51
|
Lu YB, Huang J, Liao YQ, Lin XL, Huang SY, Liu CM, Wen HR, Liu SJ, Wang FY, Zhu SD. Multifunctional Dinuclear Dy-Based Coordination Complex Showing Visible Photoluminescence, Single-Molecule Magnet Behavior, and Proton Conduction. Inorg Chem 2022; 61:18545-18553. [DOI: 10.1021/acs.inorgchem.2c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying-Bing Lu
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Jing Huang
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Ya-Qing Liao
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Xue-Lian Lin
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Si-Yu Huang
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - He-Rui Wen
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 Jiangxi Province, PR China
| | - Sui-Jun Liu
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 Jiangxi Province, PR China
| | - Fei-Yang Wang
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Shui-Dong Zhu
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| |
Collapse
|
52
|
Subramaniyam V, Thangadurai DT, Ravi PV, Pichumani M. Do the acid/base modifiers in solvothermal synthetic conditions influence the formation of Zr-Tyr MOFs to be amorphous? J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
53
|
Deng F, Chen Z, Wang C, Xiang C, Poredoš P, Wang R. Hygroscopic Porous Polymer for Sorption-Based Atmospheric Water Harvesting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204724. [PMID: 36209387 PMCID: PMC9685462 DOI: 10.1002/advs.202204724] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Sorption-based atmospheric water harvesting (SAWH) holds huge potential due to its freshwater capabilities for alleviating water scarcity stress. The two essential parts, sorbent material and system structure, dominate the water sorption-desorption performance and the total water productivity for SAWH system together. Attributed to the superiorities in aspects of sorption-desorption performance, scalability, and compatibility in practical SAWH devices, hygroscopic porous polymers (HPPs) as next-generation sorbents are recently going through a vast surge. However, as HPPs' sorption mechanism, performance, and applied potential lack comprehensive and accurate guidelines, SAWH's subsequent development is restricted. To address the aforementioned problems, this review introduces HPPs' recent development related to mechanism, performance, and application. Furthermore, corresponding optimized strategies for both HPP-based sorbent bed and coupling structural design are proposed. Finally, original research routes are directed to develop next-generation HPP-based SAWH systems. The presented guidelines and insights can influence and inspire the future development of SAWH technology, further achieving SAWH's practical applications.
Collapse
Affiliation(s)
- Fangfang Deng
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Zhihui Chen
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Chenxi Wang
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Chengjie Xiang
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Primož Poredoš
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Ruzhu Wang
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| |
Collapse
|
54
|
Gibbons B, Cai M, Morris AJ. A Potential Roadmap to Integrated Metal Organic Framework Artificial Photosynthetic Arrays. J Am Chem Soc 2022; 144:17723-17736. [PMID: 36126182 PMCID: PMC9545145 DOI: 10.1021/jacs.2c04144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Metal organic frameworks (MOFs), a class of coordination polymers, gained popularity in the late 1990s with the efforts of Omar Yaghi, Richard Robson, Susumu Kitagawa, and others. The intrinsic porosity of MOFs made them a clear platform for gas storage and separation. Indeed, these applications have dominated the vast literature in MOF synthesis, characterization, and applications. However, even in those early years, there were hints to more advanced applications in light-MOF interactions and catalysis. This perspective focuses on the combination of both light-MOF interactions and catalysis: MOF artificial photosynthetic assemblies. Light absorption, charge transport, H2O oxidation, and CO2 reduction have all been previously observed in MOFs; however, work toward a fully MOF-based approach to artificial photosynthesis remains out of reach. Discussed here are the current limitations with MOF-based approaches: diffusion through the framework, selectivity toward high value products, lack of integrated studies, and stability. These topics provide a roadmap for the future development of fully integrated MOF-based assemblies for artificial photosynthesis.
Collapse
Affiliation(s)
- Bradley Gibbons
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Meng Cai
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Amanda J. Morris
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
55
|
Synthesis and Biomedical Applications of Highly Porous Metal-Organic Frameworks. Molecules 2022; 27:molecules27196585. [PMID: 36235122 PMCID: PMC9572148 DOI: 10.3390/molecules27196585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
In this review, aspects of the synthesis, framework topologies, and biomedical applications of highly porous metal-organic frameworks are discussed. The term "highly porous metal-organic frameworks" (HPMOFs) is used to denote MOFs with a surface area larger than 4000 m2 g-1. Such compounds are suitable for the encapsulation of a variety of large guest molecules, ranging from organic dyes to drugs and proteins, and hence they can address major contemporary challenges in the environmental and biomedical field. Numerous synthetic approaches towards HPMOFs have been developed and discussed herein. Attempts are made to categorise the most successful synthetic strategies; however, these are often not independent from each other, and a combination of different parameters is required to be thoroughly considered for the synthesis of stable HPMOFs. The majority of the HPMOFs in this review are of special interest not only because of their high porosity and fascinating structures, but also due to their capability to encapsulate and deliver drugs, proteins, enzymes, genes, or cells; hence, they are excellent candidates in biomedical applications that involve drug delivery, enzyme immobilisation, gene targeting, etc. The encapsulation strategies are described, and the MOFs are categorised according to the type of biomolecule they are able to encapsulate. The research field of HPMOFs has witnessed tremendous development recently. Their intriguing features and potential applications attract researchers' interest and promise an auspicious future for this class of highly porous materials.
Collapse
|
56
|
Zhang XN, Chen BC, Zhang JL, Zhang JL, Liu SJ, Wen HR. Anionic lanthanide metal-organic frameworks with magnetic, fluorescence, and proton conductivity properties and selective adsorption of a cationic dye. Dalton Trans 2022; 51:15762-15770. [PMID: 36178291 DOI: 10.1039/d2dt02347d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel microporous anionic lanthanide metal-organic frameworks (Ln-MOFs), namely {[(CH3)2NH2][Ln(bptc)]·2H2O}n (Ln = Gd (1) and Dy (2), H4bptc = biphenyl-3,3',5,5'-tetracarboxylic acid) with a new 4,8-connected topology have been synthesized and structurally characterized. Ln-MOF 1 shows a significant magnetocaloric effect with -ΔSmaxm = 26.37 J kg-1 K-1 at 2 K for ΔH = 7 T, and a high proton conductivity of 1.02 × 10-4 S cm-1 at 323 K and 90% RH. Moreover, Ln-MOF 1 shows specific selective adsorption of the cationic dye Rhodamine B. Ln-MOF 2 exhibits field-induced slow magnetic relaxation with an energy barrier (Ueff) of 48.19 K, characteristic emission of Dy3+, and selective adsorption of Rhodamine B. Therefore, 2 is a multifunctional Ln-MOF with magnetic, fluorescence and selective adsorption properties.
Collapse
Affiliation(s)
- Xiao-Nuan Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Bo-Chen Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Jia-Li Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Jia-Lin Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
57
|
Ma M, Chen J, Liu H, Huang Z, Huang F, Li Q, Xu Y. A review on chiral metal-organic frameworks: synthesis and asymmetric applications. NANOSCALE 2022; 14:13405-13427. [PMID: 36070182 DOI: 10.1039/d2nr01772e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chiral metal-organic frameworks (CMOFs) have the characteristics of framework structure diversity and functional tunability, and have important applications in the fields of chiral identification, separation of enantiomers and asymmetric catalysis. In recent years, the application of CMOFs has also been extended to other research fields, such as circularly polarized fluorescence and chiral ferroelectrics. Compared with achiral MOFs, the design of CMOFs only considers the modes of introduction of chirality, and also takes into account the crystallization and purification. Therefore, the synthesis and characterization of CMOFs face many difficult challenges. This review discusses three effective strategies for constructing CMOFs, including direct synthesis of chiral ligands, spontaneous resolution of achiral ligands or chiral template-induced synthesis, and post-synthetic chiralization of achiral MOFs. In addition, this review also discusses the recent application progress of CMOFs in chiral molecular recognition, enantiomer separation, asymmetric catalysis, circularly polarized fluorescence, and chiral ferroelectrics.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Jiahuan Chen
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Hongyu Liu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Zhonghua Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Quanliang Li
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| |
Collapse
|
58
|
Li Y, Wen G, Li J, Li Q, Zhang H, Tao B, Zhang J. Synthesis and shaping of metal-organic frameworks: a review. Chem Commun (Camb) 2022; 58:11488-11506. [PMID: 36165339 DOI: 10.1039/d2cc04190a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) possess excellent advantages, such as high porosity, large specific surface area, and an adjustable structure, showing good potential for applications in gas adsorption and separation, catalysis, conductivity, sensing, magnetism, etc. However, they still suffer from significant limitations in terms of the scale-up synthesis and shaping, hindering the realization of large-scale commercial applications. Despite some attempts having been devoted to addressing this, challenges remain. In this paper, we outline the advantages and drawbacks of existing synthetic routes such as electrochemistry, microwave, ultrasonic radiation, green solvent reflux, room temperature stirring, steam-assisted transformation, mechanochemistry, and fluid chemistry in terms of scale-up production. Then, the shaping methods of MOFs such as extrusion, mechanical compaction, rolling granulation, spray drying, gel technology, embedded granulation, phase inversion, 3D printing and other shaping methods for the preparation of membranes, coatings and nanoparticles are discussed. Finally, perspectives on the large-scale synthesis and shaping of MOFs are also proposed. This work helps provide in-depth insight into the scale-up production and shaping process of MOFs and boost commercial applications of MOFs.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Guilin Wen
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Jianzhe Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Qingrun Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Hongxing Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Bin Tao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Jianzhong Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| |
Collapse
|
59
|
Xu X, Xu F. A Heniconuclear {Mn 21} Cluster-Based Coordination Polymer with Manganese(II) Linkers Showing High Proton Conductivity. Inorg Chem 2022; 61:16038-16044. [PMID: 36166315 DOI: 10.1021/acs.inorgchem.2c02441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented metal-linked cluster-based coordination polymer, composed of heniconuclear {Mn21} clusters and Mn(II) ions as the nodes and linkers, respectively, was self-assembled from a facile aqueous synthesis. The structural analysis reveals that the compound possesses a rare 3D 8-connected hex framework topology. Significantly, the compound demonstrates a high proton conductivity of 1.06 mS cm-1 at 373 K and 98% RH and exhibits a magnetocaloric effect with a magnetic entropy change of -9.94 J kg-1 K-1 at H = 80 kOe and T = 6.0 K.
Collapse
Affiliation(s)
- Xiongli Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Feng Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
60
|
Aledavoud SP, Salehi Rozveh Z, Karimi M, Safarifard V. Post-Synthetic Defunctionalization of Ammonium-Functionalized Zr-Based Metal-Organic Framework MIP-202 for Knoevenagel Condensation Reaction. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Zahra Salehi Rozveh
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Meghdad Karimi
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
61
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
62
|
Li JJ, Yin L, Wang ZF, Jing YC, Jiang ZL, Ding Y, Wang HS. Enzyme-immobilized metal-organic frameworks: From preparation to application. Chem Asian J 2022; 17:e202200751. [PMID: 36029234 DOI: 10.1002/asia.202200751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/27/2022] [Indexed: 11/09/2022]
Abstract
As a class of widely used biocatalysts, enzymes possess advantages including high catalytic efficiency, strong specificity and mild reaction condition. However, most free enzymes have high requirements on the reaction environment and are easy to deactivate. Immobilization of enzymes on nanomaterial-based substrates is a good way to solve this problem. Metal-organic framework (MOFs), with ultra-high specific surface area and adjustable porosity, can provide a large space to carry enzymes. And the tightly surrounded protective layer of MOFs can stabilize the enzyme structure to a great extent. In addition, the unique porous network structure enables selective mass transfer of substrates and facilitates catalytic processes. Therefore, these enzyme-immobilized MOFs have been widely used in various research fields, such as molecule/biomolecule sensing and imaging, disease treatment, energy and environment protection. In this review, the preparation strategies and applications of enzymes-immobilized MOFs are illustrated and the prospects and current challenges are discussed.
Collapse
Affiliation(s)
- Jia-Jing Li
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Li Yin
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zi-Fan Wang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Yi-Chen Jing
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zhuo-Lin Jiang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Ya Ding
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Huai-Song Wang
- China Parmaceutical University, Pharmaceutical analysis, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing Jiangsu, CHINA
| |
Collapse
|
63
|
Aggarwal V, Solanki S, Malhotra BD. Applications of metal-organic framework-based bioelectrodes. Chem Sci 2022; 13:8727-8743. [PMID: 35975162 PMCID: PMC9350594 DOI: 10.1039/d2sc03441g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Metal-organic frameworks (MOFs) are an emerging class of porous nanomaterials that have opened new research possibilities. The inherent characteristics of MOFs such as their large surface area, high porosity, tunable pore size, stability, facile synthetic strategies and catalytic nature have made them promising materials for enormous number of applications, including fuel storage, energy conversion, separation, and gas purification. Recently, their high potential as ideal platforms for biomolecule immobilization has been discovered. MOF-enzyme-based materials have attracted the attention of researchers from all fields with the expansion of MOFs development, paving way for the fabrication of bioelectrochemical devices with unique characteristics. MOFs-based bioelectrodes have steadily gained interest, wherein MOFs can be utilized for improved biomolecule immobilization, electrolyte membranes, fuel storage, biocatalysis and biosensing. Likewise, applications of MOFs in point-of-care diagnostics, including self-powered biosensors, are exponentially increasing. This paper reviews the current trends in the fabrication of MOFs-based bioelectrodes with emphasis on their applications in biosensors and biofuel cells.
Collapse
Affiliation(s)
- Vidushi Aggarwal
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Shipra Solanki
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Bansi D Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| |
Collapse
|
64
|
Post-synthetic halogen incorporation in Zr-based MOF for enhancement of the catalytic oxidation reactions. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
65
|
Chen J, Mei Q, Chen Y, Marsh C, An B, Han X, Silverwood IP, Li M, Cheng Y, He M, Chen X, Li W, Kippax-Jones M, Crawshaw D, Frogley MD, Day SJ, García-Sakai V, Manuel P, Ramirez-Cuesta AJ, Yang S, Schröder M. Highly Efficient Proton Conduction in the Metal-Organic Framework Material MFM-300(Cr)·SO 4(H 3O) 2. J Am Chem Soc 2022; 144:11969-11974. [PMID: 35775201 PMCID: PMC9348827 DOI: 10.1021/jacs.2c04900] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The development of
materials showing rapid proton conduction with
a low activation energy and stable performance over a wide temperature
range is an important and challenging line of research. Here, we report
confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr)·SO4(H3O)2, which exhibits a record-low
activation energy of 0.04 eV, resulting in stable proton conductivity
between 25 and 80 °C of >10–2 S cm–1. In situ synchrotron X-ray powder diffraction (SXPD),
neutron powder diffraction (NPD), quasielastic neutron scattering
(QENS), and molecular dynamics (MD) simulation reveal the pathways
of proton transport and the molecular mechanism of proton diffusion
within the pores. Confined sulfuric acid species together with adsorbed
water molecules play a critical role in promoting the proton transfer
through this robust network to afford a material in which proton conductivity
is almost temperature-independent.
Collapse
Affiliation(s)
- Jin Chen
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Qingqing Mei
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Yinlin Chen
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Christopher Marsh
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Bing An
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Xue Han
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ian P Silverwood
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Ming Li
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Meng He
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Xi Chen
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Weiyao Li
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Meredydd Kippax-Jones
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.,Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, United Kingdom
| | - Danielle Crawshaw
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, United Kingdom
| | - Sarah J Day
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, United Kingdom
| | - Victoria García-Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Pascal Manuel
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Martin Schröder
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
66
|
Szufla M, Choroś A, Nitek W, Matoga D. A Porous Sulfonated 2D Zirconium Metal-Organic Framework as a Robust Platform for Proton Conduction. Chemistry 2022; 28:e202200835. [PMID: 35510822 DOI: 10.1002/chem.202200835] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 11/06/2022]
Abstract
By using the strategy of pre-assembly chlorosulfonation applied to a linker precursor, the first sulfonated zirconium metal-organic framework (JUK-14) with two-dimensional (2D) structure, was synthesized. Single-crystal X-ray diffraction reveals that the material is built of Zr6 O4 (OH)4 (COO)8 oxoclusters, doubly 4-connected by angular dicarboxylates, and stacked in layers spaced 1.5 nm apart by the presence of sulfonic groups. JUK-14 exhibits excellent hydrothermal stability, permanent porosity confirmed by gas adsorption studies, and shows high (>10-4 S/cm) and low (<10-8 S/cm) proton conductivity under humidified and anhydrous conditions, respectively. Post-synthesis inclusion of imidazole improves the overall conductivity increasing it to 1.7×10-3 S/cm at 60 °C and 90 % relative humidity, and by 3 orders of magnitude at 160 °C. The combination of 2D porous nature with robustness of zirconium MOFs offers new opportunities for exploration of the material towards energy and environmental applications.
Collapse
Affiliation(s)
- Monika Szufla
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| | - Aleksandra Choroś
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| |
Collapse
|
67
|
Hao BB, Qiao N, Rong Y, Zhang CX, Wang QL. Bifunctional Metal-Organic Framework Functionalized by Dimethylamine Cations: Proton Conduction and Iodine Vapor Adsorption. Inorg Chem 2022; 61:9533-9540. [PMID: 35687844 DOI: 10.1021/acs.inorgchem.2c00597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A metal-organic framework, {Zn3(BTB)2(μ3-OH)[(CH3)2NH2](H2O)}n (1), was synthesized based on H3BTB (1,3,5-tri(4-carboxyphenyl)benzene). An AC impedance test proves that 1 has a relatively high conductivity performance of 1.52 × 10-3 S·cm-1 at 338 K and 98% RH. The proton conductivity of the composite film 1@CS-9 (CS = chitosan) reaches 1.84 × 10-1 S·cm-1 at 328 K and 98% RH. In addition, 1 is discovered to have a good adsorption effect on iodine vapor, and the adsorption capacity reaches 726 mg·g-1. The multifunctionality caused by dimethylamine cations was investigated for the first time, which has implications for multifunctionality generated by host-guest molecules.
Collapse
Affiliation(s)
- Biao-Biao Hao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Na Qiao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yi Rong
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.,Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qing-Lun Wang
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
68
|
Wang K, Li Y, Xie LH, Li X, Li JR. Construction and application of base-stable MOFs: a critical review. Chem Soc Rev 2022; 51:6417-6441. [PMID: 35702993 DOI: 10.1039/d1cs00891a] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials constructed from organic ligands and metal ions/clusters. Owing to their unique advantages, they have attracted more and more attention in recent years and numerous studies have revealed their great potential in various applications. Many important applications of MOFs inevitably involve harsh alkaline operational environments. To achieve high performance and long cycling life in these applications, high stability of MOFs against bases is necessary. Therefore, the construction of base-stable MOFs has become a critical research direction in the MOF field. This review gives a historic summary of the development of base-stable MOFs in the last few years. The key factors that can determine the robustness of MOFs under basic conditions are analyzed. We also demonstrate the exciting achievements that have been made by utilizing base-stable MOFs in different applications. In the end, we discuss major challenges for the further development of base-stable MOFs. Some possible methods to address these problems are presented.
Collapse
Affiliation(s)
- Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yaping Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiangyu Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
69
|
Kotagiri YG, Sandhu SS, Morales JF, Fernando PUAI, Tostado N, Harvey SP, Moores LC, Wang J. Sensor array chip for real‐time field detection and discrimination of organophosphorus neurotoxins. ChemElectroChem 2022. [DOI: 10.1002/celc.202200349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yugender G. Kotagiri
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - Samar S. Sandhu
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - Jose F. Morales
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - P. U. Ashvin I. Fernando
- US Army Engineer Research and Development Center Environmental Laboratory Department of Defense 1100 Crescent Green, #250 27518 Cary UNITED STATES
| | - Nicholas Tostado
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - Steven P. Harvey
- US Army Combat Capabilities Development Command Chemical Biological Center Department of Defense U.S. Army Combat Capabilities and Development Command-Chemical Biological Center 21010 Aberdeen Proving Ground UNITED STATES
| | - Lee C. Moores
- US Army Engineer Research and Development Center Environmental Laboratory Department of Defense 3909 Halls Ferry Road 39180 Vicksburg UNITED STATES
| | - Joseph Wang
- UCSD Department of Nanoengineering 9500 Gilman Drive 92093-0403 La Jolla UNITED STATES
| |
Collapse
|
70
|
Kuk Y, Kee J, Ok KM. Chiral Ligand-Driven Systematic Synthesis of Coordination Polymers with Non-centrosymmetric Structures. Chemistry 2022; 28:e202200007. [PMID: 35088471 DOI: 10.1002/chem.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 11/05/2022]
Abstract
Chirality is an important concept in chemistry revealing intriguing optical properties such as circular dichroism (CD), circularly polarized luminescence (CPL), etc. As one of the non-centrosymmetric (NCS) classes, chiral materials with extended structures may exhibit unique nonlinear optical (NLO) properties, such as second-harmonic generation (SHG). In this Concept article, a series of recently discovered NCS coordination polymers (CPs) from use of carefully designed chiral organic ligands are reviewed. Combining several metal cations such as lanthanides, lead, zinc, and cadmium with rigid chiral ligands has resulted in interesting CPs with both polar and nonpolar structures. Detailed structures, SHG properties, and structure-property relationships are provided. The importance of hyperpolarizability formed by intermolecular hydrogen boding interactions to SHG is emphasized.
Collapse
Affiliation(s)
- Yunseung Kuk
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Joonhyuk Kee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| |
Collapse
|
71
|
Li B, Lu F, Gu X, Shao K, Wu E, Qian G. Immobilization of Lewis Basic Nitrogen Sites into a Chemically Stable Metal-Organic Framework for Benchmark Water-Sorption-Driven Heat Allocations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105556. [PMID: 35146963 PMCID: PMC9009103 DOI: 10.1002/advs.202105556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Developing efficient and stable water adsorbents for adsorption-driven heat transfer technology still remains a challenge due to the lack of efficient strategies to enhance low-pressure water uptakes. The authors herein demonstrate that the immobilization of Lewis basic nitrogen sites into metal-organic frameworks (MOFs) can improve water uptake and target benchmark coefficient of performances (COPs) for cooling and heating. They present the water sorption properties of a chemically stable MOF (termed as Zr-adip), designed by incorporating hydrophilic nitrogen sites into the adsorbent MIP-200. Zr-adip exhibits S-shaped sorption isotherms with an extremely high water uptake of 0.43 g g-1 at 303 K and P/P0 = 0.25, higher than MIP-200 (0.39 g g-1 ), KMF-1 (0.39 g g-1 ) and MOF-303 (0.38 g g-1 ). Theoretical calculations reveal that the incorporated N sites can serve as secondary adsorption sites to moderately interact with water, providing more binding sites to strengthen the water binding affinity. Zr-adip achieves exceptionally high COPs of 0.79 (cooling) and 1.75 (heating) with a low driving temperature of 70 °C, outperforming MIP-200 (0.78 and 1.53) and KMF-1 (0.75 and 1.74). Combined with its ultrahigh stability, excellent cycling performance, and easy regeneration, Zr-adip represents one of the best water adsorbents for adsorption-driven cooling and heating.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Feng‐Fan Lu
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Xiao‐Wen Gu
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Kai Shao
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Enyu Wu
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Guodong Qian
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
72
|
Dawn A, Wireko FC, Shauchuk A, Morgan JLL, Webber JT, Jones SD, Swaile D, Kumari H. Structure-Function Correlations in the Mechanism of Action of Key Antiperspirant Agents Containing Al(III) and ZAG Salts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11597-11609. [PMID: 35213806 PMCID: PMC8915165 DOI: 10.1021/acsami.1c22771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Aluminum hydrolysis chemistry is an important part of modern society because of the dominance of Al(III) as a highly effective antiperspirant active. However, the century-old chemistry centered on aluminum chloride (ACL) is not comprehensive enough to address all of the in vivo events associated with current commercial antiperspirants and their mechanism of action. The present study aims to address the knowledge gap among extensively studied benchmark ACL, its modified version aluminum chlorohydrate (ACH), and a more complex but less explored group of aluminum zirconium chlorohydrate glycine complexes (ZAG salts) toward understanding the mechanism of action under consumer-relevant conditions. ACH, which is the Al source used in the manufacture of ZAG salts, provides a bridge between ACL and ZAG chemistry. High viscosity and gel formation driven by pH and a specific Al(III) salt upon hydrolysis are considered the criteria for building an in vivo occlusive mass to retard or stop the flow of sweat to the skin surface, thus providing an antiperspirant effect. Rheological studies indicated that ACL and aluminum zirconium tetrachlorohydrex glycine (TETRA) were the most efficacious salt actives. Spectroscopic studies, diffraction studies, and elemental analysis suggested that small metal oxide and hydroxide species with coparticipating glycine as well as various polynuclear and oligomeric species are the key to gel formation. At a given pH, the key ingredients (NaCl, urea, bovine serum albumin, and lactic acid) in artificial sweat were found to have little influence on Al(III) salt hydrolysis. The effects of the sweat components were mostly limited to local complex formation and kinetic modification. The in vitro comparative experiments with various Al(III) and ZAG salt systems offer unprecedented insights into the chemistry of different salt types, thus paving the way for engineering more efficacious antiperspirant systems.
Collapse
Affiliation(s)
- Arnab Dawn
- James
L. Winkle College of Pharmacy, University
of Cincinnati, Cincinnati, Ohio 45267-0004, United States
| | - Fred C. Wireko
- P&G
Mason Business Center, Mason, Cincinnati, Ohio 45040, United States
| | - Andrei Shauchuk
- P&G
Mason Business Center, Mason, Cincinnati, Ohio 45040, United States
| | | | - John T. Webber
- P&G
Mason Business Center, Mason, Cincinnati, Ohio 45040, United States
| | - Stevan D. Jones
- P&G
Mason Business Center, Mason, Cincinnati, Ohio 45040, United States
| | - David Swaile
- P&G
Mason Business Center, Mason, Cincinnati, Ohio 45040, United States
| | - Harshita Kumari
- James
L. Winkle College of Pharmacy, University
of Cincinnati, Cincinnati, Ohio 45267-0004, United States
| |
Collapse
|
73
|
Subramaniyam V, Ravi PV, Pichumani M. Structure co-ordination of solitary amino acids as ligands in metal-organic frameworks (MOFs): A comprehensive review. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
74
|
Fu K, Liu X, Lv C, Luo J, Sun M, Luo S, Crittenden JC. Superselective Hg(II) Removal from Water Using a Thiol-Laced MOF-Based Sponge Monolith: Performance and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2677-2688. [PMID: 35112842 DOI: 10.1021/acs.est.1c07480] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Point-of-use (POU) devices with satisfying mercury (Hg) removal performance are urgently needed for public health and yet are scarcely reported. In this study, a thiol-laced metal-organic framework (MOF)-based sponge monolith (TLMSM) has been investigated for Hg(II) removal as the POU device for its benchmark application. The resulting TLMSM was characterized by remarkable chemical resistance, mechanical stability, and hydroscopicity (>2100 wt %). Importantly, the TLMSM has exhibited high adsorption capacity (∼954.7 mg g-1), fast kinetics (kf ∼ 1.76 × 10-5 ms-1), broad working pH range (1-10), high selectivity (Kd > 5.0 × 107 mL g-1), and excellent regeneration capability (removal efficiency >90% after 25 cycles). The high applicability of TLMSM in real-world scenarios was verified by its excellent Hg(II) removal performance in various real water matrices (e.g., surface waters and industrial effluents). Moreover, a fixed-bed column test demonstrated that ∼1485 bed volumes of the feeding streams (∼500 μg L-1) can be effectively treated with an enrichment factor of 12.6, suggesting the great potential of TLMSM as POU devices. Furthermore, the principal adsorption complexes (e.g., single-layer -S-Hg-Cl and double-layer -S-Hg-O-Hg-Cl and -S-Hg-O-Hg-OH) formed during the adsorption process under a wide range of pH were synergistically and systematically unveiled using advanced tools. Overall, this work presents an applicable approach by tailoring MOF into a sponge substrate to achieve its real application in heavy metal removal from water, especially for Hg(II).
Collapse
Affiliation(s)
- Kaixing Fu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong Province, P. R. China
| | - Chunyu Lv
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Mingxing Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
75
|
Gu P, Sun Y, Wang C, Peng Y, Zhu Y, Cheng X, Yuan K, Lyu C, Liu X, Tan Q, Zhang Q, Gu L, Wang Z, Wang H, Han Z, Watanabe K, Taniguchi T, Yang J, Zhang J, Ji W, Tan PH, Ye Y. Magnetic Phase Transitions and Magnetoelastic Coupling in a Two-Dimensional Stripy Antiferromagnet. NANO LETTERS 2022; 22:1233-1241. [PMID: 35041438 DOI: 10.1021/acs.nanolett.1c04373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Materials with a quasi-one-dimensional stripy magnetic order often exhibit low crystal and magnetic symmetries, thus allowing the presence of various energy coupling terms and giving rise to macroscopic interplay between spin, charge, and phonon. In this work, we performed optical, electrical and magnetic characterizations combined with first-principles calculations on a van der Waals antiferromagnetic insulator chromium oxychloride (CrOCl). We detected the subtle phase transition behaviors of exfoliated CrOCl under varying temperature and magnetic field and clarified its controversial spin structures. We found that the antiferromagnetism and its air stability persist down to few-layer samples, making it a promising candidate for future 2D spintronic devices. Additionally, we verified the magnetoelastic coupling effect in CrOCl, allowing for the potential manipulation of the magnetic states via electric field or strain. These virtues of CrOCl provide us with an ideal platform for fundamental research on spin-charge, spin-phonon coupling, and spin-interactions.
Collapse
Affiliation(s)
- Pingfan Gu
- State Key Laboratory for Mesoscopic Physics, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China
| | - Yujia Sun
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Wang
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing, 100872, China
| | - Yuxuan Peng
- State Key Laboratory for Mesoscopic Physics, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China
| | - Yaozheng Zhu
- State Key Laboratory for Mesoscopic Physics, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China
| | - Xing Cheng
- State Key Laboratory for Mesoscopic Physics, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China
| | - Kai Yuan
- State Key Laboratory for Mesoscopic Physics, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China
| | - Chao Lyu
- State Key Laboratory for Mesoscopic Physics, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China
| | - Xuelu Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Qinghai Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hanwen Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zheng Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan 03006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 03006, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jinbo Yang
- State Key Laboratory for Mesoscopic Physics, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China
| | - Jun Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Ji
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing, 100872, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Ye
- State Key Laboratory for Mesoscopic Physics, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, Jiangsu China
| |
Collapse
|
76
|
Highly selective separation of propylene/propane mixture on cost-effectively four-carbon linkers based metal-organic frameworks. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
77
|
Ho TE, Datta A, Lee HM. Proton-conducting metal–organic frameworks with linkers containing anthracenyl and sulfonate groups. CrystEngComm 2022. [DOI: 10.1039/d2ce00747a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Co(dia)1.5(Hsip)(H2O)·H2O (1) and Zn2(μ-OH)(dia)2(sip)·2H2O (2) were prepared from the same set of ligand precursors. They exhibited bnn and dia topologies, respectively. Factors that contributed to the higher proton conductivity of 1 were presented.
Collapse
Affiliation(s)
- Tsai-En Ho
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Amitabha Datta
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Hon Man Lee
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| |
Collapse
|
78
|
Saidi M, Ho PH, Yadav P, Salles F, Charnay C, Girard L, Boukli-Hacene L, Trens P. Zirconium-Based Metal Organic Frameworks for the Capture of Carbon Dioxide and Ethanol Vapour. A Comparative Study. Molecules 2021; 26:7620. [PMID: 34946698 PMCID: PMC8703343 DOI: 10.3390/molecules26247620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
This paper reports on the comparison of three zirconium-based metal organic frameworks (MOFs) for the capture of carbon dioxide and ethanol vapour at ambient conditions. In terms of efficiency, two parameters were evaluated by experimental and modeling means, namely the nature of the ligands and the size of the cavities. We demonstrated that amongst three Zr-based MOFs, MIP-202 has the highest affinity for CO2 (-50 kJ·mol-1 at low coverage against around -20 kJ·mol-1 for MOF-801 and Muc Zr MOF), which could be related to the presence of amino functions borne by its aspartic acid ligands as well as the presence of extra-framework anions. On the other side, regardless of the ligand size, these three materials were able to adsorb similar amounts of carbon dioxide at 1 atm (between 2 and 2.5 µmol·m-2 at 298 K). These experimental findings were consistent with modeling studies, despite chemisorption effects, which could not be taken into consideration by classical Monte Carlo simulations. Ethanol adsorption confirmed these results, higher enthalpies being found at low coverage for the three materials because of stronger van der Waals interactions. Two distinct sorption processes were proposed in the case of MIP-202 to explain the shape of the enthalpic profiles.
Collapse
Affiliation(s)
- Meryem Saidi
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
- Department of Chemistry, Tlemcen University, Tlemcen BP 119, Algeria;
| | - Phuoc Hoang Ho
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
| | - Pankaj Yadav
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
| | - Fabrice Salles
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
| | - Clarence Charnay
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
| | - Luc Girard
- Institut de Chimie Séparative de Marcoule (ICSM), Univ. Montpellier, CNRS, ENSCM, CEA, 30207 Bagnols sur Cèze, France;
| | | | - Philippe Trens
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
| |
Collapse
|
79
|
Zhang W, Lu Y, Zhang S, Dang T, Tian H, Zhang Z, Liu S. Proton conductors with wide operating temperature domains achieved by applying a dual-modification strategy to MIL-101. Dalton Trans 2021; 50:18053-18060. [PMID: 34842879 DOI: 10.1039/d1dt02686k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Developing an efficient strategy for obtaining proton conductors with wide working temperature domains is of great significance for the wide application of proton conductors. To date, proton conductors that have high proton conductivity from subzero temperatures to high temperatures above 100 °C have been very rare. Herein, we prepared two composites, H3PO4@MIL-101-SO3H(Cr) (1) and H2SO4@MIL-101-NH2(Al) (2) by applying a dual-modification strategy to functionalize MOF MIL-101, that is, incorporating acidic guest molecules into the channels of MIL-101 while modifying the MIL-101 backbone with functional groups. Both composites have high proton conductivity over a broad temperature domain (-40 °C to above 150 °C) due to the complementary conduction or synthetic conduction of the backbone functional group and acidic guest molecules in different temperature ranges. The proton conductivities of 1 are 0.9 × 10-1 S cm-1 at 65 °C and 95% RH, 7.5 × 10-5 S cm-1 at -40 °C and 1.4 × 10-2 S cm-1 at 150 °C. Further, the proton conductivities of 2 are 5.8 × 10-2 S cm-1 at 65 °C and 95% RH, 7.1 × 10-4 S cm-1 at -40 °C and 2.5 × 10-4 S cm-1 at 170 °C. All the proton conductivities of the two composites in three temperature domains (low, moderate and high temperature) are at a high level among those of reported proton conductors. Moreover, their proton conductivities have good stability and durability in the broad temperature region from subzero temperatures to high temperatures above 100 °C.
Collapse
Affiliation(s)
- Wanyu Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Shan Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Tianyi Dang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Hongrui Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Zhong Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Shuxia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| |
Collapse
|
80
|
Trimethoprim Antibiotic Adsorption from Aqueous Solution onto Eco-Friendly Zr-Metal Organic Framework Material. MATERIALS 2021; 14:ma14247545. [PMID: 34947140 PMCID: PMC8704845 DOI: 10.3390/ma14247545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
The synthesis of Bio-MOF using aspartic acid as an organic linker and water as a solvent was performed to create an environmentally friendly material. The chemical composition, structure, and morphology of the synthesized zirconium Bio-MOF (MIP-202) was evaluated using X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The synthesized Bio-MOF was used as an adsorbent for trimethoprim antibiotic as pollutants from an aqueous solution under various operating parameters. The increase in the initial trimethoprim concentration from 2.5 mg/L to 20 mg/L decreased the decontamination efficiency from 77.6% to 35.9% at a solution pH of 7 with 0.5 g/L adsorbent dose after 60 min reaction time. The rise of adsorbent dose from 0.1 g/L to 1.5 g/L increased the removal efficiency from 47.7% to 87.6%. The maximum trimethoprim removal efficiency of 95% was attained at a solution pH of 11. Langmuir and pseudo-second order models described the adsorption process of trimethoprim antibiotic onto zirconium Bio-MOF and the chemo-physical nature of trimethoprim adsorption onto the synthesized zirconium Bio-MOF. Accordingly, it was evident that the prepared zirconium Bio-MOF (MIP-202) is an ecofriendly and efficient adsorbent for antibiotic decontamination from polluted water.
Collapse
|
81
|
Ho WH, Li SC, Wang YC, Chang TE, Chiang YT, Li YP, Kung CW. Proton-Conductive Cerium-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55358-55366. [PMID: 34757712 DOI: 10.1021/acsami.1c17396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, proton-conducting behaviors of a cerium-based metal-organic framework (MOF), Ce-MOF-808, its zirconium-based isostructural MOF, and bimetallic MOFs with various Zr-to-Ce ratios are investigated. The significantly increased proton conductivity (σ) and decreased activation energy (Ea) are obtained by substituting Zr with Ce in the nodes of MOF-808. Ce-MOF-808 achieves a σ of 4.4 × 10-3 S/cm at 25 °C under 99% relative humidity and an Ea of 0.14 eV; this value is among the lowest-reported Ea of proton-conductive MOFs. Density functional theory calculations are utilized to probe the proton affinities of these MOFs. As the first study reporting the proton conduction in cerium-based MOFs, the finding here suggests that cerium-based MOFs should be a better platform for the design of proton conductors compared to the commonly reported zirconium-based MOFs in future studies on energy-related applications.
Collapse
Affiliation(s)
- Wei Huan Ho
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Shih-Cheng Li
- Department of Chemical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| | - Yi-Ching Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Tzu-En Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Yi-Ting Chiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Yi-Pei Li
- Department of Chemical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| |
Collapse
|
82
|
Diab KE, Salama E, Hassan HS, El-moneim AA, Elkady MF. Bio-Zirconium Metal-Organic Framework Regenerable Bio-Beads for the Effective Removal of Organophosphates from Polluted Water. Polymers (Basel) 2021; 13:polym13223869. [PMID: 34833167 PMCID: PMC8623664 DOI: 10.3390/polym13223869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/16/2023] Open
Abstract
Organophosphate-based pesticides, such as diazinon, are among the most toxic organic contaminants to human and environment. Effective removal of diazinon from contaminated water sources is critical. Zirconium Metal−organic frameworks (Zr-MOFs) are promising candidates for the removal of organic contaminants from wastewater. Herein, we report the adequacy of a bio based Zr-MOF named MIP-202 for the removal of diazinon from water. On the other hand, the use of these materials in powder form is not workable, the development of scalable and economical processes and integrative of these materials onto beads is paramount for industrial processes. Hence, it was reported a scalable, bio aqueous solution-based preparation strategy for Bio Zr-MOF beads production. The composite material exposed identical reactivity under the same ambient parameters compared to powdered material in an aqueous solution. These results signify a critical procedure to an integrated strategy for organophosphates removal using bio-based MOFs, which demonstrates high potential for manufacturing applications such as continued removal of organophosphates from wastewater supplies.
Collapse
Affiliation(s)
- Kamal E. Diab
- Nanoscience Department, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria 21934, Egypt; (K.E.D.); (A.A.E.-m.)
- Department of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Eslam Salama
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Hassan Shokry Hassan
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria 21934, Egypt;
- Electronic Materials Researches Department, Advanced Technology and New Materials Researches Institute, City of Scientific Researches and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Ahmed Abd El-moneim
- Nanoscience Department, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria 21934, Egypt; (K.E.D.); (A.A.E.-m.)
- Graphene Center of Excellence for Energy and Electronic Applications, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City, Alexandria 21934, Egypt
| | - Marwa F. Elkady
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria 21934, Egypt
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
- Correspondence: ; Tel.: +20-122-720-9936
| |
Collapse
|
83
|
Taksande K, Gkaniatsou E, Simonnet-Jégat C, Livage C, Maurin G, Steunou N, Devautour-Vinot S. Robust ionic liquid@MOF composite as a versatile superprotonic conductor. Dalton Trans 2021; 50:15914-15923. [PMID: 34723313 DOI: 10.1039/d1dt02877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly performing proton conducting composite was prepared through the impregnation of EMIMCl ionic liquid in the mesoporous MIL-101(Cr)-SO3H MOF. The resulting EMIMCl@MIL-101(Cr)-SO3H composite displays high thermal and chemical stability, alongside retention of a high amount of EMIMCl even at temperatures as high as 500 K, as well as under moisture conditions. Remarkably, this composite exhibits outstanding proton conductivity not only at the anhydrous state (σ473 K = 1.5 × 10-3 S cm-S) but also under humidity (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1) conditions. This makes EMIMCl@MIL-101(Cr)-SO3H a unique candidate to act as a solid state proton conductor for PEMFC applications under versatile conditions.
Collapse
Affiliation(s)
- Kiran Taksande
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France. .,Government of Maharashtra's, Ismail Yusuf College, Jogeshwari(E), Mumbai, Maharashtra 411060, India
| | - Effrosyni Gkaniatsou
- Institut Lavoisier de Versailles UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Corine Simonnet-Jégat
- Institut Lavoisier de Versailles UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Carine Livage
- Institut Lavoisier de Versailles UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Guillaume Maurin
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Nathalie Steunou
- Institut Lavoisier de Versailles UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | | |
Collapse
|
84
|
Sandhu SS, Kotagiri YG, Fernando I PUAI, Kalaj M, Tostado N, Teymourian H, Alberts EM, Thornell TL, Jenness GR, Harvey SP, Cohen SM, Moores LC, Wang J. Green MIP-202(Zr) Catalyst: Degradation and Thermally Robust Biomimetic Sensing of Nerve Agents. J Am Chem Soc 2021; 143:18261-18271. [PMID: 34677965 DOI: 10.1021/jacs.1c08356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rapid and robust sensing of nerve agent (NA) threats is necessary for real-time field detection to facilitate timely countermeasures. Unlike conventional phosphotriesterases employed for biocatalytic NA detection, this work describes the use of a new, green, thermally stable, and biocompatible zirconium metal-organic framework (Zr-MOF) catalyst, MIP-202(Zr). The biomimetic Zr-MOF-based catalytic NA recognition layer was coupled with a solid-contact fluoride ion-selective electrode (F-ISE) transducer, for potentiometric detection of diisopropylfluorophosphate (DFP), a F-containing G-type NA simulant. Catalytic DFP degradation by MIP-202(Zr) was evaluated and compared to the established UiO-66-NH2 catalyst. The efficient catalytic DFP degradation with MIP-202(Zr) at near-neutral pH was validated by 31P NMR and FT-IR spectroscopy and potentiometric F-ISE and pH-ISE measurements. Activation of MIP-202(Zr) using Soxhlet extraction improved the DFP conversion rate and afforded a 2.64-fold improvement in total percent conversion over UiO-66-NH2. The exceptional thermal and storage stability of the MIP-202/F-ISE sensor paves the way toward remote/wearable field detection of G-type NAs in real-world environments. Overall, the green, sustainable, highly scalable, and biocompatible nature of MIP-202(Zr) suggests the unexploited scope of such MOF catalysts for on-body sensing applications toward rapid on-site detection and detoxification of NA threats.
Collapse
Affiliation(s)
- Samar S Sandhu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yugender Goud Kotagiri
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Mark Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicholas Tostado
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Hazhir Teymourian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Erik M Alberts
- Simetri, Inc., 7005 University Boulevard, Winter Park, Florida 32792, United States
| | - Travis L Thornell
- Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, United States
| | - Glen R Jenness
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, United States
| | - Steven P Harvey
- U.S. Army Combat Capabilities and Development Command-Chemical Biological Center (CCDC-CBC), Aberdeen Proving Ground, Maryland 21010, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Lee C Moores
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
85
|
Develioglu A, Resines‐Urien E, Poloni R, Martín‐Pérez L, Costa JS, Burzurí E. Tunable Proton Conductivity and Color in a Nonporous Coordination Polymer via Lattice Accommodation to Small Molecules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102619. [PMID: 34658142 PMCID: PMC8596141 DOI: 10.1002/advs.202102619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Nonporous coordination polymers (npCPs) able to accommodate molecules through internal lattice reorganization are uncommon materials with applications in sensing and selective gas adsorption. Proton conduction, extensively studied in the analogue metal-organic frameworks under high-humidity conditions, is however largely unexplored in spite of the opportunities provided by the particular sensitivity of npCPs to lattice perturbations. Here, AC admittance spectroscopy is used to unveil the mechanism behind charge transport in the nonporous 1·2CH3 CN. The conductance in the crystals is found to be of protonic origin. A vehicle mechanism is triggered by the dynamics of the weakly coupled acetonitrile molecules in the lattice that can be maintained by a combination of thermal cycles, even at low humidity levels. An analogue 1·pyrrole npCP is formed by in situ exchange of these weakly bound acetonitrile molecules by pyrrole. The color and conduction properties are determined by the molecules weakly bonded in the lattice. This is the first example of acetonitrile-mediated proton transport in an npCP showing distinct optical response to different molecules. These findings open the door to the design of switchable protonic conductors and capacitive sensors working at low humidity levels and with selectivity to different molecules.
Collapse
Affiliation(s)
| | | | | | | | | | - Enrique Burzurí
- IMDEA NanocienciaCampus de CantoblancoCalle Faraday 9Madrid28049Spain
| |
Collapse
|
86
|
Wang L, Wang K, An HT, Huang H, Xie LH, Li JR. A Hydrolytically Stable Cu(II)-Based Metal-Organic Framework with Easily Accessible Ligands for Water Harvesting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49509-49518. [PMID: 34617718 DOI: 10.1021/acsami.1c15240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity is a critical issue in desert and arid regions, and atmospheric water harvesting is a potential solution. The challenge is lacking ideal adsorbents that can efficiently capture water from low-humidity air and be regenerated readily. Herein, we report a hydrolytically stable metal-organic framework (MOF), [Cu2(AD)2(SA)] (Cu-AD-SA), with excellent performance in water harvesting. More importantly, this material can be facilely prepared from two easily accessible ligands adenine (HAD) and succinic acid (H2SA). Cu-AD-SA has a three-dimensional (3D) framework structure with the crs topology and intersecting channels of ∼5 Å in diameter. The channel surface is decorated by uncoordinated aromatic N atoms, amine groups, and alkyl moieties. Interestingly, Cu-AD-SA shows a high water adsorption capacity of 0.16 g g-1 at low pressure of 0.2 P/P0 and 25 °C. Furthermore, dynamic water adsorption-desorption cycling experiments demonstrated a stable working capacity of 0.13 g g-1 for uptaking water from a low-humidity air (water partial pressure: 0.85 kPa, 20% RH at 30 °C, 5.3% RH at 55 °C) at 30 °C and desorption at 55 °C. The water adsorption mechanism was also studied by analyzing its single-crystal structure after water loading. The results indicated the existence of strong H-bonding interactions between water molecules and uncoordinated N atoms and amine groups on the framework, which should play an important role in the high adsorption at low pressure. All the above features suggest great potential of Cu-AD-SA for water harvesting in arid regions.
Collapse
Affiliation(s)
- Lu Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hao-Tian An
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Membrane Separation and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
87
|
Biswas S, Neugebauer P. Lanthanide‐Based Metal‐Organic‐Frameworks for Proton Conduction and Magnetic Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Soumava Biswas
- CEITEC BUT Brno University of Technology Purkyňova 123 Brno 61200 Czech Republic
| | - Petr Neugebauer
- CEITEC BUT Brno University of Technology Purkyňova 123 Brno 61200 Czech Republic
| |
Collapse
|
88
|
Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
89
|
Wang S, Zhao Y, Zhang Z, Zhang Y, Li L. Recent advances in amino acid-metal coordinated nanomaterials for biomedical applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
90
|
Verma G, Mehta R, Kumar S, Ma S. Metal‐Organic Frameworks as a New Platform for Enantioselective Separations. Isr J Chem 2021. [DOI: 10.1002/ijch.202100073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gaurav Verma
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton, TX 76201 USA
| | - Ruhi Mehta
- Department of Chemistry Multani Mal Modi College Patiala 147001 Punjab India
| | - Sanjay Kumar
- Department of Chemistry Multani Mal Modi College Patiala 147001 Punjab India
| | - Shengqian Ma
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton, TX 76201 USA
| |
Collapse
|
91
|
Niu X, Yu Y, Mu C, Xie X, Liu Y, Liu Z, Li L, Li G, Li J. High Proton Conduction in Two Highly Water-Stable Lanthanide Coordination Polymers from a Triazole Multicarboxylate Ligand. Inorg Chem 2021; 60:13242-13251. [PMID: 34436871 DOI: 10.1021/acs.inorgchem.1c01616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two lanthanide coordination polymers (CPs) {[Er(Hmtbd)(H2mtbd)(H2O)3]·2H2O}n (1) and [Yb(Hmtbd)(H2mtbd)(H2O)3]n (2) carrying an N-heterocyclic carboxylate ligand 5-(3-methylformate-1H-1,2,4-triazole-1-methyl)benzen-1,3-dicarboxylate (H3mtbd) were prepared under solvothermal conditions. The single-crystal X-ray diffraction data demonstrate that 1 and 2 are isostructural and display 1D chain structure. Alternating current (AC) impedance measurements illustrate that the highest proton conductivities of 1 and 2 can attain 5.09 × 10-3 and 3.09 × 10-3 S·cm-1 at 100 °C and 98% relative humidity (RH), respectively. The value of 1 exceeds those of most reported lanthanide-based crystalline materials and ranks second among the described Er-CPs under similar conditions, whereas the value for 2 is the highest proton conductivity among the previous Yb-CPs. Coupled with the structural analyses of the two CPs and H2O vapor adsorption, the calculated Ea values help to deduce their proton conductive mechanisms. Notably, the N-heterocyclic units (triazole), carboxyl, and hydrogen-bonding network all play key roles in the proton-transfer process. The prominent proton conductive abilities of both CPs show great promise as efficient proton conductors.
Collapse
Affiliation(s)
- Xiaoge Niu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yihong Yu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Chenyu Mu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xiaoxin Xie
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yan Liu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zhongyi Liu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Linke Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Jinpeng Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
92
|
C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213998] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
93
|
Zhang J, He X, Kong YR, Luo HB, Liu M, Liu Y, Ren XM. Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37231-37238. [PMID: 34324287 DOI: 10.1021/acsami.1c11054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) provided a versatile platform for the development of new solid protonic electrolytes but faced great challenges regarding their low chemical stability and poor moisture retention capacity. Herein, we presented the proton-conducting study for zirconium-based MOF-802, revealing that MOF-802 possessed excellent features of extra aqueous and acidic stabilities and room-temperature superprotonic conduction with a proton conductivity of 1.05 × 10-2 S cm-1 at 288 K under 98% relative humidity (RH). Unfortunately, due to the liberation of water molecules from pores/channels, the proton conductivity of MOF-802 dropped significantly at the temperature above 318 K. To solve this issue, for the first time, MOF-802 was hybridized with poly(vinyl alcohol) (PVA) to form MOF-802@PVA hydrogel composites, where the moisture retention capacity of MOF-802 was greatly improved, giving the high room-temperature proton conductivity over 10-3 S cm-1 under ambient humidity. This work paves a new way to improve the moisture retention capacity and proton-conducting performances of porous proton conductors.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin He
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ya-Ru Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong-Bin Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Meng Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
94
|
Maiyelvaganan KR, Kamalakannan S, Shanmugan S, Prakash M, Coudert FX, Hochlaf M. Identification of a Grotthuss proton hopping mechanism at protonated polyhedral oligomeric silsesquioxane (POSS) - water interface. J Colloid Interface Sci 2021; 605:701-709. [PMID: 34365306 DOI: 10.1016/j.jcis.2021.07.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
The attachment and dissociation of a proton from a water molecule and the proton transfers at solid-liquid interfaces play vital roles in numerous biological, chemical processes and for the development of sustainable functional materials for energy harvesting and conversion applications. Using first-principles computational methodologies, we investigated the protonated forms of polyhedral oligomeric silsesquioxane (POSS-H+) interacting with water clusters (Wn, where n = 1-6) as a model to quantify the proton conducting and localization ability at solid-liquid interfaces. Successive addition of explicit water molecules to POSS-H+ shows that the assistance of at least three water molecules is required to dissociate the proton from POSS with the formation of an Eigen cation (H9O4+), whereas the presence of a fourth water molecule highly favors the formation of a Zundel ion (H5O2+). Reaction pathway and energy barrier analysis reveal that the formation of the Eigen cation requires significantly higher energy than the Zundel features. This confirms that the Zundel ion is destabilized and promptly converts in to Eigen ion at this interface. Moreover, we identified a Grotthuss-type mechanism for the proton transfer through a water chain close to the interface, where symmetrical and unsymmetrical arrangements of water molecules around H+ of protonated POSS-H+ are involved in the conduction of proton through water wires where successive Eigen-to-Zundel and Zundel-to-Eigen transformations are observed in quick succession.
Collapse
Affiliation(s)
- K R Maiyelvaganan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Chennai TN, India
| | - S Kamalakannan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Chennai TN, India
| | - S Shanmugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Chennai TN, India
| | - M Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Chennai TN, India.
| | - F-X Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
| | - M Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes 77454 Champs sur Marne, France.
| |
Collapse
|
95
|
Yang L, Cai P, Zhang L, Xu X, Yakovenko AA, Wang Q, Pang J, Yuan S, Zou X, Huang N, Huang Z, Zhou HC. Ligand-Directed Conformational Control over Porphyrinic Zirconium Metal-Organic Frameworks for Size-Selective Catalysis. J Am Chem Soc 2021; 143:12129-12137. [PMID: 34340311 DOI: 10.1021/jacs.1c03960] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have aroused enormous interest owing to their superior stability, flexible structures, and intriguing functions. Precise control over their crystalline structures, including topological structures, porosity, composition, and conformation, constitutes an important challenge to realize the tailor-made functionalization. In this work, we developed a new Zr-MOF (PCN-625) with a csq topological net, which is similar to that of the well-known PCN-222 and NU-1000. However, the significant difference lies in the conformation of porphyrin rings, which are vertical to the pore surfaces rather than in parallel. The resulting PCN-625 exhibits two types of one-dimensional channels with concrete diameters of 2.03 and 0.43 nm. Furthermore, the vertical porphyrins together with shrunken pore sizes could limit the accessibility of substrates to active centers in the framework. On the basis of the structural characteristics, PCN-625(Fe) can be utilized as an efficient heterogeneous catalyst for the size-selective [4 + 2] hetero-Diels-Alder cycloaddition reaction. Due to its high chemical stability, this catalyst can be repeatedly used over six times. This work demonstrates that Zr-MOFs can serve as tailor-made scaffolds with enhanced flexibility for target-oriented functions.
Collapse
Affiliation(s)
- Liting Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Liangliang Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Andrey A Yakovenko
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Qi Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Jiandong Pang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Shuai Yuan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiaodong Zou
- Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.,Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, People's Republic of China
| | - Zhehao Huang
- Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
96
|
Li Y, Li X, Jia S, Zhang C, Luo Y, Lin Z, Zhao Y, Huang W. Construction of Highly Proton-Conductive Zr(IV)-Based Metal-Organic Frameworks From Pyrrolo-pyrrole-Based Linkers with a Rhombic Shape. Inorg Chem 2021; 60:12129-12135. [PMID: 34310114 DOI: 10.1021/acs.inorgchem.1c01336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To date, numerous zirconium cluster-based metal-organic frameworks (Zr-MOFs) with attractive physical properties have been achieved thanks to tailorable organic linkers and versatile Zr clusters. Nevertheless, in comparison with the most-used high-symmetry organic linkers, low-symmetry linkers have rarely been exploited in the construction of Zr-MOFs. Despite challenges in predicting the structure and topology of the MOF, linker desymmetrization presents opportunities for the design of Zr-MOFs with unusual topologies and unexpected functionalities. Herein, we report for the first time the construction of two robust Zr-MOFs (IAM-7 and IAM-8) from two pyrrolo-pyrrole-based low-symmetry tetracarboxylate linkers with a rare rhombic shape. The low symmetry of the linkers arises from the asymmetric pyrrolo-pyrrole core and the varying branch lengths, which play a critical role in the structural diversity between IAM-7 and IAM-8 seen from the structural analysis and lead to hydrophilic channels that contain uncoordinated carboxylate groups in the structure of IAM-7. Furthermore, the proton conductivity of IAM-7 displays a high temperature and humidity dependence where the proton conductivity increases from 2.84 × 10-8 S cm-1 at 30 °C and 40% relative humidity (RH) to 1.42 × 10-2 S cm-1 at 90 °C and 95% RH, making it among one of the most conductive Zr-MOFs. This work not only enriches the library of Zr-MOFs but also offers a platform for the design of low-symmetry linkers toward the structural diversity or irregularity of MOFs as well as their structure-related properties.
Collapse
Affiliation(s)
- Yiyang Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Xiaoteng Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Shuping Jia
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Chong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Yuxin Luo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Zhihua Lin
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yonggang Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
97
|
Li J, Yi M, Zhang L, You Z, Liu X, Li* B. Energy related ion transports in coordination polymers. NANO SELECT 2021. [DOI: 10.1002/nano.202100164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jinli Li
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Mao Yi
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Laiyu Zhang
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Zifeng You
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Xiongli Liu
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Baiyan Li*
- College of Materials Science and Engineering Nankai University Tianjin China
| |
Collapse
|
98
|
Zhang G, Jin L, Zhang R, Bai Y, Zhu R, Pang H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213915] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
99
|
Shi L, Mao W, Zhang L, Zhao Y, Huang H, Xiao Y, Mao L, Fu Z, Yu N, Yin D. An ultrathin amino-acid based copper(II) coordination polymer nanosheet for efficient epoxidation of β-caryophyllene. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
100
|
Sharma A, Lim J, Jeong S, Won S, Seong J, Lee S, Kim YS, Baek SB, Lah MS. Superprotonic Conductivity of MOF‐808 Achieved by Controlling the Binding Mode of Grafted Sulfamate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amitosh Sharma
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jaewoong Lim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Seok Jeong
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Somi Won
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Junmo Seong
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Seonghwan Lee
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Yung Sam Kim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Seung Bin Baek
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Myoung Soo Lah
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|