomes. RESULTS We analyzed a dataset of Illumina's TruSeq Synthetic Long-Reads (SLR) derived from a gut microbiome. We showed that long reads captured CRISPR spacers at a high degree of redundancy, which highlights the spacer conservation of spacer sharing CRISPR variants, enabling the study of CRISPR array dynamics in ways difficult to achieve though short read sequences. We introduce compressed spacer graphs, a visual abstraction of spacer sharing CRISPR arrays, to provide a simplified view of complex organizational structures present within CRISPR array dynamics. Utilizing compressed spacer graphs, several key defining characteristics of CRISPR-Cas system dynamics were observed including spacer acquisition and loss events, conservation of the trailer end spacers, and CRISPR arrays' directionality (transcription orientation). Other result highlights include the observation of intense array contraction and expansion events, and reconstruction of a full-length genome for a potential invader (Faecalibacterium phage) based on identified spacers. CONCLUSION We demonstrate in an in silico system that long reads provide the necessary context for characterizing the organization of CRISPR arrays in a microbiome, and reveal dynamic and evolutionary features of CRISPR-Cas systems in a microbial population.
Collapse
Affiliation(s)
- Tony J Lam
- School of Informatics, Computing, and Engineering Indiana University, Bloomington, 47408, IN, USA
| | - Yuzhen Ye
- School of Informatics, Computing, and Engineering Indiana University, Bloomington, 47408, IN, USA.
| |
Collapse
|
96
|
Thavalingam A, Cheng Z, Garcia B, Huang X, Shah M, Sun W, Wang M, Harrington L, Hwang S, Hidalgo-Reyes Y, Sontheimer EJ, Doudna J, Davidson AR, Moraes TF, Wang Y, Maxwell KL. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Nat Commun 2019; 10:2806. [PMID: 31243272 PMCID: PMC6594998 DOI: 10.1038/s41467-019-10577-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 01/25/2023] Open
Abstract
CRISPR-Cas adaptive immune systems function to protect bacteria from invasion by foreign genetic elements. The CRISPR-Cas9 system has been widely adopted as a powerful genome-editing tool, and phage-encoded inhibitors, known as anti-CRISPRs, offer a means of regulating its activity. Here, we report the crystal structures of anti-CRISPR protein AcrIIC2Nme alone and in complex with Nme1Cas9. We demonstrate that AcrIIC2Nme inhibits Cas9 through interactions with the positively charged bridge helix, thereby preventing sgRNA loading. In vivo phage plaque assays and in vitro DNA cleavage assays show that AcrIIC2Nme mediates its activity through a large electronegative surface. This work shows that anti-CRISPR activity can be mediated through the inhibition of Cas9 complex assembly.
Collapse
Affiliation(s)
- Annoj Thavalingam
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Zhi Cheng
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bianca Garcia
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Xue Huang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Megha Shah
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Wei Sun
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lucas Harrington
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sungwon Hwang
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Yurima Hidalgo-Reyes
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jennifer Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, CA, 94720, USA.,Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Alan R Davidson
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada.,Department of Molecular Genetics, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Yanli Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
97
|
Zhang H, Li Z, Daczkowski CM, Gabel C, Mesecar AD, Chang L. Structural Basis for the Inhibition of CRISPR-Cas12a by Anti-CRISPR Proteins. Cell Host Microbe 2019; 25:815-826.e4. [PMID: 31155345 DOI: 10.1016/j.chom.2019.05.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas12a (Cpf1), a type V CRISPR-associated nuclease, provides bacterial immunity against bacteriophages and plasmids but also serves as a tool for genome editing. Foreign nucleic acids are integrated into the CRISPR locus, prompting transcription of CRISPR RNAs (crRNAs) that guide Cas12a cleavage of foreign complementary DNA. However, mobile genetic elements counteract Cas12a with inhibitors, notably type V-A anti-CRISPRs (AcrVAs). We present cryoelectron microscopy structures of Cas12a-crRNA bound to AcrVA1 and AcrVA4 at 3.5 and 3.3 Å resolutions, respectively. AcrVA1 is sandwiched between the recognition (REC) and nuclease (NUC) lobes of Cas12a and inserts into the binding pocket for the protospacer-adjacent motif (PAM), a short DNA sequence guiding Cas12a targeting. AcrVA1 cleaves crRNA in a Cas12a-dependent manner, inactivating Cas12a-crRNA complexes. The AcrVA4 dimer is anchored around the crRNA pseudoknot of Cas12a-crRNA, preventing required conformational changes for crRNA-DNA heteroduplex formation. These results uncover molecular mechanisms for CRISPR-Cas12a inhibition, providing insights into bacteria-phage dynamics.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zhuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Clinton Gabel
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew D Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
98
|
Zhang F, Song G, Tian Y. Anti-CRISPRs: The natural inhibitors for CRISPR-Cas systems. Animal Model Exp Med 2019; 2:69-75. [PMID: 31392299 PMCID: PMC6600654 DOI: 10.1002/ame2.12069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated protein) systems serve as the adaptive immune system by which prokaryotes defend themselves against phages. It has also been developed into a series of powerful gene-editing tools. As the natural inhibitors of CRISPR-Cas systems, anti-CRISPRs (Acrs) can be used as the "off-switch" for CRISPR-Cas systems to limit the off-target effects caused by Cas9. Since the discovery of CRISPR-Cas systems, much research has focused on the identification, mechanisms and applications of Acrs. In light of the rapid development and scientific significance of this field, this review summarizes the history and research status of Acrs, and considers future applications.
Collapse
Affiliation(s)
- Fei Zhang
- CAS Key Laboratory of RNA BiologyInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guoxu Song
- CAS Key Laboratory of RNA BiologyInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Yong Tian
- CAS Key Laboratory of RNA BiologyInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
99
|
Varble A, Marraffini LA. Three New Cs for CRISPR: Collateral, Communicate, Cooperate. Trends Genet 2019; 35:446-456. [PMID: 31036344 PMCID: PMC6525018 DOI: 10.1016/j.tig.2019.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) loci and their associated (cas) genes provide protection against invading phages and plasmids in prokaryotes. Typically, short sequences are captured from the genome of the invader, integrated into the CRISPR locus, and transcribed into short RNAs that direct RNA-guided Cas nucleases to the nucleic acids of the invader for their degradation. Recent work in the field has revealed unexpected features of the CRISPR-Cas mechanism: (i) collateral, nonspecific, cleavage of host nucleic acids; (ii) secondary messengers that amplify the immune response; and (iii) immunosuppression of CRISPR targeting by phage-encoded inhibitors. Here, we review these new and exciting findings.
Collapse
Affiliation(s)
- Andrew Varble
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| |
Collapse
|
100
|
Szymczak P, Rau MH, Monteiro JM, Pinho MG, Filipe SR, Vogensen FK, Zeidan AA, Janzen T. A comparative genomics approach for identifying host-range determinants in Streptococcus thermophilus bacteriophages. Sci Rep 2019; 9:7991. [PMID: 31142793 PMCID: PMC6541646 DOI: 10.1038/s41598-019-44481-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
Comparative genomics has proven useful in exploring the biodiversity of phages and understanding phage-host interactions. This knowledge is particularly useful for phages infecting Streptococcus thermophilus, as they constitute a constant threat during dairy fermentations. Here, we explore the genetic diversity of S. thermophilus phages to identify genetic determinants with a signature for host specificity, which could be linked to the bacterial receptor genotype. A comparative genomic analysis was performed on 142 S. thermophilus phage genomes, 55 of which were sequenced in this study. Effectively, 94 phages were assigned to the group cos (DT1), 36 to the group pac (O1205), six to the group 5093, and six to the group 987. The core genome-based phylogeny of phages from the two dominating groups and their receptor binding protein (RBP) phylogeny corresponded to the phage host-range. A role of RBP in host recognition was confirmed by constructing a fluorescent derivative of the RBP of phage CHPC951, followed by studying the binding of the protein to the host strain. Furthermore, the RBP phylogeny of the cos group was found to correlate with the host genotype of the exocellular polysaccharide-encoding operon. These findings provide novel insights towards developing strategies to combat phage infections in dairies.
Collapse
Affiliation(s)
- Paula Szymczak
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Martin Holm Rau
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark
| | - João M Monteiro
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Sérgio Raposo Filipe
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Finn Kvist Vogensen
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Ahmad A Zeidan
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark
| | - Thomas Janzen
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark.
| |
Collapse
|