51
|
Cheng C, Jia M, Peng X, Sun Y, Jiao Y, Zhang M, Song X, Chu Z, Zeng X, Sun JB, Yang XJ, Qin W. Different regulative effects of high- and low-frequency external trigeminal nerve stimulation (eTNS) on sleep activity: Preliminary study. Sleep Med 2025; 125:136-145. [PMID: 39608185 DOI: 10.1016/j.sleep.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
STUDY OBJECTIVE With the growing prominence of peripheral nerve stimulation technology, the clinical applications and potential neurophysiological mechanisms of external trigeminal nerve stimulation (eTNS) have garnered increasing attention. Despite its status as the sole neuromodulation method commonly employed in sleep, no studies have explored the effects of eTNS at varying frequencies on sleep activities. This study aims to investigate the regulatory effects of high-frequency and low-frequency eTNS on sleep activities using polysomnography. METHODS In this within-subjects experiment, 20 participants underwent a night of adaptation sleep, followed by 8-h sessions of sham, 120Hz-, and 2Hz-eTNS interventions in a randomized order in the sleep laboratory, with polysomnographic signals collected throughout. RESULTS The results indicated that 120Hz-eTNS significantly improved sleep efficiency, increased N2 sleep proportion, and reduced sleep latency, without significantly affecting sleep stage transition probabilities, sleep duration, or sleep-specific wave activities. Conversely, while 2Hz-eTNS did not impact sleep efficiency or latency, it increased the proportion of N3 sleep, stabilizes N3 sleep, and enhanced the survival probability of N3 and REM sleep duration. Additionally, it increases the density of slow oscillations (SOs), improved the coupling ratio of SO-spindles, and enhanced coupling timing accuracy. CONCLUSIONS These findings suggest that eTNS during sleep can indeed modulate sleep activities, with different frequencies exerting distinct regulatory effects. This may hold significant value for advancing the clinical application and efficacy of eTNS.
Collapse
Affiliation(s)
- Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Mengnan Jia
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Xiangmiao Peng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Yuchen Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Yunyun Jiao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Mengkai Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Xiaoyu Song
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Zhaoyang Chu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Xiao Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jin-Bo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China.
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
52
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 PMCID: PMC11657232 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
53
|
Sun H, Wang Y, Yuan D, Duan M, Chen Z, Fu Y. Aftereffect of single transcranial direct and alternating current stimulation on spontaneous home-cage and open-field EEG activities in a mouse model of Alzheimer's disease. Front Aging Neurosci 2024; 16:1492838. [PMID: 39737333 PMCID: PMC11683110 DOI: 10.3389/fnagi.2024.1492838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Background As a non drug and non invasive therapy, both transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS) may modulate cortical rhythms and serve as potentially effective approaches to cognitive decline in Alzheimer's disease (AD). However, studies using animal models of AD are quite limited. Methods This study investigates the aftereffects of tACS and tDCS on brain EEG activity and associated exploratory behavior in normal aged and APP/PS1 transgenic mice (15 months old). Anodal tDCS and 10 Hz tACS (350 μA, 20 min) were applied once and EEGs were recorded from the hippocampus (Hip) and prefrontal cortex (PFC) during spontaneous home-cage state and open-field exploration. Results A key finding was that tDCS induced significant alpha (8-12 Hz) EEG changes while tACS induced peak frequency changes in the group difference between normal aged and AD mice. However, both groups showed similar increases in theta (4-8 Hz) EEG activity during open-field exploration and increases in gamma (20-100 Hz) EEG activity in spontaneous state, suggesting that the ongoing physiological state may be related to some of the EEG changes. Conclusion This study provides insight into the short-term aftereffects of transcranial current stimulation in the aging and AD brain and is the first animal study to compare brain activity between tACS and tDCS treatments.
Collapse
Affiliation(s)
- Huaying Sun
- Medical School, Kunming University of Science and Technology, Kunming, China
- School of Chinese Materia Medica and Key Laboratory of Yunnan Provincial Department of Education for Processing Research on Characteristic Prepared Drug in Pieces, Yunnan University of Chinese Medicine, Kunming, China
| | - Yumei Wang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Dong Yuan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Mengsi Duan
- School of Chinese Materia Medica and Key Laboratory of Yunnan Provincial Department of Education for Processing Research on Characteristic Prepared Drug in Pieces, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhuangfei Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Fu
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
54
|
Salfenmoser L, Obermayer K. A framework for optimal control of oscillations and synchrony applied to non-linear models of neural population dynamics. Front Comput Neurosci 2024; 18:1483100. [PMID: 39712002 PMCID: PMC11658993 DOI: 10.3389/fncom.2024.1483100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
We adapt non-linear optimal control theory (OCT) to control oscillations and network synchrony and apply it to models of neural population dynamics. OCT is a mathematical framework to compute an efficient stimulation for dynamical systems. In its standard formulation, it requires a well-defined reference trajectory as target state. This requirement, however, may be overly restrictive for oscillatory targets, where the exact trajectory shape might not be relevant. To overcome this limitation, we introduce three alternative cost functionals to target oscillations and synchrony without specification of a reference trajectory. We successfully apply these cost functionals to single-node and network models of neural populations, in which each node is described by either the Wilson-Cowan model or a biophysically realistic high-dimensional mean-field model of exponential integrate-and-fire neurons. We compute efficient control strategies for four different control tasks. First, we drive oscillations from a stable stationary state at a particular frequency. Second, we switch between stationary and oscillatory stable states and find a translational invariance of the state-switching control signals. Third, we switch between in-phase and out-of-phase oscillations in a two-node network, where all cost functionals lead to identical OC signals in the minimum-energy limit. Finally, we (de-) synchronize an (a-) synchronously oscillating six-node network. In this setup, for the desynchronization task, we find very different control strategies for the three cost functionals. The suggested methods represent a toolbox that enables to include oscillatory phenomena into the framework of non-linear OCT without specification of an exact reference trajectory. However, task-specific adjustments of the optimization parameters have to be performed to obtain informative results.
Collapse
Affiliation(s)
- Lena Salfenmoser
- Institute of Software Engineering and Theoretical Computer Science, Technische Universitaet Berlin, Berlin, Germany
| | - Klaus Obermayer
- Institute of Software Engineering and Theoretical Computer Science, Technische Universitaet Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
55
|
Pereira EN, da Silva Arêas FZ, Kuster E, Maia MDLS, da Silva JO, Norbim LR, Henriques J, Arêas GPT. Influence of bilateral transcranial direct-current stimulation on muscle strength and respiratory endurance: Randomized, placebo-controlled, double-blind trial protocol. MethodsX 2024; 13:102939. [PMID: 39398535 PMCID: PMC11470191 DOI: 10.1016/j.mex.2024.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has become established as an effective therapeutic approach, employed to modulate cortical excitability in various conditions. Nonetheless, few studies have assessed the use of tDCS in improving respiratory performance both in healthy and in subjects with respiratory disfunction. This randomized double-blind placebo-controlled trial evaluated the outcomes of lung function, strength of inspiratory muscles, general strength after intervention with bilateral tDCS both in young and elderly female subjects. Eighty subjects were randomized into four groups divided by age (40 young and 40 elderly) and intervention vs. placebo. After a basal (day 1) evaluation all subjects performed two evaluation/intervention rounds with 48 to 72 h interval. Lung function evaluated with spirometry evaluation with Forced vital capacity (FVC), Forced Expiratory Volume in 1 S (FEV1), FEV1/FVC Ratio, Maximal Voluntary Ventilation (MVV); Dynamic Inspiratory muscle strength evaluated with Powerbreathe and general strength with dynamometer. This study intends to understand the behavior of respiratory muscle strength and endurance after intervention with bilateral cathodal tDCS over the primary motor cortex in healthy young and elderly subjects, as a bridge for larger studies both in healthy and rehabilitation setting.
Collapse
Affiliation(s)
- Elder Nascimento Pereira
- PhD student in Biosciences, specialization branch in Neurosciences, University of Coimbra, Portugal
| | - Fernando Zanela da Silva Arêas
- Center for Health Sciences, Physical Therapy, Federal University of Espírito Santo, Vitória, ES, Brazil
- Laboratory of Neurorehabilitation and Neuromodulation, Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Elizângela Kuster
- Laboratory of Neurorehabilitation and Neuromodulation, Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Márcia de Lorena Serra Maia
- Laboratory of Neurorehabilitation and Neuromodulation, Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Jessica Oliveira da Silva
- Center for Health Sciences, Physical Therapy, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Laila Ramires Norbim
- Center for Health Sciences, Physical Therapy, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Jorge Henriques
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Coimbra, Portugal
| | - Guilherme Peixoto Tinoco Arêas
- Laboratory of Neurorehabilitation and Neuromodulation, Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
- Laboratory of Human Physiology, Department of Physiological Sciences, Federal University of Amazonas, Manaus, AM, Brazil
- Advisor in the PhD program in Biosciences, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
56
|
Qi Z, Noetscher GM, Miles A, Weise K, Knösche TR, Cadman CR, Potashinsky AR, Liu K, Wartman WA, Nunez Ponasso G, Bikson M, Lu H, Deng ZD, Nummenmaa AR, Makaroff SN. Enabling Electric Field Model of Microscopically Realistic Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588004. [PMID: 38645100 PMCID: PMC11030228 DOI: 10.1101/2024.04.04.588004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities. We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm 3 . The map was obtained by applying a uniform brain stimulation electric field at three different polarizations and accurately computing microscopic field perturbations using the boundary element fast multipole method. We used the map to identify the effect of microscopic field perturbations on the activation thresholds of individual neurons. Previous relevant studies modeled a macroscopically homogeneous cortical volume. Our result shows that the microscopic field perturbations - an 'electric field spatial noise' with a mean value of zero - only modestly influence the macroscopically predicted stimulation field strengths necessary for neuronal activation. The thresholds do not change by more than 10% on average. Under the stated limitations and assumptions of our method, this result justifies the conventional theory of "invisible" neurons embedded in a macroscopic brain model for transcranial magnetic and transcranial electrical stimulation. However, our result is solely sample-specific and largely neglects the effect of the microcapillary network. Furthermore, we only considered the uniform impressed field and a single- pulse stimulation time course. Significance statement This study is arguably the first attempt to model brain stimulation at the microscopic scale, enabled by automated analysis of modern scanning electron microscopy images of the brain. It concentrates on modeling microscopic perturbations of the extracellular electric field caused by the physical cell structure and is applicable to any type of brain stimulation. Data availability statement Post-processed cell CAD models (383, stl format), microcapillary CAD models (34, stl format), post-processed neuron morphologies (267, swc format), extracellular electric field and potential distributions at different polarizations (267x3, MATLAB format), *.ses projects files for biophysical modeling with Neuron software (267x2, Neuron format), and computed neuron activating thresholds at different conditions (267x8, Excel tables, without the sample polarization correction from Section 2.8) are made available online through BossDB , a volumetric open-source database for 3D and 4D neuroscience data.
Collapse
|
57
|
Sansevere KS, Ward N. Neuromodulation on the ground and in the clouds: a mini review of transcranial direct current stimulation for altering performance in interactive driving and flight simulators. Front Psychol 2024; 15:1479887. [PMID: 39669679 PMCID: PMC11634617 DOI: 10.3389/fpsyg.2024.1479887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has emerged as a promising tool for cognitive enhancement, especially within simulated virtual environments that provide realistic yet controlled methods for studying human behavior. This mini review synthesizes current research on the application of tDCS to improve performance in interactive driving and flight simulators. The existing literature indicates that tDCS can enhance acute performance for specific tasks, such as maintaining a safe distance from another car or executing a successful plane landing. However, the effects of tDCS may be context-dependent, indicating a need for a broader range of simulated scenarios. Various factors, including participant expertise, task difficulty, and the targeted brain region, can also influence tDCS outcomes. To further strengthen the rigor of this research area, it is essential to address and minimize different forms of research bias to achieve true generalizability. This comprehensive analysis aims to bridge the gap between theoretical understanding and practical application of neurotechnology to study the relationship between the brain and behavior, ultimately providing insights into the effectiveness of tDCS in transportation settings.
Collapse
Affiliation(s)
- Kayla S. Sansevere
- Tufts Applied Cognition Laboratory, Department of Psychology, Tufts University, Medford, MA, United States
| | | |
Collapse
|
58
|
Meng H, Houston M, Dias N, Guo C, Francisco G, Zhang Y, Li S. Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability. Biomedicines 2024; 12:2635. [PMID: 39595199 PMCID: PMC11591996 DOI: 10.3390/biomedicines12112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Previous studies have shown that beta-band transcranial alternating current stimulation (tACS) applied at the M1 hotspot can modulate corticospinal excitability. However, it remains controversial whether tACS can influence motor unit activities at the spinal cord level. This study aims to compare the efficacy of applying tACS over the hotspot versus the conventional C3 site on motor unit activities and subsequent behavioral changes. This study used a randomized crossover trial design, where fifteen healthy participants performed a paced ball-squeezing exercise while receiving high-definition tACS (HD-tACS) at 21 Hz and 2 mA for 20 min. HD-tACS targeted either the flexor digitorum superficialis (FDS) hotspot or the C3 site, with the order of stimulation randomized for each participant and a 1-week washout period between sessions. Motor unit activities were recorded from the FDS. HD-tACS intervention significantly reduced the variability of motor unit firing rates and increased force variability during isometric force production. The significant modulation effects were seen only when the intervention was applied at the hotspot, but not at the C3 site. Our findings demonstrate that HD-tACS significantly modulates motor unit activities and force variability. The results indicate that cortical-level entrainment by tACS can lead to the modulation of spinal motor neuron activities. Additionally, this study provides further evidence that the C3 site may not be the optimal target for tACS intervention for hand muscles, highlighting the need for personalized neuromodulation strategies.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.M.); (G.F.)
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (M.H.); (N.D.); (C.G.); (Y.Z.)
- Desai Sethi Urology Institute, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Nicholas Dias
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (M.H.); (N.D.); (C.G.); (Y.Z.)
| | - Chen Guo
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (M.H.); (N.D.); (C.G.); (Y.Z.)
| | - Gerard Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.M.); (G.F.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (M.H.); (N.D.); (C.G.); (Y.Z.)
- Desai Sethi Urology Institute, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.M.); (G.F.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
59
|
Liu X, Wang H. Neuromodulations in Psychiatric Disorders: Emerging Lines of Definition. PSYCHOTHERAPY AND PSYCHOSOMATICS 2024; 94:31-39. [PMID: 39541960 PMCID: PMC11797915 DOI: 10.1159/000542163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Affiliation(s)
- Xiaolei Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Psychosomatic Disease Consultation Center, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongxing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Psychosomatic Disease Consultation Center, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
60
|
Chang C, Piao Y, Zhang M, Liu Y, Du M, Yang M, Mei T, Wu C, Wang Y, Chen X, Zeng GQ, Zhang X. Evaluation of tolerability and safety of transcranial electrical stimulation with gel particle electrodes in healthy subjects. Front Psychiatry 2024; 15:1441533. [PMID: 39606007 PMCID: PMC11599605 DOI: 10.3389/fpsyt.2024.1441533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Background With the advancement of transcranial electrical stimulation (tES) technology, an increasing number of stimulation devices and treatment protocols have emerged. However, safety and tolerability remain critical concerns before new strategies can be implemented. Particularly, the use of gel particle electrodes brings new challenges to the safety and tolerability of tES, which hinders its widespread adoption and further research. Objective Our study utilized a specially designed and validated transcranial electrical stimulation stimulator along with preconfigured gel particle electrodes placed at F3 and F4 in the prefrontal lobes. We aimed to assess the tolerance and safety of these electrodes in healthy subjects by administering different durations and types of tES. Methods Each participant underwent ten sessions of either transcranial direct current stimulation (tDCS) or transcranial alternating current stimulation (tACS), with session durations varying. In the experiment, we collected various measurement data from participants, including self-report questionnaire data and behavioral keystroke data. Tolerability was evaluated through adverse events (AEs), the relationship of adverse events with tES (AEs-rela), the Self-Rating Anxiety Scale (SAS), and the Visual Analog Mood Scale-Revised (VAMS-R). Safety was assessed using the Visual Analog Scale (VAS), the Skin Sensation Rating (SSR), Montreal Cognitive Assessment (MoCA), and Stroop task. These data were analyzed to determine the impact of different parameters on the tolerability and safety of tES. Results There were no significant changes in the results of the MoCA and SAS scales before and after the experiment. However, significant differences were observed in VAS, SSR, AEs, and AEs-rela between tDCS and tACS. Additionally, fatigue increased, and energy levels decreased on VAMS-R with longer durations. No significant differences were found in other neuropsychological tests. Conclusion Our study revealed significant differences in tolerability and safety between tDCS and tACS, underscoring the importance of considering the stimulation type when evaluating these factors. Although tolerance and safety did not vary significantly across different stimulation durations in this study, future research may benefit from exploring shorter durations to further assess tolerability and safety efficiently.
Collapse
Affiliation(s)
- Chuangchuang Chang
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Yi Piao
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Mingsong Zhang
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Yan Liu
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Minglei Du
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Miao Yang
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Tianyuan Mei
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Chengkai Wu
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Yan Wang
- Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Xueli Chen
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China (USTC), Hefei, China
| | - Ginger Qinghong Zeng
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Xiaochu Zhang
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
- Institute of Health and Medicine, Hefei Comprehensive Science Center, Hefei, China
- Business School, Guizhou Education University, Guiyang, China
| |
Collapse
|
61
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Van VDP, Nagao K, Sahasrabudhe A, Paniagua EV, Frey EJ, Kim YJ, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton J, Anikeeva P. Multifunctional Neural Probes Enable Bidirectional Electrical, Optical, and Chemical Recording and Stimulation In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408154. [PMID: 39506430 PMCID: PMC12053509 DOI: 10.1002/adma.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and fluorescent indicator imaging. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | | | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Ethan J. Frey
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ye Ji Kim
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jill Venton
- The University of Virginia, Charlottesville, VA 22904
| | | |
Collapse
|
62
|
Ravari HB, Kheradmand A, Ghorbani M, Shamsi A, Khosravi M. A randomized controlled trial on the effect of cranial electrotherapy stimulation on depression, anxiety, and craving in addicted male patients undergoing methadone maintenance treatment. BMC Psychiatry 2024; 24:766. [PMID: 39501201 PMCID: PMC11539691 DOI: 10.1186/s12888-024-06137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Addicted patients undergoing methadone maintenance treatment are prone to several complications and the risk of relapse. OBJECTIVE The present study aims to investigate the effect of cranial electrotherapy stimulation on depression, anxiety, and craving in addicted male people undergoing methadone maintenance treatment. METHODS This randomized controlled trial study was conducted on 60 male patients referred to Persia addiction treatment center between 2021 and 2022. Patients were randomly divided into two equal treatment and placebo groups. The treatment group received cranial electrotherapy stimulation intervention for 48 sessions of 30 min. Depression and anxiety were evaluated using the Hamilton questionnaire before and after the intervention, and the level of craving was also evaluated with the Federdi 2008 questionnaire. RESULTS Comparing the level of depression and anxiety before and after the intervention in both treatment and placebo groups did not show any significant difference (p < 0.05). Craving after the intervention was significantly different in both groups and was lower in the treatment group compared to the placebo group (33.43 versus 42.17, p = 0.004). In the placebo group, the level of anxiety and depression, and in the treatment group, the level of depression, anxiety and craving for consumption decreased significantly after the intervention compared to before the intervention (p < 0.05). CONCLUSION Cranial electrotherapy stimulation did not have a significant effect on reducing the level of depression and anxiety of patients, but it is effective in the reduction of craving in addicted people undergoing methadone maintenance treatment. TRIAL REGISTRATION This randomized clinical trial was registered on 2022/5/13 with clinical trial code of IRCT20210523051367N1.
Collapse
Affiliation(s)
- Homa Baghaei Ravari
- Department of Psychiatry, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kheradmand
- Department of Psychiatry, Taleghani Hospital Clinical Research Development Unit, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahdi Ghorbani
- Biomedical Engineering and Medical Physics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Shamsi
- Department of Psychiatry, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Khosravi
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
63
|
Luff CE, de Lecea L. Can Neuromodulation Improve Sleep and Psychiatric Symptoms? Curr Psychiatry Rep 2024; 26:650-658. [PMID: 39352645 DOI: 10.1007/s11920-024-01540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
PURPOSE OF REVIEW In this review, we evaluate recent studies that employ neuromodulation, in the form of non-invasive brain stimulation, to improve sleep in both healthy participants, and patients with psychiatric disorders. We review studies using transcranial electrical stimulation, transcranial magnetic stimulation, and closed-loop auditory stimulation, and consider both subjective and objective measures of sleep improvement. RECENT FINDINGS Neuromodulation can alter neuronal activity underlying sleep. However, few studies utilizing neuromodulation report improvements in objective measures of sleep. Enhancements in subjective measures of sleep quality are replicable, however, many studies conducted in this field suffer from methodological limitations, and the placebo effect is robust. Currently, evidence that neuromodulation can effectively enhance sleep is lacking. For the field to advance, methodological issues must be resolved, and the full range of objective measures of sleep architecture, alongside subjective measures of sleep quality, must be reported. Additionally, validation of effective modulation of neuronal activity should be done with neuroimaging.
Collapse
Affiliation(s)
- Charlotte E Luff
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
64
|
Yoon MJ, Lim SH. The Optimized Transcranial Direct Current Stimulation With Simulation Using MRI. BRAIN & NEUROREHABILITATION 2024; 17:e21. [PMID: 39649712 PMCID: PMC11621673 DOI: 10.12786/bn.2024.17.e21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 12/11/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has emerged as a valuable neuromodulation technique. Many clinical conditions are associated with brain damage, and in severe cases, structural changes such as skull defects are common. These clinical characteristics result in distinct electrical flow patterns during tDCS application compared to cases without brain damage. Recently, notable advancements have been made in both the medical and engineering fields pertaining to the use of in silico modelling and simulation with the aid of magnetic resonance imaging (MRI). As a result, it is now possible to conduct simulations tailored to the unique structural anatomy of an individual's brain, using their own MRI data, to provide targeted tDCS. We have developed software that performs both segmentation and simulation, and have conducted randomized controlled trials using optimized tDCS for stroke and disorders of consciousness. Additionally, we have carried out simulation-related research on stroke and burr hole surgery. This review examines various articles related to simulation and optimized tDCS, evaluating their clinical implications. We believe that these insights will provide valuable guidance for both current and future applications of tDCS.
Collapse
Affiliation(s)
- Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute for Basic Medical Science, Catholic Medical Center, The Catholic University of Korea, Seoul, Korea
- Editor-in-Chief, Brain & Neurorehabilitation
| |
Collapse
|
65
|
Zolezzi DM, Kold S, Brock C, Jensen ABH, Jensen ST, Larsen IM, Olesen SS, Mørch CD, Drewes AM, Graven-Nielsen T. Transcranial Direct Current Stimulation Reduces Pressure Pain Sensitivity in Patients With Noncancer Chronic Pain. Clin J Pain 2024; 40:625-634. [PMID: 39310962 DOI: 10.1097/ajp.0000000000001246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/09/2024] [Indexed: 11/10/2024]
Abstract
OBJECTIVES Noncancer chronic pain is a clinical challenge because pharmacological treatment often fails to relieve pain. Transcranial direct current stimulation (tDCS) is a treatment that could have the potential for pain relief and improvement in quality of life. However, there is a lack of clinical trials evaluating the effects of tDCS on the pain system. The aim of the present study was to evaluate the effect of 5 days of anodal tDCS treatment on the pain system in patients with chronic noncancer pain using quantitative sensory testing and quality of life questionnaires: (1) Brief Pain Inventory-short form, (2) European Organization for Research and Treatment of Life Questionnaire-C30, and (3) Hospital Anxiety Depression Scale. METHODS Eleven patients with noncancer chronic pain (51 ± 13.6 y old, 5M) participated in the study. Anodal tDCS was applied for 5 consecutive days, followed by sham stimulation after a washout period of at least 2 weeks. Pressure pain thresholds and pain tolerance thresholds (PTT) were assessed in different body regions on days 1 and 5. RESULTS Anodal tDCS appeared to maintain PTT at C5 (clavicle) on day 5, but sham stimulation decreased PTT ( P = 0.007). In addition, anodal tDCS increased PTT compared with sham at day 5 at Th10 ventral dermatomes ( P = 0.014). Both anodal and sham tDCS decreased the Brief Pain Inventory-short form total and interference scores, and the European Organization for Research and Treatment of Life Questionnaire-C30 fatigue score, but no interaction effect was observed. CONCLUSION This study adds to the evidence in the literature that tDCS may be a potential therapeutic tool for the management of noncancer chronic pain.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Sebastian Kold
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Anne Birthe Helweg Jensen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Sarah Thorius Jensen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Søren Schou Olesen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| |
Collapse
|
66
|
Simons SB, Provo M, Yanoschak A, Schmidt C, Gerrard I, Weisend M, Anderson C, Shimizu R, Connolly PM. A randomized study on the effect of a wearable device using 0.75 Hz transcranial electrical stimulation on sleep onset insomnia. Front Neurosci 2024; 18:1427462. [PMID: 39507801 PMCID: PMC11537953 DOI: 10.3389/fnins.2024.1427462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction The normal transition to sleep is characterized by a reduction in higher frequency activity and an increase in lower frequency activity in frontal brain regions. In sleep onset insomnia these changes in activity are weaker and may prolong the transition to sleep. Methods Using a wearable device, we compared 30min of short duration repetitive transcranial electric stimulation (SDR-tES) at 0.75Hz, prior to going to bed, with an active control at 25Hz in the same individuals. Results Treatment with 0.75Hz significantly reduced sleep onset latency (SOL) by 53% when compared with pre-treatment baselines and was also significantly more effective than stimulation with 25Hz which reduced SOL by 30%. Reductions in SOL with 25Hz stimulation displayed order effects suggesting the possibility of placebo. No order effects were observed with 0.75Hz stimulation. The decrease in SOL with 0.75Hz treatment was proportional to an individual's baseline wherein those suffering from the longest pre-treated SOLs realized the greatest benefits. Changes in SOL were correlated with left/right frontal EEG signal coherence around the stimulation frequency, providing a possible mechanism and target for more focused treatment. Stimulation at both frequencies also decreased perceptions of insomnia symptoms measured with the Insomnia Severity Index, and comorbid anxiety measured with the State Trait Anxiety Index. Discussion Our study identifies a new potential treatment for sleep onset insomnia that is comparably effective to current state-of-practice options including pharmacotherapy and cognitive behavioral therapy and is safe, effective, and can be delivered in the home.
Collapse
Affiliation(s)
- Stephen B. Simons
- Intelligent Systems Laboratory, Teledyne Scientific & Imaging, Durham, NC, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lee S, Zhao Z, Alekseichuk I, Shirinpour S, Linn G, Schroeder CE, Falchier AY, Opitz A. Layer-specific dynamics of local field potentials in monkey V1 during electrical stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619242. [PMID: 39484447 PMCID: PMC11526877 DOI: 10.1101/2024.10.19.619242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The mammalian neocortex, organized into six cellular layers or laminae, forms a cortical network within layers. Layer specific computations are crucial for sensory processing of visual stimuli within primary visual cortex. Laminar recordings of local field potentials (LFPs) are a powerful tool to study neural activity within cortical layers. Electric brain stimulation is widely used in basic neuroscience and in a large range of clinical applications. However, the layer-specific effects of electric stimulation on LFPs remain unclear. To address this gap, we conducted laminar LFP recordings of the primary visual cortex in monkeys while presenting a flash visual stimulus. Simultaneously, we applied a low frequency sinusoidal current to the occipital lobe with offset frequency to the flash stimulus repetition rate. We analyzed the modulation of visual-evoked potentials with respect to the applied phase of the electric stimulation. Our results reveal that only the deeper layers, but not the superficial layers, show phase-dependent changes in LFP components with respect to the applied current. Employing a cortical column model, we demonstrate that these in vivo observations can be explained by phase-dependent changes in the driving force within neurons of deeper layers. Our findings offer crucial insight into the selective modulation of cortical layers through electric stimulation, thus advancing approaches for more targeted neuromodulation.
Collapse
|
68
|
Giraud M, Javadi AH, Lenatti C, Allen J, Tamè L, Nava E. The role of the somatosensory system in the feeling of emotions: a neurostimulation study. Soc Cogn Affect Neurosci 2024; 19:nsae062. [PMID: 39275796 PMCID: PMC11488518 DOI: 10.1093/scan/nsae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024] Open
Abstract
Emotional experiences deeply impact our bodily states, such as when we feel 'anger', our fists close and our face burns. Recent studies have shown that emotions can be mapped onto specific body areas, suggesting a possible role of the primary somatosensory system (S1) in emotion processing. To date, however, the causal role of S1 in emotion generation remains unclear. To address this question, we applied transcranial alternating current stimulation (tACS) on the S1 at different frequencies (beta, theta, and sham) while participants saw emotional stimuli with different degrees of pleasantness and levels of arousal. Results showed that modulation of S1 influenced subjective emotional ratings as a function of the frequency applied. While theta and beta-tACS made participants rate the emotional images as more pleasant (higher valence), only theta-tACS lowered the subjective arousal ratings (more calming). Skin conductance responses recorded throughout the experiment confirmed a different arousal for pleasant versus unpleasant stimuli. Our study revealed that S1 has a causal role in the feeling of emotions, adding new insight into the embodied nature of emotions. Importantly, we provided causal evidence that beta and theta frequencies contribute differently to the modulation of two dimensions of emotions-arousal and valence-corroborating the view of a dissociation between these two dimensions of emotions.
Collapse
Affiliation(s)
- Michelle Giraud
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
- Psychology Department and NeuroMi, Milan Centre of Neuroscience, University of Milano-Bicocca, Milan 20126, Italy
| | - Amir-Homayoun Javadi
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
- School of Rehabilitation, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Carmen Lenatti
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - John Allen
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Luigi Tamè
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Elena Nava
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
- Psychology Department and NeuroMi, Milan Centre of Neuroscience, University of Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
69
|
Lischke A, Pahnke R, Mäder A, Martin AK, Meinzer M. Improving mentalizing deficits in older age with region-specific transcranial direct current stimulation. GeroScience 2024; 46:4111-4121. [PMID: 38878152 PMCID: PMC11336013 DOI: 10.1007/s11357-024-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/13/2024] [Indexed: 08/22/2024] Open
Abstract
Older adults have difficulties to detect the intentions, thoughts, and feelings of others, indicating an age-associated decline of socio-cognitive abilities that are known as "mentalizing". These deficits in mental state recognition are driven by neurofunctional alterations in brain regions that are implicated in mentalizing, such as the right temporo-parietal junction (rTPJ) and the dorso-medial prefrontal cortex (dmPFC). We tested whether focal transcranial current stimulation (tDCS) of the rTPJ and dmPFC has the potential to eliminate mentalizing deficits in older adults. Mentalizing deficits were assessed with a novel mindreading task that required the recognition of mental states in child faces. Older adults (n = 60) performed worse than younger adults (n = 30) on the mindreading task, indicating age-dependent deficits in mental state recognition. These mentalizing deficits were ameliorated in older adults who received sham-controlled andodal tDCS over the rTPJ (n = 30) but remained unchanged in older adults who received sham-controlled andodal tDCS over the dmPFC (n = 30). We, thus, showed for the first time that anodal tDCS over the rTPJ has the potential to remediate age-dependent mentalizing deficits in a region-specific way. This provides a rationale for exploring stimulation-based interventions targeting mentalizing deficits in older age.
Collapse
Affiliation(s)
- Alexander Lischke
- Department of Psychology, Medical School Hamburg, Am Kaierkai 1, 20457, Hamburg, Germany.
- Institute of Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany.
| | - Rike Pahnke
- Institute of Sports Science, University of Rostock, Rostock, Germany
| | - Anna Mäder
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Andrew K Martin
- Department of Psychology, University of Kent, Canterbury, UK
- Kent and Medway Medical School, University of Kent, Canterbury, UK
| | - Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
70
|
Karimi N, Amirfattahi R, Zeidaabadi Nezhad A. Neuromodulation effect of temporal interference stimulation based on network computational model. Front Hum Neurosci 2024; 18:1436205. [PMID: 39386280 PMCID: PMC11461302 DOI: 10.3389/fnhum.2024.1436205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Deep brain stimulation (DBS) has long been the conventional method for targeting deep brain structures, but noninvasive alternatives like transcranial Temporal Interference Stimulation (tTIS) are gaining traction. Research has shown that alternating current influences brain oscillations through neural modulation. Understanding how neurons respond to the stimulus envelope, particularly considering tTIS's high-frequency carrier, is vital for elucidating its mechanism of neuronal engagement. This study aims to explore the focal effects of tTIS across varying amplitudes and modulation depths in different brain regions. An excitatory-inhibitory network using the Izhikevich neuron model was employed to investigate responses to tTIS and compare them with transcranial Alternating Current Stimulation (tACS). We utilized a multi-scale model that integrates brain tissue modeling and network computational modeling to gain insights into the neuromodulatory effects of tTIS on the human brain. By analyzing the parametric space, we delved into phase, amplitude, and frequency entrainment to elucidate how tTIS modulates endogenous alpha oscillations. Our findings highlight a significant difference in current intensity requirements between tTIS and tACS, with tTIS requiring notably higher intensity. We observed distinct network entrainment patterns, primarily due to tTIS's high-frequency component, whereas tACS exhibited harmonic entrainment that tTIS lacked. Spatial resolution analysis of tTIS, conducted via computational modeling and brain field distribution at a 13 Hz stimulation frequency, revealed modulation in deep brain areas, with minimal effects on the surface. Notably, we observed increased power within intrinsic and stimulation bands beneath the electrodes, attributed to the high stimulus signal amplitude. Additionally, Phase Locking Value (PLV) showed slight increments in non-deep areas. Our analysis indicates focal stimulation using tTIS, prompting further investigation into the necessity of high amplitudes to significantly affect deep brain regions, which warrants validation through clinical experiments.
Collapse
Affiliation(s)
| | - Rassoul Amirfattahi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
71
|
Di Pietro B, Villata S, Dal Monego S, Degasperi M, Ghini V, Guarnieri T, Plaksienko A, Liu Y, Pecchioli V, Manni L, Tenori L, Licastro D, Angelini C, Napione L, Frascella F, Nardini C. Differential Anti-Inflammatory Effects of Electrostimulation in a Standardized Setting. Int J Mol Sci 2024; 25:9808. [PMID: 39337300 PMCID: PMC11432240 DOI: 10.3390/ijms25189808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The therapeutic usage of physical stimuli is framed in a highly heterogeneous research area, with variable levels of maturity and of translatability into clinical application. In particular, electrostimulation is deeply studied for its application on the autonomous nervous system, but less is known about the anti- inflammatory effects of such stimuli beyond the inflammatory reflex. Further, reproducibility and meta-analyses are extremely challenging, owing to the limited rationale on dosage and experimental standardization. It is specifically to address the fundamental question on the anti-inflammatory effects of electricity on biological systems, that we propose a series of controlled experiments on the effects of direct and alternate current delivered on a standardized 3D bioconstruct constituted by fibroblasts and keratinocytes in a collagen matrix, in the presence or absence of TNF-α as conventional inflammation inducer. This selected but systematic exploration, with transcriptomics backed by metabolomics at specific time points allows to obtain the first systemic overview of the biological functions at stake, highlighting the differential anti-inflammatory potential of such approaches, with promising results for 5 V direct current stimuli, correlating with the wound healing process. With our results, we wish to set the base for a rigorous systematic approach to the problem, fundamental towards future elucidations of the detailed mechanisms at stake, highlighting both the healing and damaging potential of such approaches.
Collapse
Affiliation(s)
- Biagio Di Pietro
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
| | - Simona Villata
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Turin, Italy; (S.V.); (F.F.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Simeone Dal Monego
- Area Science Park, Basovizza, 34149 Trieste, Italy; (S.D.M.); (M.D.); (D.L.)
| | | | - Veronica Ghini
- Department of Chemistry “Ugo Schiff” and Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (V.G.); (L.T.)
| | - Tiziana Guarnieri
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BIGEA), University of Bologna, 40100 Bologna, Italy
| | - Anna Plaksienko
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
- Oslo Center of Biostatistics and Epidemiology, University of Oslo, 0317 Oslo, Norway
| | - Yuanhua Liu
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Valentina Pecchioli
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy;
| | - Luigi Manni
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale, 00185 Roma, Italy;
| | - Leonardo Tenori
- Department of Chemistry “Ugo Schiff” and Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (V.G.); (L.T.)
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy;
| | - Danilo Licastro
- Area Science Park, Basovizza, 34149 Trieste, Italy; (S.D.M.); (M.D.); (D.L.)
| | - Claudia Angelini
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
| | - Lucia Napione
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Turin, Italy; (S.V.); (F.F.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Turin, Italy; (S.V.); (F.F.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Christine Nardini
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
| |
Collapse
|
72
|
Mei X, Tsang L, Jacques T, Sabel BA, Leung CKS, Chan JCH, Thompson B, Cheong AMY. Glaucoma Rehabilitation Using ElectricAI Transcranial Stimulation (GREAT)-Optimizing Stimulation Protocol for Vision Enhancement Using an RCT. Transl Vis Sci Technol 2024; 13:25. [PMID: 39302646 PMCID: PMC11421665 DOI: 10.1167/tvst.13.9.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/23/2024] [Indexed: 09/22/2024] Open
Abstract
Purpose We compared the effect of three different transcranial electrical stimulation (tES) protocols delivered to the occipital lobe on peripheral vision in patients with glaucoma. Methods A double-masked, placebo-controlled study was conducted with 35 patients with glaucoma. We compared three different tES protocols: anodal transcranial direct current stimulation (a-tDCS), transcranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS) against sham stimulation. Each patient attended four stimulation sessions (a-tDCS, tACS, tRNS, and sham) in a random order with at least 48 hours between visits. Stimulation involved placing an anodal electrode over the occipital lobe (Oz) and cathodal electrode on the cheek for 20 minutes. High-resolution perimetry (HRP) and multifocal visual evoked potential (mfVEP) measurements were made before and immediately after stimulation. Changes in HRP detection accuracy/reaction time and mfVEP signal-to-noise ratio (SNR)/latency were analyzed using linear mixed models. Results Compared to sham, HRP detection accuracy was significantly improved after a-tDCS in both the central 20-degree (b = 0.032, P = 0.018) and peripheral analysis (b = 0.051, P = 0.002). Additionally, mfVEP SNR was significantly increased (b = 0.016, P = 0.017) and the latency was shortened (b = -1.405, P = 0.04) by the a-tDCS in the central 20-degree analysis. In the peripheral analysis, there was a trend toward an enhancement of SNR after a-tDCS stimulation (b = 0.014, P = 0.052), but it did not reach statistical significance; latency was increased after tACS (b = 1.623, P = 0.041). No significant effects were found in comparison to other active tES protocols. Conclusions A single session of a-tDCS enhances perceptual and electrophysiologic measures of vision in patients with glaucoma. However, the small magnitude of changes observed in HRP (3.2% for accuracy in central and 5.1% in peripheral) did not exceed previous test variability and may not be clinically meaningful. Translational Relevance a-tDCS holds promise as a potential treatment for enhancing visual function. However, future studies are needed to evaluate the long-term effects and clinical relevance of this intervention using validated measures of perimetric changes in the visual field.
Collapse
Affiliation(s)
- Xiaolin Mei
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - LaiLin Tsang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Theodore Jacques
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bernhard A. Sabel
- Institute of Medical Psychology, University of Magdeburg, Magdeburg, Germany
| | | | | | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Allen Ming Yan Cheong
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
73
|
Meng H, Houston M, Francisco GE, Zhang Y, Li S. Scalp acupuncture guidance for identifying the optimal site for transcranial electrical stimulation of the hand. Exp Brain Res 2024; 242:2083-2091. [PMID: 38963560 DOI: 10.1007/s00221-024-06883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Transcranial electrical stimulation (tES) often targets the EEG-guided C3/C4 area that may not accurately represent M1 for hand muscles. This study aimed to determine if the neuroanatomy-based scalp acupuncture-guided site (AC) was a more effective spot than the C3 site for neuromodulation. Fifteen healthy subjects received one 20-minute session of high-definition transcranial alternating current stimulation (HD-tACS) intervention (20 Hz at 2 mA) at the AC or C3 sites randomly with a 1-week washout period. Subjects performed ball-squeezing exercises with the dominant hand during the HD-tACS intervention. The AC site was indiscernible from the finger flexor hotspot detected by TMS. At the baseline, the MEP amplitude from finger flexors was greater with less variability at the AC site than at the C3 site. HD-tACS intervention at the AC site significantly increased the MEP amplitude. However, no significant changes were observed after tACS was applied to the C3 site. Our results provide evidence that HD-tACS at the AC site produces better neuromodulation effects on the flexor digitorum superficialis (FDS) muscle compared to the C3 site. The AC localization approach can be used for future tES studies.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- The NeuroRecovery Research Center, TIRR Memorial Hermann Hospital, Houston, TX, 77030, USA
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- The NeuroRecovery Research Center, TIRR Memorial Hermann Hospital, Houston, TX, 77030, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, Miami Project to Cure Paralysis, Desai Sethi Urology Institute, University of Miami, Coral Gables, FL, 33124, USA
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- The NeuroRecovery Research Center, TIRR Memorial Hermann Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
74
|
Grigutsch LS, Haverland B, Timmsen LS, Asmussen L, Braaß H, Wolf S, Luu TV, Stagg CJ, Schulz R, Quandt F, Schwab BC. Differential effects of theta-gamma tACS on motor skill acquisition in young individuals and stroke survivors: A double-blind, randomized, sham-controlled study. Brain Stimul 2024; 17:1076-1085. [PMID: 39245294 DOI: 10.1016/j.brs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Theta-gamma transcranial alternating current stimulation (tACS) was recently found to enhance thumb acceleration in young, healthy participants, suggesting a potential role in facilitating motor skill acquisition. Given the relevance of motor skill acquisition in stroke rehabilitation, theta-gamma tACS may hold potential for treating stroke survivors. OBJECTIVE We aimed to examine the effects of theta-gamma tACS on motor skill acquisition in young, healthy participants and stroke survivors. METHODS In a pre-registered, double-blind, randomized, sham-controlled study, 78 young, healthy participants received either theta-gamma peak-coupled (TGP) tACS, theta-gamma trough-coupled (TGT) tACS or sham stimulation. 20 individuals with a chronic stroke received either TGP or sham. TACS was applied over motor cortical areas while participants performed an acceleration-dependent thumb movement task. Stroke survivors were characterized using standardized testing, with a subgroup receiving additional structural brain imaging. RESULTS Neither TGP nor TGT tACS significantly modified general motor skill acquisition in the young, healthy cohort. In contrast, in the stroke cohort, TGP diminished motor skill acquisition compared to sham. Exploratory analyses revealed that, independent of general motor skill acquisition, healthy participants receiving TGP or TGT exhibited greater peak thumb acceleration than those receiving sham. CONCLUSION Although theta-gamma tACS increased thumb acceleration in young, healthy participants, consistent with previous reports, it did not enhance overall motor skill acquisition in a more complex motor task. Furthermore, it even had detrimental effects on motor skill acquisition in stroke survivors.
Collapse
Affiliation(s)
- L S Grigutsch
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - B Haverland
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L S Timmsen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L Asmussen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H Braaß
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Wolf
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T V Luu
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - R Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - F Quandt
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - B C Schwab
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
75
|
Lee TW, Li CSR, Tramontano G. Tripod transcranial alternating current stimulation at 5-Hz to alleviate anxiety symptoms: A preliminary report. J Affect Disord 2024; 360:156-162. [PMID: 38821364 DOI: 10.1016/j.jad.2024.05.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION One of the most common applications of transcranial electrical stimulation (tES) at low current intensity is to induce a relaxed state or reduce anxiety. With technical advancement, different waveforms, montages, and parameters can be incorporated into the treatment regimen. We developed a novel protocol to treat individuals with anxiety disorders by transcranial alternating current stimulation (tACS). METHODS A total of 27 individuals with anxiety disorders underwent tACS treatment for 12 sessions, with each session lasting 25 min. tACS at 5 Hz was applied to F4 (1.0 mA), P4 (1.0 mA), and T8 (2.0 mA) EEG lead positions (tripod), with sinewave oscillation between T8 and F4/P4. We evaluated the primary and secondary outcomes using the Beck Anxiety Inventory (BAI) and neuropsychological assessments. RESULTS Of the 27 patients, 19 (70.4 %) experienced a reduction in symptom severity >50 %, with an average reduction of BAI 58.5 %. All reported side effects were mild, with itching or tingling being the most common complaint. No significant differences were noted in attention, linguistic working memory, visuospatial working memory, or long-term memory in neuropsychological assessments. CONCLUSION The results suggest the potential of this novel tripod tACS design as a rapid anxiety alleviator and the importance of a clinical trial to verify its efficacy.
Collapse
Affiliation(s)
- Tien-Wen Lee
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Wu Tsai Institute, Yale University, New Haven, CT 06520, USA.
| | - Gerald Tramontano
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA.
| |
Collapse
|
76
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
77
|
Bao Z, Burhan A, Frewen P. Transcranial direct current stimulation over medial prefrontal cortex reduced alpha power and functional connectivity during somatic but not semantic self-referential processing. Neuroscience 2024; 553:185-196. [PMID: 38944148 DOI: 10.1016/j.neuroscience.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Past self-report and cognitive-behavioural studies of the effects of transcranial direct current stimulation (tDCS) targeting the medial prefrontal cortex (mPFC) on semantic self-referential processing (SRP) have yielded mixed results. Meanwhile, electroencephalography (EEG) studies show that alpha oscillation (8-12 Hz) may be involved during both semantic and somatic SRP, although the effect of tDCS on alpha-EEG during SRP remains unknown. The current study assessed the EEG and subjective effects of 2 mA tDCS over the mPFC while participants were SRP either on semantic (life roles, e.g., "friend") or somatic (outer body, e.g., "arms") self-referential stimuli compared to resting state and an external attention memory task in 52 young adults. Results showed that whereas mPFC-tDCS did not yield significant changes in participants' mood or experienced attention or pleasantness levels during the SRP task, EEG source analysis indicated, compared to sham stimulation, that tDCS reduced alpha power during somatic but not semantic SRP in the posterior cingulate cortex (PCC), and the frontal, parietal, temporal, and somatosensory cortex, and reduced the functional connectivity between the left inferior parietal lobule and the ventral PCC, but only when mPFC-tDCS was applied at the second while not the first experimental session. Our results suggest that while mPFC-tDCS may be insufficient to alter immediate subjective experience during SRP, mPFC-tDCS may modulate the power and functional connectivity of the brain's alpha oscillations during somatic SRP. Future research directions are discussed.
Collapse
Affiliation(s)
- Zhongjie Bao
- Interdisciplinary Program in Neuroscience, Western University, London, ON, Canada
| | - Amer Burhan
- Interdisciplinary Program in Neuroscience, Western University, London, ON, Canada; Ontario Shores Centre for Mental Health Sciences, Whitby, ON, Canada; Department of Psychiatry, Temerty School of Medicine, University of Toronto, Whitby, ON, Canada
| | - Paul Frewen
- Interdisciplinary Program in Neuroscience, Western University, London, ON, Canada; Department of Psychiatry, Schulich School of Medicine and Dentistry, London, ON, Canada.
| |
Collapse
|
78
|
Wu CF, Shen C, Wang ZD, Gong Y, Zhou LH, Qian WJ, Tang T. A bibliometric analysis of transcranial alternating current stimulation. Front Neurosci 2024; 18:1409492. [PMID: 39156631 PMCID: PMC11328521 DOI: 10.3389/fnins.2024.1409492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/20/2024] Open
Abstract
Background Transcranial alternating current stimulation (tACS) can apply currents of varying intensity to the scalp, modulating cortical excitability and brain activity. tACS is a relatively new neuromodulation intervention that is now widely used in clinical practice. Many papers related to tACS have been published in various journals. However, there are no articles that objectively and directly introduce the development trend and research hotspots of tACS. Therefore, the aim of this study is to use CiteSpace to visually analyze the recent tACS-related publications, systematically and in detail summarize the current research hotspots and trends in this field, and provide valuable information for future tACS-related research. Material and methods The database Web of Science Core Collection Science Citation Index Expanded was used and searched from build to 4 August 2023. Using the CiteSpace to analyze the authors, institutions, countries, keywords, co-cited authors, journals, and references. Results A total of 677 papers were obtained. From 2008 to 2023, the number of publications shows an increasing trend, albeit with some fluctuations. The most productive country in this field was Germany. The institution with the highest number of publications is Carl von Ossietzky University of Oldenburg (n = 50). According to Bradford's law, 7 journals are considered core journals in the field. Herrmann, CS was the author with the most publications (n = 40), while Antal, A was the author with the highest number of co-citations (n = 391) and betweenness centrality (n = 0.16). Disease, neural mechanisms of the brain and electric stimulation are the major research areas in the field. The effect of tACS in different diseases, multi-site stimulation, combined treatment and evaluation are the future research hotspots and trends. Conclusion tACS has research value and research potential, and more and more researchers are paying attention to it. The findings of this bibliometric study provide the current status and trends in the clinical research of tACS and may help researchers to identify hotspots s and explore new research directions in this field.
Collapse
Affiliation(s)
- Cheng-Fan Wu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chao Shen
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhao-Di Wang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yan Gong
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lu-Han Zhou
- The Fourth Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Wen-Jun Qian
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Tong Tang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
79
|
Park AS, Thompson B. Non-invasive brain stimulation and vision rehabilitation: a clinical perspective. Clin Exp Optom 2024; 107:594-602. [PMID: 38772676 DOI: 10.1080/08164622.2024.2349565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Non-invasive brain stimulation techniques allow targeted modulation of brain regions and have emerged as a promising tool for vision rehabilitation. This review presents an overview of studies that have examined the use of non-invasive brain stimulation techniques for improving vision and visual functions. A description of the proposed neural mechanisms that underpin non-invasive brain stimulation effects is also provided. The clinical implications of non-invasive brain stimulation in vision rehabilitation are examined, including their safety, effectiveness, and potential applications in specific conditions such as amblyopia, post-stroke hemianopia, and central vision loss associated with age-related macular degeneration. Additionally, the future directions of research in this field are considered, including the need for larger and more rigorous clinical trials to validate the efficacy of these techniques. Overall, this review highlights the potential for brain stimulation techniques as a promising avenue for improving visual function in individuals with impaired vision and underscores the importance of continued research in this field.
Collapse
Affiliation(s)
- Adela Sy Park
- Centre for Eye & Vision Research, Hong Kong, Hong Kong
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| |
Collapse
|
80
|
Birreci D, De Riggi M, Costa D, Angelini L, Cannavacciuolo A, Passaretti M, Paparella G, Guerra A, Bologna M. The Role of Non-Invasive Brain Modulation in Identifying Disease Biomarkers for Diagnostic and Therapeutic Purposes in Parkinsonism. Brain Sci 2024; 14:695. [PMID: 39061435 PMCID: PMC11274666 DOI: 10.3390/brainsci14070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past three decades, substantial advancements have occurred in non-invasive brain stimulation (NIBS). These developments encompass various non-invasive techniques aimed at modulating brain function. Among the most widely utilized methods today are transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES), which include direct- or alternating-current transcranial stimulation (tDCS/tACS). In addition to these established techniques, newer modalities have emerged, broadening the scope of non-invasive neuromodulation approaches available for research and clinical applications in movement disorders, particularly for Parkinson's disease (PD) and, to a lesser extent, atypical Parkinsonism (AP). All NIBS techniques offer the opportunity to explore a wide range of neurophysiological mechanisms and exert influence over distinct brain regions implicated in the pathophysiology of Parkinsonism. This paper's first aim is to provide a brief overview of the historical background and underlying physiological principles of primary NIBS techniques, focusing on their translational relevance. It aims to shed light on the potential identification of biomarkers for diagnostic and therapeutic purposes, by summarising available experimental data on individuals with Parkinsonism. To date, despite promising findings indicating the potential utility of NIBS techniques in Parkinsonism, their integration into clinical routine for diagnostic or therapeutic protocols remains a subject of ongoing investigation and scientific debate. In this context, this paper addresses current unsolved issues and methodological challenges concerning the use of NIBS, focusing on the importance of future research endeavours for maximizing the efficacy and relevance of NIBS strategies for individuals with Parkinsonism.
Collapse
Affiliation(s)
- Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Davide Costa
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Luca Angelini
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | | | - Massimiliano Passaretti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
- Padova Neuroscience Centre (PNC), University of Padua, 35121 Padua, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| |
Collapse
|
81
|
Ghahri Lalaklou Z, Haghighat-Manesh E, Montazeri Ghahjavarestani A, Ahmadi E. The effect of transcranial alternating current stimulation on cognitive flexibility and attention of children with intellectual disability: a case report. J Med Case Rep 2024; 18:310. [PMID: 38965608 PMCID: PMC11225214 DOI: 10.1186/s13256-024-04625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Intellectual disability is a neurodevelopmental disorder characterized by significant impairments in intellectual functioning and adaptive behavior. Cognitive flexibility and attention are crucial cognitive domains often affected in children with intellectual disability. This case report explores the novel use of transcranial alternating current stimulation, a noninvasive brain stimulation technique, to enhance these cognitive functions. The study's novelty lies in its focus on alpha-wave frequency transcranial alternating current stimulation targeting specific Brodmann areas and its potential sustained impact on cognitive flexibility and attention in the pediatric population with intellectual disability. CASE PRESENTATION The case study involved two elementary school students, both 7 years old with mild intellectual disability, one male and one female, both with Turkic ethnicity, from Shahid Fahmideh School for Exceptional Children in Khosrowshah, Iran. Both participants underwent a 2-week intervention with daily 20-minute sessions of transcranial alternating current stimulation at an alpha-wave frequency (10 Hz), targeting Brodmann areas F3 and P3. Cognitive flexibility and attention were assessed using the Wisconsin Card Sorting Test and the Clock Test, administered at four time points: pre-intervention, week 1, week 2, and 1 month post-intervention. Statistical analysis showed significant improvements in both Wisconsin Card Sorting Test and Clock Test scores for both participants compared with baseline, with sustained enhancement over time. CONCLUSION The findings from this case report indicate that transcranial alternating current stimulation may be a promising intervention for improving cognitive flexibility and attention in children with intellectual disability. The significant and sustained improvements observed suggest that transcranial alternating current stimulation could have a meaningful clinical impact on the cognitive development of this population. However, further research is needed to confirm the efficacy of transcranial alternating current stimulation and to explore its broader applicability and long-term effects in larger, more diverse populations.
Collapse
Affiliation(s)
- Zahra Ghahri Lalaklou
- Faculty of Psychology and Educational Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Elahe Haghighat-Manesh
- Department of Basic Sciences, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | | | - Ezzatollah Ahmadi
- Faculty of Psychology and Educational Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
82
|
Lim RY, Jiang M, Ang KK, Lin X, Guan C. Brain-Computer-Brain system for individualized transcranial alternating current stimulation with concurrent EEG recording: a healthy subject pilot study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039276 DOI: 10.1109/embc53108.2024.10782251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In this study, we introduce a novel brain-computer-brain (BCB) system to investigate the aftereffects of individualized, task-dependent transcranial alternating current stimulation (tACS) delivered to the motor cortex. While previous studies utilized either a generic stimulation frequency or matched it to an individual's resting frequency (e.g. individual alpha frequency, iAF), our study employed a trial-by-trial tACS stimulation design wherein the stimulation frequency delivered matches the individual's peak motor imagery (MI) performance frequency. 14 healthy subjects participated in both tACS and tACS-sham on separate days in a within-subject, randomized controlled design. We found that active tACS delivered to subjects receiving alpha (α)-tACS resulted in a decline in MI performance while that with tACS-sham did not differ significantly from baseline. However, subjects receiving beta (β)-tACS showed no significant difference in effect for both active tACS and tACS-sham conditions. These findings indirectly corroborated with that from literature advocating the notion of α tACS as functionally inhibitory; hence the consequential deterioration of MI performance observed only in α-tACS subjects. A more conclusive analysis will be conducted once more data is collected from this ongoing study.Clinical Relevance: The results gathered suggest the differential functional significance of α- and β-tACS in an individualized MI task-specific tACS delivery to the motor cortex with concurrent EEG recording. Although insignificant at the point of data analysis where sample size is small in this ongoing study, tACS-sham (30 Hz) seemed to potentially modulate neural oscillations in the direction of improving MI performance. These findings can inform future tACS study designs based on a system with personalized stimulation delivery for MI task investigations within laboratory and clinical settings - potentially beneficial towards upper limb stroke rehabilitation.
Collapse
|
83
|
Sato T, Katagiri N, Suganuma S, Laakso I, Tanabe S, Osu R, Tanaka S, Yamaguchi T. Simulating tDCS electrode placement to stimulate both M1 and SMA enhances motor performance and modulates cortical excitability depending on current flow direction. Front Neurosci 2024; 18:1362607. [PMID: 39010941 PMCID: PMC11246916 DOI: 10.3389/fnins.2024.1362607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction The conventional method of placing transcranial direct current stimulation (tDCS) electrodes is just above the target brain area. However, this strategy for electrode placement often fails to improve motor function and modulate cortical excitability. We investigated the effects of optimized electrode placement to induce maximum electrical fields in the leg regions of both M1 and SMA, estimated by electric field simulations in the T1and T2-weighted MRI-based anatomical models, on motor performance and cortical excitability in healthy individuals. Methods A total of 36 healthy volunteers participated in this randomized, triple-blind, sham-controlled experiment. They were stratified by sex and were randomly assigned to one of three groups according to the stimulation paradigm, including tDCS with (1) anodal and cathodal electrodes positioned over FCz and POz, respectively, (A-P tDCS), (2) anodal and cathodal electrodes positioned over POz and FCz, respectively, (P-A tDCS), and (3) sham tDCS. The sit-to-stand training following tDCS (2 mA, 10 min) was conducted every 3 or 4 days over 3 weeks (5 sessions total). Results Compared to sham tDCS, A-P tDCS led to significant increases in the number of sit-to-stands after 3 weeks training, whereas P-A tDCS significantly increased knee flexor peak torques after 3 weeks training, and decreased short-interval intracortical inhibition (SICI) immediately after the first session of training and maintained it post-training. Discussion These results suggest that optimized electrode placement of the maximal EF estimated by electric field simulation enhances motor performance and modulates cortical excitability depending on the direction of current flow.
Collapse
Affiliation(s)
- Takatsugu Sato
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Narashino, Japan
| | - Natsuki Katagiri
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Narashino, Japan
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Saki Suganuma
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
84
|
Im S, Park GY, Kim TW, Lim SH. Optimized trans-cranial direct current stimulation for prolonged consciousness disorder in a patient with titanium mesh cranioplasty. Neurol Sci 2024; 45:3513-3516. [PMID: 38589770 PMCID: PMC11176205 DOI: 10.1007/s10072-024-07516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been used for the restoration of awareness in patients with a minimal consciousness state (MCS). Most brains of patients in MCS may structurally and electrophysiologically differ from un-damaged brains. Moreover, tDCS is currently contraindicated for patients with craniotomy or skull with metallic implants. CASE PRESENTATION We present a case with prolonged MCS over 1 year, who had severe brain damage, ventriculoperitoneal shunt, and cranioplasty with a titanium mesh, which was treated with tDCS which optimized with the simulation of the electric field based on the patient's brain MRI. The patient was resulting in emergence from MCS. Six months later, she ate meals orally and started walking with assistance. DISCUSSION AND PERSPECTIVE This personalized simulation based on MRI would make the treatment available even to patients with severe brain structural changes and metallic instrumentation.
Collapse
Affiliation(s)
- Sun Im
- Department of Rehabilitation Medicine, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Geun-Young Park
- Department of Rehabilitation Medicine, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Woo Kim
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Gyeonggi-Do, Republic of Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Institute for Basic Medical Science, Catholic Medical Center, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
85
|
Sveva V, Cruciani A, Mancuso M, Santoro F, Latorre A, Monticone M, Rocchi L. Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy. J Pers Med 2024; 14:675. [PMID: 39063929 PMCID: PMC11277881 DOI: 10.3390/jpm14070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic pain poses a widespread and distressing challenge; it can be resistant to conventional therapies, often having significant side effects. Non-invasive brain stimulation (NIBS) techniques offer promising avenues for the safe and swift modulation of brain excitability. NIBS approaches for chronic pain management targeting the primary motor area have yielded variable outcomes. Recently, the cerebellum has emerged as a pivotal hub in human pain processing; however, the clinical application of cerebellar NIBS in chronic pain treatment remains limited. This review delineates the cerebellum's role in pain modulation, recent advancements in NIBS for cerebellar activity modulation, and novel biomarkers for assessing cerebellar function in humans. Despite notable progress in NIBS techniques and cerebellar activity assessment, studies targeting cerebellar NIBS for chronic pain treatment are limited in number. Nevertheless, positive outcomes in pain alleviation have been reported with cerebellar anodal transcranial direct current stimulation. Our review underscores the potential for further integration between cerebellar NIBS and non-invasive assessments of cerebellar function to advance chronic pain treatment strategies.
Collapse
Affiliation(s)
- Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Marco Mancuso
- Department of Human Neuroscience, University of Rome “Sapienza”, Viale dell’Università 30, 00185 Rome, Italy;
| | - Francesca Santoro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Marco Monticone
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
86
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Phi Van VD, Nagao K, Sahasrabudhe A, Vargas E, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton J, Anikeeva P. Fiber-based Probes for Electrophysiology, Photometry, Optical and Electrical Stimulation, Drug Delivery, and Fast-Scan Cyclic Voltammetry In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598004. [PMID: 38895451 PMCID: PMC11185794 DOI: 10.1101/2024.06.07.598004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and imaging of fluorescent indicators. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by simultaneously interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | | | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jill Venton
- The University of Virginia, Charlottesville, VA 22904
| | | |
Collapse
|
87
|
Biačková N, Adamová A, Klírová M. Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review. Eur Arch Psychiatry Clin Neurosci 2024; 274:803-826. [PMID: 37682331 PMCID: PMC11127835 DOI: 10.1007/s00406-023-01687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
Collapse
Affiliation(s)
- Nina Biačková
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Adamová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Klírová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
88
|
Schroeder PA, Nuerk HC, Svaldi J. High-definition turns timing-dependent: Different behavioural consequences during and following cathodal high-definition transcranial direct current stimulation (HD tDCS) in a magnitude classification task. Eur J Neurosci 2024; 59:2967-2978. [PMID: 38566366 DOI: 10.1111/ejn.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Neuromodulation with transcranial direct current stimulation (tDCS) can transiently alter neural activity, but its spatial precision is low. High-definition (HD) tDCS was introduced to increase spatial precision by placing additional electrodes over the scalp. Initial evaluations of HD tDCS indicated polarity-specific neurophysiological effects-similar to conventional tDCS albeit with greater spatial precision. Here, we compared the effects of cathodal tDCS or HD tDCS in a 4 × 1 configuration over prefrontal cortex (PFC) regions on behavioural outcomes in a magnitude classification task. We report results on overall performance, on the numerical distance effect as a measure of numerical processing, and on the spatial-numerical associations of response codes (SNARC) effect, which was previously affected by prefrontal tDCS. Healthy volunteers (n = 68) received sham or cathodal HD tDCS at 1 mA over the left dorsolateral prefrontal cortex (DLPFC) or the left inferior frontal gyrus (IFG). Results were compared to an identical protocol with conventional cathodal tDCS to the left PFC versus sham (n = 64). Mixed effects models showed performance gains relative to sham tDCS in all conditions after tDCS (i.e. 'offline'), whereas montages over PFC and DLPFC already showed performance gains during tDCS (i.e. 'online'). In contrast to conventional tDCS, HD tDCS did not reduce the SNARC effect. Neither condition affected numerical processing, as expected. The results suggest that HD tDCS with cathodal polarity might require further adjustments (i.e. regarding tDCS intensity) for effective modulations of cognitive-behavioural performance, which could be achieved by individualised current density in electric field modelling.
Collapse
Affiliation(s)
- Philipp A Schroeder
- Department of Psychology, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Jennifer Svaldi
- Department of Psychology, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| |
Collapse
|
89
|
Vieira PG, Krause MR, Pack CC. Temporal interference stimulation disrupts spike timing in the primate brain. Nat Commun 2024; 15:4558. [PMID: 38811618 PMCID: PMC11137077 DOI: 10.1038/s41467-024-48962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Electrical stimulation can regulate brain activity, producing clear clinical benefits, but focal and effective neuromodulation often requires surgically implanted electrodes. Recent studies argue that temporal interference (TI) stimulation may provide similar outcomes non-invasively. During TI, scalp electrodes generate multiple electrical fields in the brain, modulating neural activity only at their intersection. Despite considerable enthusiasm for this approach, little empirical evidence demonstrates its effectiveness, especially under conditions suitable for human use. Here, using single-neuron recordings in non-human primates, we establish that TI reliably alters the timing, but not the rate, of spiking activity. However, we show that TI requires strategies-high carrier frequencies, multiple electrodes, and amplitude-modulated waveforms-that also limit its effectiveness. Combined, these factors make TI 80 % weaker than other forms of non-invasive brain stimulation. Although unlikely to cause widespread neuronal entrainment, TI may be ideal for disrupting pathological oscillatory activity, a hallmark of many neurological disorders.
Collapse
Affiliation(s)
- Pedro G Vieira
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Matthew R Krause
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Christopher C Pack
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
90
|
Jahromi MM, Vlček P, Kvašňák E, Lippertová MG. Posture enhancement with cerebellum transcranial electrical stimulation: a systematic review of current methods and findings. Exp Brain Res 2024; 242:991-1009. [PMID: 38546838 DOI: 10.1007/s00221-024-06808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/13/2024] [Indexed: 07/13/2024]
Abstract
Recently, transcranial electrical stimulation (tES) has gained increasing popularity among researchers, especially for recovery and improvement, but interpretation of these results is difficult due to variations in study methods and outcome measurements. The main goal of this study was to better understand the postural and balance indicators affected by cerebellar tES, as the cerebellum is the main brain region responsible for controlling balance. For this systematic literature review, three databases were searched for articles where the cerebellum was stimulated by any type of tES in either healthy participants or those with neurologic disorders. Postural, dynamic, and/or static stability measurements were recorded, and risk of bias was assessed on the PEDro scale. A total of 21 studies were included in the analysis. 17 studies reported improvements after application of tES. 14 studies stimulated the cerebellum unilaterally and 15 used this modality for 20 min. Moreover, all studies exclusively used transcranial direct current as the type of stimulation. Evaluation of PEDro results showed that studies included in the analysis utilized good methodology. Although there were some inconsistencies in study results, overall, it was demonstrated that tES can improve balance and postural index under both healthy and neurological conditions. Further research of bilateral cerebellar stimulation or the use of transcranial alternating current stimulation, transcranial random noise stimulation, and transcranial pulsed current stimulation is needed for a more comprehensive assessment of the potential positive effects of cerebellar tES on the balance system.
Collapse
Affiliation(s)
| | - Přemysl Vlček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
- Applied Brain Electroencephalography, National Institute of Mental Health, Topolova 748, 25067, Klecany, Czech Republic.
| | - Eugen Kvašňák
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | |
Collapse
|
91
|
Farahani F, Khadka N, Parra LC, Bikson M, Vöröslakos M. Transcranial electric stimulation modulates firing rate at clinically relevant intensities. Brain Stimul 2024; 17:561-571. [PMID: 38631548 PMCID: PMC466978 DOI: 10.1016/j.brs.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Notwithstanding advances with low-intensity transcranial electrical stimulation (tES), there remain questions about the efficacy of clinically realistic electric fields on neuronal function. OBJECTIVE To measure electric fields magnitude and their effects on neuronal firing rate of hippocampal neurons in freely moving rats, and to establish calibrated computational models of current flow. METHODS Current flow models were calibrated on electric field measures in the motor cortex (n = 2 anesthetized rats) and hippocampus. A Neuropixels 2.0 probe with 384 channels was used in an in-vivo rat model of tES (n = 4 freely moving and 2 urethane anesthetized rats) to detect effects of weak fields on neuronal firing rate. High-density field mapping and computational models verified field intensity (1 V/m in hippocampus per 50 μA of applied skull currents). RESULTS Electric fields of as low as 0.35 V/m (0.25-0.47) acutely modulated average firing rate in the hippocampus. At these intensities, firing rate effects increased monotonically with electric field intensity at a rate of 11.5 % per V/m (7.2-18.3). For the majority of excitatory neurons, firing increased for soma-depolarizing stimulation and diminished for soma-hyperpolarizing stimulation. While more diverse, the response of inhibitory neurons followed a similar pattern on average, likely as a result of excitatory drive. CONCLUSION In awake animals, electric fields modulate spiking rate above levels previously observed in vitro. Firing rate effects are likely mediated by somatic polarization of pyramidal neurons. We recommend that all future rodent experiments directly measure electric fields to insure rigor and reproducibility.
Collapse
Affiliation(s)
- Forouzan Farahani
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Mihály Vöröslakos
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA.
| |
Collapse
|
92
|
Sadrzadeh-Afsharazar F, Douplik A. A Phosphenotron Device for Sensoric Spatial Resolution of Phosphenes within the Visual Field Using Non-Invasive Transcranial Alternating Current Stimulation. SENSORS (BASEL, SWITZERLAND) 2024; 24:2512. [PMID: 38676129 PMCID: PMC11053939 DOI: 10.3390/s24082512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
This study presents phosphenotron, a device for enhancing the sensory spatial resolution of phosphenes in the visual field (VF). The phosphenotron employs a non-invasive transcranial alternating current stimulation (NITACS) to modulate brain activity by applying weak electrical currents to the scalp or face. NITACS's unique application induces phosphenes, a phenomenon where light is perceived without external stimuli. Unlike previous invasive methods, NITACS offers a non-invasive approach to create these effects. The study focused on assessing the spatial resolution of NITACS-induced phosphenes, crucial for advancements in visual aid technology and neuroscience. Eight participants were subjected to NITACS using a novel electrode arrangement around the eye orbits. Results showed that NITACS could generate spatially defined phosphene patterns in the VF, varying among individuals but consistently appearing within their VF and remaining stable through multiple stimulations. The study established optimal parameters for vibrant phosphene induction without discomfort and identified electrode positions that altered phosphene locations within different VF regions. Receiver Operating characteristics analysis indicated a specificity of 70.7%, sensitivity of 73.9%, and a control trial accuracy of 98.4%. These findings suggest that NITACS is a promising, reliable method for non-invasive visual perception modulation through phosphene generation.
Collapse
Affiliation(s)
- Faraz Sadrzadeh-Afsharazar
- Photonics Group, Department of Physics, Faculty of Science, Toronto Metropolitan University (Formerly Ryerson University), Toronto, ON M5B 2K3, Canada;
| | - Alexandre Douplik
- Photonics Group, Department of Physics, Faculty of Science, Toronto Metropolitan University (Formerly Ryerson University), Toronto, ON M5B 2K3, Canada;
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre of the Li Ka Shing (LKS) Knowledge Institute, St. Michael Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
93
|
Veldema J, Steingräber T, von Grönheim L, Wienecke J, Regel R, Schack T, Schütz C. Direct Current Stimulation over the Primary Motor Cortex, Cerebellum, and Spinal Cord to Modulate Balance Performance: A Randomized Placebo-Controlled Trial. Bioengineering (Basel) 2024; 11:353. [PMID: 38671775 PMCID: PMC11048454 DOI: 10.3390/bioengineering11040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVES Existing applications of non-invasive brain stimulation in the modulation of balance ability are focused on the primary motor cortex (M1). It is conceivable that other brain and spinal cord areas may be comparable or more promising targets in this regard. This study compares transcranial direct current stimulation (tDCS) over (i) the M1, (ii) the cerebellum, and (iii) trans-spinal direct current stimulation (tsDCS) in the modulation of balance ability. METHODS Forty-two sports students were randomized in this placebo-controlled study. Twenty minutes of anodal 1.5 mA t/tsDCS over (i) the M1, (ii) the cerebellum, and (iii) the spinal cord, as well as (iv) sham tDCS were applied to each subject. The Y Balance Test, Single Leg Landing Test, and Single Leg Squat Test were performed prior to and after each intervention. RESULTS The Y Balance Test showed significant improvement after real stimulation of each region compared to sham stimulation. While tsDCS supported the balance ability of both legs, M1 and cerebellar tDCS supported right leg stand only. No significant differences were found in the Single Leg Landing Test and the Single Leg Squat Test. CONCLUSIONS Our data encourage the application of DCS over the cerebellum and spinal cord (in addition to the M1 region) in supporting balance control. Future research should investigate and compare the effects of different stimulation protocols (anodal or cathodal direct current stimulation (DCS), alternating current stimulation (ACS), high-definition DCS/ACS, closed-loop ACS) over these regions in healthy people and examine the potential of these approaches in the neurorehabilitation.
Collapse
Affiliation(s)
- Jitka Veldema
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Teni Steingräber
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Leon von Grönheim
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Jana Wienecke
- Department of Exercise and Health, Paderborn University, 33098 Paderborn, Germany;
| | - Rieke Regel
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Thomas Schack
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Christoph Schütz
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| |
Collapse
|
94
|
Latorre A, Rocchi L, Paparella G, Manzo N, Bhatia KP, Rothwell JC. Changes in cerebellar output abnormally modulate cortical myoclonus sensorimotor hyperexcitability. Brain 2024; 147:1412-1422. [PMID: 37956080 PMCID: PMC10994547 DOI: 10.1093/brain/awad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Cortical myoclonus is produced by abnormal neuronal discharges within the sensorimotor cortex, as demonstrated by electrophysiology. Our hypothesis is that the loss of cerebellar inhibitory control over the motor cortex, via cerebello-thalamo-cortical connections, could induce the increased sensorimotor cortical excitability that eventually causes cortical myoclonus. To explore this hypothesis, in the present study we applied anodal transcranial direct current stimulation over the cerebellum of patients affected by cortical myoclonus and healthy controls and assessed its effect on sensorimotor cortex excitability. We expected that anodal cerebellar transcranial direct current stimulation would increase the inhibitory cerebellar drive to the motor cortex and therefore reduce the sensorimotor cortex hyperexcitability observed in cortical myoclonus. Ten patients affected by cortical myoclonus of various aetiology and 10 aged-matched healthy control subjects were included in the study. All participants underwent somatosensory evoked potentials, long-latency reflexes and short-interval intracortical inhibition recording at baseline and immediately after 20 min session of cerebellar anodal transcranial direct current stimulation. In patients, myoclonus was recorded by the means of surface EMG before and after the cerebellar stimulation. Anodal cerebellar transcranial direct current stimulation did not change the above variables in healthy controls, while it significantly increased the amplitude of somatosensory evoked potential cortical components, long-latency reflexes and decreased short-interval intracortical inhibition in patients; alongside, a trend towards worsening of the myoclonus after the cerebellar stimulation was observed. Interestingly, when dividing patients in those with and without giant somatosensory evoked potentials, the increment of the somatosensory evoked potential cortical components was observed mainly in those with giant potentials. Our data showed that anodal cerebellar transcranial direct current stimulation facilitates-and does not inhibit-sensorimotor cortex excitability in cortical myoclonus syndromes. This paradoxical response might be due to an abnormal homeostatic plasticity within the sensorimotor cortex, driven by dysfunctional cerebello-thalamo-cortical input to the motor cortex. We suggest that the cerebellum is implicated in the pathophysiology of cortical myoclonus and that these results could open the way to new forms of treatment or treatment targets.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari 09042, Italy
| | - Giulia Paparella
- Department of Neurology, IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Nicoletta Manzo
- Department of Neurology, IRCCS San Camillo Hospital, Venice 30126, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
95
|
Galanis C, Neuhaus L, Hananeia N, Turi Z, Jedlicka P, Vlachos A. Axon morphology and intrinsic cellular properties determine repetitive transcranial magnetic stimulation threshold for plasticity. Front Cell Neurosci 2024; 18:1374555. [PMID: 38638302 PMCID: PMC11025360 DOI: 10.3389/fncel.2024.1374555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Repetitive transcranial magnetic stimulation (rTMS) is a widely used therapeutic tool in neurology and psychiatry, but its cellular and molecular mechanisms are not fully understood. Standardizing stimulus parameters, specifically electric field strength, is crucial in experimental and clinical settings. It enables meaningful comparisons across studies and facilitates the translation of findings into clinical practice. However, the impact of biophysical properties inherent to the stimulated neurons and networks on the outcome of rTMS protocols remains not well understood. Consequently, achieving standardization of biological effects across different brain regions and subjects poses a significant challenge. Methods This study compared the effects of 10 Hz repetitive magnetic stimulation (rMS) in entorhino-hippocampal tissue cultures from mice and rats, providing insights into the impact of the same stimulation protocol on similar neuronal networks under standardized conditions. Results We observed the previously described plastic changes in excitatory and inhibitory synaptic strength of CA1 pyramidal neurons in both mouse and rat tissue cultures, but a higher stimulation intensity was required for the induction of rMS-induced synaptic plasticity in rat tissue cultures. Through systematic comparison of neuronal structural and functional properties and computational modeling, we found that morphological parameters of CA1 pyramidal neurons alone are insufficient to explain the observed differences between the groups. Although morphologies of mouse and rat CA1 neurons showed no significant differences, simulations confirmed that axon morphologies significantly influence individual cell activation thresholds. Notably, differences in intrinsic cellular properties were sufficient to account for the 10% higher intensity required for the induction of synaptic plasticity in the rat tissue cultures. Conclusion These findings demonstrate the critical importance of axon morphology and intrinsic cellular properties in predicting the plasticity effects of rTMS, carrying valuable implications for the development of computer models aimed at predicting and standardizing the biological effects of rTMS.
Collapse
Affiliation(s)
- Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena Neuhaus
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicholas Hananeia
- 3R-Zentrum Gießen, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- 3R-Zentrum Gießen, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
96
|
Hemmerich K, Lupiáñez J, Martín-Arévalo E. HD-tDCS mitigates the executive vigilance decrement only under high cognitive demands. Sci Rep 2024; 14:7865. [PMID: 38570619 PMCID: PMC10991279 DOI: 10.1038/s41598-024-57917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Maintaining vigilance is essential for many everyday tasks, but over time, our ability to sustain it inevitably decreases, potentially entailing severe consequences. High-definition transcranial direct current stimulation (HD-tDCS) has proven to be useful for studying and improving vigilance. This study explores if/how cognitive load affects the mitigatory effects of HD-tDCS on the vigilance decrement. Participants (N = 120) completed a modified ANTI-Vea task (single or dual load) while receiving either sham or anodal HD-tDCS over the right posterior parietal cortex (rPPC). This data was compared with data from prior studies (N = 120), where participants completed the standard ANTI-Vea task (triple load task), combined with the same HD-tDCS protocol. Against our hypotheses, both the single and dual load conditions showed a significant executive vigilance (EV) decrement, which was not affected by the application of rPPC HD-tDCS. On the contrary, the most cognitively demanding task (triple task) showed the greatest EV decrement; importantly, it was also with the triple task that a significant mitigatory effect of the HD-tDCS intervention was observed. The present study contributes to a more nuanced understanding of the specific effects of HD-tDCS on the vigilance decrement considering cognitive demands. This can ultimately contribute to reconciling heterogeneous effects observed in past research and fine-tuning its future clinical application.
Collapse
Affiliation(s)
- Klara Hemmerich
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, s/n, 18071, Granada, Spain.
| | - Juan Lupiáñez
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, s/n, 18071, Granada, Spain
| | - Elisa Martín-Arévalo
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, s/n, 18071, Granada, Spain.
| |
Collapse
|
97
|
Zhao Z, Shirinpour S, Tran H, Wischnewski M, Opitz A. intensity- and frequency-specific effects of transcranial alternating current stimulation are explained by network dynamics. J Neural Eng 2024; 21:026024. [PMID: 38530297 DOI: 10.1088/1741-2552/ad37d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Objective. Transcranial alternating current stimulation (tACS) can be used to non-invasively entrain neural activity and thereby cause changes in local neural oscillatory power. Despite its increased use in cognitive and clinical neuroscience, the fundamental mechanisms of tACS are still not fully understood.Approach. We developed a computational neuronal network model of two-compartment pyramidal neurons (PY) and inhibitory interneurons, which mimic the local cortical circuits. We modeled tACS with electric field strengths that are achievable in human applications. We then simulated intrinsic network activity and measured neural entrainment to investigate how tACS modulates ongoing endogenous oscillations.Main results. The intensity-specific effects of tACS are non-linear. At low intensities (<0.3 mV mm-1), tACS desynchronizes neural firing relative to the endogenous oscillations. At higher intensities (>0.3 mV mm-1), neurons are entrained to the exogenous electric field. We then further explore the stimulation parameter space and find that the entrainment of ongoing cortical oscillations also depends on stimulation frequency by following an Arnold tongue. Moreover, neuronal networks can amplify the tACS-induced entrainment via synaptic coupling and network effects. Our model shows that PY are directly entrained by the exogenous electric field and drive the inhibitory neurons.Significance. The results presented in this study provide a mechanistic framework for understanding the intensity- and frequency-specific effects of oscillating electric fields on neuronal networks. This is crucial for rational parameter selection for tACS in cognitive studies and clinical applications.
Collapse
Affiliation(s)
- Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
98
|
Meng H, Houston M, Zhang Y, Li S. Exploring the Prospects of Transcranial Electrical Stimulation (tES) as a Therapeutic Intervention for Post-Stroke Motor Recovery: A Narrative Review. Brain Sci 2024; 14:322. [PMID: 38671974 PMCID: PMC11047964 DOI: 10.3390/brainsci14040322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Stroke survivors often have motor impairments and related functional deficits. Transcranial Electrical Stimulation (tES) is a rapidly evolving field that offers a wide range of capabilities for modulating brain function, and it is safe and inexpensive. It has the potential for widespread use for post-stroke motor recovery. Transcranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation (tACS), and Transcranial Random Noise Stimulation (tRNS) are three recognized tES techniques that have gained substantial attention in recent years but have different mechanisms of action. tDCS has been widely used in stroke motor rehabilitation, while applications of tACS and tRNS are very limited. The tDCS protocols could vary significantly, and outcomes are heterogeneous. PURPOSE the current review attempted to explore the mechanisms underlying commonly employed tES techniques and evaluate their prospective advantages and challenges for their applications in motor recovery after stroke. CONCLUSION tDCS could depolarize and hyperpolarize the potentials of cortical motor neurons, while tACS and tRNS could target specific brain rhythms and entrain neural networks. Despite the extensive use of tDCS, the complexity of neural networks calls for more sophisticated modifications like tACS and tRNS.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA;
| | - Sheng Li
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
99
|
Yang D, Kang MK, Huang G, Eggebrecht AT, Hong KS. Repetitive Transcranial Alternating Current Stimulation to Improve Working Memory: An EEG-fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1257-1266. [PMID: 38498739 DOI: 10.1109/tnsre.2024.3377138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Transcranial electrical stimulation has demonstrated the potential to enhance cognitive functions such as working memory, learning capacity, and attentional allocation. Recently, it was shown that periodic stimulation within a specific duration could augment the human brain's neuroplasticity. This study investigates the effects of repetitive transcranial alternating current stimulation (tACS; 1 mA, 5 Hz, 2 min duration) on cognitive function, functional connectivity, and topographic changes using both electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Fifteen healthy subjects were recruited to measure brain activity in the pre-, during-, and post-stimulation sessions under tACS and sham stimulation conditions. Fourteen trials of working memory tasks and eight repetitions of tACS/sham stimulation with a 1-minute intersession interval were applied to the frontal cortex of the participants. The working memory score, EEG band-wise powers, EEG topography, concentration changes of oxygenated hemoglobin, and functional connectivity (FC) were individually analyzed to quantify the behavioral and neurophysiological effects of tACS. Our results indicate that tACS increases: i) behavioral scores (i.e., 15.08, ) and EEG band-wise powers (i.e., theta and beta bands) compared to the sham stimulation condition, ii) FC of both EEG-fNIRS signals, especially in the large-scale brain network communication and interhemispheric connections, and iii) the hemodynamic response in comparison to the pre-stimulation session and the sham condition. Conclusively, the repetitive theta-band tACS stimulation improves the working memory capacity regarding behavioral and neuroplasticity perspectives. Additionally, the proposed fNIRS biomarkers (mean, slope), EEG band-wise powers, and FC can be used as neuro-feedback indices for closed-loop brain stimulation.
Collapse
|
100
|
Zhang HY, Hou TT, Jin ZH, Zhang T, Wang YH, Cheng ZH, Liu YH, Fang JP, Yan HJ, Zhen Y, An X, Du J, Chen KK, Li ZZ, Li Q, Wen QP, Fang BY. Transcranial alternating current stimulation improves quality of life in Parkinson's disease: study protocol for a randomized, double-blind, controlled trial. Trials 2024; 25:200. [PMID: 38509589 PMCID: PMC10953283 DOI: 10.1186/s13063-024-08045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The neural cells in the brains of patients with Parkinson's disease (PWP) display aberrant synchronized oscillatory activity within the beta frequency range. Additionally, enhanced gamma oscillations may serve as a compensatory mechanism for motor inhibition mediated by beta activity and also reinstate plasticity in the primary motor cortex affected by Parkinson's disease. Transcranial alternating current stimulation (tACS) can synchronize endogenous oscillations with exogenous rhythms, thereby modulating cortical activity. The objective of this study is to investigate whether the addition of tACS to multidisciplinary intensive rehabilitation treatment (MIRT) can improve symptoms of PWP so as to enhance the quality of life in individuals with Parkinson's disease based on the central-peripheral-central theory. METHODS The present study was a randomized, double-blind trial that enrolled 60 individuals with Parkinson's disease aged between 45 and 70 years, who had Hoehn-Yahr scale scores ranging from 1 to 3. Participants were randomly assigned in a 1:1 ratio to either the tACS + MIRT group or the sham-tACS + MIRT group. The trial consisted of a two-week double-blind treatment period followed by a 24-week follow-up period, resulting in a total duration of twenty-six weeks. The primary outcome measured the change in PDQ-39 scores from baseline (T0) to 4 weeks (T2), 12 weeks (T3), and 24 weeks (T4) after completion of the intervention. The secondary outcome assessed changes in MDS-UPDRS III scores at T0, the end of intervention (T1), T2, T3, and T4. Additional clinical assessments and mechanistic studies were conducted as tertiary outcomes. DISCUSSION The objective of this study is to demonstrate that tACS can enhance overall functionality and improve quality of life in PWP, based on the framework of MIRT. Additionally, it seeks to establish a potential correlation between these therapeutic effects and neuroplasticity alterations in relevant brain regions. The efficacy of tACS will be assessed during the follow-up period in order to optimize neuroplasticity and enhance its potential impact on rehabilitation efficiency for PWP. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2300071969. Registered on 30 May 2023.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Ting-Ting Hou
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Zhao-Hui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Tian Zhang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Yi-Heng Wang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Zi-Hao Cheng
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Yong-Hong Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Jin-Ping Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Hong-Jiao Yan
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Yi Zhen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Xia An
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Jia Du
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Ke-Ke Chen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Zhen-Zhen Li
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Qing Li
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Qi-Ping Wen
- Radiology Department, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Bo-Yan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China.
| |
Collapse
|