51
|
Hu J, Harris PC. Regulation of polycystin expression, maturation and trafficking. Cell Signal 2020; 72:109630. [PMID: 32275942 PMCID: PMC7269868 DOI: 10.1016/j.cellsig.2020.109630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022]
Abstract
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
52
|
Suciu SK, Caspary T. Cilia, neural development and disease. Semin Cell Dev Biol 2020; 110:34-42. [PMID: 32732132 DOI: 10.1016/j.semcdb.2020.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022]
Abstract
Neural development requires a series of cellular events starting with cell specification, proliferation, and migration. Subsequently, axons and dendrites project from the cell surface to form connections to other neurons, interneurons and glia. Anomalies in any one of these steps can lead to malformation or malfunction of the nervous system. Here we review the critical role the primary cilium plays in the fundamental steps of neurodevelopment. By highlighting human diseases caused by mutations in cilia-associated proteins, it is clear that cilia are essential to multiple neural processes. Furthermore, we explore whether additional aspects of cilia regulation, most notably post-translational modification of the tubulin scaffold in cilia, play underappreciated roles in neural development. Finally, we discuss whether cilia-associated proteins function outside the cilium in some aspects of neurodevelopment. These data underscore both the importance of cilia in the nervous system and some outstanding questions in the field.
Collapse
Affiliation(s)
- Sarah K Suciu
- Genetics and Molecular Biology Graduate Program, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, Georgia
| | - Tamara Caspary
- Department of Human Genetics, Emory University, Atlanta, GA 30322, Georgia.
| |
Collapse
|
53
|
Meyberg R, Perroud PF, Haas FB, Schneider L, Heimerl T, Renzaglia KS, Rensing SA. Characterisation of evolutionarily conserved key players affecting eukaryotic flagellar motility and fertility using a moss model. THE NEW PHYTOLOGIST 2020; 227:440-454. [PMID: 32064607 PMCID: PMC8224819 DOI: 10.1111/nph.16486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/07/2020] [Indexed: 05/18/2023]
Abstract
Defects in flagella/cilia are often associated with infertility and disease. Motile male gametes (sperm cells) are an ancestral eukaryotic trait that has been lost in several lineages like flowering plants. Here, we made use of a phenotypic male fertility difference between two moss (Physcomitrella patens) ecotypes to explore spermatozoid function. We compare genetic and epigenetic variation as well as expression profiles between the Gransden and Reute ecotype to identify a set of candidate genes associated with moss male infertility. We generated a loss-of-function mutant of a coiled-coil domain containing 39 (ccdc39) gene that is part of the flagellar hydin network. Defects in mammal and algal homologues of this gene coincide with a loss of fertility, demonstrating the evolutionary conservation of flagellar function related to male fertility across kingdoms. The Ppccdc39 mutant resembles the Gransden phenotype in terms of male fertility. Potentially, several somatic (epi-)mutations occurred during prolonged vegetative propagation of Gransden, causing regulatory differences of for example the homeodomain transcription factor BELL1. Probably these somatic changes are causative for the observed male fertility defect. We propose that moss spermatozoids might be employed as an easily accessible system to study male infertility of humans and animals in terms of flagellar structure and movement.
Collapse
Affiliation(s)
- Rabea Meyberg
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Fabian B. Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Lucas Schneider
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Karen S. Renzaglia
- Department of Plant Biology, Southern Illinois University, Mail Code 6509, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| |
Collapse
|
54
|
Arslanhan MD, Gulensoy D, Firat-Karalar EN. A Proximity Mapping Journey into the Biology of the Mammalian Centrosome/Cilium Complex. Cells 2020; 9:E1390. [PMID: 32503249 PMCID: PMC7348975 DOI: 10.3390/cells9061390] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
The mammalian centrosome/cilium complex is composed of the centrosome, the primary cilium and the centriolar satellites, which together regulate cell polarity, signaling, proliferation and motility in cells and thereby development and homeostasis in organisms. Accordingly, deregulation of its structure and functions is implicated in various human diseases including cancer, developmental disorders and neurodegenerative diseases. To better understand these disease connections, the molecular underpinnings of the assembly, maintenance and dynamic adaptations of the centrosome/cilium complex need to be uncovered with exquisite detail. Application of proximity-based labeling methods to the centrosome/cilium complex generated spatial and temporal interaction maps for its components and provided key insights into these questions. In this review, we first describe the structure and cell cycle-linked regulation of the centrosome/cilium complex. Next, we explain the inherent biochemical and temporal limitations in probing the structure and function of the centrosome/cilium complex and describe how proximity-based labeling approaches have addressed them. Finally, we explore current insights into the knowledge we gained from the proximity mapping studies as it pertains to centrosome and cilium biogenesis and systematic characterization of the centrosome, cilium and centriolar satellite interactomes.
Collapse
Affiliation(s)
| | | | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Turkey; (M.D.A.); (D.G.)
| |
Collapse
|
55
|
Ki SM, Kim JH, Won SY, Oh SJ, Lee IY, Bae Y, Chung KW, Choi B, Park B, Choi E, Lee JE. CEP41-mediated ciliary tubulin glutamylation drives angiogenesis through AURKA-dependent deciliation. EMBO Rep 2020; 21:e48290. [PMID: 31885126 PMCID: PMC7001496 DOI: 10.15252/embr.201948290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
The endothelial cilium is a microtubule-based organelle responsible for blood flow-induced mechanosensation and signal transduction during angiogenesis. The precise function and mechanisms by which ciliary mechanosensation occurs, however, are poorly understood. Although posttranslational modifications (PTMs) of cytoplasmic tubulin are known to be important in angiogenesis, the specific roles of ciliary tubulin PTMs play remain unclear. Here, we report that loss of centrosomal protein 41 (CEP41) results in vascular impairment in human cell lines and zebrafish, implying a previously unknown pro-angiogenic role for CEP41. We show that proper control of tubulin glutamylation by CEP41 is necessary for cilia disassembly and that is involved in endothelial cell (EC) dynamics such as migration and tubulogenesis. We show that in ECs responding to shear stress or hypoxia, CEP41 activates Aurora kinase A (AURKA) and upregulates expression of VEGFA and VEGFR2 through ciliary tubulin glutamylation, as well as leads to the deciliation. We further show that in hypoxia-induced angiogenesis, CEP41 is responsible for the activation of HIF1α to trigger the AURKA-VEGF pathway. Overall, our results suggest the CEP41-HIF1α-AURKA-VEGF axis as a key molecular mechanism of angiogenesis and demonstrate how important ciliary tubulin glutamylation is in mechanosense-responded EC dynamics.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - Ji Hyun Kim
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - So Yeon Won
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - Shin Ji Oh
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - In Young Lee
- Laboratory of Cell Death and Human DiseasesDepartment of Life SciencesKorea UniversitySeoulSouth Korea
| | - Young‐Ki Bae
- Comparative Biomedicine Research & Tumor Microenvironment Research BranchResearch InstituteNational Cancer CenterGoyangKorea
| | - Ki Wha Chung
- Department of Biological SciencesKongju National UniversityKongjuSouth Korea
| | - Byung‐Ok Choi
- Department of NeurologySungkyunkwan University School of MedicineSeoulSouth Korea
| | - Boyoun Park
- Department of Systems BiologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulSouth Korea
| | - Eui‐Ju Choi
- Laboratory of Cell Death and Human DiseasesDepartment of Life SciencesKorea UniversitySeoulSouth Korea
| | - Ji Eun Lee
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
- Samsung Biomedical Research InstituteSamsung Medical CenterSeoulSouth Korea
| |
Collapse
|
56
|
Kuhns S, Seixas C, Pestana S, Tavares B, Nogueira R, Jacinto R, Ramalho JS, Simpson JC, Andersen JS, Echard A, Lopes SS, Barral DC, Blacque OE. Rab35 controls cilium length, function and membrane composition. EMBO Rep 2019; 20:e47625. [PMID: 31432619 PMCID: PMC6776896 DOI: 10.15252/embr.201847625] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Rab and Arl guanine nucleotide-binding (G) proteins regulate trafficking pathways essential for the formation, function and composition of primary cilia, which are sensory devices associated with Sonic hedgehog (Shh) signalling and ciliopathies. Here, using mammalian cells and zebrafish, we uncover ciliary functions for Rab35, a multitasking G protein with endocytic recycling, actin remodelling and cytokinesis roles. Rab35 loss via siRNAs, morpholinos or knockout reduces cilium length in mammalian cells and the zebrafish left-right organiser (Kupffer's vesicle) and causes motile cilia-associated left-right asymmetry defects. Consistent with these observations, GFP-Rab35 localises to cilia, as do GEF (DENND1B) and GAP (TBC1D10A) Rab35 regulators, which also regulate ciliary length and Rab35 ciliary localisation. Mammalian Rab35 also controls the ciliary membrane levels of Shh signalling regulators, promoting ciliary targeting of Smoothened, limiting ciliary accumulation of Arl13b and the inositol polyphosphate 5-phosphatase (INPP5E). Rab35 additionally regulates ciliary PI(4,5)P2 levels and interacts with Arl13b. Together, our findings demonstrate roles for Rab35 in regulating cilium length, function and membrane composition and implicate Rab35 in pathways controlling the ciliary levels of Shh signal regulators.
Collapse
Affiliation(s)
- Stefanie Kuhns
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Cecília Seixas
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Sara Pestana
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Bárbara Tavares
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Renata Nogueira
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Raquel Jacinto
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - José S Ramalho
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Jeremy C Simpson
- School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
| | - Jens S Andersen
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | | | - Susana S Lopes
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Duarte C Barral
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Oliver E Blacque
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
57
|
Foo JN, Xia Y. Polycystic kidney disease: new knowledge and future promises. Curr Opin Genet Dev 2019; 56:69-75. [PMID: 31476629 DOI: 10.1016/j.gde.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Polycystic kidney disease (PKD) is one of the most common genetic kidney diseases, characterized by the formation of fluid-filled renal cysts, which eventually lead to end-stage renal disease. Despite several decades of investigation, explicit molecular and cellular mechanisms underpinning renal cyst formation have been unresolved until recently, severely hampering the development of effective therapeutic approaches. Currently, most PKD therapies have been developed for limiting disease complications, such as hypertension. Although Tolvaptan has been approved for treating PKD in few countries, the associated hepatic toxicity remains a major concern. In this Review, we will discuss recent advances in PKD research, covering aspects ranging from newly identified genetic/epigenetic causes, increment in mechanistic interpretation, novel therapeutic targets, to the promises offered by emerging stem cell technologies.
Collapse
Affiliation(s)
- Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore; Human Genetics, Genome Institute of Singapore, A(⁎)STAR, 138672, Singapore.
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore.
| |
Collapse
|
58
|
Hor CH, Goh EL. Small GTPases in hedgehog signalling: emerging insights into the disease mechanisms of Rab23-mediated and Arl13b-mediated ciliopathies. Curr Opin Genet Dev 2019; 56:61-68. [PMID: 31465935 DOI: 10.1016/j.gde.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/31/2023]
Abstract
Small GTPases are known to have pivotal roles in intracellular trafficking, and several members of the small GTPases superfamily such as Rab10 [1,2•], Rab11 [3-5], Rab34 [6•,7], Rab8 [3,8], Rab23 [9-12], RSG1 [13-15], Arl13b [16-22], and Arl6 [22,23] were recently reported to mediate primary cilia function and/or Hh signalling. Although these functions are implicated in diseases such as ciliopathies, the molecular basis underlying how these small GTPases mediate primary cilia-dependent Hh signalling and pathogenesis of ciliopathies warrants further investigations. Notably, Rab23 and Arl13b have been implicated in ciliopathy-associated human diseases and could regulate Hh signalling cascade in multifaceted manners. This review thus specifically discuss the roles of Rab23 and Arl13b in primary cilia of mammalian systems, their cilia-dependent and cilia-independent modulation of hedgehog signalling pathways and their implications in Carpenter Syndrome and Joubert Syndrome respectively.
Collapse
Affiliation(s)
- Catherine Hh Hor
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Chemistry, Research Cluster on Health and Drug Discovery, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Eyleen Lk Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; KK Research Center, KK Women's and Children's Hospital, Singapore 229899, Singapore.
| |
Collapse
|
59
|
Saito M, Sato T. [Current situation of researches on a sensor organelle, primary cilium, to understand the pathogenesis of ciliopathy]. Nihon Yakurigaku Zasshi 2019; 153:117-123. [PMID: 30867380 DOI: 10.1254/fpj.153.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Primary cilium is a membrane-protruding immotile sensory organelle. It had been supposed that the cilium was a static organelle for long periods. However, recent studies have uncovered that the cilium is dynamically organized organelle in a cell cycle-dependent manner; it is formed during G0/G1 phase and resorbed when the cells enter cell division cycle. Despite the primary cilium is very short and its surface area is extremely small, the cilium possesses a few kinds of G protein-coupled receptors, growth factor receptors and ion channels. Therefore, it can function as a signaling receptor for selective bioactive ligands and mechanical stresses. Dysregulation of the ciliary dynamics is linked with hereditary disorders, so called "ciliopathy", with clinical manifestations of microcephaly, polycystic kidney, situs inversus, polydactyly, and so on. No effective medical treatment for the ciliopathies has been available. Increasing evidences about the molecular mechanisms of ciliary dynamics and ciliary functions have revealed that enormous number of molecules regulate a cycle of ciliogenesis, cilium-derived signaling, ciliary resorption and elimination. However, it is a fact that research progress is far inferior to the full disclosure of the molecular mechanisms. Further studies are required to clarify the pathogenesis of the cilipathies. Moreover, efficient medical treatments are expected to be developed by pharmacological approaches.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology, Tohoku University School of Medicine
| | - Takeya Sato
- Department of Molecular Pharmacology, Tohoku University School of Medicine
| |
Collapse
|
60
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
61
|
Bowie E, Norris R, Anderson KV, Goetz SC. Spinocerebellar ataxia type 11-associated alleles of Ttbk2 dominantly interfere with ciliogenesis and cilium stability. PLoS Genet 2018; 14:e1007844. [PMID: 30532139 PMCID: PMC6307817 DOI: 10.1371/journal.pgen.1007844] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/27/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022] Open
Abstract
Spinocerebellar ataxia type 11 (SCA11) is a rare, dominantly inherited human ataxia characterized by atrophy of Purkinje neurons in the cerebellum. SCA11 is caused by mutations in the gene encoding the Serine/Threonine kinase Tau tubulin kinase 2 (TTBK2) that result in premature truncations of the protein. We previously showed that TTBK2 is a key regulator of the assembly of primary cilia in vivo. However, the mechanisms by which the SCA11-associated mutations disrupt TTBK2 function, and whether they interfere with ciliogenesis were unknown. In this work, we present evidence that SCA11-associated mutations are dominant negative alleles and that the resulting truncated protein (TTBK2SCA11) interferes with the function of full length TTBK2 in mediating ciliogenesis. A Ttbk2 allelic series revealed that upon partial reduction of full length TTBK2 function, TTBK2SCA11 can interfere with the activity of the residual wild-type protein to decrease cilia number and interrupt cilia-dependent Sonic hedgehog (SHH) signaling. Our studies have also revealed new functions for TTBK2 after cilia initiation in the control of cilia length, trafficking of a subset of SHH pathway components, including Smoothened (SMO), and cilia stability. These studies provide a molecular foundation to understand the cellular and molecular pathogenesis of human SCA11, and help account for the link between ciliary dysfunction and neurodegenerative diseases. Defects in primary cilia structure and function are linked to a number of recessive genetic disorders, now collectively referred to as ciliopathies. Most of the characteristics of these disorders arise from disruptions to embryonic development, with the requirements for primary cilia in adult tissues being less well-defined. We previously showed that a kinase associated with an adult-onset neurodegenerative condition is required for cilium assembly and ciliary signaling during development. Here, we show that the human disease-associated mutations act as mild dominant negatives, interfering with the function of the full-length protein in cilia formation and ciliary signaling.
Collapse
Affiliation(s)
- Emily Bowie
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Ryan Norris
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Sarah C. Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|