51
|
Prior IA, Hood FE, Hartley JL. The Frequency of Ras Mutations in Cancer. Cancer Res 2020; 80:2969-2974. [PMID: 32209560 PMCID: PMC7367715 DOI: 10.1158/0008-5472.can-19-3682] [Citation(s) in RCA: 638] [Impact Index Per Article: 127.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/13/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Ras is frequently mutated in cancer, however, there is a lack of consensus in the literature regarding the cancer mutation frequency of Ras, with quoted values varying from 10%-30%. This variability is at least in part due to the selective aggregation of data from different databases and the dominant influence of particular cancer types and particular Ras isoforms within these datasets. To provide a more definitive figure for Ras mutation frequency in cancer, we cross-referenced the data in all major publicly accessible cancer mutation databases to determine reliable mutation frequency values for each Ras isoform in all major cancer types. These percentages were then applied to current U.S. cancer incidence statistics to estimate the number of new patients each year that have Ras-mutant cancers. We find that approximately 19% of patients with cancer harbor Ras mutations, equivalent to approximately 3.4 million new cases per year worldwide. We discuss the Ras isoform and mutation-specific trends evident within the datasets that are relevant to current Ras-targeted therapies.
Collapse
Affiliation(s)
- Ian A Prior
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.
| | - Fiona E Hood
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - James L Hartley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
52
|
Tang L, Yao T, Fang M, Zheng X, Chen G, Li M, Wang D, Li X, Ma H, Wang X, Qian Y, Zhou F. Genomic DNA methylation in HLA-Cw*0602 carriers and non-carriers of psoriasis. J Dermatol Sci 2020; 99:23-29. [PMID: 32522384 DOI: 10.1016/j.jdermsci.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND HLA-Cw*0602 has long been established as one of the most important genetic biomarkers in psoriasis. However, the epigenetic and gene expression differences between HLA-Cw*0602 carriers and non-carriers has not yet been investigated. OBJECTIVE We aim to explore the whole-genome methylation and gene expression differences between HLA-Cw*0602 carriers and non-carriers. METHODS HLA imputation was performed to get landscape of variants in this region. Genome-wide DNA methylation was compared between positive and negative HLA-Cw*0602 groups. Eleven methylation loci were selected for further validation in additional 43 cases. For differentially methylated genes, GO and KEGG were used to annotate gene functions. RESULTS We imputed 29,948 variants based on the constructed HLA reference panels, and obtained 42 HLA-Cw*0602 carriers and 72 non-carriers. Significant methylation differences were detected at 4321 sites (811 hypo- and 3510 hypermethylated). The cg02607779 (KLF7, P = 0.001), cg06936779 (PIP5K1A, P = 0.002), cg03860400 (BTBD10, P = 0.017) and cg26112390 (GOLGA2P5, P = 0.019) were identified and validated to be the significant CpGs contributed to different HLA-C*0602 groups. Among the hypo- and hypermethylated sites, the top CpGs were in gene body and CpG island. CONCLUSION We performed the first whole-genome study on methylation differences between psoriatic individuals with or without HLA-Cw*0602, and found the key methylation sites which may contribute to the carrying status of HLA-Cw*0602. Methylation loci located in gene body and CpG island are more likely to affect the methylation levels in HLA-Cw*0602 carriers. This integrated analysis shed light on novel insights into the pathogenic mechanisms of genomic methylation in different HLA genotypes of psoriasis.
Collapse
Affiliation(s)
- Lili Tang
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Tianyu Yao
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Miaohong Fang
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Xiaodong Zheng
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Gang Chen
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Mengqing Li
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Dan Wang
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Xinyu Li
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Haining Ma
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Xiangru Wang
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Yunhong Qian
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Fusheng Zhou
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.
| |
Collapse
|
53
|
Excoffon KJDA. The coxsackievirus and adenovirus receptor: virological and biological beauty. FEBS Lett 2020; 594:1828-1837. [PMID: 32298477 DOI: 10.1002/1873-3468.13794] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) is an essential multifunctional cellular protein that is only beginning to be understood. CAR serves as a receptor for many adenoviruses, human group B coxsackieviruses, swine vesicular disease virus, and possibly other viruses. While named for its function as a viral receptor, CAR is also involved in cell adhesion, immune cell activation, synaptic transmission, and signaling. Knockout mouse models were first to identify some of these biological functions; however, tissue-specific model systems have shed light on the complexity of different CAR isoforms and their specific activities. Many of these functions are mediated by the large number of interacting proteins described so far, and several new putative interactions have recently been discovered. As antiviral and gene therapy strategies that target CAR continue to emerge, future work poised to understand the biological implications of manipulating CAR in vivo is critical.
Collapse
Affiliation(s)
- Katherine J D A Excoffon
- Biological Sciences, Wright State University, Dayton, OH, USA.,Spirovant Sciences, Inc, Philadelphia, PA, USA
| |
Collapse
|
54
|
Li S, MacAlpine DM, Counter CM. Capturing the primordial Kras mutation initiating urethane carcinogenesis. Nat Commun 2020; 11:1800. [PMID: 32286309 PMCID: PMC7156420 DOI: 10.1038/s41467-020-15660-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
The environmental carcinogen urethane exhibits a profound specificity for pulmonary tumors driven by an oncogenic Q61L/R mutation in the gene Kras. Similarly, the frequency, isoform, position, and substitution of oncogenic RAS mutations are often unique to human cancers. To elucidate the principles underlying this RAS mutation tropism of urethane, we adapted an error-corrected, high-throughput sequencing approach to detect mutations in murine Ras genes at great sensitivity. This analysis not only captured the initiating Kras mutation days after urethane exposure, but revealed that the sequence specificity of urethane mutagenesis, coupled with transcription and isoform locus, to be major influences on the extreme tropism of this carcinogen. Why the carcinogen urethane causes only lung tumours driven by a specific oncogenic mutation in just one Ras gene in mice is unclear. Here, the authors capture mutations immediately after urethane exposure and show that the sequence specificity of mutagenesis, transcriptional status, and Ras genetic loci may all contribute to this specificity.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
55
|
Budayeva HG, Kirkpatrick DS. Monitoring protein communities and their responses to therapeutics. Nat Rev Drug Discov 2020; 19:414-426. [PMID: 32139903 DOI: 10.1038/s41573-020-0063-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Most therapeutics are designed to alter the activities of proteins. From metabolic enzymes to cell surface receptors, connecting the function of a protein to a cellular phenotype, to the activity of a drug and to a clinical outcome represents key mechanistic milestones during drug development. Yet, even for therapeutics with exquisite specificity, the sequence of events following target engagement can be complex. Interconnected communities of structural, metabolic and signalling proteins modulate diverse downstream effects that manifest as interindividual differences in efficacy, adverse effects and resistance to therapy. Recent advances in mass spectrometry proteomics have made it possible to decipher these complex relationships and to understand how factors such as genotype, cell type, local environment and external perturbations influence them. In this Review, we explore how proteomic technologies are expanding our understanding of protein communities and their responses to large- and small-molecule therapeutics.
Collapse
Affiliation(s)
- Hanna G Budayeva
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
56
|
Xu C, Wan Z, Shaheen S, Wang J, Yang Z, Liu W. A PI(4,5)P2-derived "gasoline engine model" for the sustained B cell receptor activation. Immunol Rev 2020; 291:75-90. [PMID: 31402506 DOI: 10.1111/imr.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
To efficiently initiate activation responses against rare ligands in the microenvironment, lymphocytes employ sophisticated mechanisms involving signaling amplification. Recently, a signaling amplification mechanism initiated from phosphatidylinositol (PI) 4, 5-biphosphate [PI(4,5)P2] hydrolysis and synthesis for sustained B cell activation has been reported. Antigen and B cell receptor (BCR) recognition triggered the prompt reduction of PI(4,5)P2 density within the BCR microclusters, which led to the positive feedback for the synthesis of PI(4,5)P2 outside of the BCR microclusters. At single molecule level, the diffusion of PI(4,5)P2 was slow, allowing for the maintenance of a PI(4,5)P2 density gradient between the inside and outside of the BCR microclusters and the persistent supply of PI(4,5)P2 from outside to inside of the BCR microclusters. Here, we review studies that have contributed to uncovering the molecular mechanisms of PI(4,5)P2-derived signaling amplification model. Based on these studies, we proposed a "gasoline engine model" in which the activation of B cell signaling inside the microclusters is similar to the working principle of burning gasoline within the engine chamber of a gasoline engine. We also discuss the evidences showing the potential universality of this model and future prospects.
Collapse
Affiliation(s)
- Chenguang Xu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Samina Shaheen
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Wanli Liu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
57
|
Strätker K, Haidar S, Amesty Á, El-Awaad E, Götz C, Estévez-Braun A, Jose J. Development of an in vitro screening assay for PIP5K1α lipid kinase and identification of potent inhibitors. FEBS J 2020; 287:3042-3064. [PMID: 31876381 DOI: 10.1111/febs.15194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/28/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
The human phosphatidylinositol 4-phosphate 5-kinase type I α (hPIP5K1α) participates in the phosphoinositide-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Despite the evidence that hPIP5K1α plays a role in the development of prostate cancer (PCa), only one inhibitor is known to date. With the aim of identifying new inhibitors, a nonradiometric assay for measurement of the hPIP5K1α enzyme activity was developed. The assay is based on the separation of the fluorescently labeled substrate phosphatidylinositol-4-phosphate (PI(4)P) and the resulting product phosphatidylinositol-4,5-bisphosphate (PIP2 ) by capillary electrophoresis (CE). Furthermore, an inactive mutant K261A of hPIP5K1α was generated by site-directed mutagenesis and used as a control. Michaelis-Menten analysis revealed a Km value of 21.6 µm and Vmax of 0.65 pmol·min-1 for the cosubstrate ATP. The average Z' value was determined to be 0.86, indicating a high reliability of the assay. An in silico screening of an in-house compound library was performed employing the crystal structure of zebrafish PIP5K1α. By applying this strategy, three compounds with a 2-amino-3-cyano-4H-pyranobenzoquinone scaffold were identified and tested using the CE-based assay. These compounds inhibited hPIP5K1α to > 90% at a concentration of 50 µm. Subsequently, the inhibitory activity of all compounds with a pyranobenzoquinone scaffold (29) was tested on hPIP5K1α. Compound 4-(2-amino-3-cyano-6-hydroxy-5,8-dioxo-7-undecyl-5,8-dihydro-4H-chromen-4-yl)benzoic acid appeared to be the most potent inhibitor of hPIP5K1α identified so far with an IC50 value of 1.55 µm, exhibiting a substrate-competitive mode of action. The effects of this compound on cell viability and the induction of apoptosis were investigated in LNCaP, DU145, and PC3 PCa cells.
Collapse
Affiliation(s)
- Katja Strätker
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany
| | - Samer Haidar
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany.,Faculty of Pharmacy, Damascus University, Syria
| | - Ángel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Universidad de La Laguna, Spain
| | - Ehab El-Awaad
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Claudia Götz
- Universität des Saarlandes Medizinische Biochemie und Molekularbiologie Geb, Homburg, Germany
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Universidad de La Laguna, Spain
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany
| |
Collapse
|
58
|
Abdelkarim H, Banerjee A, Grudzien P, Leschinsky N, Abushaer M, Gaponenko V. The Hypervariable Region of K-Ras4B Governs Molecular Recognition and Function. Int J Mol Sci 2019; 20:ijms20225718. [PMID: 31739603 PMCID: PMC6888304 DOI: 10.3390/ijms20225718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022] Open
Abstract
The flexible C-terminal hypervariable region distinguishes K-Ras4B, an important proto-oncogenic GTPase, from other Ras GTPases. This unique lysine-rich portion of the protein harbors sites for post-translational modification, including cysteine prenylation, carboxymethylation, phosphorylation, and likely many others. The functions of the hypervariable region are diverse, ranging from anchoring K-Ras4B at the plasma membrane to sampling potentially auto-inhibitory binding sites in its GTPase domain and participating in isoform-specific protein-protein interactions and signaling. Despite much research, there are still many questions about the hypervariable region of K-Ras4B. For example, mechanistic details of its interaction with plasma membrane lipids and with the GTPase domain require further clarification. The roles of the hypervariable region in K-Ras4B-specific protein-protein interactions and signaling are incompletely defined. It is also unclear why post-translational modifications frequently found in protein polylysine domains, such as acetylation, glycation, and carbamoylation, have not been observed in K-Ras4B. Expanding knowledge of the hypervariable region will likely drive the development of novel highly-efficient and selective inhibitors of K-Ras4B that are urgently needed by cancer patients.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA;
| | - Patrick Grudzien
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Nicholas Leschinsky
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Mahmoud Abushaer
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
- Correspondence: ; Tel.: +312-355-4839
| |
Collapse
|
59
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
60
|
Najafi M, Ahmadi A, Mortezaee K. Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: an updated review. Cell Biol Int 2019; 43:1206-1222. [PMID: 31136035 DOI: 10.1002/cbin.11187] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathway is activated in a wide spectrum of human tumors, exhibiting cardinal oncogenic roles and sustained inhibition of this pathway is considered as a primary goal in clinic. Within this pathway, receptor tyrosine kinases such as epithelial growth factor receptor, mesenchymal-epithelial transition, and AXL act as upstream regulators of RAS/RAF/MEK/extracellular-signal-regulated kinase. MAPK signaling is active in both early and advanced stages of tumorigenesis, and it promotes tumor proliferation, survival, and metastasis. MAPK regulatory effects on cellular constituent of the tumor microenvironment is for immunosuppressive purposes. Cross-talking between MAPK with oncogenic signaling pathways including WNT, cyclooxygenase-2, transforming growth factor-β, NOTCH and (in particular) with phosphatidylinositol 3-kinase is contributed to the multiplication of tumor progression and drug resistance. Developing resistance (intrinsic or acquired) to MAPK-targeted therapy also occurs due to heterogeneity of tumors along with mutations and negative feedback loop of interactions exist between various kinases causing rebound activation of this signaling. Multidrug regimen is a preferred therapeutic avenue for targeting MAPK signaling. To enhance patient tolerance and to mitigate potential adversarial effects related to the combination therapy, determination of a desired dose and drug along with pre-evaluation of cancer-type-specific kinase mutation and sensitivity, especially for patients receiving triplet therapy is an urgent need.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48175-861, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
61
|
Hood FE, Klinger B, Newlaczyl AU, Sieber A, Dorel M, Oliver SP, Coulson JM, Blüthgen N, Prior IA. Isoform-specific Ras signaling is growth factor dependent. Mol Biol Cell 2019; 30:1108-1117. [PMID: 30785867 PMCID: PMC6724511 DOI: 10.1091/mbc.e18-10-0676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HRAS, NRAS, and KRAS isoforms are almost identical proteins that are ubiquitously expressed and activate a common set of effectors. In vivo studies have revealed that they are not biologically redundant; however, the isoform specificity of Ras signaling remains poorly understood. Using a novel panel of isogenic SW48 cell lines endogenously expressing wild-type or G12V-mutated activated Ras isoforms, we have performed a detailed characterization of endogenous isoform-specific mutant Ras signaling. We find that despite displaying significant Ras activation, the downstream outputs of oncogenic Ras mutants are minimal in the absence of growth factor inputs. The lack of mutant KRAS-induced effector activation observed in SW48 cells appears to be representative of a broad panel of colon cancer cell lines harboring mutant KRAS. For MAP kinase pathway activation in KRAS-mutant cells, the requirement for coincident growth factor stimulation occurs at an early point in the Raf activation cycle. Finally, we find that Ras isoform-specific signaling was highly context dependent and did not conform to the dogma derived from ectopic expression studies.
Collapse
Affiliation(s)
- Fiona E Hood
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Bertram Klinger
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,Integrative Research Institute for the Life Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.,Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Anna U Newlaczyl
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Anja Sieber
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,Integrative Research Institute for the Life Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.,Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Mathurin Dorel
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,Integrative Research Institute for the Life Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.,Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Simon P Oliver
- Department of Biological Sciences, University of Chester, CH1 4BJ Chester, United Kingdom
| | - Judy M Coulson
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Nils Blüthgen
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,Integrative Research Institute for the Life Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.,Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Ian A Prior
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
62
|
Neuroblastoma RAS Viral Oncogene Homolog (NRAS) Is a Novel Prognostic Marker and Contributes to Sorafenib Resistance in Hepatocellular Carcinoma. Neoplasia 2019; 21:257-268. [PMID: 30685691 PMCID: PMC6370713 DOI: 10.1016/j.neo.2018.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/28/2018] [Accepted: 11/27/2018] [Indexed: 01/06/2023] Open
Abstract
Inhibition of the RAS-RAF-ERK-pathway using sorafenib as a first-line and regorafenib as a second-line treatment approach is the only effective therapeutic strategy for advanced hepatocellular carcinoma (HCC). Recent studies suggest that wild-type KRAS and HRAS isoforms could majorly contribute to HCC progression and sorafenib resistance. In contrast, the role of neuroblastoma RAS viral oncogene homolog (NRAS) in HCC remained elusive. In this study, wild-type NRAS was found to be overexpressed in HCC cell lines, preclinical HCC models, and human HCC tissues. Moreover, NRAS overexpression correlated with poor survival and proliferation in vivo. However, si-RNA-pool–mediated NRAS knockdown showed only slight effects on HCC proliferation, clonogenicity, and AKT activity. We determined that KRAS upregulation served as a functional compensatory mechanism in the absence of NRAS, which was overcome by combined inhibition of NRAS and KRAS in HCC cells. Furthermore, NRAS expression was elevated in sorafenib-resistant compared to nonresistant HCC cells, and NRAS knockdown enhanced sorafenib efficacy in resistant cells. In summary, NRAS appears to be a prognostic marker in HCC and contributes to sorafenib resistance. Regarding potential therapeutic strategies, NRAS inhibition in HCC should be combined with KRAS inhibition to prevent KRAS-mediated rescue effects.
Collapse
|
63
|
Abstract
The three RAS genes - HRAS, NRAS and KRAS - are collectively mutated in one-third of human cancers, where they act as prototypic oncogenes. Interestingly, there are rather distinct patterns to RAS mutations; the isoform mutated as well as the position and type of substitution vary between different cancers. As RAS genes are among the earliest, if not the first, genes mutated in a variety of cancers, understanding how these mutation patterns arise could inform on not only how cancer begins but also the factors influencing this event, which has implications for cancer prevention. To this end, we suggest that there is a narrow window or 'sweet spot' by which oncogenic RAS signalling can promote tumour initiation in normal cells. As a consequence, RAS mutation patterns in each normal cell are a product of the specific RAS isoform mutated, as well as the position of the mutation and type of substitution to achieve an ideal level of signalling.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
64
|
Parkin A, Man J, Chou A, Nagrial AM, Samra J, Gill AJ, Timpson P, Pajic M. The Evolving Understanding of the Molecular and Therapeutic Landscape of Pancreatic Ductal Adenocarcinoma. Diseases 2018; 6:diseases6040103. [PMID: 30428574 PMCID: PMC6313363 DOI: 10.3390/diseases6040103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths, characterised by poor survival, marked molecular heterogeneity and high intrinsic and acquired chemoresistance. Only 10⁻20% of pancreatic cancer patients present with surgically resectable disease and even then, 80% die within 5 years. Our increasing understanding of the genomic heterogeneity of cancer suggests that the failure of definitive clinical trials to demonstrate efficacy in the majority of cases is likely due to the low proportion of responsive molecular subtypes. As a consequence, novel treatment strategies to approach this disease are urgently needed. Significant developments in the field of precision oncology have led to increasing molecular stratification of cancers into subtypes, where individual cancers are selected for optimal therapy depending on their molecular or genomic fingerprint. This review provides an overview of the current status of clinically used and emerging treatment strategies, and discusses the advances in and the potential for the implementation of precision medicine in this highly lethal malignancy, for which there are currently no curative systemic therapies.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Jennifer Man
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Angela Chou
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- University of Sydney, Sydney, NSW 2006, Australia.
| | - Adnan M Nagrial
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW 2145, Australia.
| | - Jaswinder Samra
- Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia.
| | - Anthony J Gill
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- University of Sydney, Sydney, NSW 2006, Australia.
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia.
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia.
| | - Paul Timpson
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| | - Marina Pajic
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| |
Collapse
|